
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Wavelet Techniques for Reversible Data Embedding into
Images

Lute Kamstra, Henk J.A.M. Heijmans

REPORT PNA-R0402 MARCH 23, 2004

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Wavelet Techniques for Reversible Data Embedding
into Images

ABSTRACT
The proliferation of digital information in our society has enticed a lot of research into data
embedding techniques that add information to digital content like images, audio and video. This
additional information can be used for various purposes and different applications place
different requirements on the embedding techniques. In this paper, we investigate high capacity
lossless data embedding methods that allow one to embed large amounts of data into digital
images (or video) in such a way that the original image can be reconstructed from the
watermarked image. The paper starts by briefly reviewing three existing lossless data
embedding techniques as described by Fridrich and co-authors, by Tian, and by Celik and co-
workers. We then present two new techniques: one based on least significant bit prediction and
Sweldens' lifting scheme and another that is an improvement of Tian's technique of difference
expansion. The various embedding methods are then compared in terms of capacity-distortion
behaviour, embedding speed, and capacity control.

2000 Mathematics Subject Classification: 42C40, 68U10, 94A12
Keywords and Phrases: Reversible data embedding, Digital watermarking, Difference expansion, Lifting scheme, Haar
wavelet
Note: This work was carried out under project PNA4.2 "Wavelets and Morphology". The research of the first author is
sponsored (grant no. 613.006.570) by the Dutch Science Foundation (NWO).

Wavelet Techniques for Reversible Data Embedding into Images

Lute Kamstra and Henk J.A.M. Heijmans

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

The proliferation of digital information in our society has enticed a lot of research into data embedding

techniques that add information to digital content like images, audio and video. This additional information

can be used for various purposes and different applications place different requirements on the embedding

techniques. In this paper, we investigate high capacity lossless data embedding methods that allow one to

embed large amounts of data into digital images (or video) in such a way that the original image can be

reconstructed from the watermarked image.

The paper starts by briefly reviewing three existing lossless data embedding techniques as described by

Fridrich and co-authors, by Tian, and by Celik and co-workers. We then present two new techniques: one

based on least significant bit prediction and Sweldens’ lifting scheme and another that is an improvement of

Tian’s technique of difference expansion. The various embedding methods are then compared in terms of

capacity-distortion behaviour, embedding speed, and capacity control.

2000 Mathematics Subject Classification: 42C40, 68U10, 94A12.

Keywords and Phrases: Reversible data embedding, Digital watermarking, Difference expansion, Lifting

scheme, Haar wavelet.

Note: This work was carried out under project PNA4.2 “Wavelets and Morphology”. The research of the first

author is sponsored (grant no. 613.006.570) by the Dutch Science Foundation (NWO).

1. Introduction

During the last decade, the availability of information in digital form has increased dramat-
ically. Digital media have numerous advantages over analog media, such as higher quality,
easy editing, lossless copying, and fast and efficient distribution. These advantages allow for
new applications and enable new opportunities. For example, due to the Internet, publishing
and accessing information has never been so easy. At the same time, these advantages of
digital media pose problems too. For example, easy editing makes it difficult to determine
the authenticity of documents and lossless reproduction combined with easy distribution has
resulted in a dramatic increase of illegal copying of information.

But digital media also offer the possibility to embed additional data into the original media
data in a way that is perceptually, and sometimes also statistically, undetectable. This data
embedding potential can be exploited to build protection mechanisms against the threats
mentioned before, or to provide additional functionalities. Today there is a huge literature
(see e.g. [2, 3, 5, 10, 11] and the references mentioned there) on data embedding technologies
such as digital watermarking and steganography. In this paper, we focus on reversible data
embedding, also called lossless data embedding, which is a fragile technique in the sense that
the embedded data will mostly be destroyed by small distortions of the image. Reversible
data embedding allows one to embed a relatively large amount of data into an image in such a
way that the original image can be reconstructed from the watermarked image. This makes it

2

an ideal technique for applications where one wants to store metadata directly into the image
and where loss of quality is not always acceptable. Since the watermarked image resembles
the original image closely, a legacy viewer that does not know how to reconstruct the original
image can still be used to view the watermarked image.

The paper is organised as follows. Section 2 discusses some general aspect of reversible
data embedding and list some important aspects of embedding techniques. Section 3 briefly
reviews three existing reversible data embedding techniques as described by Fridrich and
co-authors [7], by Tian [13], and by Celik and co-workers [4]. Section 4 introduces a novel
reversible data embedding technique that utilises Sweldens’ wavelet lifting scheme [12] in
combination with least significant bit prediction. In Section 5, we present a variant of Tian’s
method that greatly improves1 the performance of the original technique. We performed some
experiments with implementations of the aforementioned embedding techniques to compare
their capacity-distortion behaviour, their embedding speed, and their ability to control the
capacity. The results of these experiments can be found in Section 6. Section 7 concludes
with a discussion of the presented techniques and some ideas on future research.

Since we will often manipulate bits of integers in this paper, we introduce the following
notation. For an integer h with binary representation hn · · ·h1h0, we write h =2 hn · · ·h1h0.
For the least significant bit (LSB) h0 we introduce the notation h0 = LSB(h). Flipping
the last bit of h means replacing h0 by h̄0 = 1 − h0, and we denote the resulting h by h•.
Furthermore, we denote by h • b, where b = 0, 1, the integer that is obtained if the LSB h0 is
replaced by b, that is h • b =2 hn · · ·h1b.

2. Reversible Data Embedding

Most existing data-embedding algorithms distort the original image in an irreversible manner
and then one of the challenges is to minimise distortion against capacity. But there are various
applications, e.g. in medical or military imaging, where any distortion, no matter how small,
is intolerable. In such cases one has to take recourse to reversible data embedding methods.
This means that the original image can be recovered after extraction of the embedded message
(or watermark). That such reversible embedding is possible at all, is due to the fact that
images usually possess strong spatial correlations. In fact, such correlations are exploited by
compression algorithms such as JPEG, to reduce their size.

In practise, the main ingredient of a reversible data embedding algorithm is the introduction
of an alternative representation which, as much as possible, decorrelates the data. In

+ message Mimage I modified image I'

representation R(I) representation R(I)

message Mfree space
R

-1

R

R

message embedding
creating free space

b y transformation R

transforming back

to ima g e domain

Figure 1: General scheme of reversible data embedding.

1That our modification of Tian’s algorithm indeed is an improvement, follows from our experimental results

in § 6.4.

3. Existing Approaches 3

Figure 1, this new representation manifests itself as a transform R with inverse R−1. When
applied to an image, it creates a certain amount of “free space” which can be used to insert
the message M . After back-transformation to the image domain we obtain a modified image
I ′. Symbolically:

I ′ = R−1(R(I)⊕M).

Here the ‘⊕’ denotes the message embedding algorithm, which is assumed to be an invertible
process with inverse denoted by ‘	’. Thus we can reconstruct I at the decoder side once we
have identified M :

I = R−1(R(I ′)	M).

Preferably, R is chosen in such a way that it creates a large free space, i.e., has a strong
decorrelating effect. Furthermore, filling the free space with random values should not lead
to great distortions in the reconstructed image.

High capacity and low distortion are conflicting requirements in practise: the higher the
capacity that is created by a reversible embedding technique, the higher the distortion in-
troduced by the embedding. Therefore embedding techniques are typically parametrised to
allow for varying embedding capacities at various corresponding distortions. By changing this
capacity parameter, one can construct a so-called capacity-distortion curve for the embedding
method that shows the distortion introduced by using a certain capacity. The objective is to
choose that value for the capacity parameter that results in just enough capacity to embed
the desired payload as this will keep the distortion minimal. For some reversible data embed-
ding techniques it is not possible to determine a priori which value to use for the parameter
to achieve a certain capacity. As a result, the embedding algorithm has to be iterated for
various values of the capacity parameter to determine the value that achieves the necessary
capacity at the lowest distortion.

The literature on reversible data embedding is quite limited. Some interesting work is
done by Fridrich and co-workers [7], by Celik et al. [4], and Tian [13]. They presented various
practical techniques for doing reversible data embedding. The next sections gives a brief
review of these techniques. Kalker and Willems [8, 9] have established some fundamental
results regarding the capacity of reversible data embedding methods.

3. Existing Approaches

In this section we discuss three recent methods for reversible data embedding.

3.1 Fridrich et al

Fridrich and co-workers [7] were among the first authors to propose techniques for reversible
data embedding. In this section we present a global description of their approach. Readers
that are interested in all the technical details are referred to the original papers [7].

