Z_{3}-connectivity of 4-edge-connected 2-triangular graphs

Xinmin Hou ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b,c }}$, Mingquan Zhan ${ }^{\text {d }}$, Taoye Zhang ${ }^{\text {e }}$, Ju Zhou ${ }^{\text {f }}$
${ }^{\text {a }}$ Department of Mathematics, University of Science and Technology of China, Hefei, 230026, PR China
${ }^{\text {b }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {d }}$ Department of Mathematics, Millersville University, Millersville, PA 17551, USA
${ }^{\text {e }}$ Department of Mathematics, Penn State University, Dunmore, PA 18512, USA
${ }^{\mathrm{f}}$ Department of Mathematics, Kutztown University, Kutztown, PA 19530, USA

ARTICLE INFO

Article history:

Received 12 September 2010
Received in revised form
19 January 2011
Accepted 8 September 2011
Available online 24 October 2011

Abstract

A graph G is k-triangular if each edge of G is in at least k triangles. It is conjectured that every 4-edge-connected 1-triangular graph admits a nowhere-zero Z_{3}-flow. However, it has been proved that not all such graphs are Z_{3}-connected. In this paper, we show that every 4-edge-connected 2-triangular graph is Z_{3}-connected. The result is best possible. This result provides evidence to support the Z_{3}-connectivity conjecture by Jaeger et al that every 5-edgeconnected graph is Z_{3}-connected.

Published by Elsevier Ltd

1. Introduction

We follow the notations and terminology of [1] except otherwise stated. For an integer $k>0, Z_{k}$ denotes the set of all integers modulo k, as well as the cyclic group of order k. Let G be a graph, $l>0$ be an integer, $x \in V(G)$ and $X \subseteq V(G)$. Define $D_{l}(G)=\left\{v \in V(G) \mid d_{G}(v)=l\right\}, N_{G}(x)=\{v \in V(G) \mid v x \in$ $E(G)\}$ and $G[X]$ the graph induced by X.

Broersma and Veldman introduced the concept of k-triangular graphs in [2]. A graph G is k-triangular if each edge of G is in at least k triangles. A 1-triangular graph is also referred to as a triangular graph.

Let G be a digraph, A be a nontrivial additive Abelian group and A^{*} be the set of nonzero elements in A. For any $v \in V(G)$, we denote the set of all edges with tails at v by $E^{+}(v)$ and heads at v by $E^{-}(v)$. Let $E(v)=E^{+}(v) \cup E^{-}(v)$.

[^0]Following the notations in [5], we define

$$
F(G, A)=\{f \mid f: E(G) \mapsto A\} \quad \text { and } \quad F^{*}(G, A)=\left\{f \mid f: E(G) \mapsto A^{*}\right\}
$$

For each $f \in F(G, A)$, the boundary of f is a function $\partial f: V(G) \mapsto A$ defined by

$$
\partial f(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e),
$$

where " \sum " refers to the addition in A. We define

$$
Z(G, A)=\left\{b \mid b: V(G) \mapsto A \text { with } \sum_{v \in V(G)} b(v)=0\right\} .
$$

An A-nowhere-zero-flow (abbreviated as A-NZF) in G is an $f \in F^{*}(G, A)$ such that $\partial f=0$. For any given $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$ with $\partial f=b$ is called an (A, b)-NZF.

An undirected graph G is A-connected, if G has an orientation G^{\prime} such that for every function $b \in Z\left(G^{\prime}, A\right)$, there exists an (A, b)-NZF. It has been observed in [5] that whether G is A-connected is independent of the orientation of G. For an Abelian group A, let $\langle A\rangle$ denote the family of graphs that are A-connected.

The nowhere-zero flow problems were introduced by Tutte [8] and surveyed by Jaeger in [4] and by Zhang in [11]. The concept of A-connectivity was introduced by Jaeger et al. in [5], where A-NZF's were successfully generalized to A-connectivity.

The group connectivity number of a 2-edge-connected graph G is defined as
$\Lambda_{g}(G)=\min \{k: G$ is A-connected for every Abelian group A with $|A| \geq k\}$.
In [10], it is shown that if $c(G)$ denote the circumference of G (length of a longest circuit), then $\Lambda_{g}(G) \leq c(G)+1$. Thus for any 2-edge-connected graph $G, \Lambda_{g}(G)$ exists as a finite number.

