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área de Telecomunicações e Telemática.
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ABSTRACT

Sums of random variables are widely applied to wireless communications systems. Exam-

ples include linear equalization, signal detection, interference phenomena, and diversity-

combining schemes. However, the exact formulation for the statistical functions of these

sums, such as the probability density function and the cumulative distribution function,

requires in general a complicated mathematical treatment, which has motivated the search

for simple approximate solutions. Although there are several approximate proposals avail-

able in the literature, many of which obtained through the traditional moment-matching

technique, they do not offer a good fit under the regime of high signal-to-noise ratio.

It is well-known that this regime is a paramount region for the performance analysis of

communications systems in terms of important metrics such as bit error rate and outage

probability. More recently, in order to circumvent this limitation, a new promising tech-

nique known as asymptotic matching was proposed, capable of providing approximations

for statistics of the sum of random variables with an excellent fit under the regime of

high signal-to-noise ratio. Even so, this technique was initially proposed for the sum of

mutually independent variables only, and thus it has not been applicable to sums of cor-

related variables. In this work, a novel asymptotic analysis is proposed, from which it is

possible to generalize the application of asymptotic matching to the correlated case. The

proposed analysis is illustrated for sums of Rayleigh and sums of exponential variables

with arbitrary correlation and arbitrary fading parameters. Furthermore, closed-form

asymptotic expressions are derived in order to obtain new simple and precise approxima-

tions under the regime of high signal-to-noise ratio. As application examples, practical

diversity-combining schemes are addressed, namely, equal-gain combining and maximal-

ratio combining. Finally, numerical results show the excellent performance of the proposed

approximations in comparison to the approximations obtained via moment matching.

Keywords: Asymptotic analysis, correlation, diversity combining, fading channels, sums

of random variables.



RESUMO

Somas de variáveis aleatórias são amplamente aplicadas em sistemas de comunicação

sem fio. Exemplos incluem equalização linear, detecção de sinais, fenômenos de inter-

ferência e esquemas de combinação de diversidade. No entanto, a formulação exata para

as funções estat́ısticas dessas somas, como a função densidade de probabilidade e a função

distribuição acumulada, requer em geral um tratamento matemático complicado, o que

tem motivado a busca por soluções aproximadas mais simples. Apesar de haver várias

propostas de aproximação dispońıveis na literatura, muitas das quais obtidas usando-se

a tradicional técnica de casamento de momentos, elas não oferecem um bom ajuste em

regime de alta relação sinal-rúıdo. Sabe-se, porém, que essa é uma região primordial para

a análise de desempenho de sistemas de comunicação em termos de métricas importantes

como taxa de erro de bit e probabilidade de interrupção. Mais recentemente, com o intuito

de contornar essa limitação, foi proposta uma nova técnica promissora conhecida como

casamento de asśıntotas, capaz de fornecer aproximações para estat́ısticas de somas de

variáveis aleatórias positivas com um ótimo ajuste em regime de alta relação sinal-rúıdo.

Ainda assim, essa técnica foi inicialmente implementada apenas para o caso de somas

de variáveis independentes, não sendo até então aplicável para somas de variáveis cor-

relacionadas. Neste trabalho, uma nova análise assintótica é proposta, a partir da qual é

posśıvel generalizar o uso do casamento de asśıntotas para o caso correlacionado. A análise

proposta é ilustrada para somas de variáveis Rayleigh e somas de variáveis exponenciais

com correlação e parâmetros de desvanecimento arbitrários. Além disso, deduzem-se ex-

pressões assintóticas em forma fechada com o intuito de obter novas aproximações simples

e precisas em regime de alta relação sinal-rúıdo. Como exemplos de aplicação, esquemas

práticos de combinação de diversidade são abordados, quais sejam, combinação por ganho

igual e combinação por razão máxima. Por fim, resultados numéricos mostram o excelente

desempenho das aproximações propostas em comparação com as aproximações obtidas via

casamento de momentos.

Palavras-chave: Análise assintótica, canais de desvanecimento, combinação de diversi-

dade, correlação, somas de variáveis aleatórias.
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Chapter 1
INTRODUCTION

Nowadays people live surrounded by electronic devices that keep them continuously

interconnected. It is well-known that wireless technologies have disrupted mobile commu-

nications, bringing altogether the world to a new technological stage. In fact, due recent

developments and research, mobile devices are increasingly more robust and efficient,

whose performance is comparable to that of fixed stations.

Nevertheless, the wireless environment is chaotic by nature. The channel itself may

drastically distorts the propagation signal, which undergoes path loss and several other

phenomena, such as scattering, reflection, and diffraction [1,2]. Due to such phenomena,

the signal reaches the receiver with a large number of scattered, reflected, and diffracted

waves, coming from diverse paths, with random amplitudes and phases, generating what

is called multipath propagation. The combination of these factors stochastically alters

both amplitude and phase of the received signal, an effect known as fading [2, 3].

One way to overcome the limitations imposed by fading in wireless systems consists

of using diversity-combining schemes [3, 4]. Basically, these schemes provide the receiver

with multiple replicas (branches) of the transmitted signal, which are then combined to

obtain a resulting signal of better quality.

There are several types of diversity-combining techniques, such as equal-gain com-

bining (EGC) and maximal-ratio combining (MRC). These two schemes are additive,

and therefore their performance analysis in terms of bit-error rate (BER) and outage

probability (OP) requires knowledge of sum statistics, namely, the probability density

function (pdf) or, equivalently, the cumulative distribution function (cdf). However, the

exact computation of these statistics is rather cumbersome, since it involves a multifold

integration over the multivariate pdf of the summands [5]. As the number of random

variables (RVs) in the sum increases, the exact formulation may prove unfeasible, which

has motivated the search for simple approximate solutions.

Sums of RVs can be applied not only to diversity combining but also to many other

communications schemes, such as signal detection and linear equalization. Due to its



Chapter 1. INTRODUCTION 16

importance, several works have proposed approximations to sums considering a variety

of fading scenarios. On this concern, the next section presents a brief review of literature

with the main research achievements to date and the motivation for this work.

1.1 Literature Review and Motivation

Since the first approximations for sums of RVs were proposed by Nakagami [6], re-

searchers have tried to find good approximate solutions for a variety of fading scenarios.

For instance, some works proposed approximations to the sum of non-identical inde-

pendent Nakagami-m RVs by using either the Nakagami-m distribution itself [7] or the

generalized α-µ distribution [8]. Some accurate approximations have also been obtained

for sums of many other distributions, such as the sum of Ricean [9] and α-µ [10] RVs.

Nonetheless, many approximations proposed in the literature have been obtained

under the constraint that the summands are mutually independent and by using the

traditional moment-matching technique [7–10]. Such technique has been designed to

provide a good fit in the distribution body, but it loses track of the distribution tail. This

region corresponds to the regime of high signal-to-noise ratio (SNR), which is a compelling

scenario to compare different communications systems in terms of BER and OP.