Consider a grey-scale image I : [1, Mr] × [1, Mc] → {0, 1, . . . , 255}. Here Mr, Mc are the
number of rows and columns, respectively. Subdivide the domain into L groups G1, G2, . . . , GL

of p pixels each. With every group G = {(i1, j1), . . . , (ip, jp)} we associate its state s = s(G)
given by

s = (s1, . . . , sp) = (I(i1, j1), . . . , I(ip, jp)) .

Thus s ∈ Σ = {0, 1, . . . , 255}p, and Σ is called the state space. Assume that there exists a
so-called flipping operator Φ : Σ → Σ with the property that Φ2 = id, where id is the identity

4

operator. When no confusion is possible about the choice of Φ, we write Φ(s) = s′, and call
s′ the adjoint state of s. Obviously, s is the adjoint state of s′ in this case as s′′ = s.

Often, Φ is computed componentwise, i.e.,

Φ(s1, . . . , sp) = (Φ(s1), . . . ,Φ(sp)) , (3.1)

where Φ maps {0, 1, . . . , 255} onto itself2, with Φ2 = id. By an image model we mean a
disjoint partition of the state space Σ into three parts,

Σ = ΣR ∪ ΣS ∪ ΣU , (3.2)

with the property that

(i) s ∈ ΣR ⇐⇒ s′ ∈ ΣS ;

(ii) s ∈ ΣU ⇐⇒ s′ ∈ ΣU .

We call ΣR, ΣS , ΣU respectively the regular, singular, and undetermined states. Similarly, the
corresponding groups are called regular, singular, and undetermined. The key idea underlying
this approach is that for a typical image with groups being created by some regular subdivision
of the domain, most groups will be regular. Every image I corresponds with L groups
G1, . . . , GL, and the more of these groups are regular, the more I is said to obey the underlying
image model. If all groups would be regular then we would be able to embed one bit b for
each group, simply by replacing its state s by s′ if b = 1 and maintaining s if b = 0. At
the decoder we could simply read the embedded bits and flip all states that are singular.
Unfortunately, in practise, not all groups will be regular, but nevertheless there will be more
regular than singular groups. As we will see below, this fact can be exploited to embed data
in a reversible manner.

The method by Fridrich et al. [7] has four ingredients that need to be discussed in more
detail:

- the subdivision of the image domain into groups;

- the definition of the flipping operator Φ;

- the description of the image model, i.e., the definition of ΣR, ΣS , and ΣU ;

- the actual embedding of the data.

First, the image domain is subdivided into groups G1, . . . , GL, each containing p pixels. For
the time being we assume that the groups are disjoint and uniformly shaped, more precisely,

Gn = G + (in, jn) = {(i + in, j + jn) | (i, j) ∈ G} , (3.3)

in other words, Gn is obtained by positioning a so-called mask group G with p pixels at the
location (in, jn). An important case, discussed in detail by Fridrich et al. [7] is the case that
G consists of 4 consecutive pixels in a row. In Fig. 2 below, G is taken to be a 2× 2 window.
The arrangement of the centres (in, jn) may be a pseudo-random sequence, generated by
means of a secret key.

2Strictly speaking, the notation in (3.1) is ambiguous, but in practise it will not give rise to any confusion.

3. Existing Approaches 5

The flipping operator can be of the general form

Φ(s1, . . . , sp) = (Φ1(s1), Φ2(s2), . . . ,Φp(sp)) , (3.4)

where Φk maps {0, 1, . . . , 255} onto itself with Φ2
k = id. Recall that s′ = Φ(s) is called the

adjoint state. A simple choice is Φk(s) = s•, which flips the LSB of s. More generally, we
can flip any combination of bits of s. Let h ∈ {0, 1, . . . , 255} and h =2 h7 · · ·h1h0, we denote
by φh the mapping on {0, 1, . . . , 255} that flips all the i’th bits where i is such that hi = 1.
For example, φ5(s) =2 s7 · · · s3s̄2s1s̄0. Note that φ0(s) = s and φ1(s) = s•.3

In the case where p = 4 we can choose, for example,

Φ(s) = (φ1(s1), φ2(s2), φ2(s3), φ1(s4)) .

For example, Φ(16, 18, 19, 15) = (17, 16, 17, 14) in this case. We point out that the definition
in (3.4) is not the most general one. In fact, any partition of Σ into pairs of states and adjoint
states yields a valid flipping operator. If Φ is componentwise identical like in (3.1), then we
define the amplitude of the flipping operator by

A(Φ) =
1

256

255∑
s=0

|Φ(s)− s| .

It is easy to verify that A(φk) = 2l if 2l ≤ k < 2l+1.
The image model description is based on a regularity function µ : Σ → IR+ which assigns

to every state s a value describing the regularity or homogeneity of that state, in the sense
that small µ(s) corresponds with a high regularity. Based on µ we can make a partition as
given in (3.2) by putting

ΣR = {s ∈ Σ | µ(s) < µ(s′)}
ΣS = {s ∈ Σ | µ(s) > µ(s′)}
ΣU = {s ∈ Σ | µ(s) = µ(s′)} .

Thus a state s is said to be regular if it has higher homogeneity than its adjoint state s′. The
same terminology will be used for groups, for example, a group will be called regular if its
state lies in ΣR.

The corresponding image model involves images that contain mostly regular groups. More
precisely, the greater the percentage of regular groups, the better the image complies with
the image model. The groups with undetermined states will not be used for embedding4 and
their presence diminishes the capacity of the embedding scheme, as we will see below.

Assume for example, that the mask group G is a 2 × 2 window like in Fig. 2. Now the
states are of the form S = (s1, s2, s3, s4) (from left to right and top to bottom), and we can
take

µ(s) = |s1 − s2|+ |s1 − s3|+ |s2 − s4|+ |s3 − s4| .
For every group we can determine its state and we construct a binary bitstream a1a2 · · · aN

where N = NR +NS and NR, NS are the number of regular and singular groups, respectively,
3Observe that φh can also be easily expressed as a bitwise XOR operation: φh(s) =2 (s7 + h7)(s6 +

h6) · · · (s0 + h0), where + is the modulo 2 addition also known as the XOR operation.
4Fridrich et al. [7] speak of unusable rather than undetermined states.

6

R

R R

S

S

S S

S

S

R

R R R

R

R

R R

R R

R

U

U

U

UU

S

S R

R

S

S S

R

S

R

S S R

S

R

S R

R S

R

U

U

U

UU

01000100001100001010 1100101001 11 10010110

µ(s)=|7-4|+|7-6|+|4-7|+|6-7|=8

µ(s)=|6-5|+|6-7|+|5-6|+|7-6|=4state s

(regular)

adjoint state s'

(singular)

6 5

7 6

7 4

6 7

7 4

6 7compression

input image I modified image I'subdivision into groups

message

replace by

adjoint state

group states

state bitstream compressed

state bitstream

modified group states

Figure 2: A schematic example of the data embedding method of Fridrich et al. [7].

and ak = 0, resp. ak = 1, if the k’th group in the sequence comprising only the regular and the
singular groups is regular, resp. singular. In Fig. 2, for example, we have 25 groups, 5 of which
are undetermined. Thus N = 20 in this case and the resulting binary bitstream, called state
bitstream, comprises 20 bits. The better an image complies with an image model the larger
the fraction NR/(NR + NS) of regular states, and the more 0’s occur in the state bitstream.
Now we can compress the state bitstream to a smaller size Nc and use the remaining bits
N − Nc to embed the message data. This yields a modified state bitstream b1b2 · · · bN of
length N . This can be embedded into the image by flipping the states of the groups for
which ak 6= bk, again skipping all the undetermined groups.

In the algorithm below, we denote by n the smallest number of groups that are needed to
embed a message payload P. That means that cap(n) ≥ |P|, where cap(n) is the net capacity
after n groups G1, . . . , Gn have been scanned, that is,

cap(n) = n− nc ,

where nc is the length of the compressed state bitstream. In the algorithm below, we use an
adaptive arithmetic coder denoted by AAC.