This paper is motivated by the following conjectures.
Conjecture 1.1 (Tutte, Unsolved Problem 48 in [1]). Every 4-edge-connected graph admits a $Z_{3}-N Z F$.
Conjecture 1.2 (Jaeger et al. [5]). If G is 5-edge-connected, then $\Lambda_{g}(G) \leq 3$.
A weaker version of Conjecture 1.1 is also posed by Xu and Zhang in [9].
Conjecture 1.3 (Xu and Zhang [9]). Every 4-edge-connected triangular graph has a $Z_{3}-N Z F$.
It was further asked (Problem 1 in [7]) whether every 4-edge-connected triangular graph is Z_{3}-connected. This was shown in the negative in [7]. Moreover, a recent result in [3] by Fan et al. indicated that there exist infinitely many 3-edge-connected 2 -triangular graphs that are not Z_{3}-connected. These motivate the authors to consider the Z_{3}-connectivity of 4-edge-connected 2 -triangular graphs. The main results of this paper are the following.

Theorem 1.4. Every 4-edge-connected 2-triangular graph is Z_{3}-connected.
Corollary 1.5. If G is a 4-edge-connected 2-triangular graph, then $\Lambda_{g}(G) \leq 3$.
Corollary 1.6. If G is a connected 3-triangular graph, then $\Lambda_{g}(G) \leq 3$. In particular, every connected 3-triangular graph is Z_{3}-connected.

In Section 2, we summarize some of the useful tools in the proof. In Section 3, we assume the validity of Theorem 1.4 to prove Corollaries 1.5 and 1.6 , and present examples to show the sharpness of our main results. Section 4 will be devoted to the proof of Theorem 1.4.

2. Useful lemmas

Let G be a graph and $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. For convenience, we use G / e for $G /\{e\}$ and $G / \emptyset=G$; and if H is a subgraph of G, we write G / H for $G / E(H)$.

Lemma 2.1 (Proposition 3.2 of [6]). Let A be an Abelian group, G be a graph and H be a subgraph of G. If $H \in\left\langle Z_{3}\right\rangle$, then $G / H \in\left\langle Z_{3}\right\rangle$ if and only if $G \in\left\langle Z_{3}\right\rangle$.

It has been observed in [5] that a cycle C is A-connected if and only if $|E(C)|<|A|$. Therefore, for a connected graph G, if every edge of G lies in a cycle of length at most k, then $\Lambda_{g}(G) \leq k+1$. The case in which $k=3$ is needed in the proof.

Lemma 2.2. If G is connected and triangular, then $\Lambda_{g}(G) \leq 4$.
Let G be a graph. A triangle-path in G is a sequence of distinct cycles $T_{1} T_{2} \cdots T_{m}$ in G, each having length at most 3 , such that for $1 \leq i \leq m-1$,

$$
\begin{equation*}
\left|E\left(T_{i}\right) \cap E\left(T_{i+1}\right)\right|=1 \quad \text { and } \quad E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset \quad \text { for }|i-j|>1 . \tag{1}
\end{equation*}
$$

Two edges $e, e^{\prime} \in E(G)$ are triangularly connected if G has a triangle-path $T_{1} T_{2} \cdots T_{m}$ such that $e \in E\left(T_{1}\right)$ and $e^{\prime} \in E\left(T_{m}\right)$. Such a triangle-path is also referred as an (e, e^{\prime})-triangle-path.

Two edges $e, e^{\prime} \in E(G)$ are equivalent if they are the same, parallel or triangularly connected. One can easily verify that this is an equivalence relation. Each equivalence class is called a triangularly connected component. A graph G is triangularly connected if it has only one triangularly connected component.

A wheel W_{n} is the graph obtained from C_{n} by adding one vertex and joining it to each vertex of C_{n}. A fan F_{n} is the graph obtained from P_{n} by adding one vertex and joining it to each vertex of P_{n}. Clearly, $K_{4} \cong W_{3}$ and $K_{3} \cong F_{2}$.

Let G_{1}, G_{2} be two disjoint graphs. As in [3], $G_{1} \oplus_{2} G_{2}$, called the parallel connection of G_{1} and G_{2}, is defined to be the graph obtained from $G_{1} \cup G_{2}$ by identifying exactly one edge.

Let $\mathcal{W F}$ be the family of graphs that satisfy the following conditions:
(i) $K_{3}, W_{2 n+1} \in \mathcal{W F}$;
(ii) If $G_{1}, G_{2} \in \mathcal{W} \mathcal{F}$, then $G_{1} \oplus_{2} G_{2} \in \mathcal{W} \mathcal{F}$.

