4 research outputs found

    Noise Cancellation Employing Adaptive Digital Filters for Mobile Applications

    Get PDF
    The persistent improvement of the hybrid adaptive algorithms and the swift growth of signal processing chip enhanced the performance of signal processing technique exalted mobile telecommunication systems. The proposed Artificial Neural Network Hybrid Back Propagation Adaptive Algorithm (ANNHBPAA) for mobile applications exploits relationship among the pure speech signal and noise corrupted signal in order to estimate of the noise. An adaptive linear system responds for changes in its environment as it is operating. Linear networks are gets adjusted at each time step based on new input and target vectors can find weights and biases that minimize the networks sum squared error for recent input and target vectors. Networks of this kind are quite oftenly used for error cancellation, speech signal processing and control systems.    Noise in an audio signal has become major problem and hence mobile communication systems are demanding noise-free signal. In order to achieve noise-free signal various research communities have provided significant techniques. Adaptive noise cancellation (ANC) is a kind of technique which helps in estimation of un-wanted signal and removes them from corrupted signal. This paper introduces an Adaptive Filter Based Noise Cancellation System (AFNCS) that incorporates a hybrid back propagation learning for the adaptive noise cancellation in mobile applications. An extensive study has been made to explore the effects of different parameters, such as number of samples, number of filter coefficients, step size and noise level at the input on the performance of the adaptive noise cancelling system. The proposed hybrid algorithm consists all the significant features of Gradient Adaptive Lattice (GAL) and Least Mean Square (LMS) algorithms. The performance analysis of the method is performed by considering convergence complexity and bit error rate (BER) parameters along with performance analyzed with varying some parameters such as number of filter coefficients, step size, number of samples and input noise level. The outcomes suggest the errors are reduced significantly when the numbers of epochs are increased. Also incorporation of less hidden layers resulted in negligible computational delay along with effective utilization of memory. All the results have been obtained using computer simulations built on MATLAB platfor

    Novel quaternion-valued least-mean kurtosis adaptive filtering algorithm based on the GHR calculus

    No full text
    A novel quaternion-valued least-mean kurtosis (QLMK) adaptive filtering algorithm is proposed for three- and fourdimensional processes by using the recent generalised Hamilton-real (GHR) calculus. The proposed QLMK algorithm based GHR calculus minimises the negated kurtosis of the error signal as a cost function in the quaternion domain, thus provides an elegant way to solve a trade-off problem between the convergence rate and steady-state error. Moreover, the proposed QLMK algorithm has naturally a robust behaviour for a wide range of noise signals due to its kurtosis-based cost function. Furthermore, the steady-state performance of the proposed QLMK algorithm is analysed to obtain convergence and misadjustment conditions. The comprehensive simulation results on benchmark and real-world problems show that the use of this cost function defined by the quaternion statistics in the proposed QLMK algorithm allows us to process quaternion-valued signals and thus, significantly enhances the performance of the adaptive filter in terms of both the steady-state error and the convergence rate, as compared with the quaternion-valued least-mean-square algorithm based on the recent GHR calculus. © 2018, The Institution of Engineering and Technology

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications
    corecore