5,209 research outputs found

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Nano-Bio-Technology and Sensing Chips: New Systems for Detection in Personalized Therapies and Cell Biology

    Get PDF
    Further advances in molecular medicine and cell biology also require new electrochemical systems to detect disease biomarkers and therapeutic compounds. Microelectronic technology offers powerful circuits and systems to develop innovative and miniaturized biochips for sensing at the molecular level. However, microelectronic biochips proposed in the literature often do not show the right specificity, sensitivity, and reliability required by biomedical applications. Nanotechnology offers new materials and solutions to improve the surface properties of sensing probes. The aim of the present paper is to review the most recent progress in Nano-Bio-Technology in the area of the development of new electrochemical systems for molecular detection in personalized therapy and cell culture monitoring

    Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment

    Get PDF
    Nanoscience provides several modalities to combat cancer disease effectively. Magnetic hyperthermia and photothermal therapy techniques are central research themes among various groups in the world by utilizing magnetic and optical characteristics of distinct or composite nanoentities. This review provides the current research on both the techniques and their successes towards clinical translation. This review discusses about the various heating mechanisms involved in magnetic and photo-induced hyperthermia. We have evaluated potential functional nanoparticles with excellent properties capable of providing innovative future solutions to current problems associated with these therapies. Several factors (extracellular and intracellular) have been covered and explained which may affect such thermal treatments. We have provided some instrumental and technical details of both the techniques that are important for consideration in using these modalities of treatments. A direct comparison of these two techniques and a further need of the combined therapy (magnetic hyperthermia plus photothermal therapy) was highlighted as a new pathway for cancer treatments

    Photoresponsive Inorganic Nanomaterials in Oncology

    Get PDF
    The diagnosis and treatment of cancer are continuously evolving in search of more efficient, safe, and personalized approaches. Therapies based on nanoparticles or physical stimuli-responsive substances have shown great potential to overcome the inherent shortcomings of conventional cancer therapies. In fact, nanoparticles may increase the half-life of chemotherapeutic agents or promote the targeting in cancer tissues while physical stimuli-responsive substances are more effective and safer with respect to traditional chemotherapeutic agents because of the possibility to be switched on only when needed. These 2 approaches can be combined by exploiting the ability of some inorganic nanomaterials to be activated by light, ultrasounds, magnetic fields, or ionizing radiations. Albeit the development of stimuli-responsive materials is still at the early stages, research in this field is rapidly growing since they have important advantages with respect to organic nanoparticles or molecular substances, like higher stability, and higher efficiency in converting the stimulus in heat or, in some cases, reactive oxygen species. On the other hand, the translation process is slowed down by issues related to safety and quality of the formulations. This literature review summarizes the current advancements in this research field, analysing the most promising materials and applications

    The Boston University Photonics Center annual report 2016-2017

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2016-2017 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has undoubtedly been the Photonics Center’s best year since I became Director 10 years ago. In the following pages, you will see highlights of the Center’s activities in the past year, including more than 100 notable scholarly publications in the leading journals in our field, and the attraction of more than 22 million dollars in new research grants/contracts. Last year I had the honor to lead an international search for the first recipient of the Moustakas Endowed Professorship in Optics and Photonics, in collaboration with ECE Department Chair Clem Karl. This professorship honors the Center’s most impactful scholar and one of the Center’s founding visionaries, Professor Theodore Moustakas. We are delighted to haveawarded this professorship to Professor Ji-Xin Cheng, who joined our faculty this year.The past year also marked the launch of Boston University’s Neurophotonics Center, which will be allied closely with the Photonics Center. Leading that Center will be a distinguished new faculty member, Professor David Boas. David and I are together leading a new Neurophotonics NSF Research Traineeship Program that will provide $3M to promote graduate traineeships in this emerging new field. We had a busy summer hosting NSF Sites for Research Experiences for Undergraduates, Research Experiences for Teachers, and the BU Student Satellite Program. As a community, we emphasized the theme of “Optics of Cancer Imaging” at our annual symposium, hosted by Darren Roblyer. We entered a five-year second phase of NSF funding in our Industry/University Collaborative Research Center on Biophotonic Sensors and Systems, which has become the centerpiece of our translational biophotonics program. That I/UCRC continues to focus on advancing the health care and medical device industries

    Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury

    Get PDF
    BACKGROUND—Small animal models have been used in traumatic brain injury (TBI) research to investigate the basic mechanisms and pathology of TBI. Unfortunately, successful TBI investigations in small animal models have not resulted in marked improvements in clinical outcomes of TBI patients. OBJECTIVE—To develop a clinically relevant immature large animal model of pediatric neurocritical care following TBI. METHODS—Eleven 4 week old piglets were randomized to either rapid axial head rotation without impact (N=6) or instrumented sham (N=5). All animals had an intracranial pressure monitor, brain tissue oxygen (PbtO2) probe, and cerebral microdialysis probe placed in the frontal lobe and data collected for 6 h following injury. RESULTS—Injured animals had sustained elevations in intracranial pressure and lactatepyruvate ratio (LPR), and decreased PbtO2 compared to sham. PbtO2 and LPR from separate frontal lobes had strong linear correlation in both sham and injured animals. Neuropathologic examination demonstrated significant axonal injury and infarct volumes in injured animals compared to sham at 6 hours post-injury. Averaged over time, PbtO2 in both injured and sham animals had a strong inverse correlation with total injury volume. Average LPR had a strong correlation with total injury volume. CONCLUSION—LPR and PbtO2 can be utilized as serial non-terminal secondary markers in our injury model for neuropathology, and as evaluation metrics for novel interventions and therapeutics in the acute post-injury period. This translational model bridges a vital gap in knowledge between TBI studies in small animal models and clinical trials in the pediatric TBI population

    Nasopharyngeal method for selective brain cooling and development of a time-resolved near-infrared technique to monitor brain temperature and oxidation status during hypothermia

    Get PDF
    Mild hypothermia at 32-35oC (HT) has been shown to be neuroprotective for neurological emergencies following severe head trauma, cardiac arrest and neonatal asphyxia. However, HT has not been widely deployed in clinical settings because: firstly, cooling the whole body below 33-34°C can induce severe complications; therefore, applying HT selectively to the brain could minimize adverse effects by maintaining core body temperature at normal level. Secondly, development of an effective and easy to implement selective brain cooling (SBC) technique, which can quickly induce brain hypothermia while avoiding complications from whole body cooling, remains a challenge. In this thesis, we studied the feasibility and efficiency of selective brain cooling (SBC) through nasopharyngeal cooling. To control the cooling and rewarming rate and because core body temperature is different from brain temperature, we also developed a non-invasive technique based on time-resolved near infrared spectroscopy (TR-NIRS) to measure local brain temperature. In normal brain, cerebral blood flow (CBF) and energy metabolism as reflected by the cerebral metabolic rate of oxygen (CMRO2) is tightly coupled leading to an oxygen extraction efficiency (OEF) of around ~33%. A decoupling of the two as in ischemia signifies oxidative stress and would lead to an increase in OEF beyond the normal value of ~33%. The final goal of this thesis is to evaluate TR-NIRS methods for measurements of CBF and CMRO2 to monitor for oxidative metabolism in the brain with and without HT treatment. Chapter 2 presents investigations on the feasibility and efficiency of the nasopharyngeal SBC by blowing room temperature or humidified cooled air into the nostrils. Effective brain cooling at a median cooling rate of 5.6 ± 1.1°C/hour compared to whole body cooling rate of 3.2 ± 0.7 was demonstrated with the nasopharyngeal cooling method. Chapter 3 describes TR-NIRS experiments performed to measure brain temperature non-invasively based on the temperature-dependence of the water absorption peaks at ~740 and 840nm. The TR-NIRS method was able to measure brain temperature with a mean difference of 0.5 ± 1.6°C (R2 = 0.66) between the TR-NIRS and thermometer measurements. Chapter 4 describes the TR-NIR technique developed to measure CBF and CMRO2 in a normoxia animal model under different anesthetics at different brain temperatures achieved by whole-body cooling. Both CBF and CMRO2 decreased with decreasing brain temperature but the ratio CMRO2:CBF (OEF) remained unchanged around the normal value of ~33%. These results demonstrate that TR-NIR can be used to monitor the oxidative status of the brain in neurological emergencies and its response to HT treatment. In summary, this thesis has established a convenient method for selective brain cooling without decreasing whole body temperature to levels when adverse effects could be triggered. TR-NIRS methods are also developed for monitoring local brain temperature to guide SBC treatment and for monitoring the oxidation status of the brain as treatment progresses

    Optical-Fiber Measurement Systems for Medical Applications

    Get PDF

    Recent advances in biomedical photonic sensors: a focus on optical-fibre-based sensing

    Get PDF
    In this invited review, we provide an overview of the recent advances in biomedical pho tonic sensors within the last five years. This review is focused on works using optical-fibre technology, employing diverse optical fibres, sensing techniques, and configurations applied in several medical fields. We identified technical innovations and advancements with increased implementations of optical-fibre sensors, multiparameter sensors, and control systems in real applications. Examples of outstanding optical-fibre sensor performances for physical and biochemical parameters are covered, including diverse sensing strategies and fibre-optical probes for integration into medical instruments such as catheters, needles, or endoscopes.This work was supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (PID2019-107270RB-C21/AEI/10.13039/501100011033), and TeDFeS Project (RTC-2017- 6321-1) co-funded by European FEDER funds. M.O. and J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under Juan de la Cierva-Formación and Juan de la Cierva-Incorporación grants, respectively. P.R-V. received funding from Ministerio de Educación, Cultura y Deporte of Spain under PhD grant FPU2018/02797
    corecore