Define $\mathcal{W F}_{2}$ to be the family of graphs such that a graph $G \in \mathcal{W F}_{2}$ if and only if $G \in \mathscr{W} \mathcal{F}$ and G is 2-triangular.

Lemma 2.3 ([3]). Let G be a triangularly connected graph. Then $G \notin\left\langle Z_{3}\right\rangle$ if and only if $G \in \mathcal{W} \mathcal{F}$.
Lemma 2.4. Let G be a connected graph. If for every edge e_{0} of G, there is a minimal edge cut X_{0} of G containing e_{0} with size 2 , then $\delta(G)=2$.

Proof. By the assumptions, it is obvious that G is 2-edge-connected. Choose $X=\left\{e_{1}, e_{2}\right\}$ to be a minimal edge-cut of G such that one component of $G \backslash X$, say G_{1}, has the fewest vertices, that is, $\left|V\left(G_{1}\right)\right|$ is minimized. Denote the other component of $G \backslash X$ by G_{2}. If e_{1}, e_{2} are parallel edges, by the choice of e_{1}, e_{2}, G_{1} is edgeless and so G_{1} has a vertex of degree 2 of G, that is, $\delta(G)=2$. Now suppose that e_{1}, e_{2} are not parallel edges. If G_{1} has an edge e_{3}, then it is contained in a minimal edge cut $Y=\left\{e_{3}, e_{4}\right\}$ of G. Denote the two components of $G \backslash Y$ by G_{3}, G_{4}. By the choice of $X, Y \cap E\left(G_{1}\right)=\left\{e_{3}\right\}, Y \cap E\left(G_{2}\right)=\left\{e_{4}\right\}$. Since Y is a minimal edge-cut of $G, X \cap E\left(G_{3}\right) \neq \emptyset$ and $X \cap E\left(G_{4}\right) \neq \emptyset$. Therefore $Z=\left\{e_{1}, e_{3}\right\}$ (so is $\left\{e_{2}, e_{3}\right\}$) is a minimal 2-edge-cut of G such that $G \backslash Z$ has a component with fewer vertices than G_{1}, contradicting the choice of X. Therefore, G_{1} is edgeless and so G_{1} has a vertex of degree 2 of G, that is, $\delta(G)=2$.

3. Main theorems

Proposition 3.1. Let H be a triangularly connected 2-triangular graph such that H is not Z_{3}-connected. Then each of the following holds.
(i) $H \in \mathcal{W} \mathcal{F}$ and furthermore $H \in \mathcal{W F}_{2}$;
(ii) For any $v \in V(H), d_{H}(v)=3$ or $d_{H}(v) \geq 5$;
(iii) $\left|D_{3}(H)\right| \geq 4$;
(iv) H is 3-edge-connected, essentially 4-edge connected.

Proof. (i) Since H is triangularly connected and H is not Z_{3}-connected, by Lemma 2.3, $H \in \mathcal{W F}$. Furthermore, since H is 2-triangular, $H \in \mathcal{W F}_{2}$.
(ii) By the definition of $\mathcal{W F}_{2}$ and the fact that $H \in \mathcal{W F}_{2}$, for any $w \in V(H), d_{H}(w) \geq 3$. Suppose, to the contrary, that there is $v \in V(H)$ such that $d_{H}(v)=4$. Now consider the induced graph $H\left[N_{H}(v)\right]$. For any vertex $x \in N_{H}(v)$, it must have degree at least 2 in $H\left[N_{H}(v)\right]$. Otherwise, $v x$ is contained in at most one triangle in H, a contradiction to the fact that $H \in \mathcal{W} \mathcal{F}_{2}$. Since $H\left[N_{H}(v)\right]$ has exactly 4 vertices and each vertex has degree at least $2, H\left[N_{H}(v)\right]$ contains a 4 -cycle as a spanning subgraph and then the graph induced by v and its neighbors $H\left[\{v\} \cup N_{H}(v)\right]$ contains a W_{4}, contradicting the fact that $H \in \mathcal{W} \mathcal{F}$. Therefore, for any $v \in V(H), d_{H}(v)=3$ or $d_{H}(v) \geq 5$.
(iii) Define $T(H)$ to be the graph such that the vertices of $T(H)$ are the maximal odd wheels and the maximal fans of H, and two vertices of $T(H)$ are adjacent if their corresponding graphs in G share one edge. By the definition of $\mathcal{W} \mathcal{F}, T(H)$ is a tree. Furthermore, by the fact that $H \in \mathcal{W} \mathcal{F}_{2}$, each pendent vertex of $T(H)$ corresponds to a K_{4} of H, which has at least two vertices of degree 3 in it. Otherwise, there is at least one edge which is contained in only one triangle. Since $T(H)$ has at least two pendent vertices, there are at least 4 distinct vertices in H with degree 3 .
(iv) Suppose that X is an essential edge cut of H. Since H is 2-triangularly connected, $|X| \geq 3$. Suppose that $|X|=3$. By the fact that H is 2-triangularly connected again, all the three edges in X must be adjacent to one common vertex and therefore X is a trivial edge cut, contradicting the fact that X is an essential edge cut. So $|X| \geq 4$ and H is essentially 4-edge connected.