In order to overcome this drawback of moment-based approximations, it has been

recently proposed a new approach known as asymptotic matching [11]. In this technique,

the asymptote of the approximate distribution is matched to the asymptote of the exact

sum distribution, guaranteeing an outstanding fit at the high-SNR regime. Even though

asymptotic matching offers better approximations at the distribution tail, its use is very

recent and has been limited to the independent case only.

More recently, several works have addressed correlated fading scenarios, which are

a more realistic assumption to model emerging communication techniques over massive

multiple-input multiple-output systems [12,13]. In such systems, some undesirable corre-

lation between the input-output links may arise due to insufficiently spaced antennas [14].

For instance, considering some diversity-combining schemes over particular fading distri-

butions, asymptotic expressions to approximate performance metrics in the high-SNR

regime were derived in [15–21]. Specifically, it was observed in [16–21] that the asymp-

totic system performance over the correlated channels addressed therein is a scaled version

of the asymptotic system performance over independent channels, with the scale factor

depending on the correlation matrix. Interestingly, though, it has been overlooked so

far that a broad class of positive correlated RVs behaves asymptotically as an equivalent

set of mutually independent RVs, which is an insightful and fundamental result explored

herein. Another very recent work [22] aimed to approximate the body of the distribution

of sums of correlated Weibull RVs by using expressions in terms of the Meijer G-function.
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However, as highlighted in [23], this approach may notably depart from the exact dis-

tribution tail, and even lead to computationally erroneous results near the origin. This

region corresponds to the important regime of high SNR, as one can move toward the

distribution tail either by reducing the value of the instantaneous SNR or by increasing

the value of the average SNR [16].

From the above reasons, it is important to obtain new accurate approximations for

the challenging correlated scenario, specially in the high-SNR region, of most practical

interest. In this way, capitalizing on a new asymptotic result for sums of correlated RVs,

we propose a unified, general approach to design approximations that render an excellent

fit at the high-SNR regime (i.e., at the cdf tail). Particularly, we investigate sums of

correlated Rayleigh RVs and sums of correlated exponential RVs with arbitrary fading

parameters in both cases. Various candidate approximate distributions are proposed

and discussed. As application examples, we analyze the performance of EGC and MRC

operating over correlated Rayleigh fading channels. These and other contributions of this

work are outlined next.

1.2 Contributions

In this work, the following contributions are provided:

(i) Capitalizing on a new fundamental result elaborated herein, the asymptotic-matching

scheme is extended to the correlated scenario, allowing for accurate statistical ap-

proximations to general sums near the origin, or, equivalently, at high SNR.

(ii) Asymptotically optimal approximations are proposed to sums of Rayleigh RVs and

sums of exponential RVs with arbitrary correlation and arbitrary fading parameters.

These approximations keep a good track of the body of the exact sum distribution

while ensuring an outstanding fit at the distribution tail, i.e., at high SNR.

(iii) For comparison purposes, the performance of some candidate approximate distri-

butions are evaluated, namely, Nakagami-m, gamma, Weibull, and α-µ distributions.

(iv) New simple, closed-form, asymptotic expressions are derived and applied to EGC

and MRC schemes operating over correlated Rayleigh fading.
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1.3 Structure

The remainder of this work is organized as follows.

� Chapter 2: This chapter introduces the problem formulation for sums of RVs.

Considering both independent and correlated fading scenarios, we revisit the ex-

act solution to the problem as well as some approximate approaches available in

the literature.

� Chapter 3: A newly fundamental insight on sums of arbitrarily correlated RVs is

introduced in this chapter. Capitalizing on this novel result, asymptotic matching

is performed in order to provide optimal approximations around the origin to sums

of correlated Rayleigh and exponential RVs. Various candidate approximate distri-

butions are presented. Finally, the analysis is applied to analyze output statistics

of two different diversity-combining schemes, namely, EGC and MRC.

� Chapter 4: This chapter illustrates the excellent performance of the proposed

approximations for many scenarios. The exact sum statistics are approximated by

the Nakagami-m, gamma, Weibull, and α-µ distributions. Numerical results show

that the new approximations outclass conventional moment-based approximations,

especially at high SNR.

� Chapter 5: The main conclusions are summarized in this chapter. It is also pre-

sented some final considerations as well as some topics for future work.
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Chapter 2
SUMS OF RANDOM VARIABLES

There are several applications of sums of RVs in wireless communications, such as

signal detection, linear equalization, and diversity-combining schemes. In these scenarios,

the evaluation of system performance in terms of BER and OP requires knowledge of

the sum pdf or the sum cdf, whose exact formulation may prove unfeasible. This chapter

introduces the exact general solution to find the statistics of sums of RVs, addressing both

independent and correlated cases. Afterwards, two methods that provide approximate

solutions to circumvent the intricacy of the exact approach are discussed, namely, the

traditional moment-matching and the new asymptotic-matching techniques.

2.1 Problem Formulation

Let S be the sum of M arbitrarily correlated RVs Si, i ∈ {1, . . . ,M}, i.e.,

S =
M∑
i=1

Si. (1)

The problem consists of finding the sum pdf and the sum cdf of S, denoted as fS(·)
and FS(·), respectively. As the cdf can be determined from the pdf in a straightforward

manner, the analysis herein is developed based on the pdf alone.

2.2 Exact Solutions

The general formulation to obtain the exact sum pdf fS(·) of S requires knowledge

of the multivariate pdf fS(·) , fS1,...,SM (·, . . . , ·) of S , [S1 · · ·SM ]T . In this section,

the analysis to obtain the exact sum statistics of arbitrarily correlated RVs is described.

Previously, though, the independent scenario is revisited.
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2.2.1 Independent Case

For the particular case of mutually independent RVs, the exact sum pdf fS(·) of S is

given by either the convolution of the marginal pdfs fSi(·) or the inverse Fourier transform

of the product of the individual characteristic functions (CFs) ΦSi(·) of Si [24].

The first approach is the multidimensional convolution of the marginal pdfs fSi(·)
of the summands, i.e.,

fS(s) = fS1(s1) ∗ fS2(s2) ∗ · · · ∗ fSM (sM). (2)

Let the characteristic function ΦSi(·) of Si be defined as [24]

ΦSi(ω) ,
∫ ∞
−∞

fSi(si) exp(jωsi)dsi, (3)

where j ,
√
−1 is the imaginary unit. Note from (3) that the characteristic function

ΦSi(·) of Si can be viewed as the Fourier transform of the pdf fSi(·) of Si (with a reversal

in the sign of the exponent), i.e.,

ΦSi(ω) = F{fSi(si)}. (4)

In this way, taking the Fourier transform of (2), it yields

ΦS(ω) =
M∏
i=1

ΦSi(ω). (5)

Furthermore, from the Fourier transform inversion formula, the pdf fSi(·) of Si is given

by [24]

fSi(si) =
1

2π

∫ ∞
−∞

ΦSi(ω) exp(−jωsi)dω, (6)

and it follows that

fSi(si) = F−1{ΦSi(ω)}. (7)

Note from (4) and (7) that the pdf fSi(·) and the CF ΦSi(·) of Si form a unique Fourier

transform pair. This approach provides another way to obtain the statistics of the sum S.