/* Determine states of consecutive groups */

/* This yields state bitstream a1a2 · · · an */

/* Compress until necessary capacity is reached */

/* Output is compressed state bitstream B = b1b2 · · · bnc */

move to first(G);
n = 0;
while cap(n) < |P| do

n = n + 1;
while s(G) ∈ ΣU do

move to next(G);
end while
if s(G) ∈ ΣR then

an = 0;

3. Existing Approaches 7

else
an = 1;

end if
AAC encode(an);
move to next(G);

end while

/* Concatenate P to B */

b1b2 · · · bn = B · P;

/* Flip states of groups for which corresponding bit has changed */

move to first(G);
for k = 1 to n do

while s(G) ∈ ΣU do
move to next(G);

end while
if ak 6= bk then

s(G) = Φ(s(G));
end if
move to next(G);

end for

3.2 Celik et al

In [4], Celik et al. present a reversible data embedding method which is based on a gener-
alisation of the well-known LSB modification method. Instead of the standard binary LSB,
one can extract the residual Ires of an image I as follows:

Ires = I −Qp(I) , (3.5)

where p is an integer and Qp is the quantisation operator given by

Qp(I) = p · bI/pc , (3.6)

which assumes values 0, 1, . . . , p− 1. Note that for p = 2, the residual Ires is nothing but the
standard LSB. Embedding is done simply by replacing the residual by a given watermark
image W , resulting in a watermarked image I ′ given by

I ′ = Qp(I) + W , (3.7)

where W can only take integer values between 0 and p − 1, and where I ′ does never exceed
the maximum possible grey value. This means that

Qp(I) = Qp(I ′) ,

and hence W can be extracted at the decoder by

W = I ′ −Qp(I) = I ′ −Qp(I ′) .

Assuming that the message payload is given by a binary string, one needs a binary-to-p-ary
conversion map which is such that the values computed in (3.7) do never exceed the maximum

8

grey value. Towards that goal Celik et al. [4] introduce a conversion method which is basically
a variant of the arithmetic coding algorithm.

In order to enable inversion at the decoder, one needs to include the original data contained
in Ires in the embedded data. In other words, the data W to be embedded comprises both
the residual Ires of the original signal and the message payload. Obviously, this requests that
the residual data Ires is lossless compressed in order to create room for the message data.
Celik et al. [4] use a dedicated algorithm for the residual data that comprises three main
ingredients:

(i) Prediction: this uses the quantised image Qp(I) as side-information.

(ii) Context modelling and quantisation: again the quantised image is being used as side-
information.

(iii) Conditional entropy coding.

In Celik et al. [4] these steps are discussed at length and we will not go any further into the
matter here.

A serious problem in the whole approach is the capacity control problem. The approach
adopted by Celik et al. is to vary the quantisation level p and the distortion caused by the
embedding of W in order to achieve the desired capacity.

3.3 Tian’s method

In [13] Tian introduces a high capacity method for reversible data embedding. Below it will
be described for grey-scale images I : [1, Mr] × [1, Mc] → [0, 255] but, as Tian observes, it
can also be extended to colour images as well as audio and video data. The basic idea is to
decompose I by an (integer) Haar wavelet into a low-frequency band L and a high-frequency
band H. The actual data embedding takes place inside band H. Let h be a given coefficient
inside band H with binary representation h =2 hn · · ·h1h0. Rather than always replacing
the least significant bit h0 by a message bit b, most of the time b is added as the new least
significant bit, i.e., h′ =2 hn · · ·h1h0b, which is equivalent to h′ = 2h + b. Such an operation
is called difference expansion. We say that h is expandable if such a modification is possible
without destroying the ‘invertibility’ of the Haar transform; see below for details.

We describe Tian’s method in more detail. For the sake of brevity, some less important
details are skipped here and we refer to Tian’s original paper [13] for a complete description.
For simplicity we restrict to a Haar transform in horizontal direction, but this can easily
be extended to the more general case where the original is subdivided into pixel pairs in
an arbitrary way. Let x, y be the values at two neighbouring pixels, i.e., x = I(i, 2j), y =
I(i, 2j + 1). The integer Haar transform maps the pair (x, y) onto another pair (l, h) given
by

l =
⌊

x + y

2

⌋
and h = x− y . (3.8)

Here b·c is the floor function, i.e., bxc is the largest integer ≤ x. Note that (3.8) can be
inverted by means of

x = l +
⌊

h + 1
2

⌋
and y = l −

⌊
h

2

⌋
. (3.9)

Thus the Haar transform maps the original image I onto a low-pass image L given by L(i, j) =
l and a high-pass image H with H(i, j) = h. Both images have half the width of the original
image (we always assume even dimensions), and we denote their common domain by D.

3. Existing Approaches 9

As said, embedding takes place inside H, but this may result in x and/or y values recon-
structed from (3.9) that lie outside the original range [0, 255]. It is easy to verify that (3.9)
yields x, y ∈ [0, 255] iff

|h| ≤ 2(255− l) and |h| ≤ 2l + 1 , (3.10)

for which we use the shorthand notation

h ∈ R(l) . (3.11)

This invertibility region R(l) is strongly dependent on l: if l is close to 0 or 255 this region is
small, but if l is close to 128 it is large.

We distinguish two important subsets of D: the set C ⊆ D, called changeable locations,
comprises all pixels (i, j) such that the LSB of h = H(i, j) can be flipped without affecting
invertibility, i.e., h• ∈ R(l), where l = L(i, j). The set E ⊆ D, called expandable locations,
consists of pixels (i, j) such that another bit b = 0, 1 can be added to h (that is, h is replaced
by 2h + b) without destroying invertibility, i.e. 2h, 2h + 1 ∈ R(l). It is easy to check that E

is a subset of C. If H(i, j) = −1 or 0 then (i, j) ∈ C iff (i, j) ∈ E, and we denote this set of
pixels by E0. Thus we have

E0 ⊆ E ⊆ C . (3.12)

We can partition the domain D of L, H into four disjoint subsets:

D = E0 ∪ (E \E0) ∪ (C \E) ∪ (D \ C) .

The first two subsets comprise all expandable pixels, the third subset contains pixels that are
changeable but not expandable, and the last subset contains all pixels that are not changeable.
A schematic illustration is given in Fig. 3. Data embedding takes place by a combination

E
0

E\E
0

C\E D\C

E

C

Cexp Cmod

Figure 3: Partition of the domain D.

of expansion and modification. For expansion, one uses pixels in Cexp, which is a union of
E0 and a subset of E \ E0. The latter set is chosen by means of some selection criterion;
see below. Pixels in Cmod = C \ Cexp are modified. To enable reconstruction of the original
data at the decoder, one needs information about the subdivision of C into Cexp and Cmod.
Towards that goal, Tian creates a binary image on D, the location map, that represents all
locations that are selected for expansion. This location map is then compressed losslessly,
e.g. by JBIG2 or run-length coding, and the resulting bitstream is denoted by L.

Since the LSB’s of difference values associated with locations in Cmod are overwritten, we
need to insert these bits into the bitstream that is embedded in order to enable reconstruction.
The bitstream formed by the LSB’s of H(i, j), with (i, j) ∈ Cmod, is denoted by C.

10

Thus the overall bitstream that needs to be embedded is given by

B = L · C · P , (3.13)

where P is the (message) payload, and ‘·’ denotes concatenation.
Assume that the bitstream B is given by B = b1b2 · · · bm, then the embedding algorithm

looks as follows:

(L, H) = Haar transform(I);
(i, j) = (0, 0); /* first pixel in D */

for k = 1 to m do
while (i, j) 6∈ C do

H ′(i, j) = H(i, j);
move to next (i, j);

end while
h = H(i, j);
if (i, j) ∈ Cexp then

h′ = 2h + bk;
else

h′ = h • bk; /* (i, j) ∈ Cmod */

end if
H ′(i, j) = h′;
move to next (i, j);

end for
I ′ = inverse Haar transform(L, H ′);

Embedding is indeed possible if

m = |L|+ |C|+ |P| ≤ |C| . (3.14)

Since |C| = |Cmod| and |C| = |Cmod|+ |Cexp|, the previous inequality can be rewritten as

|L|+ |P| ≤ |Cexp| . (3.15)

The algorithm is based on the empirical observation that for natural grey-scale images most
of the difference values h are expandable, i.e., between 90% and 99%. This gives rise to
location maps that have high compression potential. Now a final issue is the selection of
locations in E \E0 that will be used for expansion, i.e., the exact choice of Cexp. The guiding
principle here is that small difference values h give rise to small distortions in x′ and y′

after expansion, whereas large difference values lead to large distortions. Tian considers two
selection mechanisms. The first gives preference to small difference values h, i.e., it chooses
locations (i, j) for which |H(i, j)| is below a threshold T . Now a serious problem is that it
is hard to estimate the capacity for a given T . This makes it difficult to choose T in such
a way that embedding is possible, i.e., (3.14) is satisfied. The other selection mechanism is
based on the so-called hiding ability. We refer to Tian’s paper [13] for more information.