Assuming the truth of Theorem 1.4, we can present the proof of Corollary 1.5, as follows:
Proof of Corollary 1.5. By Lemma 2.2, $\Lambda_{g}(G) \leq 4$. By Theorem $1.4, G \in\left\langle Z_{3}\right\rangle$ and so $\Lambda_{g}(G) \leq 3$.
Proof of Corollary 1.6. It suffices to show that every connected 3-triangular graph is Z_{3}-connected. Suppose, to the contrary, that G is a minimal counterexample with $n(G)=|V(G)|+|E(G)|$ minimized.

Let $L_{1}, L_{2}, \ldots, L_{s}$ be the triangularly connected components of G. Then for each $i, L_{i} \notin\left\langle Z_{3}\right\rangle$. Otherwise, assume $L_{j} \in\left\langle Z_{3}\right\rangle$ and so G / L_{j} is 3-triangular. By the minimality of $G, G / L_{j} \in\left\langle Z_{3}\right\rangle$. By Lemma 2.1, $G \in\left\langle Z_{3}\right\rangle$, contradicting the choice of G.

Since for each i, L_{i} is not Z_{3}-connected, by Lemma $1.3, L_{i} \in W \mathcal{F}$ and so G is a simple graph. Let X be an edge-cut of G and $e \in X$. Since G is 3 -triangular, there are three distinct cycles C_{1}, C_{2}, C_{3} of length 3 containing e. By the fact that $\left|E\left(C_{i}\right) \cap X\right|=2$ for $i=1,2,3$, we can assume that $E\left(C_{i}\right) \cap X=\left\{e, e_{i}\right\}$. Then $\left\{e, e_{1}, e_{2}, e_{3}\right\} \subseteq X$. Since G is simple, $|X| \geq\left|\left\{e, e_{1}, e_{2}, e_{3}\right\}\right|=4$. Therefore, G is 4-edge-connected. By Theorem 1.4, $G \in\left\langle Z_{3}\right\rangle$, contradicting the choice of G again.

Example 3.2. Theorem 1.4 is best possible in the sense that being 2-triangular cannot be relaxed to being 1-triangular.

Let $L(x, y)$ be a graph as follows:

For $k \geq 3$, let $L_{1}, L_{2}, \ldots, L_{k}$ be graphs such that for each $i, L_{i}\left(x_{i}, y_{i}\right) \cong L(x, y)$. Let $G(k)$ be a graph obtained from $L_{1}, L_{2}, \ldots, L_{k}$ by identifying y_{i} and x_{i+1}, where $x_{k+1}=x_{1}$ and $i=1,2, \ldots, k$.

It was proved in [7] that $G(k)$ is not Z_{3}-connected for $k \geq 3$. Clearly, $G(k)$ is a 4-edge-connected 1-triangular graph but $G(k)$ is not Z_{3}-connected.

Example 3.3. Theorem 1.4 is best possible in the sense that being 4-edge-connected cannot be relaxed to being 3-edge-connected.

Let $H(k)$ be the graph obtained from k copies of K_{4} by picking one edge from each copy and identifying them. It is known (Example 4.3 and Lemma 4.6 in [6]) that $H(k)$ is 3-edge-connected, 2-triangular, but $H(k)$ is not Z_{3}-connected. All the $H(k)$'s are members in $\mathcal{W \mathcal { F }}$, and so Lemma 2.3 presents an alternative proof that each $H(k)$ is not Z_{3}-connected.

