5 research outputs found

    PILAR: a Federation of VISIR Remote Laboratory Systems for Educational Open Activities

    Get PDF
    Social demands have promoted an educational approach based on an “anywhere and anytime” premise. Remote laboratories have emerged as the answer to the demands of technical educational areas for adapting themselves to this scenario. The result has not only benefit distance learning students but has provided new learning scenarios both for teachers and students as well as allowing a flexible approach to experimental topics. However, as any other solution for providing practical scenarios (hands-on labs, virtual labs or simulators), remote labs face several constraints inherited from the subsystems of its deployment hardware (real instruments, equipment and scenario) and software (analog/digital conversions, communications, workbenches, etc.). This paper describes the Erasmus+ project Platform Integration of Laboratories based on the Architecture of visiR (PILAR) which deals with several units of the federation installed in different educational institutions and devoted to analog electronics and electrical circuits. Based on the limitations of remote labs, the need for the federation will be justified and its benefits will be described by taking advantage of its strengths. The challenges that have come up during the different stages and the different approaches to design are also going to be described and analyzedinfo:eu-repo/semantics/publishedVersio

    Federated Electronic Practical Resources using PILAR as VISIR Integrated Tool

    Get PDF
    Practical training is a pillar in technical education. Traditionally, these benefits have been acquired through hands-on laboratory sessions. However, at present, the educational models trend to rely on distance education tools either totally (e-learning, m-learning, etc.) or partially (b-learning). To provide practical training in those educational scenarios is challenging. Remote laboratories --real laboratories, working on real systems and under real conditions, controlled remotely-- can play a fundamental role. Nevertheless, remote laboratories not only provide advantages, but disadvantages of both environments involved in the process: real laboratories and remote communications. Furthermore, remote laboratories add new limitations due to constructive constraints. VISIR (Virtual Instruments System In Reality) is a remote laboratory on top of the state of the art for wiring and measuring electrical and electronics circuits, but VISIR system has his own particular restrictions like any other remote lab. In this context, PILAR (Platform Integration of Laboratories based on the Architecture of visiR) Erasmus Plus project development aims for a federation of five of the existing VISIR nodes in Europe: Blekinge Institute of Technology (BTH), Spanish University for Distance Education (UNED), University of Deusto (UDEUSTO), Carinthia University of Applied Sciences (CUAS), School of Engineering of Polytechnic of Porto (ISEP). This paper describes the benefits that PILAR project will provide to the consortium, and how these physical constraints of the VISIR system can be compensated through the federation, after one year and a half of the project development and having the first draft of the federation and weebsite running.info:eu-repo/semantics/publishedVersio

    Fomento de las competencias experimentales utilizando recursos complementarios

    Get PDF
    [EN]The use of ICT in the academic context is a reality, in the world we live in. The young generation of students is digital native, being immersed in a virtual world during a considerable part of their day. This has an impact in their life, including on their education. In undergraduate engineering education laboratory classes are an integral part of its curriculum. These days, many laboratory classes combine traditional hands-on labs with online labs (remote and virtual labs) and several experimental resources. A “blended” or “hybrid” approach to experimental learning seems the most effective to (students’) experimental learning and the development of competences. Still this technologically mediated resource affects the way students learn and in the literature there is still a lack of works, considering the characterization of didactical implementations using a “blended” or “hybrid” approach and its impact in students’ learning and the way they construct their knowledge. In the Electric and Electronic Engineering topic and using the remote laboratory VISIR there are really very few works, reported in literature, describing some small scaled didactical experiments. The problematic which motivated this work was the need to understand the impact of different didactical approaches using this methodology (simultaneous use of several experimental resources) has on students’ academic results. Ultimately this work intends to contribute to fill a gap identified in the literature: identify factors (including some eventual students’ characteristics) which affect students’ learning and engagement in the electric and electronic circuits topic using the remote lab VISIR along with other complementary resources. To accomplish this end, four research questions where posed, each of them taking into account a set of factors in a specific field of inquiry and its influence on students’ results. The first research question approached the way the several experimental resources could be combined and its effect on students. The second dealt with the influence of the proposed VISIR tasks characteristics on students’ results. The third tackled important teacher mediation traces that could be linked to better students’ performance. And finally, the last research question investigates if there were students’ characteristics that were more associated with good learning outcomes and engagement. Considering the former objectives, it was chosen a multi-case study research methodology, using a mixed method approach, resourcing mainly to questionnaire, interview, documental analysis and observation as data gathering methods, and statistical analysis (descriptive and inferential) and content analysis, as data analysis techniques. A large-scale study analysis was conducted, including 26 courses (in a total of 43 didactical implementations using VISIR, as some of the courses have undergone more than one course implementation edition), comprising 1794 students and involving 52 different teachers. This study took place in several Higher Education Institutions (and at a minor extent, in some Technological and High Schools) in Argentina, Brazil and Portugal. In the southern hemisphere these didactical implementations happened in the 2016 and 2017 academic years while in the northern hemisphere it was possible to collect data from three semesters between 2016/17 and 2018/19 academic years. The study focused on analysing each didactical implementation (their characteristics, teachers’ usage and perception) and the matching students’ results (usage, academic results and perception). Ethical questions to guarantee both students’ and teachers’ privacy was taken care of, when using the data of the participants. The former data was only used for the purposes of this study and the state of the participation was reflected anonymously, which can be observed both in the information collected for the analysis as well as in the transcripts along the text. The study included the analysis of the collected data from various sources, the interpretation of its results using several analysis techniques, and the convergence in a process of triangulation. These results, after discussed with literature, allowed to answer in the most possible complete way the four research questions. Based on them, conclusions were drawn to identify factors that may foster students’ learning and engagement. The study also contributed to the advancement of knowledge in this research area. It allowed to conclude that VISIR and this methodology can be as useful for introductory courses as for more advanced ones (dealing with this thematic) as long as teachers plan the didactical implementation according to the type of course and students’ background. Plus, this methodology based upon VISIR can be applied with high success to courses that do not have an experimental component, nor its contents are directly related to the Electricity and Electronics topic. In these courses VISIR can be used with the purpose of contextualization, providing more interesting and appealing learning environments (e.g. theoretical mathematical courses). Finally, both teachers’ perception and students’ results suggest VISIR target public seems to be the students that require more support in their learning, that is, the students still struggling with difficulties than the more proficient students

    XIV Conference on Technology, Teaching and Learning of Electronics

    Get PDF
    Livro de atas da TAEE2020.A conferencia TAEE conhecerá na sua 14ª edição um momento histórico. Não só é a primeira vez que a será organizada fora do território Espanhol, como terá lugar a verdadeiramente pioneira experiência de realizar esta conferência num formato puramente virtual no Instituto Superior de Engenharia do Porto. Esta opção representa a solução possível para um evidente problema mundial, que surgiu de forma repentina durante a preparação desta edição. Optamos por aplicar a típica abordagem de engenharia, instintivamente encarando este novo problema como uma verdadeira oportunidade, e aproveitando as limitações impostas para experimentar novas soluções para novas questões. Tentamos criar uma TAEE diferente, não melhor nem pior, mas indo buscar proveitos às tecnologias de comunicação emergentes de forma a criar e dinamizar um evento onde não estaremos fisicamente juntos, mas poderemos comunicar e conviver de forma virtual. A grande motivação da TAEE será sempre os visíveis entrosamentos, dedicação e motivação da comunidade e serão estes fatores que permitirão o sucesso nesta nova forma de estarmos e trabalharmos juntos, mas à distância.info:eu-repo/semantics/publishedVersio
    corecore