3.4 Other approaches

Vleeschouwer et al. [6] propose a completely different technique for reversible data embedding.
It is based on a combination of the ‘classical’ patchwork algorithm [3] and the concept of a

4. LSB prediction 11

circular histogram. Like in the patchwork approach, the image is partitioned into a given
number of blocks, comprising, e.g., 8 × 8 pixels, and subsequently, each block is randomly
subdivided into two subsets A and B of equal size. The two histograms associated with the
luminance values of the pixels in A and B are mapped onto the unit circle. Now one can
compute the two vectors, both located inside the unit disk, that point towards the respective
centres of mass of both projected histograms. Embedding of message bits can be realised
by rotation of both vectors in opposite ways. At the decoder one can extract the embedded
bits and reverse the corresponding rotations. It is obvious that the capacity can never be
larger than the number of blocks, and in fact, it will be smaller in practise since some of the
blocks cannot be used for embedding. Vleeschouwer et al. [6] present several bench tests (but
unfortunately, no tests relating capacity to distortion). Furthermore, they show that their
method is robust under modest JPEG compression.

4. LSB prediction

The reversible data embedding technique presented by Fridrich and co-authors [7] has two
drawbacks. Firstly, the capacity is at most 1 bit per group of pixels. Since the size of a group
is typically four pixels, this means that the maximum capacity is 0.25 bits per pixels. Note
that this maximum capacity is never attained due to the overhead of storing the compressed
state bitstream. Secondly, groups need to be disjoint and no information of neighbouring
groups can be used when creating the state bitstream and embedding bits into groups. In
this section, we will present a novel technique that has a (theoretical) maximum capacity of
1 bit per pixel and can use information of neighbouring pixels during the embedding process.
We will refer to this method as least significant bit (LSB) prediction since it utilises a wavelet-
like decomposition of the image that involves predicting the least significant bitplane from
the most significant bitplanes.

In this section we will use the binary addition, or exclusive or (XOR) operation on bits
and matrices of bits. We will use the notation +2 to refer to this addition. Recall that
(a+2 b) +2 b = a for all binary numbers a, b ∈ {0, 1}.

4.1 Global description of the algorithm

The main idea of the LSB prediction embedding technique is the same as in Fridrich’s method:
extract a binary bitstream from the image, compress it, and embed this compressed bitstream
plus the payload by replacing the original bitstream. We will extract a binary bitstream by
using a variant5 of Sweldens’ lifting scheme [12].

Consider a grey-scale image I : [1, Mr] × [1, Mc] → {0, 1, . . . , 255}. Again, Mr, Mc are
the number of rows and columns, respectively. We can split the image into the seven most
significant bitplanes M : [1, Mr]× [1, Mc] → {0, 1, . . . , 127} and the least significant bitplane
L : [1, Mr]× [1, Mc] → {0, 1} as follows:

M(i, j) = bI(i, j)/2c , (4.1a)

L(i, j) = LSB(I(i, j)) = I(i, j)− 2M(i, j) . (4.1b)

Note that both M and L have the same size as the image I. Obviously, I can be reconstructed
from L and M :

I(i, j) = L(i, j) + 2M(i, j) .
5The lifting scheme is usually applied differently. Normally, the data is split spatially before the scheme is

applied, while here the data is split into bitplanes

12

// b·/2c //

��

M //

��

· × 2

��
I π

P
��

π

P
��

/.-,()*++ // I

// LSB
L

// ?>=<89:;+2 // D // ?>=<89:;+2
L

OO

Figure 4: Using the lifting scheme to construct the (M, D) representation of the image I.

If we were able to compress the least significant bitplane L, then we could use this simple
transform as the basis of a reversible embedding algorithm. Unfortunately, L is usually very
hard to compress for natural images I. However, we can use the lifting scheme and predict
the least significant bitplane L, using the seven most significant bitplanes M :

P = π(M). (4.2)

This gives us a new representation (M, D) of the image, D being the difference L+2 P between
the actual least significant bitplane L and the prediction P :

D(i, j) = L(i, j) +2 P (i, j) =

{
0 if L(i, j) = P (i, j)

1 if L(i, j) 6= P (i, j).
(4.3)

The map I 7→ (M, D) is bijective, so we can reconstruct I from (M, D):

I = 2M + (D +2 π(M)). (4.4)

Fig. 4 shows this transform and its inverse.
So the better the prediction π(M), the more zeros D will contain and the better D can

be compressed. Note that the invertibility of the transform does not depend on π, so we can
use any operator for π. More specifically, we can use the pixel values of M in any window
W (i, j) surrounding (i, j) to predict the least significant bit at (i, j). This is an advantage
over Fridrich’s method. For example, we can use the window:

W (i, j) = {(i− 1, j), (i, j), (i + 1, j), (i, j − 1), (i, j + 1)}, (4.5a)

which gives us a prediction operator of the type:

π(M) = πW (M(i− 1, j), M(i, j), M(i + 1, j), M(i, j − 1), M(i, j + 1)). (4.5b)

We construct a prediction operator π that is based on the assumption that local extrema
are more likely to be less pronounced. Many local extrema can be detected by means of the
seven most significant bitplanes M . For convenience, we calculate

HW(i, j) = sign(M(i, j)−M(i, j − 1)),

HE(i, j) = sign(M(i, j)−M(i, j + 1)),

HN(i, j) = sign(M(i, j)−M(i− 1, j)),

HS(i, j) = sign(M(i, j)−M(i + 1, j)).

4. LSB prediction 13

Here the subindex ‘W’ in HW refers to the fact that it concerns the difference with the
neighbour at the ‘West’ (same for the other 3 neighbours). Furthermore, sign is the function
defined by

sign(x) =



−1 if x < 0

0 if x = 0

1 if x > 0.

(4.6)

If, for example, HW(i, j) = HE(i, j) = HN(i, j) = HS(i, j) = 1, then M , and therefore also
I, has a local maximum at location (i, j). In this case, we predict that the maximum is as
small as possible and set π(M)(i, j) = 0. More generally, we define

π(M)(i, j) =




0 if (HW(i, j) + HE(i, j) > 0 and HN(i, j) + HS(i, j) ≥ 0)

0 if (HW(i, j) + HE(i, j) ≥ 0 and HN(i, j) + HS(i, j) > 0)

1 if (HW(i, j) + HE(i, j) < 0 and HN(i, j) + HS(i, j) ≤ 0)

1 if (HW(i, j) + HE(i, j) ≤ 0 and HN(i, j) + HS(i, j) < 0)

p otherwise,

(4.7)

where p can be either 0 or 1, as our assumption does not allow us to predict the least
significant bit in these cases.

Like with Fridrich’s method, the embedding capacity can be controlled well. We can go
through the pixels in D in some previously agreed on manner and start compressing bits
by using an adaptive arithmetic coder (AAC) and continue encoding until the net capacity
cap(n) has surpassed the size of the desired payload |P|. We can then append the payload
bits P to the compressed bitstream and replace this with the bits in D that were compressed.

In general, it is quite hard to construct prediction operators. In our experience, a good
prediction operator π typically predicts 55% of the pixels correctly. Such a prediction accuracy
results in a capacity-distortion behaviour that is comparable to Fridrich’s method using a
flipping operator that has an amplitude of 1. We can improve upon this by sorting the pixels
in D according to an estimate of the correctness of the least significant bit prediction µ(M).
So we not only use the most significant bitplanes M to predict the least significant bit at
(i, j) by means of the operator π, but we also compute the likeliness µ(M)(i, j) that this
prediction is correct. This allows us to sort the pixels in D according to our estimate of the
correctness of the least significant bit prediction (the best predictions first). This will not
change the global ratio of zeros and ones in D, but it will change this ratio locally: the ratio
at the beginning of the bitstream will be more skewed than at the end. The simple adaptive
arithmetic coder we used, does not perform well on these type of bitstreams, so we compress
the bitstream block by block to ensure that the global ratio of zeros and ones (within a block)
does not differ much from the local ratio. As a result the first blocks of the sorted bitstream
can be compressed much better than the beginning of the unsorted bitstream, while the last
blocks of the sorted bitstream can hardly be compressed. All in all, using such a sorting
technique gives a better capacity-distortion behaviour, especially at small capacities.

We can quite easily construct a function µ associated with the prediction operator π defined

14

in (4.7):

µ(M)(i, j) =




2 if (HW(i, j) + HE(i, j) > 0 and HN(i, j) + HS(i, j) > 0)

2 if (HW(i, j) + HE(i, j) < 0 and HN(i, j) + HS(i, j) < 0)

1 if (HW(i, j) + HE(i, j) 6= 0 and HN(i, j) + HS(i, j) = 0)

1 if (HW(i, j) + HE(i, j) = 0 and HN(i, j) + HS(i, j) 6= 0)

0 otherwise.

(4.8)

This definition stems from the rationale that if both directions agree on the type of extremum,
then the prediction is likely to be better.

4.2 Encoding algorithm

The algorithm below describes the embedding of payload data P into an image I. To simplify
matters, the block by block compression is not made explicit.