For instance, assuming knowledge of the CF ΦSi(·) of each RV Si, the exact sum pdf fS(·)
of S can be attained by taking the inverse Fourier transform of (5), i.e.,

fS(s) = F−1{ΦS(ω)}. (8)

Therefore, when the RVs are mutually independent, (2) and (8) provide two ways to

obtain the exact pdf fS(·) of the sum S. However, when the RVs are mutually correlated,
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these approaches cannot be applied. In this case, a formulation known as Brennan’s

integral should be used instead, which is described next.

2.2.2 Correlated Case

Considering the scenario when the summands are positive RVs, it was shown in [5]

by using a geometric approach that the pdf fS(·) and the cdf FS(·) of the sum S can be

formulated as

fS(s) =

∫ s

0

∫ s−sM

0
· · ·
∫ s−

∑M
i=3 si

0
fS

(
s−

M∑
i=2

si, s2, . . . , sM

)
ds2 · · · dsM−1dsM (9a)

FS(s) =

∫ s

0

∫ s−sM

0
· · ·
∫ s−

∑M
i=3 si

0

∫ s−
∑M
i=2 si

0
fS (s1, s2, . . . , sM ) ds1ds2 · · · dsM−1dsM . (9b)

The integral in (9) is known as Brennan’s integral, which is a general formulation to

obtain the exact pdf fS(·) and cdf FS(·) of the sum of either independent or correlated

RVs. Note that fS(·) and FS(·) are expressed as a multidimensional integral of the multi-

variate pdf fS(·). Therefore, even though Brennan’s formulation is general and exact, it

provides closed-form solutions only for particular cases. Furthermore, its implementation

in computing softwares may prove unfeasible when the number M of summands increases

(e.g., M > 5).

In order to circumvent this limitation, many approximate approaches have been

proposed in the literature. In Section 2.3, two methods to provide approximate solutions

for both independent and correlated scenarios are presented.

2.3 Approximation Techniques

In this section, two approaches used to approximate the exact sum distribution of

either independent or correlated summands are covered. Initially, the classical moment-

matching technique is presented. Then, a more recent approach known as asymptotic

matching is discussed. In both cases, we assume that a certain candidate distribution

fS̃(·) has been selected to approximate the exact sum. So the only remaining task is to

adjust the approximate distribution parameters in order to render a good fit.
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2.3.1 Moment Matching

A well-known approach used to approximate the statistics of sums of RVs is called

moment matching [7–10]. In this method, some moments of the exact sum S are matched

to the corresponding moments of the candidate approximate RV S̃, i.e.,

E[S̃k] = E[Sk], (10)

where E[S̃k] is the kth moment of the approximate distribution, and E[Sk] is the kth

moment of the exact sum distribution, k ∈ N. Particularly, should the RVs in the sum

be independent, E[Sk] can be obtained from the individual moments of the summands

as [7, eq. (6)]

E[Sk] =
k∑

k1=0

k1∑
k2=0

· · ·
kM−2∑
kM−1=0

(
k

k1

)(
k1
k2

)
· · ·
(
kM−2
kM−1

)
E[Sk−k11 ]E[Sk1−k22 ] · · ·E[S

kM−1

M ]. (11)

However, should the RVs in the sum be mutually correlated and the CF of S be known,

E[Sk] can be obtained from the moment theorem as [24]

E[Sk] =
1

jk
dk

dωk
ΦS(ω)

∣∣∣∣∣
ω=0

. (12)

Moment-based approximations guarantee a good fit mainly in the distribution body.

On the other hand, it loses track of the distribution tail at high-SNR regime, which is

a compelling scenario to compare different communication systems. To overcome such

limitation, a new method called asymptotic matching has been proposed, which is pre-

sented next.

2.3.2 Asymptotic Matching

Assuming a scenario where the summands are mutually independent, an approach

known as asymptotic matching has been recently proposed [11]. In this method, the

parameters of the approximate distribution are adjusted so that its asymptote equals the

asymptote of the exact sum distribution.

Let the Maclaurin series expansion of the marginal pdf fSi(·) of Si be given by

fSi(si) =
∞∑
n=0

ai,nsi
bi,n ∼ ai,0s

bi,0
i , (13)
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and the Maclaurin series expansion of the sum pdf fS(·) of S be expressed by

fS(s) =
∞∑
n=0

ans
bn ∼ a0s

b0 , (14)

where the symbol “∼” denotes “asymptotically equal to (around zero)”. Since the sum pdf

is expressed as the multidimensional convolution of the marginal pdfs in the independent

case, the asymptote (around the origin) a0s
b0 of fS(·) in (14) is the multidimensional

convolution of the M corresponding asymptotes ai,0si
bi,0 of each marginal pdf in (13).

More specifically, it is shown in [11] (using a similar procedure as in the proof sketch

in [16, Proposition 4]) that a0 and b0 are given by

a0 =

M∏
i=1

ai,0Γ (bi,0 + 1)

Γ

(
M +

M∑
i=1

bi,0

) (15a)

b0 = (M − 1) +
M∑
i=1

bi,0, (15b)

where Γ(·) denotes the gamma function. Note that the sum’s asymptotic parameters

(a0 and b0) are given exclusively in terms of the number of summands (M) and their

marginal asymptotic parameters (ai,0 and bi,0, i ∈ {1, . . . ,M}). Moreover, in a log-scale

plot, note from (14) that a0 and b0 determine the linear and angular coefficients of the

asymptote of the sum pdf, respectively.

In order to perform asymptotic matching, the parameters of the approximate pdf

are adjusted so that its asymptote, say fS̃(·) ∼ ã0s
b̃0 , equals the asymptote of the exact

sum pdf in (14). This is achieved by forcing

ã0 = a0 (16a)

b̃0 = b0. (16b)

Assuming the distribution parameters of each summand are known, we can then ad-

just the parameters of the approximate distribution by solving the system of equations

in (16). This matching guarantees that both the exact and approximate distributions are

asymptotically the same, providing an excellent fit around the origin, i.e., at high SNR.

Since the asymptotic-matching approach has been proposed under the independent

constraint, its use is in principle not applicable to the correlated case. However, due to

a novel insight on sums of correlated RVs introduced in Chapter 3, this technique can be

exploited in the correlated scenario as well.
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Chapter 3
PROPOSED APPROXIMATIONS

Several works in the literature have attempted to accurately approximate sums of

RVs. Considering the case of arbitrarily correlated summands, this task has proven even

more challenging. Some recent works (cf. [15–21]) derived asymptotic expressions to ap-

proximate performance metrics of diversity-combining schemes operating over correlated

fading scenarios. Although capable of describing the system performance for particular

fading scenarios, these results are neither general nor distribution-oriented. In this chapter

a new general framework is introduced in order to design approximate distributions that

well fit the whole body of the exact sum distribution while being asymptotically exact

near the origin. The analysis is then applied to the sum of correlated Rayleigh and expo-

nential RVs. For illustrative purposes, new simple, closed-form, asymptotic expressions

are derived and applied to the performance analysis of two classical diversity-combining

techniques, namely, EGC and MRC.

