1,241 research outputs found

    Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease

    Get PDF
    There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD

    Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: A comparative study

    Get PDF
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC

    Get PDF
    Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. In this paper, we present a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC

    Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease

    Get PDF
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    KOMPLEKSOWE METODY UCZENIA MASZYNOWEGO I UCZENIA GŁĘBOKIEGO DO KLASYFIKACJI CHOROBY PARKINSONA I OCENY JEJ NASILENIA

    Get PDF
    In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.W tym badaniu naszym celem było przyjęcie kompleksowego podejścia do kategoryzacji i oceny ciężkości choroby Parkinsona poprzez wykorzystanie technik zarówno uczenia maszynowego, jak i głębokiego uczenia. Dokładnie oceniliśmy skuteczność różnych modeli, w tym XGBoost, Random Forest, Multi-Layer Perceptron (MLP) i Recurrent Neural Network (RNN), wykorzystując wskaźniki klasyfikacji. Wygenerowaliśmy szczegółowe raporty, aby ułatwić kompleksową analizę porównawczą tych modeli. Warto zauważyć, że XGBoost wykazał najwyższą precyzję na poziomie 97,4%. Ponadto poszliśmy o krok dalej, opracowując model Gated Recurrent Unit (GRU) w celu połączenia przewidywań z alternatywnych modeli. Oceniliśmy jego zdolność do przewidywania nasilenia dolegliwości. Aby określić ilościowo poziomy dokładności modeli w klasyfikacji chorób, obliczyliśmy wartości procentowe nasilenia. Ponadto stworzyliśmy krzywą charakterystyki operacyjnej odbiornika (ROC) dla modelu GRU, upraszczając ocenę jego zdolności do rozróżniania różnych poziomów nasilenia. To kompleksowe podejście przyczynia się do dokładniejszego i bardziej szczegółowego zrozumienia oceny ciężkości choroby Parkinsona

    Assessing Parkinson’s Disease at Scale Using Telephone-Recorded Speech:Insights from the Parkinson’s Voice Initiative

    Get PDF
    Numerous studies have reported on the high accuracy of using voice tasks for the remote detection and monitoring of Parkinson’s Disease (PD). Most of these studies, however, report findings on a small number of voice recordings, often collected under acoustically controlled conditions, and therefore cannot scale at large without specialized equipment. In this study, we aimed to evaluate the potential of using voice as a population-based PD screening tool in resource-constrained settings. Using the standard telephone network, we processed 11,942 sustained vowel /a/ phonations from a US-English cohort comprising 1078 PD and 5453 control participants. We characterized each phonation using 304 dysphonia measures to quantify a range of vocal impairments. Given that this is a highly unbalanced problem, we used the following strategy: we selected a balanced subset (n = 3000 samples) for training and testing using 10-fold cross-validation (CV), and the remaining (unbalanced held-out dataset, n = 8942) samples for further model validation. Using robust feature selection methods we selected 27 dysphonia measures to present into a radial-basis-function support vector machine and demonstrated differentiation of PD participants from controls with 67.43% sensitivity and 67.25% specificity. These findings could help pave the way forward toward the development of an inexpensive, remote, and reliable diagnostic support tool for PD using voice as a digital biomarker

    Detection of emotions in Parkinson's disease using higher order spectral features from brain's electrical activity

    Get PDF
    Non-motor symptoms in Parkinson's disease (PD) involving cognition and emotion have been progressively receiving more attention in recent times. Electroencephalogram (EEG) signals, being an activity of central nervous system, can reflect the underlying true emotional state of a person. This paper presents a computational framework for classifying PD patients compared to healthy controls (HC) using emotional information from the brain's electrical activity

    Factor Analysis of Speech Signal for Parkinson’s Disease Prediction using Support Vector Machine

    Get PDF
    Abstract—Speech signal can be used as marker for identification of Parkinson’s disease. It is neurological disorder which is progressive in nature mainly effect the people in old age. Identification of relevant discriminant features from speech signal has been a challenge in this area. In this paper, factor analysis method is used to select distinguishing features from a set of features. These selected features are more effective for detection of the PD. From an empirical study on existing dataset and a generated dataset, it was found that the jitter, shimmer variants and noise to harmonic ratio are dominant features in detecting PD. Further, these features are employed in support vector machine for classifying PD from healthy subjects. This method provides an average accuracy of 85 % with sensitivity and specificity of about 86% and 84%. Important outcome of this study is that sustained vowels phonation captures distinguishing information for analysis and detection of PD

    Parkinson's Disease Detection through Vocal Biomarkers and Advanced Machine Learning Algorithms

    Full text link
    Parkinson's disease (PD) is a prevalent neurodegenerative disorder known for its impact on motor neurons, causing symptoms like tremors, stiffness, and gait difficulties. This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction. This research aims to predict the onset of Parkinson's disease. Utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine, among others, the study evaluates the predictive performance of these models using metrics such as accuracy, area under the curve (AUC), sensitivity, and specificity. The findings of this comprehensive analysis highlight LightGBM as the most effective model, achieving an impressive accuracy rate of 96% alongside a matching AUC of 96%. LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores. Given the complexities of Parkinson's disease and its challenges in early diagnosis, this study underscores the significance of leveraging vocal biomarkers coupled with advanced machine-learning techniques for precise and timely PD detection
    corecore