/* Calculate the (M, D) representation of the image I */

M = bI/2c;
L = LSB(I);
P = π(M); /* Predict the least significant bits */

D = L+2 P ;

/* Sort the locations using an estimate of the prediction quality */

µ = compute correctness measure(M);
sort pixel domain(µ); /* output is sorted list of pixels (i1, j1), (i2, j2), . . . */

/* Compress until the necessary capacity is reached */

/* Output is the bitstream D */

n = 0;
while cap(n) < |P| do

n = n + 1;
AAC encode(D(in, jn));

end while

/* Concatenate D and P to form the bitstream B = b1b2 · · · bn */

B = D · P;

/* Embed the bitstream B into D and do the inverse transform */

/* Unused locations in D are not changed */

D′ = D;
for k = 1 to n do

D′(ik, jk) = bk;
end for
L′ = D′ +2 P ;
I ′ = 2M + L′

4. LSB prediction 15

4.3 Decoding algorithm

The algorithm below describes the extraction of an embedded payload P from an image I

and the reconstruction of the original image I ′. It assumes that the adaptive arithmetic coder
stores some header information at the front of its output so that the decoder can retrieve the
size of the compressed bitstream by means of the function AAC size.

/* Calculate the (M, D) representation of the image I */

M = bI/2c;
L = LSB(I);
P = π(M); /* Predict the least significant bits */

D = L+2 P ;

/* Sort the locations using an estimate of the prediction quality */

µ = compute correctness measure(M);
sort pixel domain(µ); /* output is sorted list of pixels (i1, j1), (i2, j2), . . . */

/* Read the sorted bitstream B = b1b2 · · · from D */

B = D(i1, j1)D(i2, j2) · · ·

/* Decode the overwritten values of D */

/* Output is D = d1d2 · · · dn */

/* Extract the payload as well */

nc = AAC size(B)
D = AAC decode(b1b2 · · · bnc)
n = |D|
P = bnc+1bnc+2 · · · bn

/* Restore the original values of D */

/* Apply inverse transform to reconstruct the original image */

D′ = D;
for k = 1 to n do

D′(ik, jk) = dk;
end for
L′ = D′ +2 P ;
I ′ = 2M + L′

4.4 Extensions of LSB prediction

The LSB prediction method modifies only the least significant bitplane when embedding data.
As such, the distortion is typically low. On the other hand, the maximum embedding capacity
is low as well. To be able to use the LSB prediction method to embed larger payloads, we
could use the generalised-LSB decomposition proposed by Celik et al. in [4]. This decomposes
the image I into a quantised image M = Qp(I) and a residue image L = Ires as described
by equations (3.5) and (3.6). When this decomposition is used, the theoretical maximum
capacity is log2(p) bits per pixel. The quality of the prediction π and the estimation of the
correctness of the prediction µ will decrease, since they depend on M and M contains less
information when p increases.

16

5. Improving Tian’s Method

The approach of Tian [13] has two serious drawbacks. The first one concerns the capacity
control problem: how to choose the set of locations so that embedding is possible but distor-
tion is limited? The second problem concerns the overhead costs caused by the embedding
of the (compressed) location map which covers all locations in D.

In this section we present an alternative of Tian’s method which avoids the second pitfall
and, at the same time, makes it easier to deal with the capacity control problem. The two
main new ingredients are the following: (i) we use the low-pass image L to predict which
locations in D will be expandable; (ii) the resulting bitstream which represents the correctness
of the prediction is incrementally compressed using an arithmetic coder.

5.1 Global description of the algorithm

The first part of the algorithm is the same as in [13]: the image I is Haar-transformed into
a low-pass and high-pass image L and H, respectively. Embedding is done by expanding
or changing H-values. We have seen before that it is advantageous to choose for expansion
those locations (i, j) for which |H(i, j)| is small. Applying the inverse Haar transform yields
a modified image I ′ which closely resembles the original image. This image I ′ is received by
the decoder, whose task it is to extract the embedded message payload and to recover the
original image I. Applying the Haar wavelet transform returns the images L and H ′, where
the low-pass image L is the same as for the original image I. We exploit this fact by using L

to predict the nature of the H-pixels, both at the encoder and at the decoder side. In fact,
our modelling assumption is that the value of H at a location (i, j) ∈ C is expected to be
small if there is little variation of L in the vicinity of (i, j). Furthermore, such locations are
likely to be expandable. More precisely, we define a regularity measure µ : C → IR+ which
measures the regularity or smoothness of L in the neighbourhood of (i, j) in the sense that
the smaller µ(i, j), the more regular the image L near (i, j). For example, let W (i, j) be a
window surrounding (i, j), then we can define µ(i, j) as the local variance near (i, j), i.e.,

µ(i, j) =
1

|W (i, j)|
∑

(i′,j′)∈W (i,j)

(
L(i′, j′)− L̄(i, j)

)2
, (5.1)

where L̄(i, j) is the average of L inside W (i, j). We can use the regularity measure µ to sort
the locations in C into a list Cµ with ascending µ-values, i.e.,

Cµ = {(i1, j1), (i2, j2), . . .} ,

where µ(ik, jk) ≤ µ(ik+1, jk+1). Our model assumes that for natural images, locations at the
beginning of the list are more likely to be expandable than locations that occur more towards
the end. Moreover, H tends to be small at such locations. The order of embedding follows
that of the list Cµ. Now the location map is described by a bitstream a1a2 · · · where ak = 0
if (ik, jk) ∈ E and ak = 1 if (ik, jk) ∈ C \ E. We call a1a2 · · · the location bitstream and ak

the k’th location bit.
The aforementioned approach is likely to result in location bitstreams that contain mostly

0’s (especially in the beginning) and only very few 1’s, and that therefore allow strong lossless
compression. We perform such compression by an adaptive arithmetic coder (AAC).

The details of the algorithm are discussed in the following section. Here we address the
capacity control problem. The net capacity that results when the first n locations in Cµ

5. Improving Tian’s Method 17

are used for embedding, is denoted by cap(n). The corresponding bitstream B(n) that is
embedded consists of the same three parts as in in (3.13), that is

B(n) = L(n) · C(n) · P , (5.2)

where L(n) is the encoded (i.e., compressed) location bitstream, C(n) are the bits that are
overwritten, and P is the given payload. We call C(n) the correction bitstream.

We introduce some notation. First,

κ(n) = |L(n)|

is the length of the bitstream L(n) that results from the AAC encoding of the location
bitstream a1a2 · · · an. Furthermore,

σ1(n) = |C(n)| =
κ(n)∑
k=1

ak

is the number of 1’s in the first κ(n) bits of the location bitstream. Note that the correspond-
ing locations (ik, jk) for which ak = 1, are changeable but not expandable. Since these bits
are overwritten, they are stored in C(n), whence the second equality. Finally

σ2(n) =
n∑

k=κ(n)+1

ak

is the number of 1’s in the remaining part of the location map. Locations (ik, jk) ∈ C \ E

(i.e., with ak = 1) are useless for embedding as they are not expandable. In such cases, either
the LSB of H(ik, jk) is overwritten, in which case we have to add this bit to the bitstream C
that is embedded, or location (ik, jk) is skipped. To minimise distortion, this last option is
to be preferred, but skipping is only possible if the decoder is aware of the non-expandability
of this location. This is only the case after the location bitstream has been decoded, i.e., if
k ≥ κ(n).

Thus we conclude that
σ(n) = σ1(n) + σ2(n)

locations among the first n are ineffective. Therefore

cap(n) = n− κ(n)− σ(n) ,

and in order to have enough capacity to embed the payload P, we choose the smallest n such
that |P| ≤ cap(n), i.e.,

|P| ≤ n− κ(n)− σ(n) . (5.3)

For natural images, the net capacity cap(n) is expected to increase with n. Obviously, it is
negative for small n due to some overhead such as the header comprising κ0 bits.

5.2 Encoding algorithm

For a good understanding of the algorithm it is useful to visualise the various ingredients
of the bitstream B(n) in (5.2). This is done in Fig. 5. The output of our AAC, given that
the first n bits a1a2 · · · an of the location bitstream are inserted, consists of a fixed header

18

k=
1

k=
κ 0

k=
κ(
n
)

k=
κ m

ax
(n

)

k=
κ(
n
)+

σ 1
(n

)

L(n) C(n) P

Figure 5: The bitstream B(n).

part b1b2 · · · bκ0 followed by a body part bκ0+1 · · · bκ(n) with length depending on n. Thus the
compressed location bitstream is

L = b1b2 · · · bκ0bκ0+1 · · · bκ(n) .

