1,262 research outputs found

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i

    Underwater radio frequency image sensor using progressive image compression and region of interest

    Get PDF
    The increasing demand for underwater robotic intervention systems around the world in several application domains requires more versatile and inexpensive systems. By using a wireless communication system, supervised semi-autonomous robots have freedom of movement; however, the limited and varying bandwidth of underwater radio frequency (RF) channels is a major obstacle for the operator to get camera feedback and supervise the intervention. This paper proposes the use of progressive (embedded) image compression and region of interest (ROI) for the design of an underwater image sensor to be installed in an autonomous underwater vehicle, specially when there are constraints on the available bandwidth, allowing a more agile data exchange between the vehicle and a human operator supervising the underwater intervention. The operator can dynamically decide the size, quality, frame rate, or resolution of the received images so that the available bandwidth is utilized to its fullest potential and with the required minimum latency. The paper focuses first on the description of the system, which uses a camera, an embedded Linux system, and an RF emitter installed in an OpenROV housing cylinder. The RF receiver is connected to a computer on the user side, which controls the camera monitoring parameters, including the compression inputs, such as region of interest (ROI), size of the image, and frame rate. The paper focuses on the compression subsystem and does not attempt to improve the communications physical media for better underwater RF links. Instead, it proposes a unified system that uses well-integrated modules (compression and transmission) to provide the scientific community with a higher-level protocol for image compression and transmission in sub-sea robotic interventions

    Data Compression in Multi-Hop Large-Scale Wireless Sensor Networks

    Get PDF
    Data collection from a multi-hop large-scale outdoor WSN deployment for environmental monitoring is full of challenges due to the severe resource constraints on small battery-operated motes (e.g., bandwidth, memory, power, and computing capacity) and the highly dynamic wireless link conditions in an outdoor communication environment. We present a compressed sensing approach which can recover the sensing data at the sink with good accuracy when very few packets are collected, thus leading to a significant reduction of the network traffic and an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is efficient and simple to implement on the resource-constrained motes without motes storing of a part of random measurement matrix, as opposed to other existing compressed sensing based schemes. We provide a systematic method via machine learning to find a suitable representation basis, for the given WSN deployment and data field, which is both sparse and incoherent with the measurement matrix in the compressed sensing. We validate our approach and evaluate its performance using our real-world multi-hop WSN testbed deployment in situ in collecting the humidity and soil moisture data. The results show that our approach significantly outperforms three other compressed sensing based algorithms regarding the data recovery accuracy for the entire WSN observation field under drastically reduced communication costs. For some WSN scenarios, compressed sensing may not be applicable. Therefore we also design a generalized predictive coding framework for unified lossless and lossy data compression. In addition, we devise a novel algorithm for lossless compression to significantly improve data compression performance for variouSs data collections and applications in WSNs. Rigorous simulations show our proposed framework and compression algorithm outperform several recent popular compression algorithms for wireless sensor networks such as LEC, S-LZW and LTC using various real-world sensor data sets, demonstrating the merit of the proposed framework for unified temporal lossless and lossy data compression in WSNs

    A Compression Technique Exploiting References for Data Synchronization Services

    Get PDF
    Department of Computer Science and EngineeringIn a variety of network applications, there exists significant amount of shared data between two end hosts. Examples include data synchronization services that replicate data from one node to another. Given that shared data may have high correlation with new data to transmit, we question how such shared data can be best utilized to improve the efficiency of data transmission. To answer this, we develop an encoding technique, SyncCoding, that effectively replaces bit sequences of the data to be transmitted with the pointers to their matching bit sequences in the shared data so called references. By doing so, SyncCoding can reduce data traffic, speed up data transmission, and save energy consumption for transmission. Our evaluations of SyncCoding implemented in Linux show that it outperforms existing popular encoding techniques, Brotli, LZMA, Deflate, and Deduplication. The gains of SyncCoding over those techniques in the perspective of data size after compression in a cloud storage scenario are about 12.4%, 20.1%, 29.9%, and 61.2%, and are about 78.3%, 79.6%, 86.1%, and 92.9% in a web browsing scenario, respectively.ope

    GVC: efficient random access compression for gene sequence variations

    Get PDF
    Background: In recent years, advances in high-throughput sequencing technologies have enabled the use of genomic information in many fields, such as precision medicine, oncology, and food quality control. The amount of genomic data being generated is growing rapidly and is expected to soon surpass the amount of video data. The majority of sequencing experiments, such as genome-wide association studies, have the goal of identifying variations in the gene sequence to better understand phenotypic variations. We present a novel approach for compressing gene sequence variations with random access capability: the Genomic Variant Codec (GVC). We use techniques such as binarization, joint row- and column-wise sorting of blocks of variations, as well as the image compression standard JBIG for efficient entropy coding. Results: Our results show that GVC provides the best trade-off between compression and random access compared to the state of the art: it reduces the genotype information size from 758 GiB down to 890 MiB on the publicly available 1000 Genomes Project (phase 3) data, which is 21% less than the state of the art in random-access capable methods. Conclusions: By providing the best results in terms of combined random access and compression, GVC facilitates the efficient storage of large collections of gene sequence variations. In particular, the random access capability of GVC enables seamless remote data access and application integration. The software is open source and available at https://github.com/sXperfect/gvc/

    Wavelet techniques for reversible data embedding into images

    Get PDF
    The proliferation of digital information in our society has enticed a lot of research into data embedding techniques that add information to digital content like images, audio and video. This additional information can be used for various purposes and different applications place different requirements on the embedding techniques. In this paper, we investigate high capacity lossless data embedding methods that allow one to embed large amounts of data into digital images (or video) in such a way that the original image can be reconstructed from the watermarked image. The paper starts by briefly reviewing three existing lossless data embedding techniques as described by Fridrich and co-authors, by Tian, and by Celik and co-workers. We then present two new techniques: one based on least significant bit prediction and Sweldens' lifting scheme and another that is an improvement of Tian's technique of difference expansion. The various embedding methods are then compared in terms of capacity-distortion behaviour, embedding speed, and capacity control
    corecore