134 research outputs found

    Analysing energy detector diversity receivers for spectrum sensing

    Get PDF
    The analysis of energy detector systems is a well studied topic in the literature: numerous models have been derived describing the behaviour of single and multiple antenna architectures operating in a variety of radio environments. However, in many cases of interest, these models are not in a closed form and so their evaluation requires the use of numerical methods. In general, these are computationally expensive, which can cause difficulties in certain scenarios, such as in the optimisation of device parameters on low cost hardware. The problem becomes acute in situations where the signal to noise ratio is small and reliable detection is to be ensured or where the number of samples of the received signal is large. Furthermore, due to the analytic complexity of the models, further insight into the behaviour of various system parameters of interest is not readily apparent. In this thesis, an approximation based approach is taken towards the analysis of such systems. By focusing on the situations where exact analyses become complicated, and making a small number of astute simplifications to the underlying mathematical models, it is possible to derive novel, accurate and compact descriptions of system behaviour. Approximations are derived for the analysis of energy detectors with single and multiple antennae operating on additive white Gaussian noise (AWGN) and independent and identically distributed Rayleigh, Nakagami-m and Rice channels; in the multiple antenna case, approximations are derived for systems with maximal ratio combiner (MRC), equal gain combiner (EGC) and square law combiner (SLC) diversity. In each case, error bounds are derived describing the maximum error resulting from the use of the approximations. In addition, it is demonstrated that the derived approximations require fewer computations of simple functions than any of the exact models available in the literature. Consequently, the regions of applicability of the approximations directly complement the regions of applicability of the available exact models. Further novel approximations for other system parameters of interest, such as sample complexity, minimum detectable signal to noise ratio and diversity gain, are also derived. In the course of the analysis, a novel theorem describing the convergence of the chi square, noncentral chi square and gamma distributions towards the normal distribution is derived. The theorem describes a tight upper bound on the error resulting from the application of the central limit theorem to random variables of the aforementioned distributions and gives a much better description of the resulting error than existing Berry-Esseen type bounds. A second novel theorem, providing an upper bound on the maximum error resulting from the use of the central limit theorem to approximate the noncentral chi square distribution where the noncentrality parameter is a multiple of the number of degrees of freedom, is also derived

    Diversity receiver design and channel statistic estimation in fading channels

    Get PDF
    The main goal of this thesis is to provide an in-depth study of two important techniques that are effective in improving the performance, data rate, or bandwidth-efficiency in wireless communication systems. The two techniques are, first, diversity combining equipped with quadrature amplitude modulation (QAM), and second, the estimation of fading channel statistical properties;To effectively combat the adverse effect of fading and to improve the error rate performance in wireless communications, one of the major approaches is to employ diversity combining techniques. In the first part of this thesis, we focus on the equal gain combining (EGC) and hybrid-selection equal gain combining (HS/EGC) for bandwidth-efficient wireless systems (i.e. QAM systems). For EGC QAM systems, we propose the receiver structure and the corresponding decision variables, and then study the effects of imperfect channel estimation (ICE) and quantify the loss of the signal-to-noise ratio (SNR) gain caused by ICE. For HS/EGC QAM system, we develop a general approach to derive unified error rate and outage probability formulas over various types of fading channels based on the proposed HS/EGC receiver. The main contribution of this work lies in that it provides effective hybrid diversity schemes and new analytical approaches to enable thorough analysis and effective design of bandwidth efficient wireless communication systems which suffer from ICE and operate in realistic multipath channels;Channel statistic information is proven to be critical in determining the systems design, achievable data rate, and achievable performance. In the second part of this thesis, we study the estimation of the fading channel Statistics and Probability; We propose several iterative algorithms to estimate the first- and second-order statistics of general fading or composite fading-shadowing channels and derive the Cramer-Rao bounds (CRBs) for all the cases. We demonstrate that these iterative methods are efficient in the sense that they achieve their corresponding CRBs. The main contribution of this work is that it bridges the gap between the broad utilization of fading channel statistical properties and the lack of systematic study that makes such statistical properties available

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system

    Route diversity analyses for free-space optical wireless links within turbulent scenarios

