2,566 research outputs found

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF

    Calibration-free Pedestrian Partial Pose Estimation Using a High-mounted Kinect

    Get PDF
    Les applications de l’analyse du comportement humain ont subit de rapides développements durant les dernières décades, tant au niveau des systèmes de divertissements que pour des applications professionnelles comme les interfaces humain-machine, les systèmes d’assistance de conduite automobile ou des systèmes de protection des piétons. Cette thèse traite du problème de reconnaissance de piétons ainsi qu’à l’estimation de leur orientation en 3D. Cette estimation est faite dans l’optique que la connaissance de cette orientation est bénéfique tant au niveau de l’analyse que de la prédiction du comportement des piétons. De ce fait, cette thèse propose à la fois une nouvelle méthode pour détecter les piétons et une manière d’estimer leur orientation, par l’intégration séquentielle d’un module de détection et un module d’estimation d’orientation. Pour effectuer cette détection de piéton, nous avons conçu un classificateur en cascade qui génère automatiquement une boîte autour des piétons détectés dans l’image. Suivant cela, des régions sont extraites d’un nuage de points 3D afin de classifier l’orientation du torse du piéton. Cette classification se base sur une image synthétique grossière par tramage (rasterization) qui simule une caméra virtuelle placée immédiatement au-dessus du piéton détecté. Une machine à vecteurs de support effectue la classification à partir de cette image de synthèse, pour l’une des 10 orientations discrètes utilisées lors de l’entrainement (incréments de 30 degrés). Afin de valider les performances de notre approche d’estimation d’orientation, nous avons construit une base de données de référence contenant 764 nuages de points. Ces données furent capturées à l’aide d’une caméra Kinect de Microsoft pour 30 volontaires différents, et la vérité-terrain sur l’orientation fut établie par l’entremise d’un système de capture de mouvement Vicon. Finalement, nous avons démontré les améliorations apportées par notre approche. En particulier, nous pouvons détecter des piétons avec une précision de 95.29% et estimer l’orientation du corps (dans un intervalle de 30 degrés) avec une précision de 88.88%. Nous espérons ainsi que nos résultats de recherche puissent servir de point de départ à d’autres recherches futures.The application of human behavior analysis has undergone rapid development during the last decades from entertainment system to professional one, as Human Robot Interaction (HRI), Advanced Driver Assistance System (ADAS), Pedestrian Protection System (PPS), etc. Meanwhile, this thesis addresses the problem of recognizing pedestrians and estimating their body orientation in 3D based on the fact that estimating a person’s orientation is beneficial in determining their behavior. In this thesis, a new method is proposed for detecting and estimating the orientation, in which the result of a pedestrian detection module and a orientation estimation module are integrated sequentially. For the goal of pedestrian detection, a cascade classifier is designed to draw a bounding box around the detected pedestrian. Following this, extracted regions are given to a discrete orientation classifier to estimate pedestrian body’s orientation. This classification is based on a coarse, rasterized depth image simulating a top-view virtual camera, and uses a support vector machine classifier that was trained to distinguish 10 orientations (30 degrees increments). In order to test the performance of our approach, a new benchmark database contains 764 sets of point cloud for body-orientation classification was captured. For this benchmark, a Kinect recorded the point cloud of 30 participants and a marker-based motion capture system (Vicon) provided the ground truth on their orientation. Finally we demonstrated the improvements brought by our system, as it detected pedestrian with an accuracy of 95:29% and estimated the body orientation with an accuracy of 88:88%.We hope it can provide a new foundation for future researches

    Sensor fusion in driving assistance systems

    Get PDF
    Mención Internacional en el título de doctorLa vida diaria en los países desarrollados y en vías de desarrollo depende en gran medida del transporte urbano y en carretera. Esta actividad supone un coste importante para sus usuarios activos y pasivos en términos de polución y accidentes, muy habitualmente debidos al factor humano. Los nuevos desarrollos en seguridad y asistencia a la conducción, llamados Advanced Driving Assistance Systems (ADAS), buscan mejorar la seguridad en el transporte, y a medio plazo, llegar a la conducción autónoma. Los ADAS, al igual que la conducción humana, están basados en sensores que proporcionan información acerca del entorno, y la fiabilidad de los sensores es crucial para las aplicaciones ADAS al igual que las capacidades sensoriales lo son para la conducción humana. Una de las formas de aumentar la fiabilidad de los sensores es el uso de la Fusión Sensorial, desarrollando nuevas estrategias para el modelado del entorno de conducción gracias al uso de diversos sensores, y obteniendo una información mejorada a partid de los datos disponibles. La presente tesis pretende ofrecer una solución novedosa para la detección y clasificación de obstáculos en aplicaciones de automoción, usando fusión vii sensorial con dos sensores ampliamente disponibles en el mercado: la cámara de espectro visible y el escáner láser. Cámaras y láseres son sensores comúnmente usados en la literatura científica, cada vez más accesibles y listos para ser empleados en aplicaciones reales. La solución propuesta permite la detección y clasificación de algunos de los obstáculos comúnmente presentes en la vía, como son ciclistas y peatones. En esta tesis se han explorado novedosos enfoques para la detección y clasificación, desde la clasificación empleando clusters de nubes de puntos obtenidas desde el escáner láser, hasta las técnicas de domain adaptation para la creación de bases de datos de imágenes sintéticas, pasando por la extracción inteligente de clusters y la detección y eliminación del suelo en nubes de puntos.Life in developed and developing countries is highly dependent on road and urban motor transport. This activity involves a high cost for its active and passive users in terms of pollution and accidents, which are largely attributable to the human factor. New developments in safety and driving assistance, called Advanced Driving Assistance Systems (ADAS), are intended to improve security in transportation, and, in the mid-term, lead to autonomous driving. ADAS, like the human driving, are based on sensors, which provide information about the environment, and sensors’ reliability is crucial for ADAS applications in the same way the sensing abilities are crucial for human driving. One of the ways to improve reliability for sensors is the use of Sensor Fusion, developing novel strategies for environment modeling with the help of several sensors and obtaining an enhanced information from the combination of the available data. The present thesis is intended to offer a novel solution for obstacle detection and classification in automotive applications using sensor fusion with two highly available sensors in the market: visible spectrum camera and laser scanner. Cameras and lasers are commonly used sensors in the scientific literature, increasingly affordable and ready to be deployed in real world applications. The solution proposed provides obstacle detection and classification for some obstacles commonly present in the road, such as pedestrians and bicycles. Novel approaches for detection and classification have been explored in this thesis, from point cloud clustering classification for laser scanner, to domain adaptation techniques for synthetic dataset creation, and including intelligent clustering extraction and ground detection and removal from point clouds.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Cristina Olaverri Monreal.- Secretario: Arturo de la Escalera Hueso.- Vocal: José Eugenio Naranjo Hernánde

