544 research outputs found

    Cuff Under Pressure for Greater Accuracy.

    Get PDF
    PURPOSE OF REVIEW: To present the evidence that describes what is being measured by upper-arm cuff blood pressure (BP) and the level of accuracy compared with invasive central aortic and brachial BP. Potential causes of inaccuracy and emerging methods are also discussed. RECENT FINDINGS: On average cuff systolic BP systematically underestimates invasive brachial systolic BP, although in a given individual it may substantially under- or over-estimate central aortic systolic BP. Such errors may affect individual health management outcomes and distort population level data on hypertension prevalence and control. Oscillometric cuff BP is particularly susceptible to inaccuracy in people with high arterial stiffness and with pathophysiological BP waveform shapes. Emerging cuff-less BP methods will be susceptible to inaccuracy if oscillometric cuff BP is used for calibration. The original purpose of cuff BP was to estimate central aortic BP. Recent evidence has shown substantial inaccuracy of oscillometric cuff BP exists for the measurement of invasive central aortic and brachial BP. Thus, development of more accurate BP methods, through better understanding of oscillometric and BP waveform morphology, is needed to improve health outcomes related to high BP

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Enhanced model-based assessment of the hemodynamic status by noninvasive multi-modal sensing

    Get PDF

    Cuff-free blood pressure estimation using signal processing techniques

    Get PDF
    Since blood pressure is a significant parameter to examine people's physical attributes and it is useful to indicate cardiovascular diseases, the measurement/estimation of blood pressure has gained increasing attention. The continuous, cuff-less and non-invasive blood pressure estimation is required for the daily health monitoring. In recent years, studies have been focusing on the ways of blood pressure estimation based on other physiological parameters. It is widely accepted that the pulse transit time (PTT) is related to arterial stiffness, and can be used to estimate blood pressure. A promising signal processing technology, Hilbert-Huang Transform (HHT), is introduced to analyze both ECG and PPG data, which are applied to calculate PTT. The relationship between blood pressure and PTT is illustrated, and the problems of calibration and re-calibration are also discussed. The proposed algorithm is tested based on the continuous data from MIMIC database. To verify the algorithm, the HHT algorithm is compared with other used processing technique (wavelet transform). The accuracy is calculated to validate the method. Furthermore, we collect data using our own developed system and test our algorithm

    Development of a new electromechanical probe for hemodynamic parameters assessment

    Get PDF
    Dissertação de Mestrado em Engenharia Biomédica apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra.As doenças cardiovasculares (DCVs) causam milhões de mortes todos os anos, sendo a principal causa de morte no mundo inteiro. A hipertensão é um dos mais relevantes factores de risco das doenças cardiovasculares. Assim sendo, é muito importante o desenvolvimento de um método de diagnóstico que seja barato, fácil utilização, preciso e capaz de detectar alterações precoces da performance do sistema cardiovascular, permitindo, desta forma, aumentar a probabilidade de sobrevivência. A análise da forma de onda da pressão sanguínea central fornece informações clínicas relevantes uma vez que patologias cardiovasculares alteram a sua forma de onda. Este projecto de investigação foca-se no desenvolvimento de um novo sensor hemodinâmico não-invasivo que integra um sensor piezoeléctrico e um acelerómetro ligados a um circuito demodulador. O sensor acessa a forma de onda da pressão sanguínea, simulada através das bancadas de teste desenvolvidas ao longo deste projecto. Numa fase inicial, os sinais resultantes são adquiridos recorrendo á utilização dos módulos de aquisição USB NI-6008 ou USB NI-6210 associado a um gerador arbitrário de formas de onda (Agilent), a uma fonte de alimentação e a um computador. Numa fase posterior foi utilizado um dispositivo multifuncional capaz gerar, guardar, converter, medir e analisar sinais analógicos e digitais (Digilent) e um computador. Algoritmos capazes de processar os sinais foram desenvolvidos utilizando o Matlab. Os resultados das avaliações da performance do sistema são apresentados ao longo da dissertação, incluindo os testes de validação efectuados nas bancadas de teste e a descrição da metodologia aplicada à análise dos sinais recolhidos. Testes experimentais provaram a eficiência da caixa de aquisição e da última versão da bancada de teste, permitindo adquirir, com precisão, sinais referentes à pressão arterial e à sua forma de onda. Palavras-Chave Doenças Cardiovasculares, Hipertensão, Forma de onda da pressão sanguínea da Carótida, Sensor Piezoeléctrico, Acelerómetro, Modulação, Desmodulação

