56 research outputs found

    Dynamics for variable length multisection continuum arms

    Get PDF
    Variable length multisection continuum arms are a class of continuum robotic manipulators that generate motion by structural mechanical deformation. Unlike most continuum robots, the sections of these arms do not have (central) supporting flexible backbone, and are actuated by multiple variable length actuators. Because of the constraining nature of actuators, the continuum sections can bend and/or elongate (compress) depending on the elongation/contraction characteristics of the actuators being used. Continuum arms have a number of distinctive differences with respect to traditional rigid arms namely: smooth bending, high inherent compliance, and adaptive whole arm grasping. However, due to numerical instability and the complexity of curve parametric models, there are no spatial dynamic models for multisection continuum arms. This paper introduces novel spatial dynamics and applies these to variable length multisection continuum arms with any number of sections. An efficient recursive computational scheme for deriving the equations of motion is presented. This is applied in a general form based on structurally accurate and numerically well-posed modal kinematics that assumes circular arc deformation of continuum sections without torsion. It is shown that the proposed modal dynamics are highly scalable, producing efficient and accurate numerical results. The spatial dynamic simulation results are experimentally validated using a pneumatic muscle actuated multisection prototype continuum arm. For the first time this enables investigation of spatial dynamic effects in this class of continuum arms

    Control Space Reduction and Real-Time Accurate Modeling of Continuum Manipulators Using Ritz and Ritz-Galerkin Methods

    Get PDF
    To address the challenges with real-time accurate modeling of multisegment continuum manipulators in the presence of significant external and body loads, we introduce a novel series solution for variable-curvature Cosserat rod static and Lagrangian dynamic methods. By combining a modified Lagrange polynomial series solution, based on experimental observations, with Ritz and Ritz-Galerkin methods, the infinite modeling state space of a continuum manipulator is minimized to geometrical position of a handful of physical points (in our case two). As a result, a unified easy to implement vector formalism is proposed for the nonlinear impedance and configuration control. We showed that by considering the mechanical effects of highly elastic axial deformation, the model accuracy is increased up to 6%. The proposed model predicts experimental results with 6%-8% (4-6 mm) mean error for the Ritz-Galerkin method in static cases and 16%-20% (12-14 mm) mean error for the Ritz method in dynamic cases, in planar and general three-dimensional motions. Comparing to five different models in the literature, our approximate solution is shown to be more accurate with the smallest possible number of modeling states and suitable for real-time modeling, observation, and control applications

    Kinematics of continuum robots with constant curvature bending and extension capabilities

    Get PDF
    Continuum robots are becoming increasingly popular due to the capabilities they offer, especially when operating in cluttered environments, where their dexterity, maneuverability, and compliance represent a significant advantage. The subset of continuum robots that also belong to the soft robots category has seen rapid development in recent years, showing great promise. However, despite the significant attention received by these devices, various aspects of their kinematics remain unresolved, limiting their adoption and obscuring their potential. In this paper, the kinematics of continuum robots with the ability to bend and extend are studied, and analytical, closed-form solutions to both the direct and inverse kinematics are presented. The results obtained expose the redundancies of these devices, which are subsequently explored. The solution to the inverse kinematics derived here is shown to provide an analytical, closed-form expression describing the curve associated with these redundancies, which is also presented and analyzed. A condition on the reachable end-effector poses for robots with six actuation degrees-of-freedom (DOFs) is then distilled. The kinematics of robot layouts with over six actuation DOFs are subsequently considered. Finally, simulated results of the inverse kinematics are provided, verifying the study

    Design and control of a novel variable stiffness soft arm

    Get PDF
    Soft robot arms possess such characteristics as light weight, simple structure and good adaptability to the environment, among others. On the other hand, robust control of soft robot arms presents many difficulties. Based on these reasons, this paper presents a novel design and modelling of a fuzzy active disturbance rejection control (FADRC) controller for a soft PAM arm. The soft arm comprises three contractile and one extensor PAMs, which can vary its stiffness independently of its position in space. Force analysis for the soft arm is conducted, and stiffness model of the arm is established based on the relational model of contractile and extensor PAM. The accuracy of stiffness model for the soft arm was verified through experiments. Associated to this, a controller based on the fuzzy adaptive theory and ADRC, FADRC, has been designed to control the arm. The fuzzy adaptive theory is used to adjust the parameters of the ADRC, the control algorithm has the ability to control stiffness and position of the soft arm. In this paper, FADRC was further verified through comparative experiments on the soft arm. This paper reinforces the hypothesis that FADRC control, as an algorithm, indeed possesses good robustness and adaptive abilities. Key words: soft robot, variable stiffness, PAM, stiffness modelling, FADR

    Continuum Robots for Space Applications Based on Layer-Jamming Scales with Stiffness Capability

    Get PDF
    Continuum robots, which have continuous mechanical structures comparable to the flexibility in elephant trunks and octopus arms, have been primarily geared toward the medical and defense communities. In space, however, NASA projects these robots to have a place in irregular inspection routines. The inherent compliance and bending of these continuum arms are especially suitable for inspection in obstructed spaces to ensure proper equipment functionality. In this paper, we propose a new solution that improves on the functionality of previous continuum robots, via a novel mechanical scaly layer-jamming design. Layer-jamming assisted continuum arms have previously required pneumatic sources for actuation, which limit their portability and usage in aerospace applications. This paper combines the compliance of continuum arms and stiffness modulation of the layer jamming mechanism to design new hybrid layer jamming continuum arms. The novel designs use an electromechanical actuation which eliminates the previous need for pneumatic actuation therefore making the hardware compact and portable

    Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

    Full text link
    Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.Comment: 69 pages, 13 figure

    Real-Time Pose Esti ation and Obstacle Avoidance for Multi-segment Continuum Manipulator in Dynamic Environments

    Get PDF
    In this paper, we present a novel pose estimation and obstacle avoidance approach for tendon-driven multi-segment continuum manipulators moving in dynamic environments. A novel multi-stage implementation of an Extended Kalman Filter is used to estimate the pose of every point along the manipulator's body using only the position information of each segment tip. Combined with a potential field, the overall algorithm will guide the manipulator tip to a desired target location and, at the same time, keep the manipulator body safe from collisions with obstacles. The results show that the approach works well in a real-time simulation environment that contains moving obstacles in the vicinity of the manipulator
    corecore