The header is used to store the length of the body part, i.e., κ(n) − κ0. Obviously, κ(n) −
κ0 ≤ |D| and we take κ0 = dlog2 |D|e. The compressed location bitstream b1b2 · · · bκ(n) is
embedded in the first κ(n) locations of Cµ, either by expansion (if ak = 0) or by modification
(if ak = 1). In the latter case, the LSB of H(ik, jk) has to be stored in order to enable
inversion at the decoder. This results in a correction bitstream C(n) of length σ1(n). Then
we concatenate the payload P to C(n) and embed C(n) · P at the remaining locations of Cµ,
or rather Cµ ∩ E. In other words, locations for which ak = 1 are skipped. The total length
of B(n) is κmax(n) = κ(n) + σ1(n) + |P|, and using |P| ≤ cap(n) and (5.3), we get that
κmax(n) ≤ n − σ2(n). We end up with a modified high-pass image H ′, and now I ′ is found
by taking the inverse Haar transform.

/* Compute Haar transform, regularity measure, and sorted list Cµ */

(L, H) = Haar transform(I);
µ = compute regularity measure(L);
Cµ = sort(C, µ); /* output is sorted list (i1, j1), (i2, j2), . . . */

/* Calculate the location bitstream a1a2 · · · a|C| */

for k = 1 to |C| do
if (ik, jk) ∈ E then

ak = 0;
else

ak = 1;
end if

end for

/* Compress location bitstream till required capacity is available */

/* Output bitstream is b1 · · · bκ(n), including header */

n = 0;
while cap(n) < |P| do

n = n + 1;

5. Improving Tian’s Method 19

AAC encode(an);
end while

/* Embed compressed location map by expansion and modification */

/* Add overwritten bits to bitstream B */

k = κ(n);
for l = 1 to κ(n) do

h = H(il, jl);
if al = 0 then

h′ = 2h + bl;
else

h′ = h • bl;
k = k + 1;
bk = LSB(h);

end if
H ′(il, jl) = h′;

end for

/* Concatenate P to B */

for l = 1 to |P| do
k = k + 1;
bk = pl; /* pl is l’th payload bit */

end for
κmax = k;

/* Embed C(n) · P by expansion; locations in C \E are skipped */

k = κ(n) + 1;
l = κ(n) + 1;
while k ≤ κmax do

while al = 1 do
l = l + 1; /* skip locations in C \E */

end while
H ′(il, jl) = 2H(il, jl) + bk;
k = k + 1;

end while

I ′ = inverse Haar transform(L, H ′);

5.3 Decoding algorithm

In the decoding algorithm, the modified image I ′ is used as input, and the output consists
of the original image I along with the embedded payload P = p1p2 · · · p|P|. In the first step
we apply the Haar transform to I ′ which returns the lowpass image L, which is the same
as for the original image, and the high-pass image which contains all the embedded data.
We use L to compute the regularity measure µ, which is used to sort the locations in C in
the same order as was done at the encoder resulting in the sorted list Cµ. Now we can read

20

the header b1b2 · · · bκ0 of L(n) which is used to compute the length κ(n) of the compressed
location bitstream; note, however, that n is unknown at this point. Then we read the body
bκ0+1 · · · bκ(n) of L(n), which, after AAC-decoding, gives us the location bitstream a1a2 · · · an.
Using this bitstream, we can read the remaining bits of B(n), that is, C(n) · P, and restore
the original H-values by means of h = bh′/2c. Since we can dispose of the location map, we
are able to skip locations (ik, jk) in C \E, characterised by ak = 1. In a next step we restore
the H-values at locations k = 1, 2, . . . , κ(n): if ak = 0 then h = bh′/2c, otherwise h = h′ • b,
where b was the bit overwritten by the encoder and stored in the correction bitstream C(n).
The remaining part of the bitstream is then P, the message payload that was embedded by
the encoder. Applying the inverse Haar transform to L and H returns the original image I.

/* Compute Haar transform, regularity measure, and sorted list Cµ */

(L, H ′) = Haar transform(I ′);
µ = compute regularity measure(L);
Cµ = sort(C, µ); /* output is sorted list (i1, j1), (i2, j2), . . . */

/* Read header of L(n) and compute κn */

/* κn is the same as κ(n) but n is yet undetermined */

for k = 1 to κ0 do
bk = LSB(H ′(ik, jk));

end for
κn =

∑κ0
k=0 bk2k;

/* Read body of L(n) */

/* AAC decode location bitstream a1 · · · an */

for k = κ0 + 1 to κn do
bk = LSB(H ′(ik, jk));

end for
AAC decode(bκ0+1 · · · bκn);

/* Read C(n) · P */

/* Restore original H-values at locations with k > κ(n) */

k = κn + 1; /* k corresponds with the first C-bit */

for l = κn + 1 to n do
if al = 0 then

k = k + 1;
bk = LSB(H ′(il, jl));
H(ik, jk) = bH ′(il, jl)/2c;

end if
end for
κmax = k;

/* Restore original H-values at locations with k ≤ κ(n) */

k = κn + 1; /* k corresponds with the first C-bit */

for l = 1 to κn do

6. Experimental Results 21

if al = 0 then
H(il, jl) = bH ′(il, jl)/2c;

else
H(il, jl) = H ′(il, jl) • bk;
k = k + 1;

end if
end for

/* k has reached position κ(n) + σ1(n) + 1 in Fig. 5 */

/* Put remaining bits bk into P */

t = 1;
while k ≤ kmax do

pt = bk;
t = t + 1;
k = k + 1;

end while

I = inverse Haar transform(L, H);

6. Experimental Results

We implemented the reversible data embedding method of Fridrich et al., Tian’s method, our
method of LSB prediction, and our improvement of Tian’s method. Due to its complexity, we
did not implement the method of Celik et al. We tested the four methods we implemented on
each of the four grey-level images shown in Fig. 6. Since Celik and co-authors also use these
four images in their paper [4], one should be able to compare their results with ours. This
section first discusses the implementation details of the various data embedding methods and
then compares them by considering their capacity versus distortion (PSNR) behaviour, their
ability to control the embedding capacity and their embedding time.

Barbara F-16 Lena Mandrill

Figure 6: The four 512× 512 test images.

We implemented all the reversible data embedding methods as MATLAB functions. In the
following subsections we discuss some of the details of these implementations.

6.1 Implementation of method by Fridrich et al. [7]

Our implementation of the method of Fridrich and co-workers [7] uses a mask group G of
4× 1 pixels; see (3.3). We tested the method for a number of flipping operators with various

22

amplitudes. More precisely, for amplitudes a = 1, 2, . . . , 8, we used the flipping operator

Φa(s1, s2, s3, s4) = (φa(s1), φa(s2), φa(s3), φa(s4)), (6.1a)

with

φa(s) =




s + a if 0 ≤ (smod2a) < a and s + a ≤ 255

s if 0 ≤ (smod2a) < a and 255 < s + a

s− a if a ≤ (smod2a) < 2a.

(6.1b)

Note that the amplitude of Φa is exactly a if 2a divides 256; otherwise the amplitude is
slightly less than a:

A(Φa) = A(φa) =
1

256

255∑
s=0

|φa(s)− s|

=




256− (256mod2a)
256

· a if 0 ≤ (256mod 2a) ≤ a

256− (2a− (256mod2a))
256

· a if a ≤ (256mod 2a) < 2a

≤ 256− a

256
· a.

Table 1 lists the actual amplitudes of Φ1, Φ2, . . . ,Φ8.
To determine which groups are regular, singular and undetermined, we use the regularity

function
µ(s1, s2, s3, s4) = |s1 − s2|+ |s2 − s3|+ |s3 − s4|. (6.2)

Table 1 also shows the number of regular, singular, and undetermined groups for each of the
four test images and for each flipping operator. Note that the percentage of undetermined
groups –groups that we cannot use to embed data– is quite large for all images and flipping
operators. Observe as well that the ratio of regular and singular groups gets better for
increasing amplitudes.

Like Fridrich, we used an adaptive arithmetic coder to compress the state bitstream.

6.2 Implementation of method by Tian [13]

Our implementation of Tian’s original method uses a horizontal pairing of pixels resulting in
a Haar transform in the horizontal direction. For Tian’s algorithm and our improvements of
it, the capacity versus distortion behaviour depends on the number of expandable, changeable
and non-changeable pairs. For each of the four test images, these numbers are listed in Table
2.

Tian presented two methods for selecting Cexp, the locations to use for difference expansion.
In our experiments, we used the one that minimises the mean square error introduced by the
embedding. This method gives the best results when PSNR is used to measure distortion.
In his experiments, Tian used a JBIG2 encoder to compress the location map. Since we
did not have such an encoder at our disposal, we used an adaptive arithmetic coder in our
implementation of Tian’s original method. This compression method gives slightly worse
results, but the difference is rather marginal.