    Get PDF
    Free-Space Optical (FSO) communications link performance is highly affected when propagating through the time-spatially variable turbulent environment. In order to improve signal reception, several mitigation techniques have been proposed and analytically investigated. This paper presents experimental results for the route diversity technique evaluations for a specific case when several diversity links intersects a common turbulent area and concurrently each passing regions with different turbulence flows

    Aproximações estatísticas para somas de variáveis aleatórias correlacionadas dos tipos Rayleigh e exponencial com aplicação a esquemas de combinação de diversidade  

    Get PDF
    Orientador: José Cândido Silveira Santos FilhoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Somas de variáveis aleatórias são amplamente aplicadas em sistemas de comunicação sem fio. Exemplos incluem equalização linear, detecção de sinais, fenômenos de interferência e esquemas de combinação de diversidade. No entanto, a formulação exata para as funções estatísticas dessas somas, como a função densidade de probabilidade e a função distribuição acumulada, requer em geral um tratamento matemático complicado, o que tem motivado a busca por soluções aproximadas mais simples. Apesar de haver várias propostas de aproximação disponíveis na literatura, muitas das quais obtidas usando-se a tradicional técnica de casamento de momentos, elas não oferecem um bom ajuste em regime de alta relação sinal-ruído. Sabe-se, porém, que essa é uma região primordial para a análise de desempenho de sistemas de comunicação em termos de métricas importantes como taxa de erro de bit e probabilidade de interrupção. Mais recentemente, com o intuito de contornar essa limitação, foi proposta uma nova técnica promissora conhecida como casamento de assíntotas, capaz de fornecer aproximações para estatísticas de somas de variáveis aleatórias positivas com um ótimo ajuste em regime de alta relação sinal-ruído. Ainda assim, essa técnica foi inicialmente implementada apenas para o caso de somas de variáveis independentes, não sendo até então aplicável para somas de variáveis correlacionadas. Neste trabalho, uma nova análise assintótica é proposta, a partir da qual é possível generalizar o uso do casamento de assíntotas para o caso correlacionado. A análise proposta é ilustrada para somas de variáveis Rayleigh e somas de variáveis exponenciais com correlação e parâmetros de desvanecimento arbitrários. Além disso, deduzem-se expressões assintóticas em forma fechada com o intuito de obter novas aproximações simples e precisas em regime de alta relação sinal-ruído. Como exemplos de aplicação, esquemas práticos de combinação de diversidade são abordados, quais sejam, combinação por ganho igual e combinação por razão máxima. Por fim, resultados numéricos mostram o excelente desempenho das aproximações propostas em comparação com as aproximações obtidas via casamento de momentosAbstract: Sums of random variables are widely applied to wireless communications systems. Examples include linear equalization, signal detection, interference phenomena, and diversity-combining schemes. However, the exact formulation for the statistical functions of these sums, such as the probability density function and the cumulative distribution function, requires in general a complicated mathematical treatment, which has motivated the search for simple approximate solutions. Although there are several approximate proposals available in the literature, many of which obtained through the traditional moment-matching technique, they do not offer a good fit under the regime of high signal-to-noise ratio. It is well-known that this regime is a paramount region for the performance analysis of communications systems in terms of important metrics such as bit error rate and outage probability. More recently, in order to circumvent this limitation, a new promising technique known as asymptotic matching was proposed, capable of providing approximations for statistics of the sum of random variables with an excellent fit under the regime of high signal-to-noise ratio. Even so, this technique was initially proposed for the sum of mutually independent variables only, and thus it has not been applicable to sums of correlated variables. In this work, a novel asymptotic analysis is proposed, from which it is possible to generalize the application of asymptotic matching to the correlated case. The proposed analysis is illustrated for sums of Rayleigh and sums of exponential variables with arbitrary correlation and arbitrary fading parameters. Furthermore, closed-form asymptotic expressions are derived in order to obtain new simple and precise approximations under the regime of high signal-to-noise ratio. As application examples, practical diversity-combining schemes are addressed, namely, equal-gain combining and maximal-ratio combining. Finally, numerical results show the excellent performance of the proposed approximations in comparison to the approximations obtained via moment matchingMestradoTelecomunicações e TelemáticaMestre em Engenharia ElétricaCAPE
    • …
    corecore