Example 3.4. Corollary 1.6 is best possible in the sense that being 3-triangular cannot be relaxed to being 2-triangular.

The graph $H(k)$ defined above is a connected 2-triangular graph, but $H(k)$ is not Z_{3}-connected.

4. Proof of Theorem 1.4

Let \mathcal{F} be the family of 4-edge-connected 2-triangular graphs. Let $G \in \mathcal{F}$ and $H_{1}, H_{2}, \ldots, H_{m}$ be the triangularly connected components of G. Then for all i, j with $i \neq j, E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$.

By way of contradiction, assume that
G is a counterexample with $n(G)=|V(G)|+|E(G)|$ minimized.
Recall that $H_{1}, H_{2}, \ldots, H_{m}$ are the triangularly-connected components of G.
Claim 1. For $1 \leq i \leq m, H_{i} \notin\left\langle Z_{3}\right\rangle$.
Proof. Assume that $H_{i} \in\left\langle Z_{3}\right\rangle$. Let $G^{\prime}=G / H_{i}$. By the structure of G, G^{\prime} is 4-edge-connected and 2-triangular and so $G^{\prime} \in \mathcal{F}$. Since $n\left(G^{\prime}\right)<n(G)$, by the minimality of $G, G^{\prime} \in\left\langle Z_{3}\right\rangle$. By Lemma 2.1, $G \in\left\langle Z_{3}\right\rangle$, contrary to (2).

Claim 2. G is 2-connected.
Proof. Suppose, to the contrary, that v is a vertex cut of G such that G_{1} and G_{2} are the two subgraphs of G such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$. By the structure of G, G_{1} and G_{2} are both 4-edge-connected and 2-triangular. Therefore, $G_{1}, G_{2} \in \mathcal{F}$. Since $n\left(G_{1}\right)<n(G), n\left(G_{2}\right)<n(G)$, by the minimality of G, G_{1}, G_{2} are both Z_{3}-connected and therefore, G is Z_{3}-connected, contrary to (2).

Define a bipartite graph $B(G)=\left(V_{1}, V_{2}\right)$ as follows: $V_{1}=\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}, V_{2}=\{v \mid v \in$ $\left.\bigcup_{i=1}^{m} D_{3}\left(H_{i}\right)\right\}$, and $E(B(G))=\left\{\left(H_{i}, v\right) \mid v \in V\left(H_{i}\right) \cap V\left(H_{j}\right) \cap\left(D_{3}\left(H_{i}\right) \cup D_{3}\left(H_{j}\right)\right)\right.$ for some $\left.j\right\}$. By Claim 1 and Proposition 3.1(i), $H_{i} \in \mathcal{W F}_{2}, 1 \leq i \leq m$. By Proposition 3.1 (iii), for $1 \leq i \leq m,\left|D_{3}\left(H_{i}\right)\right| \geq 4$.

Therefore, for each $H_{i} \in V_{1}, d_{B(G)}\left(H_{i}\right) \geq 4$. For each $v \in V_{2}$, by the definition of v in $V_{2}, d_{B(G)}(v) \geq 2$. Define $B^{\prime}(G)$ to be the graph obtained from $B(G)$ as follows: for each $v \in V_{2}$ with $d_{B(G)}(v)=2$, contract one edge adjacent to v. Since suppressing 2-vertices in V_{2} will not result in a new degree 2 vertex in V_{1} and $B(G)$ is connected, by the process of getting $B^{\prime}(G)$ from $B(G)$, both $B^{\prime}(G)$ is connected and $\delta\left(B^{\prime}(G)\right) \geq 3$.

Let X be an essential edge cut of G such that G_{1}, G_{2} are the two nontrivial components of $G-X$. If either $H_{i} \subseteq G\left[E\left(G_{1}\right) \cup X\right]$ or $H_{i} \subseteq G\left[E\left(G_{2}\right) \cup X\right]$ for each triangularly connected component H_{i} of G, then we call X a proper essential edge cut.

Claim 3. G has a vertex w such that for some $k \neq l, w \in V\left(H_{k}\right) \cap V\left(H_{l}\right) \cap\left(D_{3}\left(H_{k}\right) \cup D_{3}\left(H_{l}\right)\right)$, and such that every proper essential edge cut of G containing $E_{H_{k}}(w)$ is of size at least 9 .
Proof. Since $B^{\prime}(G)$ is a connected graph with $\delta\left(B^{\prime}(G)\right) \geq 3$, by Lemma $2.4, B^{\prime}(G)$ has an edge e such that for any minimal edge cut X of $B^{\prime}(G)$ containing $e,|X| \neq 2$.