3.1 Preliminaries

Let us assume that the asymptote of the multivariate pdf of S can be expressed in

the form

fS(s) ∼ a
M∏
i=1

sbii , (17)

where a and bi are constants.1 This implies that the asymptote of the sum pdf can be

expressed as a multidimensional convolution, i.e.,

fS(s) ∼ a
(
sb11 ∗ sb22 ∗ · · · ∗ s

bM
M

)
. (18)

1 This is a mild condition that holds true for many popular fading models, such as the Rayleigh, Rice,
Nakagami-m, Hoyt, Weibull, and α-µ distributions.
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We can restate (17) in a more convenient form, i.e.,

fS(s) ∼
M∏
i=1

âi,0s
b̂i,0
i , (19)

where

âi,0 , a
1
M (20a)

b̂i,0 , bi. (20b)

Note the implications raised by (19). We can view the ith term âi,0s
b̂i,0
i in the

product as the asymptote of an equivalent marginal pdf. And the product of these M

terms is asymptotically equal to the multivariate pdf of S. In other words, (19) implies

that, around the origin, the correlated RVs Si in the sum behaves as an equivalent set of

mutually independent RVs. Accordingly, the asymptote a0s
b0 of the sum pdf in (14) is

given by the convolution of the M equivalent marginal asymptotes âi,0s
b̂i,0
i in (19). This

is a novel and general asymptotic result for sums of positive correlated RVs, with many

further implications. For instance, we can apply (15) (obtained for the independent case)

to the correlated scenario. To this end, we just replace ai,0 and bi,0 in (15) by âi,0 and b̂i,0

in (20), respectively, so as to determine a0 and b0 for the correlated case.

Once the asymptote a0s
b0 of the sum pdf is determined, we can match it with the

asymptote ã0s
b̃0 of the approximate pdf, i.e., we can force (16). This guarantees an asymp-

totically optimal fit in the high-SNR regime. Furthermore, as a candidate approximate

distribution may have more than two parameters to be adjusted, and as the asymptotic

matching provides only two equations, it may be necessary to use asymptotic match-

ing along with other existing methods. Since the moment matching can provide a good

approximation in the body of the pdf, we propose its use in order to complement the

asymptotic matching. In this way, when the approximate distribution has l > 2 parame-

ters, (10) can provide the remaining l − 2 equations to complete the system of equations

and find the distribution parameters accordingly.

Our proposed analysis can be used for designing statistical approximations to sums

of a broad class of positive correlated RVs. As a case study, next we investigate two kinds

of correlated sums, namely, sums of Rayleigh RVs and sums of exponential RVs.

3.2 Sums of Correlated Rayleigh Random Variables

In this section, we initially discuss the sums of correlated Rayleigh RVs in order to

apply our analysis. Thereafter, some candidate distributions are provided to approximate
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the exact sum. Even though our framework is suitable for a variety of candidate distri-

butions, we illustrate the development by using the generalized, versatile α-µ distribution

and two of its particular cases, namely, Nakagami-m (α = 2, µ = m) and Weibull (µ = 1)

distributions [25]. The analysis can then be used to evaluate the performance of an EGC

scheme operating over correlated Rayleigh fading, as discussed at the end of the session.

3.2.1 Exact Sum Statistics

Let R (≡ S) be the sum of M arbitrarily correlated Rayleigh RVs Ri (≡ Si),

i ∈ {1, . . . ,M}, i.e.,

R =
M∑
i=1

Ri. (21)

The marginal pdf of each RV Ri is given by

fRi(ri) =
ri
σ2
i

exp

(
− r2i

2σ2
i

)
, ri ≥ 0, (22)

where σi > 0 is a scale parameter, and Ωi , E[R2
i ] = 2σ2

i is the average power. In order

to specify the multivariate Rayleigh pdf fR(·) , fR1,...,RM (·, . . . , ·) of R , [R1 · · ·RM ]T ,

it is appropriate to decompose each RV in terms of its in-phase and quadrature compo-

nents, i.e.,

Ri =
√
X2
i + Y 2

i , (23)

where Xi and Yi are independent and identically distributed Gaussian RVs for each i, with

zero mean and variance V[Xi] = V[Yi] = σ2
i [26]. Note that in general (Xi,Xj), (Yi,Yj),

and (Xi,Yj) are pairs of correlated RVs, i 6= j. We can arrange the components Xi and

Yi into the vector form

X , [X1 · · ·XM ]T and Y , [Y1 · · ·YM ]T , (24)

so that their marginal and joint statistics can be specified by the covariance matrix of

X, the covariance matrix of Y , and the cross-covariance matrix between X and Y

— KXX , E[XXT ], KY Y , E[Y Y T ], and KXY , E[XY T ], respectively. These

three matrices can then be rearranged into a unique (symmetric and non-singular) matrix

defined as

K ,

[
KXX KXY

KT
XY KY Y

]
. (25)
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Hence, the multivariate Rayleigh pdf can be expressed as a function of the matrix K

only [26]

fR(r) =

M∏
i=1

ri

(2π)M [det(K)]
1
2

∫ π

−π
· · ·
∫ π

−π
exp

[
−1

2
g (r,φ)

]
dφ1 · · · dφM , (26)

where r , [r1 · · · rM ]T ∈ [0,∞)M , φ , [φ1 · · ·φM ]T ∈ [−π, π)M , and g (r,φ) is given

by [26]

g (r,φ) =
M∑
i=1

(Aiicos2φi + Ciisin
2φi + 2Bii cosφi sinφi)r

2
i

+
M∑
i,j=1
i 6=j

(Aij cosφi cosφj + Cij sinφi sinφj + 2Bij cosφi sinφj)rirj, (27)

with Aij, Bij, and Cij being obtained from

A ,
(
KXX −KXYK

−1
Y YK

T
XY

)−1
(28)

B , −
(
KXX −KXYK

−1
Y YK

T
XY

)−1
KXYK

−1
Y Y (29)

C ,
(
KY Y −KT

XYK
−1
XXKXY

)−1
. (30)

Using the Maclaurin series expansion of the integrand in (26) and then taking its

first term, the asymptote of the multivariate Rayleigh pdf is obtained as

fR(r) ∼

M∏
i=1

ri

[det(K)]
1
2

. (31)

Therefore, from (31), we have for the Rayleigh case that

a =
1

[det(K)]
1
2

(32a)

bi = 1. (32b)

Replacing ai,0 and bi,0 by âi,0 and b̂i,0 in (15), respectively, and using the results from (20)

and (32), we obtain

a0 =
1

[det(K)]
1
2 Γ(2M)

(33a)

b0 = 2M − 1. (33b)
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In order to apply moment matching, we can use the first moment E [R] of the sum,

which is sufficient for the scope of this work and is easily obtained from (21) and (22) as

E[R] =
√
π/2

M∑
i=1

σi. (34)

Finally, using (33) and (34), we can obtain approximations to the exact sum distri-

bution by performing the matching techniques accordingly. Once performed, the matching

techniques provide the parameters of the approximate distribution in terms of those of

the exact sum distribution. Hence, one can adjust the approximate pdf/cdf by properly

setting its parameters. This is illustrated next for three different approximations.

