139 research outputs found

    Bifurcations of periodic orbits with spatio-temporal symmetries

    Get PDF
    Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems

    A minimal-variable symplectic integrator on spheres

    Full text link
    We construct a symplectic, globally defined, minimal-coordinate, equivariant integrator on products of 2-spheres. Examples of corresponding Hamiltonian systems, called spin systems, include the reduced free rigid body, the motion of point vortices on a sphere, and the classical Heisenberg spin chain, a spatial discretisation of the Landau-Lifschitz equation. The existence of such an integrator is remarkable, as the sphere is neither a vector space, nor a cotangent bundle, has no global coordinate chart, and its symplectic form is not even exact. Moreover, the formulation of the integrator is very simple, and resembles the geodesic midpoint method, although the latter is not symplectic

    The large core limit of spiral waves in excitable media: A numerical approach

    Full text link
    We modify the freezing method introduced by Beyn & Thuemmler, 2004, for analyzing rigidly rotating spiral waves in excitable media. The proposed method is designed to stably determine the rotation frequency and the core radius of rotating spirals, as well as the approximate shape of spiral waves in unbounded domains. In particular, we introduce spiral wave boundary conditions based on geometric approximations of spiral wave solutions by Archimedean spirals and by involutes of circles. We further propose a simple implementation of boundary conditions for the case when the inhibitor is non-diffusive, a case which had previously caused spurious oscillations. We then utilize the method to numerically analyze the large core limit. The proposed method allows us to investigate the case close to criticality where spiral waves acquire infinite core radius and zero rotation frequency, before they begin to develop into retracting fingers. We confirm the linear scaling regime of a drift bifurcation for the rotation frequency and the core radius of spiral wave solutions close to criticality. This regime is unattainable with conventional numerical methods.Comment: 32 pages, 17 figures, as accepted by SIAM Journal on Applied Dynamical Systems on 20/03/1

    Reduction of continuous symmetries of chaotic flows by the method of slices

    Full text link
    We study continuous symmetry reduction of dynamical systems by the method of slices (method of moving frames) and show that a `slice' defined by minimizing the distance to a single generic `template' intersects the group orbit of every point in the full state space. Global symmetry reduction by a single slice is, however, not natural for a chaotic / turbulent flow; it is better to cover the reduced state space by a set of slices, one for each dynamically prominent unstable pattern. Judiciously chosen, such tessellation eliminates the singular traversals of the inflection hyperplane that comes along with each slice, an artifact of using the template's local group linearization globally. We compute the jump in the reduced state space induced by crossing the inflection hyperplane. As an illustration of the method, we reduce the SO(2) symmetry of the complex Lorenz equations.Comment: to appear in "Comm. Nonlinear Sci. and Numer. Simulat. (2011)" 12 pages, 8 figure

    Recurrent spatio-temporal structures in presence of continuous symmetries

    Get PDF
    When statistical assumptions do not hold and coherent structures are present in spatially extended systems such as fluid flows, flame fronts and field theories, a dynamical description of turbulent phenomena becomes necessary. In the dynamical systems approach, theory of turbulence for a given system, with given boundary conditions, is given by (a) the geometry of its infinite-dimensional state space and (b) the associated measure, that is, the likelihood that asymptotic dynamics visits a given state space region. In this thesis this vision is pursued in the context of Kuramoto-Sivashinsky system, one of the simplest physically interesting spatially extended nonlinear systems. With periodic boundary conditions, continuous translational symmetry endows state space with additional structure that often dictates the type of observed solutions. At the same time, the notion of recurrence becomes relative: asymptotic dynamics visits the neighborhood of any equivalent, translated point, infinitely often. Identification of points related by the symmetry group action, termed symmetry reduction, although conceptually simple as the group action is linear, is hard to implement in practice, yet it leads to dramatic simplification of dynamics. Here we propose a scheme, based on the method of moving frames of Cartan, to efficiently project solutions of high-dimensional truncations of partial differential equations computed in the original space to a reduced state space. The procedure simplifies the visualization of high-dimensional flows and provides new insight into the role the unstable manifolds of equilibria and traveling waves play in organizing Kuramoto-Sivashinsky flow. This in turn elucidates the mechanism that creates unstable modulated traveling waves (periodic orbits in reduced space) that provide a skeleton of the dynamics. The compact description of dynamics thus achieved sets the stage for reduction of the dynamics to mappings between a set of Poincare sections.Ph.D.Committee Chair: Cvitanovic, Predrag; Committee Member: Dieci, Luca; Committee Member: Grigoriev, Roman; Committee Member: Schatz, Michael; Committee Member: Wiesenfeld, Kur

    Dynamics of Patterns

    Get PDF
    This workshop focused on the dynamics of nonlinear waves and spatio-temporal patterns, which arise in functional and partial differential equations. Among the outstanding problems in this area are the dynamical selection of patterns, gaining a theoretical understanding of transient dynamics, the nonlinear stability of patterns in unbounded domains, and the development of efficient numerical techniques to capture specific dynamical effects
    • …
    corecore