6. Experimental Results 23

Flipping operator Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

Amplitude 1 2 2.98 4 4.92 5.91 6.89 8
Barbara Regular 39.6% 48.8% 55.6% 59.4% 61.2% 61.8% 61.9% 61.1%

Singular 24.8% 20.8% 17.6% 15.1% 13.2% 11.8% 10.3% 9.6%
Ratio R/S 1.60 2.35 3.16 3.94 4.65 5.24 5.99 6.36
Undetermined 35.6% 30.5% 26.8% 25.5% 25.6% 26.4% 27.8% 29.3%

F-16 Regular 43.9% 56.6% 60.5% 61.0% 60.3% 58.3% 56.7% 53.9%
Singular 17.5% 13.0% 10.2% 8.1% 6.8% 5.9% 4.7% 4.2%
Ratio R/S 2.51 4.35 5.94 7.50 8.90 9.97 12.06 12.77
Undetermined 38.6% 30.4% 29.3% 30.9% 32.9% 35.8% 38.5% 41.8%

Lena Regular 42.1% 53.8% 61.7% 66.0% 67.6% 67.3% 65.6% 63.4%
Singular 23.4% 17.8% 13.4% 10.4% 8.1% 6.4% 5.1% 4.1%
Ratio R/S 1.80 3.02 4.60 6.36 8.39 10.59 12.98 15.43
Undetermined 34.5% 28.4% 24.9% 23.6% 24.4% 26.4% 29.3% 32.5%

Mandrill Regular 37.6% 41.6% 45.6% 49.1% 52.1% 54.7% 56.7% 58.2%
Singular 32.0% 30.1% 28.2% 26.2% 24.6% 23.1% 21.9% 20.7%
Ratio R/S 1.17 1.38 1.62 1.88 2.12 2.36 2.59 2.82
Undetermined 30.4% 28.3% 26.2% 24.7% 23.3% 22.2% 21.4% 21.1%

Table 1: The percentage of regular, singular, and undetermined 4 × 1 groups for each test
image and each flipping operator Φa as defined in (6.1a) and (6.1b) when using the regularity
function µ defined in (6.2). The table additionally shows the ratio of regular and singular
groups for each image and flipping operator, as well as the amplitude of each flipping operator.

E0 E \E0 C \ E D \ C

Barbara 16094 (12.3%) 113548 (86.6%) 1430 (1.1%) 0 (0.0%)
F-16 36658 (28.0%) 94398 (72.0%) 16 (0.0%) 0 (0.0%)
Lena 21893 (16.7%) 109173 (83.3%) 6 (0.0%) 0 (0.0%)
Mandrill 8916 (6.8%) 122065 (93.1%) 90 (0.1%) 1 (0.0%)

Table 2: The number of expandable pairs with h ∈ {−1, 0} (E0), the number of expandable
pairs with h 6∈ {−1, 0} (E \E0), the number of changeable, but not expandable pairs (C \E),
and the number of non-changeable pairs (D \ C) in the four test images.

24

6.3 Implementation of LSB prediction method

We tested a number of different methods of predicting the least significant bitplane and
estimating the correctness of the prediction. In Section 4.1 we presented one particular
example of a prediction operator π and correctness measure µ. Here we present another pair
π, µ which performs well for our test images.

The prediction operator π is based on a five pixel window W (i, j) = {(i − 1, j), (i +
1, j), (i, j), (i, j − 1), (i, j + 1)}:

π(M)(i, j) =

{
0 if M̄(i, j) ≤ M(i, j)

1 if M̄(i, j) > M(i, j),
(6.3)

where M̄(i, j) is the average of M inside the window W (i, j). So this operator uses the
average (of the most significant bits) of the neighbouring pixels in W (i, j) to predict the least
significant bit at (i, j).

The aforementioned prediction operator works good in combination with a correctness
estimate operator µ that is based on a combination of the local variance and a number that
expresses to which extent pixels in W (i, j) agree on their prediction of the least significant
bit at (i, j). The local variance is defined as

v(M)(i, j) =
1

|W (i, j)|
∑

(i′,j′)∈W (i,j)

(
M(i′, j′)− M̄(i, j)

)2
. (6.4a)

The idea is that the quality of the prediction of the least significant bit is better at locations
where the local variance is small. We define the agreement number as

a(M)(i, j) =

∣∣∣∣∣∣
∑

(i′,j′)∈W (i,j)

sign
(
M(i′, j′)−M(i, j)

)∣∣∣∣∣∣ , (6.4b)

where the sign operator is defined as is (4.6). The agreement number is highest if all neigh-
bours of M(i, j) agree on how to predict the least significant bit in the sense that they are all
larger or all smaller than M(i, j). The agreement number is smallest if half the neighbours
are smaller and the other half are larger. The idea behind this definition is that the prediction
is better if the agreement number is higher. In our experiment, an additive combination of
the local variance and the agreement number performed well. More specifically, we used the
measure µ defined by

µ(M)(i, j) = 10a(M)(i, j)− v(M)(i, j). (6.4c)

Table 3 shows how well the prediction operator in (6.3) π performs by listing the ratio of
ones and zeros in D for each of the test images. Is also demonstrates the performance of the
correctness measure µ by showing the ratio of the first 10% of the sorted bits in D.

For the LSB prediction method, we used the same adaptive arithmetic coder to compress
the bitstream D as the one used in the implementation of Fridrich’s method. To compensate
for the changing characteristics in the sorted bitstream, we compress the bitstream blockwise
using blocks of approximately 10.000 bits (4% of the total bitstream D).

6.4 Implementation of improved Tian method

When testing our improvement of Tian’s method, we used a number of different regularity
measures µ to select pixel pairs for expansion. Although the different measures performed

6. Experimental Results 25

10% 100%

Barbara 0.3494 0.4488
F-16 0.2425 0.3997
Lena 0.3518 0.4349
Mandrill 0.4409 0.4795

Table 3: The average number of ones after selecting 10% and 100% of the sorted bits using
the LSB prediction method for each of the four test images.

slightly different for a given image, there was no a single measure that outperformed all other
measures for most images. We will therefore show only the results for one regularity measure,
namely µ : C → IR+ as defined in (5.1) with the cross-shaped window

W (i, j) = {(i− 1, j), (i, j), (i + 1, j), (i, j − 1), (i, j + 1)}.

This measure performed well for most images.

6.5 Capacity versus distortion behaviour

Fig. 7, 8, 9, and 10 show the overall picture of the capacity versus distortion performance
of the discussed reversible data embedding methods for each image. Since the capacity-
distortion curves of Fridrich’s method and our LSB prediction method are located in a rela-
tively small area, this area is enlarged in Fig. 11, 12, 13, and 14.

It is clear that Tian’s method and our improvement of it can achieve much higher em-
bedding capacities than the other two methods, namely up to 0.5 bits per pixel. When
the embedding process is repeated for the vertical direction, the methods can even achieve
capacities close to 1 bit per pixel. Except for the Barbara image, Tian’s method and its
improvement have identical maximal capacities. Moreover, they achieve these maximal ca-
pacities at virtually the same distortions. This is due to the fact that Tian’s method achieves
maximum capacity when all expandable pairs are selected for expansion. As is shown in
Table 2, virtually all pairs are expandable so that the corresponding location map can be
compressed very well. In this case, the overhead of Tian’s original method compared with
our modification becomes negligible.

The overhead of having to keep a location map of pairs that are used for expansion is
quite well visible in Fig. 7, 8, 9, and 10. Whereas Tian’s original method achieves a positive
capacity when a large fraction of the pixel pairs are used for expansion, our improvement only
needs less then 1% of the pairs. See Table 4 for the exact amounts for each test image. As a
result, Tian’s original method is not capable of embedding small payloads at low distortions,
whereas our improvement clearly is. For the Mandrill image, the distortion difference at 0.05
bit per pixel is well over 10 dB.

The bad performance of Tian’s original algorithm at low capacities makes Fridrich’s method
and our method of LSB prediction better alternatives. As can be seen in Fig. 11, 12, 13, and
14, these two methods typically outperform Tian’s method below 0.02–0.05 bits per pixel.
If the LSB prediction method uses no sorting, its capacity versus distortion behaviour is
comparable to Fridrich’s method with a flipping function of amplitude 1. When sorting is
used, LSB prediction clearly outperforms Fridrich’s method.

Although both Fridrich’s method and our method of LSB prediction outperform Tian’s
original method at low capacities, our improvement of Tian’s method has the best capacity-

26

25 30 35 40 45 50 55 60 65 70 75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

Barbara

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 7: Capacity versus distortion performance of the various methods for the Barbara
image.