3.2.2 Weibull Approximation

In the first proposed approximation, the sum R of correlated Rayleigh RVs is ap-

proximated by a Weibull RV R̃, whose pdf is given by [27, eq. (4-43)]

fR̃(r) =
α̃rα̃−1

Ω̃
exp

(
−r

α̃

Ω̃

)
, (35)

where α̃ > 0 is the shape (fading) parameter, and Ω̃ = E[R̃α̃] is the scale parameter of the

distribution. Our objective is to find the values of the parameters α̃ and Ω̃ of the Weibull

pdf such that fR̃(·) renders a good approximation to the exact sum pdf fR(·).
In order to guarantee a good adjustment at the high-SNR regime, one can per-

form asymptotic matching. To this end, taking the Maclaurin series expansion of the

exponential function in (35), the coefficients ã0 and b̃0 can be obtained as

ã0 =
α̃

Ω̃
(36a)

b̃0 = α̃− 1. (36b)

Finally, substituting (33) and (36) into (16), and solving the system of equations for the

parameters α̃ and Ω̃, we obtain

α̃ = 2M (37a)

Ω̃ = 2M [det(K)]
1
2 Γ(2M). (37b)
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3.2.3 Nakagami-m Approximation

In the second proposed approximation, the sum R of correlated Rayleigh RVs is

approximated by a Nakagami-m RV R̃, whose pdf is expressed by [6, eq. (3)]

fR̃(r) =
2m̃m̃r2m̃−1

Γ(m̃)Ω̃m̃
exp

(
−m̃r

2

Ω̃

)
, (38)

where Ω̃ = E[R̃2] and m̃ , Ω̃2/V[R̃2] are the parameters of the distribution. Similarly

as for the previous Weibull approximation, our objective is to find the values of the

parameters m̃ and Ω̃ of the Nakagami-m pdf such that fR̃(·) renders a good approximation

to the exact sum pdf fR(·).
Hence, taking the Maclaurin series expansion of the exponential function in (38),

the coefficients ã0 and b̃0 can be obtained as

ã0 =
2m̃m̃

Γ(m̃)Ω̃m̃
(39a)

b̃0 = 2m̃− 1. (39b)

Substituting (33) and (39) into (16), and solving the system of equations for the param-

eters m̃ and Ω̃, we obtain

m̃ = M (40a)

Ω̃ = M

{
2[det(K)]

1
2 Γ(2M)

Γ(M)

} 1
M

. (40b)

3.2.4 α-µ Approximation

Since both Weibull and Nakagami-m pdfs have only two parameters, the asymptotic

matching itself is sufficient to solve the system of equations. Nevertheless, in order to

obtain more degrees of freedom, it is important to investigate distributions containing

more than two parameters. For illustrative purposes, we depict this case by using the

generalized α-µ distribution, whose pdf is [25]

fR̃(r) =
α̃µ̃µ̃rα̃µ̃−1

Γ(µ̃)Ω̃µ̃
exp

(
− µ̃r

α̃

Ω̃

)
, (41)

where α̃ > 0, Ω̃ = E[R̃α̃], and µ̃ , Ω̃2/V[R̃α̃] are the parameters of the distribution.

The analysis here is similar to that of the two previous approximations, except that

now we have one more parameter. In this way, one more equation is needed, which can
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be provided by the moment-matching technique. Therefore, from (10) and (16), it is

necessary to obtain ã0, b̃0, and E[R̃k] of the approximate distribution in order to perform

the matching techniques accordingly.

Initially, by taking the Maclaurin series expansion of the exponential function in (41),

the coefficients ã0 and b̃0 are easily obtained as

ã0 =
α̃µ̃µ̃

Γ(µ̃)Ω̃µ̃
(42a)

b̃0 = α̃µ̃− 1, (42b)

and its kth moment is given by [25]

E[R̃k] =
Ω̃

k
α̃Γ
(
k
α̃

+ µ̃
)

µ̃
k
α̃Γ(µ̃)

. (43)

As the first moment is sufficient for the scope of this work, we can set k = 1 in (43),

which gives

E[R̃] =
Ω̃

1
α̃Γ
(
1
α̃

+ µ̃
)

µ̃
1
α̃Γ(µ̃)

. (44)

These results can then be combined into a set of three transcendental equations

by substituting (33), (34), (42), and (44) into (10) and (16). Even though there is no

closed-form solution for this set of equations, one can in principle solve it numerically by

using a computing software such as Mathematica or MATLAB, obtaining the parameters

of the approximate pdf in terms of those of the exact sum pdf.

3.2.5 Application to Equal-Gain Combining (EGC)

The proposed analysis can be directly applied to the study of diversity-combining

schemes. As an application example, we investigate the EGC technique operating over

correlated Rayleigh fading channels.

Considering an EGC scheme with M arbitrarily correlated Rayleigh fading branches

Ri, one can express its output envelope REGC by [1]

REGC =
1√
M

M∑
i=1

Ri =
R√
M
, (45)

where
√
M is a normalization factor that accounts for the increased output noise. The

EGC output in (45) is simply the sum in (21) normalized by
√
M . For simplicity, we

drop the normalization, as this is just a scale factor that can be handled through a trivial
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transformation of variables. Therefore, the analysis based on the sum R in (21) is directly

applicable to the EGC output REGC in (45).

By applying the proposed analysis to EGC schemes operating over correlated Rayleigh

fading, one can obtain approximate pdfs and cdfs to the EGC output. In the high-SNR

regime, these approximations are asymptotically optimal and can then be used to evaluate

the EGC performance in terms of BER and OP.

3.3 Sums of Correlated Exponential Random variables

Similarly as for the Rayleigh case above, this section introduces sums of correlated

exponential RVs in order to apply our analysis. For illustrative purposes, the exact

sum distribution is approximated by the α-µ distribution and two of its particular cases,

namely, gamma (α = 1) and Weibull distributions [25]. As detailed at the end of the

section, the analysis can be readily applied to evaluate the performance of an MRC

scheme operating over correlated Rayleigh fading.

3.3.1 Exact Sum Statistics

Let W (≡ S) be the sum of M arbitrarily correlated exponential RVs Wi (≡ Si),

i ∈ {1, . . . ,M}, i.e.,

W =
M∑
i=1

Wi, (46)

where the exponential RV is defined as Wi , R2
i . The multivariate exponential pdf

fW (·) , fW1,...,WM
(·, . . . , ·) of W , [W1 · · ·WM ]T is expressed by [26]

fW (γ) =
1

(4π)M [det(K)]
1
2

∫ π

−π
· · ·
∫ π

−π
exp

[
−1

2
h (γ,φ)

]
dφ1 · · · dφM , (47)

where γ , [γ1 · · · γM ]T ∈ [0,∞)M , and h (γ,φ) is given by [26]

h (γ,φ) =
M∑
i=1

(Aiicos2φi + Ciisin
2φi + 2Bii cosφi sinφi)γi

+
M∑
i,j=1
i 6=j

(Aij cosφi cosφj + Cij sinφi sinφj + 2Bij cosφi sinφj)(γiγj)
1
2 , (48)
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with Aij, Bij, and Cij defined, as before, from (28)–(30).