If $e=\left(H_{k}, H_{l}\right)$, let $w \in V\left(H_{k}\right) \cap V\left(H_{l}\right) \cap\left(D_{3}\left(H_{k}\right) \cup D_{3}\left(H_{l}\right)\right)$ and, without loss of generality, assume that $w \in D_{3}\left(H_{k}\right)$. By the definition of $B(G)$ and $B^{\prime}(G), d_{B(G)}(w)=2$. Suppose that $|X|=1$, that is, $X=\{e\}$. Then $E_{H_{k}}(w)$ is an edge cut of G with size 3 , contradicting the fact that G is 4-edgeconnected. Therefore, $|X| \geq 3$. By the definition of $B^{\prime}(G)$ and the fact that every minimal edge cut of $B^{\prime}(G)$ containing e is of size at least 3, every minimal edge cut of $B(G)$ containing $e=\left(H_{k}, w\right)$ is either of size at least 3 or a trivial edge cut $\left\{\left(H_{k}, w\right),\left(H_{l}, w\right)\right\}$.

If $e=\left(H_{k}, w\right)$, let $w \in V\left(H_{k}\right) \cap V\left(H_{l}\right) \cap\left(D_{3}\left(H_{k}\right) \cup D_{3}\left(H_{l}\right)\right)$ and without loss of generality, assume that $w \in D_{3}\left(H_{k}\right)$. Suppose that $|X|=1$, that is, $X=\{e\}$. Then $E_{H_{k}}(w)$ is an edge cut of G with size 3, contradicting the fact that G is 4-edge-connected. Therefore, $|X| \geq 3$. Since every minimal edge cut of $B^{\prime}(G)$ containing e is of size at least 3, every minimal edge cut of $B(G)$ containing e is of size at least 3 .

Since each edge $\left(H_{i}, v\right)$ in $B(G)$ corresponds to $E_{H_{i}}(v)$ in G with $\left|E_{H_{i}}(v)\right| \geq 3$ and every proper essential edge cut of G corresponds to an edge cut of $B(G)$, every proper essential edge cut of G containing $E_{H_{k}}(w)$ is of size at least 9.

Let G^{\prime} be the graph obtained from G by splitting w into w^{\prime} and $w^{\prime \prime}$ with $N\left(w^{\prime}\right)=V\left(H_{k}\right) \cap N(w)$ and $N\left(w^{\prime \prime}\right)=V\left(H_{l}\right) \cap N(w)$. By the definition of G^{\prime}, G^{\prime} is 2-triangular, $\delta\left(G^{\prime}\right)=3$ and $D_{3}\left(G^{\prime}\right) \subseteq$ $\left\{w^{\prime}, w^{\prime \prime}\right\}$. By Claim 2, G^{\prime} is connected. By Proposition 3.1(iv) and the definition of G^{\prime}, G^{\prime} is 3-edgeconnected, essentially 4 -edge-connected. Otherwise, G^{\prime} has an essential edge cut X with $|X|=3$. By Proposition 3.1(iv), X must be an essential edge cut of G^{\prime} which is a proper essential edge cut, then $E_{H_{k}} \cup X$ is a proper essential edge cut of G with $\left|E_{H_{k}} \cup X\right|=6$, contradicting Claim 3.