25 30 35 40 45 50 55 60 65 70 75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

F−16

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 8: Capacity versus distortion performance of the various methods for the F-16 image.

6. Experimental Results 27

25 30 35 40 45 50 55 60 65 70 75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

Lena

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 9: Capacity versus distortion performance of the various methods for the Lena image.

25 30 35 40 45 50 55 60 65 70 75
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

Mandrill

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 10: Capacity versus distortion performance of the various methods for the Mandrill
image.

28

35 40 45 50 55 60 65 70 75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

Barbara

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 11: Capacity versus distortion performance at low capacities of the various methods
for the Barbara image.

35 40 45 50 55 60 65 70 75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

F−16

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 12: Capacity versus distortion performance at low capacities of the various methods
for the F-16 image.

6. Experimental Results 29

35 40 45 50 55 60 65 70 75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

Lena

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 13: Capacity versus distortion performance at low capacities of the various methods
for the Lena image.

35 40 45 50 55 60 65 70 75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

PSNR (dB)

C
ap

ac
ity

 (b
pp

)

Mandrill

Tian
Extended Tian
Fridrich (A=1)
Fridrich (A=2)
Fridrich (A=3)
LSB prediction

Figure 14: Capacity versus distortion performance at low capacities of the various methods
for the Mandrill image.

30

Tian Improved Tian

Barbara 59.1% 0.2%
F-16 68.6% 0.2%
Lena 70.6% 0.2%
Mandrill 72.4% 0.2%

Table 4: The minimum number of pixel pairs selected for expansion for which the capacity of
Tian’s original method and its improvement are positive for each of the four test images.

distortion behaviour in virtually all cases. Only at very low capacities (less then 0.005 bits
per pixel) does LSB prediction outperform the improved Tian method.

6.6 Capacity control

As mentioned before, capacity control is a problem for Tian’s original method. Although the
method can achieve large capacities, it cannot beforehand determine how many pixel pairs to
select for expansion to achieve this capacity. This can only be done by making a table that,
for each image, lists how many pixel pairs need to be selected to achieve certain capacities.
Celik and co-workers [4] observed that their method suffers from the same problem, but we
believe that progressive compression (like we used for Fridrich’s method, LSB prediction and
improved Tian) might solve this problem for their method.

The three other methods all use progressive compression which enables compression until
the desired capacity is achieved. As a result these methods can control the capacity very
well.

6.7 Embedding Time

During our experiments, we measured, for each of the methods, the amount of CPU time it
takes to embed payloads of various sizes. We found that in all cases the compression module
takes much more time than the other components. Furthermore, the time it takes to compress
a bitstream is approximately proportional to the size of the output of the compression. Thus
bitstreams that allow higher compression take less time. As a result, Tian’s original method
(at low capacities) and Fridrich’s method are the slowest, with our method of LSB prediction
a close third. All three methods have to compress bitstreams that are relatively hard to
compress.

The location map that needs to be compressed in Tian’s original method is harder to
compress when less pairs are selected for expansion. As a consequence Tian’s algorithm is
faster when it embeds at a higher rate. At near maximum capacity Tian’s algorithm performs
as fast as our improvement.

With our improvement of Tian’s algorithm the situation is very different. At low capacities,
the location bitstream has very low entropy; moreover, it consists only of zeros in most cases.
Thus, this bitstream allows strong compression. At high capacity, it becomes more likely that
non-expandable pairs are selected, thus resulting in a small fraction of ones in the location
bitstream, making this bitstream slightly harder to compress. On the whole, our improvement
of Tian’s algorithm is the fastest of the four methods we implemented: at low capacities it
is a lot faster then the other three methods and at maximum capacity it is about as fast as
Tian’s original method.

7. Conclusions 31

7. Conclusions

After giving a review of three existing reversible data embedding methods6 by Fridrich and
co-authors [7], Tian [13], and Celik and co-workers [4], we introduced two new methods: least
significant bit prediction and an improvement of Tian’s method.

LSB prediction utilises a variant of Sweldens’ wavelet lifting scheme [12] to predict the least
significant bitplane by using the information contained in the most significant bitplanes. The
capacity-distortion behaviour of the method is quite good, especially at low capacity: it
easily outperforms the methods of Fridrich and Tian. The LSB prediction method sorts the
predicted least significant bits according to an estimate of the prediction quality which greatly
improves the performance of the method. It should be noted that such a sorting technique
could just as well be used in combination with Fridrich’s method. It is likely that this would
also improve that embedding technique significantly.

The main advantage of Tian’s original method is its high maximal capacity of up to 0.5 bit
per pixel (more if the method is applied multiple times). Disadvantages are high distortions
at low capacities and inability to control the capacity. We proposed an improvement of Tian’s
method that keeps it advantage while removing its shortcomings. Our improvement is able
to keep the distortion low when embedding small messages and can automatically create just
enough capacity to embed the desired payload thus keeping the distortion minimal. As an
additional advantage, the improvement embeds much faster due to easy compression.

As it stands, Tian’s method (and our improvement) uses the one-dimensional Haar wavelet
transform to decorrelate the data and create “free space” in which to embed the payload.
The advantage of this simple transform is that it is easy to describe which detail coefficients
can be expanded without resulting in an overflow. It may be interesting to try and use more
complicated wavelets as this could potentially decorrelate the data better and achieve higher
capacities. The challenge here would be to devise a system that prevents overflow when the
inverse wavelet transform is applied to the expanded detail coefficients.

On the whole, the two new methods performed substantially better in our experiments than
the existing methods. Moreover our improvement of Tian’s method was superior in almost
all circumstances. Only at very low capacities (say < 0.005 bits per pixels) LSB prediction
sometimes performed better.

6Reversible data embedding is a new and active research area. After this paper was finished, we became

aware of two new embedding techniques: Alattar [1] introduced another extension of Tian’s method and Van

Leest and co-authors [14] described an entirely new method.

32

References

1. Alattar, A. Reversible watermark using difference expansion of triplets. In Proceedings
of the IEEE Conference on Image Processing (Barcelona, Spain, 2003).

2. Bender, W., Butera, W., Gruhl, D., Hwang, R., Paiz, F. J., and Pogreb, S.

Applications for data hiding. IBM Systems Journal 39, 3&4 (2000), 547–568.

3. Bender, W., Gruhl, D., Morimoto, N., and Lu, A. Techniques for data hiding.
IBM Systems Journal 35, 3&4 (1996), 313–336.

4. Celik, M. U., Sharma, G., Tekalp, A. M., and Saber, E. Lossless generalized-LSB
data embedding. submitted to IEEE Trans. Image Proc., 2003.

5. Cox, I. J., Miller, M., and Bloom, J. Digital Watermarking. Morgan Kaufmann
Publishers, San Francisco, 2001.

6. De Vleeschouwer, C., Delaigle, J.-F., and Macq, B. Circular interpretation of
bijective transformations in lossless watermarking for media asset management. IEEE
Transactions on Multimedia 5, 1 (2003), 97–105.

7. Fridrich, J., Goljan, M., and Du, R. Lossless data embedding - New paradigm in
digital watermarking. EURASIP J. Appl. Signal Processing (Special Issue on Emerging
Applications of Multimedia Data Hiding), 2 (2002), 185–196.

8. Kalker, A. A. C. M., and Willems, F. M. J. Capacity bounds and code construc-
tions for reversible data-hiding. In IS&T/SPIE’s 15th Ann. Symp. Electronic Imaging
(Santa Clara, California, 2003).

9. Kalker, T., and Willems, F. Capacity bounds and constructions for reversible data-
hiding. In Proc. of the 14th International Conference on Digital Signal Processing (July
2002), vol. 1, pp. 71–76.

10. Katzenbeisser, S., and F. A. P. Petitcolas (eds). Information hiding techniques
for steganography and digital watermarking. Artech House Books, Norwood, 2000.

11. Swanson, M. D., Kobayashi, M., and Tewfik, A. H. Multimedia data-embedding
and watermarking technologies. Proceedings of the IEEE 86, 6 (1998), 1064–1087.

12. Sweldens, W. The lifting scheme: A custom-design construction of biorthogonal
wavelets. Applied and Computational Harmonic Analysis 3 (1996), 186–200.

13. Tian, J. Reversible data embedding using a difference expansion. IEEE Transaction on
Circuits and Systems for Video Technology 13, 8 (August 2003), 890–896.

14. van Leest, A., van der Veen, M., and Bruekers, F. Reversible image water-
marking. In Proceedings of the IEEE Conference on Image Processing (Barcelona, Spain,
2003).