Taking the Maclaurin series expansion of the integrand in (47), it is straightforward

to show that the asymptote of the multivariate exponential pdf is expressed by

fW (γ) ∼ 1

2M [det(K)]
1
2

. (49)

Hence, from (49), we have for the exponential case that

a =
1

2M [det(K)]
1
2

(50a)

bi = 0. (50b)

Replacing ai,0 and bi,0 by âi,0 and b̂i,0 in (15), respectively, and using the results from (20)

and (50), we obtain

a0 =
1

2M [det(K)]
1
2 Γ(M)

(51a)

b0 = M − 1. (51b)

Considering the average Rayleigh power defined in Section 3.2, i.e., Ωi , E[R2
i ] =

E[Wi], the first moment E[W ] of the sum is easily obtained as

E[W ] =
M∑
i=1

Ωi. (52)

Using (51) and (52), one can attain approximations to the exact sum distribution

by performing the matching techniques in a similar manner as in Section 3.2. In fact,

the development detailed therein is general and readily applicable to sums of exponential

RVs as well, as illustrated next.

3.3.2 Weibull Approximation

In order to approximate the sum W of correlated exponential RVs by a Weibull RV

W̃ , one can follow the procedure described in Subsection 3.2.2. In this way, taking the

Maclaurin series expansion of the Weibull pdf in (35), the coefficients ã0 and b̃0 required

for asymptotic matching are given by (36).

Therefore, substituting (36) and (51) into (16), and solving the system of equations
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for the parameters α̃ and Ω̃, we obtain

α̃ = M (53a)

Ω̃ = 2MM [det(K)]
1
2 Γ(M). (53b)

3.3.3 Gamma Approximation

As the exponential RV is a squared Rayleigh RV, it is interesting to investigate the

approximation of the sum W (of correlated exponential RVs) not by the Nakagami-m

RV as in Subsection 3.2.3, but by its squared version. The squared Nakagami-m RV is a

gamma RV W̃ [25], whose pdf fW̃ (·) is [27, eq. (4-34)]

fW̃ (γ) =
µ̃µ̃γµ̃−1

Γ(µ̃)Ω̃µ̃
exp

(
− µ̃γ

Ω̃

)
, (54)

where Ω̃ = E[W̃ ] and µ̃ , Ω̃2/V[W̃ ] are the parameters of the distribution.

Using the Maclaurin series expansion of the exponential function in (54), the coef-

ficients ã0 and b̃0 can be obtained as

ã0 =
µ̃µ̃

Γ(µ̃)Ω̃µ̃
(55a)

b̃0 = µ̃− 1. (55b)

Finally, substituting (51) and (55) into (16), and solving the system of equations for the

parameters Ω̃ and µ̃, we obtain

Ω̃ = 2M [det(K)]
1

2M (56a)

µ̃ = M. (56b)

3.3.4 α-µ Approximation

In order to provide more degrees of freedom during the adjustment process, one

can choose an approximate distribution with more than two parameters. For illustrative

purposes, we depict this case in the same way as in Subsection 3.2.4, where the generalized

α-µ distribution was used. The analysis here is similar to the previous one.

The α-µ pdf has three parameters, namely, α̃, µ̃, and Ω̃. Hence, three equations are

necessary to solve the system of equations and find the distribution parameters properly.

As for the asymptotic-matching step, the coefficients ã0 and b̃0 given by (42) are used.

In order to provide the third equation, moment matching can be performed by using the
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first moment of the α-µ distribution, which is given by (44).

Therefore, one can combine these results into a set of three transcendental equa-

tions by substituting (42), (44), (51), and (52) into (10) and (16). Although there is no

closed-form solution for this system of equations, it can be solved numerically by using a

computing software, obtaining the parameters of the approximate pdf in terms of those

of the exact sum pdf.

3.3.5 Application to Maximal-Ratio Combining (MRC)

The analysis developed on sums of correlated exponential RVs is of great importance

in wireless communications. For instance, it can be applied to study the performance anal-

ysis of the MRC technique operating over correlated Rayleigh fading channels, as follows.

Let us assume an MRC scheme consisting of M arbitrarily correlated Rayleigh fading

branches Ri. Its output RMRC can be expressed by [1]

RMRC =
M∑
i=1

giRi, (57)

where gi is the gain at the ith branch. An important performance measure is the SNR

Γi, defined for each branch i as

Γi ,
local mean signal power

mean noise power
, (58)

where the local mean signal power is given by R2
i /2 [1]. Assuming the presence of Gaussian

noise with mean power Ni = N in each branch, then

Γi =
R2
i

2N
. (59)

The total noise power N at the MRC output is given by

N = N
M∑
i=1

g2i . (60)

Hence, the resulting SNR Γ is

Γ =
R2
MRC

2N
=

1

2

(∑M
i=1 giRi

)2
N
∑M

i=1 g
2
i

. (61)
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Furthermore, it is shown in [1] that the SNR Γ is maximized if each gain gi is equal to

the ratio of the signal voltage to noise power of the respective branch, i.e.,

gi =
Ri

N
. (62)

Therefore, substituting (62) into (61), it follows that

Γ =
1

2

(∑M
i=1R

2
i /N

)2
N
∑M

i=1(Ri/N)2
=

M∑
i=1

R2
i

2N
=

M∑
i=1

Γi. (63)

The result in (63) shows that the output SNR Γ of the MRC is the sum of the SNRs Γi

in each branch.

Comparing (63) to (46), note that Γi ≡ Wi and Γ ≡ W . Consequently, the analysis

developed based on the sum W in (46) is also applicable to the MRC output SNR Γ in

(63). To this end, by applying the proposed analysis to MRC schemes operating over

correlated Rayleigh fading, one can obtain approximate pdfs and cdfs to the MRC output

SNR. In the high-SNR regime, these approximations are asymptotically optimal and can

then be used to evaluate the MRC performance in terms of BER and OP.
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Chapter 4
NUMERICAL RESULTS

This chapter presents several numerical results in order to evaluate the performance

of the statistical approximations proposed in this work. We compare our approximations

with those obtained by using the traditional moment-based approach (cf. [7–10]). The

exact solution shown in the plots has been computed by numerically integrating Brennan’s

formula, reproduced in (9).