By the choice of w, the definition of G^{\prime} and Proposition 3.1(ii), $d_{G^{\prime}}\left(w^{\prime \prime}\right)=3$ or $d_{G^{\prime}}\left(w^{\prime \prime}\right) \geq 5$. In the following, we distinguish two cases considering $d_{G^{\prime}}\left(w^{\prime \prime}\right) \geq 5$ and $d_{G^{\prime}}\left(w^{\prime \prime}\right)=3$.
Case 1: $d_{G^{\prime}}\left(w^{\prime \prime}\right) \geq 5$.
Denote the vertices adjacent to w^{\prime} by x_{1}, x_{2} and x_{3}. Assume the three edges incident with w^{\prime} all have tails at w^{\prime}. Denote the edge $w^{\prime} x_{3}$ by e^{\prime}. Let H_{k}^{\prime} be the graph obtained from H_{k} by deleting $w^{\prime} x_{1}$ and then contracting $w^{\prime} x_{2}$ and Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by deleting $w^{\prime} x_{1}$ and then contracting $w^{\prime} x_{2}$. Define $G^{\prime \prime \prime}=G^{\prime \prime} / H_{k}^{\prime}$. Noticing that $G^{\prime \prime \prime}=G^{\prime \prime} / H_{k}^{\prime}=G^{\prime} / H_{k}$ and that G^{\prime} is 2-triangular, 3-edge-connected, essentially 4-edge-connected with $D_{3}\left(G^{\prime}\right)=\left\{w^{\prime}\right\}, G^{\prime \prime \prime}$ is 2-triangular and 4-edgeconnected. Therefore, $G^{\prime \prime \prime} \in \mathcal{F}$. Since $n\left(G^{\prime \prime \prime}\right)<n(G)$, by the minimality of $G, G^{\prime \prime \prime} \in\left\langle Z_{3}\right\rangle$. Since H_{k}^{\prime} is triangularly connected and $H_{k}^{\prime} \notin\langle W F\rangle$, by Lemma 2.3, $H_{k}^{\prime} \in\left\langle Z_{3}\right\rangle$. By Lemma 2.1, $G^{\prime \prime} \in\left\langle Z_{3}\right\rangle$.

For any $b \in Z\left(G, Z_{3}\right)$, define $b^{\prime \prime} \in Z\left(G^{\prime \prime}, Z_{3}\right)$ by

$$
b^{\prime \prime}(z)= \begin{cases}b(z) & \text { if } z \neq w^{\prime \prime}, x_{1} \\ b(w)-1 & \text { if } z=w^{\prime \prime} \\ b\left(x_{1}\right)+1 & \text { if } z=x_{1}\end{cases}
$$

Since $G^{\prime \prime} \in\left\langle Z_{3}\right\rangle$, there is $f \in F^{*}\left(G^{\prime \prime}, Z_{3}\right)$ such that $\partial f=b^{\prime \prime}$.
Let $f_{1} \in F^{*}\left(G, Z_{3}\right)$ be such that

$$
f_{1}(e)= \begin{cases}1 & \text { if } e=w^{\prime} x_{1} \\ 3-f\left(e^{\prime}\right) & \text { if } e=w^{\prime} x_{2} \\ f(e) & \text { otherwise }\end{cases}
$$

It is easy to check that $\partial f_{1}=b$, that is, G admits a $\left(Z_{3}, b\right)$-NZF. Since $b \in Z\left(G, Z_{3}\right)$ is arbitrary, $G \in\left\langle Z_{3}\right\rangle$, contrary to (2).
Case 2: $d_{G^{\prime}}\left(w^{\prime \prime}\right)=3$.
Denote the vertices adjacent to w^{\prime} by $x_{1}^{\prime}, x_{2}^{\prime}$ and x_{3}^{\prime}, and the vertices adjacent to $w^{\prime \prime}$ by $x_{1}^{\prime \prime}, x_{2}^{\prime \prime}$ and $x_{3}^{\prime \prime}$. Assume the three edges incident with w^{\prime} all have tails at w^{\prime} and the three edges incident with $w^{\prime \prime}$ all have tails at $w^{\prime \prime}$. Denote the edge $w^{\prime} x_{3}^{\prime}$ by e^{\prime} and the edge $w^{\prime \prime} x_{3}^{\prime \prime}$ by $e^{\prime \prime}$. Let H_{k}^{\prime} be the graph obtained from H_{k} by deleting $w^{\prime} x_{1}^{\prime}$ and then contracting $w^{\prime} x_{2}^{\prime}$. Let H_{l}^{\prime} be the graph obtained from H_{l} by deleting $w^{\prime \prime} x_{1}^{\prime \prime}$ and then contracting $w^{\prime \prime} x_{2}^{\prime \prime}$. Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by deleting $w^{\prime} x_{1}^{\prime}, w^{\prime \prime} x_{1}^{\prime \prime}$ and then contracting $w^{\prime} x_{2}^{\prime}$ and $w^{\prime \prime} x_{2}^{\prime \prime}$. Define $G^{\prime \prime \prime}=G^{\prime \prime} /\left(H_{k}^{\prime} \cup H_{l}^{\prime}\right)$. Noticing that $G^{\prime \prime \prime}=G^{\prime \prime} /\left(H_{k}^{\prime} \cup H_{l}^{\prime}\right)=G^{\prime} /\left(H_{k} \cup H_{l}\right)$ and that G^{\prime} is 2-triangular, 3-edge-connected, essentially 4-edge-connected with $D_{3}\left(G^{\prime}\right)=\left\{w^{\prime}, w^{\prime \prime}\right\}$, it follows that $G^{\prime \prime \prime}$ is 2-triangular, 4-edge-connected. Therefore, $G^{\prime \prime \prime} \in \mathcal{F}$. Since $n\left(G^{\prime \prime \prime}\right)<n(G)$, by the minimality of $G, G^{\prime \prime \prime} \in\left\langle Z_{3}\right\rangle$. Since H_{k}^{\prime} is triangularly connected and $H_{k}^{\prime} \notin\langle W F\rangle$, by Lemma 2.3, $H_{k}^{\prime} \in\left\langle Z_{3}\right\rangle$. Similarly, we can prove that $H_{l}^{\prime} \in\left\langle Z_{3}\right\rangle$. By Lemma 2.1, $G^{\prime \prime} \in\left\langle Z_{3}\right\rangle$.

