8 research outputs found

    An extremal problem on group connectivity of graphs

    Get PDF
    Let A be an Abelian group, n \u3e 3 be an integer, and ex(n, A) be the maximum integer such that every n-vertex simple graph with at most ex(n, A) edges is not A-connected. In this paper, we study ex(n, A) for IAI \u3e 3 and present lower and upper bounds for 3 \u3c IAI 5. 0 2012 Elsevier Ltd. All rights reserved

    Generalized nowhere zero flow

    Get PDF
    Let G be an undirected graph, A be an (additive) abelian group and A* = A - {lcub}0{rcub}. A graph G is A-connected if G has an orientation D(G) such that for every function b : V(G ) A satisfying Sv∈VG b(v) = 0, there is a function f : E(G) A* such that at each vertex v ∈ V(G), ∂f(v), the net flow out from v, equals b( v). An A-nowhere-zero-flow (abbreviated as A-NZF) in G is a function f : E(G) A* such that at each vertex v ∈ V(G), ∂f(v) = 0.;In this paper, we investigate the group connectivity number Lambda g(G) = min{lcub}n : if A is an abelian group with |A| ≥ n, then G is A-connected{rcub} for certain families of graphs including complete bipartite graphs, chordal graphs, wheels and biwheels. We also give some general results and methods to approach nowhere zero flow and group connectivity problems

    Realizing Degree Sequences with Graphs Having Nowhere-Zero 3-Flows

    Get PDF
    The following open problem was proposed by Archdeacon: Characterize all graphical sequences π such that some realization of π admits a nowhere-zero 3-flow. The purpose of this paper is to resolve this problem and present a complete characterization: A graphical sequence π = (d1, d2, ., dn) with minimum degree at least two has a realization that admits a nowhere-zero 3-flow if and only if π ≠ (34, 2), (k, 3k), (k2, 3k―1), where k is an odd integer

    On flows of graphs

    Get PDF
    Tutte\u27s 3-flow Conjecture, 4-flow Conjecture, and 5-flow Conjecture are among the most fascinating problems in graph theory. In this dissertation, we mainly focus on the nowhere-zero integer flow of graphs, the circular flow of graphs and the bidirected flow of graphs. We confirm Tutte\u27s 3-flow Conjecture for the family of squares of graphs and the family of triangularly connected graphs. In fact, we obtain much stronger results on this conjecture in terms of group connectivity and get the complete characterization of such graphs in those families which do not admit nowhere-zero 3-flows. For the circular flows of graphs, we establish some sufficient conditions for a graph to have circular flow index less than 4, which generalizes a new known result to a large family of graphs. For the Bidirected Flow Conjecture, we prove it to be true for 6-edge connected graphs

    Modeling and Tuning of Energy Harvesting Device Using Piezoelectric Cantilever Array

    Get PDF
    Piezoelectric devices have been increasingly investigated as a means of converting ambient vibrations into electrical energy that can be stored and used to power other devices, such as the sensors/actuators, micro-electro-mechanical systems (MEMS) devices, and microprocessor units etc. The objective of this work was to design, fabricate, and test a piezoelectric device to harvest as much power as possible from vibration sources and effectively store the power in a battery.;The main factors determining the amount of collectable power of a single piezoelectric cantilever are its resonant frequency, operation mode and resistive load in the charging circuit. A proof mass was used to adjust the resonant frequency and operation mode of a piezoelectric cantilever by moving the mass along the cantilever. Due to the tiny amount of collected power, a capacitor was suggested in the charging circuit as an intermediate station. To harvest sufficient energy, a piezoelectric cantilever array, which integrates multiple cantilevers in parallel connection, was investigated.;In the past, most prior research has focused on the theoretical analysis of power generation instead of storing generated power in a physical device. In this research, a commercial solid-state battery was used to store the power collected by the proposed piezoelectric cantilever array. The time required to charge the battery up to 80% capacity using a constant power supply was 970 s. It took about 2400 s for the piezoelectric array to complete the same task. Other than harvesting energy from sinusoidal waveforms, a vibration source that emulates a real environment was also studied. In this research the response of a bridge-vehicle system was used as the vibration sources such a scenario is much closer to a real environment compared with typical lab setups

    Weighted Modulo Orientations of Graphs

    Get PDF
    This dissertation focuses on the subject of nowhere-zero flow problems on graphs. Tutte\u27s 5-Flow Conjecture (1954) states that every bridgeless graph admits a nowhere-zero 5-flow, and Tutte\u27s 3-Flow Conjecture (1972) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Extending Tutte\u27s flows conjectures, Jaeger\u27s Circular Flow Conjecture (1981) says every 4k-edge-connected graph admits a modulo (2k+1)-orientation, that is, an orientation such that the indegree is congruent to outdegree modulo (2k+1) at every vertex. Note that the k=1 case of Circular Flow Conjecture coincides with the 3-Flow Conjecture, and the case of k=2 implies the 5-Flow Conjecture. This work is devoted to providing some partial results on these problems. In Chapter 2, we study the problem of modulo 5-orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence d=(d1,..., dn) has a realization G with a modulo 5-orientation if and only if di≤1,3 for each i. In addition, we show that every multigraphic sequence d=(d1,..., dn) with min{1≤i≤n}di≥9 has a 9-edge-connected realization that admits a modulo 5-orientation for every possible boundary function. Jaeger conjectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose truth would imply Tutte\u27s 5-Flow Conjecture. Consequently, this supports the conjecture of Jaeger. In Chapter 3, we show that there are essentially finite many exceptions for graphs with bounded matching numbers not admitting any modulo (2k+1)-orientations for any positive integers t. We additionally characterize all infinite many graphs with bounded matching numbers but without a nowhere-zero 3-flow. This partially supports Jaeger\u27s Circular Flow Conjecture and Tutte\u27s 3-Flow Conjecture. In 2018, Esperet, De Verclos, Le and Thomass introduced the problem of weighted modulo orientations of graphs and indicated that this problem is closely related to modulo orientations of graphs, including Tutte\u27s 3-Flow Conjecture. In Chapter 4 and Chapter 5, utilizing properties of additive bases and contractible configurations, we reduced the Esperet et al\u27s edge-connectivity lower bound for some (signed) graphs families including planar graphs, complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families. In Chapter 6, we show that the assertion of Jaeger\u27s Circular Flow Conjecture with k=2 holds asymptotically almost surely for random 9-regular graphs
    corecore