We present curves of pdf and cdf for sums of correlated Rayleigh and sums of

correlated exponential RVs. The pdfs are shown in terms of envelope level for Rayleigh

sums and in terms of power level for exponential sums. The cdfs are plotted in terms of

average power (per branch) for both sums, since this is a common practice in the literature

and shows the high-SNR regime. As for the combining techniques discussed in Chapter 3,

the distribution of the sum envelope level corresponds to the distribution of the EGC

output, and the distribution of the sum power level corresponds to the distribution of the

MRC output. For illustrative purposes, we let

E[XiYj] = 0, ∀i, j, (64a)

E[XiXj] = E[YiYj] = ρi,j,∀i 6= j. (64b)

Note that ρi,j is the correlation coefficient between the ith and jth components [24], which

can be modeled by

ρi,j = J0

(
2πdi,j
λ

)
, (65)

where J0(·) is the Bessel function of the first kind and zeroth order, di,j is the distance

between ith and jth antennas, and λ is the wavelength of the carrier signal. For simplicity,

we fix ρi,j = ρ, ∀i, j, where ρ ∈ {0.1, 0.5, 0.9}. All curves are in a log-scale plot and were

obtained by using the software Mathematica (version 11.1.1.0).
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4.1 Sums of Rayleigh Random Variables

Initially, we consider the sum of correlated Rayleigh RVs. Figures 1, 2, and 3 show

the exact and approximate pdfs and cdfs of the sum of two, three, and four RVs, respec-

tively. For the pdf curves, we fix the average power per input branch at Ωi = 2σ2
i = 2,

∀i, and vary the sum envelope level r. For the cdf curves, we fix the sum envelope level

at r = 1 and vary the average power per input branch Ωi = Ω, ∀i.
We provide three candidate distributions to approximate the exact sum, namely,

the Nakagami-m, Weibull, and α-µ distributions. These approximations are obtained

by using two different approaches: our proposed analysis and moment matching alone.

On the one hand, as for our proposed approach, only asymptotic matching is required

for obtaining the Nakagami-m and Weibull approximations, whereas the proposed α-µ

approximation uses asymptotic matching along with the first moment of the sum (to

perform the moment-matching step). On the other hand, in order to obtain the moment-

based approximations, we have chosen for simplicity (i) the first and second moments

for the Nakagami-m and Weibull approximations, and (ii) the first, second, and third

moments for the α-µ approximation.

From the pdf plots, note that our approximations are asymptotically optimal, match-

ing the exact curve near the origin — at pdf left tail. In this region, our proposed

Nakagami-m, Weibull, and α-µ approximations outclass the moment-based Nakagami-m,

Weibull, and α-µ counterparts, respectively. Particularly, the proposed Nakagami-m and

Weibull approximations near the origin outperform the proposed α-µ approximation as M

and ρ increase. This shows that, in the region of most practical interest, the two approx-

imations that use asymptotic matching alone provide better results than the proposed

α-µ approximation, where moment matching was introduced. In fact, there is a trade-off

between asymptotic-matching and moment-matching: the former provides a better fit

in the left pdf tail — as expected by design —, and the latter offers a better fit in the

right pdf tail. However, the left pdf tail is of most practical interest when comparing

different communications systems in terms of BER and OP, since it corresponds to the

quintessential high-SNR regime.

Similar results can be noticed from the cdf plots. In this case, the cdf right tail cor-

responds to the high-SNR regime, where our proposed approximations are asymptotically

optimal. When applied to the EGC scheme, these cdf curves reveal that our proposed

approximations keep track of the diversity (slope) and coding (offset) gains of the exact

combining output, clearly outperforming the moment-based approximations.
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(e) Pdf of the sum with ρ = 0.9. (f) Cdf of the sum with ρ = 0.9.

Figure 1 - Sum statistics of two correlated Rayleigh RVs.



Chapter 4. NUMERICAL RESULTS 39

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

□

□

□

□

□

□

□

□

□

□
□

□
□

□
□

□
□

□
□

□
□

□
□

△

△

△

△

△

△

△

△
△

△

△

△

△

△

△

△

△

△
○○

○○
○○

○○
○○○○○○○

○
○

○

○

○

○

○

○○
○○

○○
○○

○○○○○○○
○
○
○

○

○

○

○

□□
□□
□□
□□
□□□

□

□

□

□

□□□
□□□

□□□
□□□□□□

□
□

□

□

□

△△
△△
△△
△△△

△△△△△△△
△
△

△

△

△

△

△△
△△
△△
△△△

△△△△△△△
△
△

△

△

△

△

△

Exact
○ Proposed Nakagami-m approximation
○ Moment-based Nakagami-m approximation
□ Proposed Weibull approximation

□ Moment-based Weibull approximation

△ Proposed -μ approximation

△ Moment-based -μ approximation

-40 -30 -20 -10 0 10 20 30

104

102

100

10-2

10-4

10-6

10-8

Envelope, r dB)

p
d
f,
f R
r)

○ ○ ○
○

○

○

○

○

○

○

○

○

○

○

○

○

○ ○ ○
○

○

○

○

○

○

○

○

○

○

○

○

○

□ □ □ □
□

□

□

□

□

□

□

□

□

□

□

□

□ □ □
□

□
□

□
□

□
□

□
□

□
□

□
□

△ △ △
△

△
△

△
△

△

△

△

△

△

△

△

△

△ △ △
△

△
△

△

△

△

△

△

△

△

△

△

△

Exact
○ Proposed Nakagami-m approximation
○ Moment-based Nakagami-m approximation
□ Proposed Weibull approximation

□ Moment-based Weibull approximation

△ Proposed -μ approximation

△ Moment-based -μ approximation

-10 0 10 20 30

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

Average power per branch, Ω dB

cd
f,
F
R
r=
1

(a) Pdf of the sum with ρ = 0.1. (b) Cdf of the sum with ρ = 0.1.
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(c) Pdf of the sum with ρ = 0.5. (d) Cdf of the sum with ρ = 0.5.
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(e) Pdf of the sum with ρ = 0.9. (f) Cdf of the sum with ρ = 0.9.

Figure 2 - Sum statistics of three correlated Rayleigh RVs.
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(a) Pdf of the sum with ρ = 0.1. (b) Cdf of the sum with ρ = 0.1.
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(c) Pdf of the sum with ρ = 0.5. (d) Cdf of the sum with ρ = 0.5.
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(e) Pdf of the sum with ρ = 0.9. (f) Cdf of the sum with ρ = 0.9.

Figure 3 - Sum statistics of four correlated Rayleigh RVs.
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4.2 Sums of Exponential Random Variables

We now evaluate the performance of the approximations to sums of correlated ex-

ponential RVs. Figures 4, 5, and 6 show the exact and approximate pdfs and cdfs of

the sum of two, three, and four RVs, respectively. For the pdf curves, we fix the average

power per input branch at Ωi = 2σ2
i = 2, ∀i, and vary the sum power level γ. For the cdf

curves, we fix the sum power level at γ = 1 and vary the average power per input branch

Ωi = Ω, ∀i.
We provide three candidate distributions to approximate the exact sum, namely,

the gamma, Weibull, and α-µ distributions. Similarly as in the previous section, these

approximations are obtained by using two different approaches: our proposed analysis

and moment matching alone. As for our proposed approach, only asymptotic matching is

required for obtaining the gamma and Weibull approximations, whereas the proposed α-µ

approximation uses asymptotic matching along with the first moment of the sum. Again,

in order to obtain the moment-based approximations, we have chosen for simplicity (i) the

first and second moments for the gamma and Weibull approximations, and (ii) the first,

second, and third moments for the α-µ approximation.