Let $b \in Z\left(G, Z_{3}\right)$ and let $\alpha, \beta \in Z_{3}^{*}$ be such that $\alpha+\beta=b(w)$. This is possible since $1+2 \equiv$ $0,2+2 \equiv 1,1+1 \equiv 2$.

Define $b^{\prime \prime} \in Z\left(G^{\prime \prime}, Z_{3}\right)$ by

$$
b^{\prime \prime}(z)= \begin{cases}b(z) & \text { if } z \neq x_{1}^{\prime}, x_{1}^{\prime \prime} \\ b\left(x_{1}^{\prime}\right)+\alpha & \text { if } z=x_{1}^{\prime} \\ b\left(x_{1}^{\prime \prime}\right)+\beta & \text { if } z=x_{1}^{\prime \prime}\end{cases}
$$

Since $G^{\prime \prime} \in\left\langle Z_{3}\right\rangle$, there is $f \in F^{*}\left(G^{\prime \prime}, Z_{3}\right)$ such that $\partial f=b^{\prime \prime}$.
Let $f_{1} \in F^{*}\left(G, Z_{3}\right)$ be such that

$$
f_{1}(e)= \begin{cases}\alpha & \text { if } e=w^{\prime} x_{1}^{\prime} ; \\ \beta & \text { if } e=w^{\prime \prime} x_{1}^{\prime \prime} ; \\ 3-f\left(e^{\prime}\right) & \text { if } e=w^{\prime} x_{2}^{\prime} ; \\ 3-f\left(e^{\prime \prime}\right) & \text { if } e=w^{\prime \prime} x_{2}^{\prime \prime} \\ f(e) & \text { otherwise. }\end{cases}
$$

It is easy to check that $\partial f_{1}=b$, that is, G admits a $\left(Z_{3}, b\right)$-NZF. Since $b \in Z\left(G, Z_{3}\right)$ is arbitrary, $G \in\left\langle Z_{3}\right\rangle$, contrary to (2).

Acknowledgments

The authors would like to thank the referees for many useful suggestions and comments which have considerably improved the presentation of this paper.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] H.J. Broersma, H.J. Veldman, 3-Connected linegraphs of triangular graphs are panconnected and 1-Hamiltonian, J. Graph Theory 11 (1987) 399-407.
[3] G. Fan, H.-J. Lai, R. Xu, C.-Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory Ser. B 98 (2008) 1325-1336.
[4] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke, et al. (Eds.), in: Selected Topics in Graph Theory, vol. 3, Academic Press, London, New York, 1988, pp. 91-95.
[5] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
[6] H.-J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin. 16 (2000) 165-176.
[7] H.-J. Lai, R. Xu, J. Zhou, On group connectivity of graphs, Graphs Combin. 24 (2008) 1-9.
[8] W.T. Tutte, A contribution to the theory of chromatical polynomials, Canad. J. Math. 6 (1954) 80-91.
[9] R. Xu, C.-Q. Zhang, Nowhere-zero 3-flows in squares of graphs, Electron. J. Combin. 10 (2003) R5.
[10] S. Yao, Dissertation, West Virginia University, to be completed in 2012.
[11] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.

[^0]: E-mail address: zhou@kutztown.edu (J. Zhou).
 0195-6698/\$ - see front matter. Published by Elsevier Ltd doi:10.1016/j.ejc.2011.09.041