    Pedestrian Behavior Study to Advance Pedestrian Safety in Smart Transportation Systems Using Innovative LiDAR Sensors

    Get PDF
    Pedestrian safety is critical to improving walkability in cities. Although walking trips have increased in the last decade, pedestrian safety remains a top concern. In 2020, 6,516 pedestrians were killed in traffic crashes, representing the most deaths since 1990 (NHTSA, 2020). Approximately 15% of these occurred at signalized intersections where a variety of modes converge, leading to the increased propensity of conflicts. Current signal timing and detection technologies are heavily biased towards vehicular traffic, often leading to higher delays and insufficient walk times for pedestrians, which could result in risky behaviors such as noncompliance. Current detection systems for pedestrians at signalized intersections consist primarily of push buttons. Limitations include the inability to provide feedback to the pedestrian that they have been detected, especially with older devices, and not being able to dynamically extend the walk times if the pedestrians fail to clear the crosswalk. Smart transportation systems play a vital role in enhancing mobility and safety and provide innovative techniques to connect pedestrians, vehicles, and infrastructure. Most research on smart and connected technologies is focused on vehicles; however, there is a critical need to harness the power of these technologies to study pedestrian behavior, as pedestrians are the most vulnerable users of the transportation system. While a few studies have used location technologies to detect pedestrians, this coverage is usually small and favors people with smartphones. However, the transportation system must consider a full spectrum of pedestrians and accommodate everyone. In this research, the investigators first review the previous studies on pedestrian behavior data and sensing technologies. Then the research team developed a pedestrian behavioral data collecting system based on the emerging LiDAR sensors. The system was deployed at two signalized intersections. Two studies were conducted: (a) pedestrian behaviors study at signalized intersections, analyzing the pedestrian waiting time before crossing, generalized perception-reaction time to WALK sign and crossing speed; and (b) a novel dynamic flashing yellow arrow (D-FYA) solution to separate permissive left-turn vehicles from concurrent crossing pedestrians. The results reveal that the pedestrian behaviors may have evolved compared with the recommended behaviors in the pedestrian facility design guideline (e.g., AASHTO’s “Green Book”). The D-FYA solution was also evaluated on the cabinet-in-theloop simulation platform and the improvements were promising. The findings in this study will advance the body of knowledge on equitable traffic safety, especially for pedestrian safety in the future

    Carried baggage detection and recognition in video surveillance with foreground segmentation

    Get PDF
    Security cameras installed in public spaces or in private organizations continuously record video data with the aim of detecting and preventing crime. For that reason, video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis, have gained high interest in recent years. In this thesis, the primary focus is on two key aspects of video analysis, reliable moving object segmentation and carried object detection & identification. A novel moving object segmentation scheme by background subtraction is presented in this thesis. The scheme relies on background modelling which is based on multi-directional gradient and phase congruency. As a post processing step, the detected foreground contours are refined by classifying the edge segments as either belonging to the foreground or background. Further contour completion technique by anisotropic diffusion is first introduced in this area. The proposed method targets cast shadow removal, gradual illumination change invariance, and closed contour extraction. A state of the art carried object detection method is employed as a benchmark algorithm. This method includes silhouette analysis by comparing human temporal templates with unencumbered human models. The implementation aspects of the algorithm are improved by automatically estimating the viewing direction of the pedestrian and are extended by a carried luggage identification module. As the temporal template is a frequency template and the information that it provides is not sufficient, a colour temporal template is introduced. The standard steps followed by the state of the art algorithm are approached from a different extended (by colour information) perspective, resulting in more accurate carried object segmentation. The experiments conducted in this research show that the proposed closed foreground segmentation technique attains all the aforementioned goals. The incremental improvements applied to the state of the art carried object detection algorithm revealed the full potential of the scheme. The experiments demonstrate the ability of the proposed carried object detection algorithm to supersede the state of the art method

    Generic Object Detection and Segmentation for Real-World Environments

    Get PDF
    • …
    corecore