Note from the pdf plots that our approximations are asymptotically optimal, keep-

ing track of the exact curve near the origin, as expected. In this region, our proposed

gamma, Weibull, and α-µ approximations outclass once again the moment-based gamma,

Weibull, and α-µ counterparts, respectively. As discussed in the previous section, the

proposed gamma and Weibull approximations near the origin outperform the proposed

α-µ approximation as M and ρ increase.

These results can also be noticed from the cdf plots, which reveal that our proposed

approximations keep track of the diversity and coding gains of the exact MRC output. As

expected, our proposed approximations provide an asymptotically optimal performance

and clearly outperform the moment-based approximations.



Chapter 4. NUMERICAL RESULTS 42

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○ ○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○ ○

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□ □

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △ △ △ △

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△ △ △ △○○○○○○○○

○
○
○

○

○

○

○

○

○○○○○○○○
○
○
○
○

○

○

○

○

□□□□□□
□
□

□

□

□

□□□□□□□□□
□
□
□

□

□

□

△△△△△△△△△
△
△
△

△

△

△

△

△△△△△△△△△
△
△
△

△

△

△

△

Exact
○ Proposed gamma approximation
○ Moment-based gamma approximation
□ Proposed Weibull approximation

□ Moment-based Weibull approximation

△ Proposed -μ approximation

△ Moment-based -μ approximation

-70 -60 -50 -40 -30 -20 -10 0 10 20 30

104

102

100

10-2

10-4

10-6

10-8

Power, γ (dB)

p
d
f,
f W

(γ
)

○ ○ ○ ○ ○
○

○

○

○

○

○

○

○

○

○

○

○ ○ ○ ○ ○
○

○

○

○

○

○

○

○

○

○

○

□ □ □ □ □
□

□

□

□

□

□

□

□

□

□

□

□ □ □ □ □
□

□
□

□
□

□
□

□
□

□
□

△ △ △ △ △
△

△
△

△

△

△

△

△

△

△

△

△ △ △ △ △
△

△
△

△

△

△

△

△

△

△

△
Exact

○ Proposed gamma approximation
○ Moment-based gamma approximation
□ Proposed Weibull approximation

□ Moment-based Weibull approximation

△ Proposed -μ approximation

△ Moment-based -μ approximation

-10 0 10 20 30

100

10-2

10-4

10-6

10-8

10-10

Average power per branch, Ω dB

cd
f,
F
W

γ
=
1
)

(a) Pdf of the sum with ρ = 0.1. (b) Cdf of the sum with ρ = 0.1.
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(c) Pdf of the sum with ρ = 0.5. (d) Cdf of the sum with ρ = 0.5.
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(e) Pdf of the sum with ρ = 0.9. (f) Cdf of the sum with ρ = 0.9.

Figure 4 - Sum statistics of two correlated exponential RVs.
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(a) Pdf of the sum with ρ = 0.1. (b) Cdf of the sum with ρ = 0.1.
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(c) Pdf of the sum with ρ = 0.5. (d) Cdf of the sum with ρ = 0.5.
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Figure 5 - Sum statistics of three correlated exponential RVs.
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(a) Pdf of the sum with ρ = 0.1. (b) Cdf of the sum with ρ = 0.1.
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Figure 6 - Sum statistics of four correlated exponential RVs.
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Chapter 5
CONCLUSIONS

This work has addressed statistical sums of arbitrarily correlated RVs. Initially, the

general formulation to obtain the exact sum statistics was discussed for both independent

and correlated scenarios. As this formulation is inherently intricate, some methods that

provide accurate approximations were revisited, namely, the traditional moment-matching

and the new asymptotic-matching approaches. The moment-matching technique yields

a good fit in the distribution body, but it loses track of the distribution tail. As this

region corresponds to the important regime of high SNR, it has been highly desirable to

circumvent such limitation experienced by moment-based approximations. In this way,

a new approach known as asymptotic matching has been recently proposed, which is

capable of providing an outstanding fit near the origin. However, this technique has not

been applicable to the most general and challenging correlated scenario. This work aimed

to fill this gap.

5.1 Final Considerations

It has been apparently overlooked so far that some positive correlated RVs behave

asymptotically near the origin as an equivalent set of independent RVs. This is a key

insight elaborated on and much explored herein to propose asymptotically optimal ap-

proximations to sums of Rayleigh and sums of exponential RVs with arbitrary correlation.

In this way, one can exploit the asymptotic matching, which can be used along with tra-

ditional techniques so as to well approximate the body of the exact sum distribution

while guaranteeing an excellent fit in the distribution tail and, consequently, at high-

SNR regime. As application examples, new simple, closed-form, asymptotic expressions

were derived for the output statistics of EGC and MRC schemes operating over corre-

lated Rayleigh fading, proving highly accurate and greatly outperforming the standard

moment-matching approach.
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Various candidate distributions to approximate the exact sum were presented, namely,

Nakagami-m, gamma, Weibull, and α-µ distributions. In the proposed Nakagami-m,

gamma, and Weibull approximations, closed-form expressions for the parameters of the

approximate distribution were obtained, differently from the proposed α-µ approximation,

whose parameters had to be obtained by solving a system of transcendental equations.

It has also been observed from the numerical results that, as M and ρ increase, the pro-

posed α-µ approximation earlier departs from the distribution tail, as compared to the

other proposed approximations, which tend to keep better track. This observation reveals

that, even though the α-µ distribution provides one more degree of freedom during the

matching process, its inherent complexity may prove undesirable, being outperformed by

the simpler Nakagami-m, gamma, and Weibull approximations.

5.2 Future Work

We should emphasize that the analysis developed herein is rather general. It can be

readily used to design asymptotically exact pdfs and cdfs for a variety of fading scenarios

and candidate approximate distributions. Moreover, it can be applied to many different

transmission systems, such as those envisioned by the fifth generation of cellular mobile

communications (5G) [28,29].

As a non-exhaustive list of research topics to extend the results discussed herein, we

provide the following:

1. An asymptotic characterization of other multivariate fading models, both traditional

(Hoyt, Nakagami-m, Rice, and Weibull) and generalized (α-µ, η-µ, and κ-µ).

2. A general asymptotic characterization for the pdf and cdf of wireless link arrays

that compose advanced-generation communication systems (like 5G) — sums (sim-

ple, hybrid, and hierarchical), products, maxima, minima, harmonic averages, and

mixed combinations, among others —, applicable to generalized fading models and

correlated scenarios. The asymptotic characterization allows to overcome the in-

herent difficulties of the exact statistical treatment, while guaranteeing an excel-

lent approximation for operational regimes of practical interest, from medium to

high SNR.

3. Corresponding (asymptotic and approximate) expressions for the BER and OP of

each link array over different fading scenarios.

4. Optimal resource allocation strategies for each of those link arrays, in order to

minimize the BER or the OP in the high-SNR regime.
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