6 research outputs found

    On flows of graphs

    Get PDF
    Tutte\u27s 3-flow Conjecture, 4-flow Conjecture, and 5-flow Conjecture are among the most fascinating problems in graph theory. In this dissertation, we mainly focus on the nowhere-zero integer flow of graphs, the circular flow of graphs and the bidirected flow of graphs. We confirm Tutte\u27s 3-flow Conjecture for the family of squares of graphs and the family of triangularly connected graphs. In fact, we obtain much stronger results on this conjecture in terms of group connectivity and get the complete characterization of such graphs in those families which do not admit nowhere-zero 3-flows. For the circular flows of graphs, we establish some sufficient conditions for a graph to have circular flow index less than 4, which generalizes a new known result to a large family of graphs. For the Bidirected Flow Conjecture, we prove it to be true for 6-edge connected graphs

    Z3-connectivity of 4-edge-connected 2-triangular graphs

    Get PDF
    AbstractA graph G is k-triangular if each edge of G is in at least k triangles. It is conjectured that every 4-edge-connected 1-triangular graph admits a nowhere-zero Z3-flow. However, it has been proved that not all such graphs are Z3-connected. In this paper, we show that every 4-edge-connected 2-triangular graph is Z3-connected. The result is best possible. This result provides evidence to support the Z3-connectivity conjecture by Jaeger et al that every 5-edge-connected graph is Z3-connected

    Flows on the join of two graphs

    Get PDF
    summary:The join of two graphs GG and HH is a graph formed from disjoint copies of GG and HH by connecting each vertex of GG to each vertex of HH. We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero 33-flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus an isolated vertex joined with a graph containing only isolated vertices, and two isolated vertices joined with exactly one isolated vertex plus some number of isolated edges

    Integer flows and Modulo Orientations

    Get PDF
    Tutte\u27s 3-flow conjecture (1970\u27s) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. A graph G admits a nowhere-zero 3-flow if and only if G has an orientation such that the out-degree equals the in-degree modulo 3 for every vertex. In the 1980ies Jaeger suggested some related conjectures. The generalized conjecture to modulo k-orientations, called circular flow conjecture, says that, for every odd natural number k, every (2k-2)-edge-connected graph has an orientation such that the out-degree equals the in-degree modulo k for every vertex. And the weaker conjecture he made, known as the weak 3-flow conjecture where he suggests that the constant 4 is replaced by any larger constant.;The weak version of the circular flow conjecture and the weak 3-flow conjecture are verified by Thomassen (JCTB 2012) recently. He proved that, for every odd natural number k, every (2k 2 + k)-edge-connected graph has an orientation such that the out-degree equals the in-degree modulo k for every vertex and for k = 3 the edge-connectivity 8 suffices. Those proofs are refined in this paper to give the same conclusions for 9 k-edge-connected graphs and for 6-edge-connected graphs when k = 3 respectively

    Nowhere-Zero 3-Flows in Squares of Graphs

    Get PDF
    It was conjectured by Tutte that every 4-edge-connected graph admits a nowhere-zero 3-flow. In this paper, we give a complete characterization of graphs whose squares admit nowhere-zero 3-flows and thus confirm Tutte's 3-flow conjecture for the family of squares of graphs
    corecore