    Methods and Instrumentation for Non-Invasive Assessment of the Cardiovascular Condition

    Get PDF
    Tese de doutoramento em Física (Pré-Bolonha), Especialidade de Física Tecnológica, apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraAs doenças cardiovasculares (DCVs) são a principal causa de morte a nível mundial e largamente responsáveis pelos custos crescentes nos sistemas de saúde. Nos últimos anos, a comunidade médica tem vindo a demonstrar um grande interesse na avaliação da rigidez arterial local, pressão arterial central e na análise da onda de pressão, devido aos seus valores preditivos no desenvolvimento deste tipo de patologias. Apesar da sua relevância, estes parâmetros hemodinâmicos permanecem particularmente difíceis de medir na prática clínica, já que a maioria dos dispositivos disponíveis exigem elevados conhecimentos técnicos (introduzindo a dependência de um operador), tecnologias dispendiosas ou apresentam abordagens de análise ineficientes. Este trabalho de investigação encontra assim a sua motivação no potencial impacto que instrumentação não-invasiva, exata e de fácil utilização pode ter na monitorização da condição hemodinâmica e no diagnóstico precoce e acompanhamento de DCVs. Neste contexto, uma nova geração de protótipos baseados na combinação de diferentes tipos de sensores eletromecânicos, bem como um conjunto de algoritmos de processamento de sinal adequados à extração de múltiplos parâmetros hemodinâmicos foram desenvolvidos. Dependendo do marcador de risco cardiovascular a ser avaliado, dois grandes grupos de dispositivos foram projetados. O primeiro grupo, focado na avaliação da rigidez arterial local, explorou uma configuração dupla inovadora com dois sensores acústicos ou piezoelétricos (PZs) para a medição da velocidade da onda de pulso (VOP) e outros índices temporais relevantes, num curto segmento da artéria carótida. O outro grupo, centrado na avaliação contínua da pressão arterial sanguínea (PAS) e onda de pressão arterial (OPA), também na artéria carótida, usou uma unidade vibrador-acelerómetro montada num mesmo suporte que permitiu ao acelerómetro detetar as vibrações produzidas, atenuadas e moduladas em amplitude quando em contacto mecânico com a parede do vaso. Os protótipos desenvolvidos foram extensivamente caracterizados em sistemas de bancada de teste, desenvolvidos para este efeito e capazes de reproduzir a variabilidade de uma ampla gama de situações clinicamente relevantes, bem como em condições in vivo. Relativamente à avaliação da rigidez arterial local, a primeira e segunda gerações de protótipos desenvolvidos apresentaram boa exatidão nos ensaios de resolução temporal realizados em tubos elásticos de bancadas de teste. O algoritmo de correlação cruzada exibiu a capacidade de medir VOPs altas (≈ 19 ms-1 e 14 ms-1) com erros relativos e coeficientes de variação inferiores a 10 % para os diferentes protótipos. Os sinais adquiridos provaram ser robustos e repetíveis, não sofrendo efeitos de crosstalk. Os resultados obtidos no estudo de validação pré-clínica em vinte indivíduos saudáveis com a segunda geração de protótipos foram ainda bastante satisfatórios. As VOPs carotídeas médias obtidas apresentaram uma correlação linear e forte entre si, estando os resultados próximos dos valores obtidos noutros estudos de referência. Além disso, a capacidade de reproduzir perfis de onda pressão distintos usando as sondas PZs foi também mostrada, quer utilizando o processo de desconvolução quer um circuito eletrónico integrador dedicado. No que diz respeito à avaliação da PAS e OPA, o processo de desmodulação produziu excelentes resultados na recuperação da morfologia da onda de pressão em condições de bancada de teste e in vivo. Para os dois protótipos desenvolvidos, várias formas de onda foram extraídas, com exatidão, das portadoras moduladas de aceleração, corrente ou potência elétricas, usando os algoritmos de deteção do envelope e do produto. Na bancada de teste foi possível reproduzir a forma de onda de pressão para posições de aplanação do tubo elástico sucessivamente mais elevadas com um erro quadrático médio de 2.4 ± 0.51 %, quando considerado o melhor método de extração. A eficácia de um novo método de calibração focado na utilização de curvas empíricas que convertem aceleração em pressão foi também demonstrado. Através da conservação da amplitude da portadora de aceleração, foi possível determinar os valores de pressão máximo, mínimo, médio e de pulso com erros relativos inferiores a 10 % em condições de bancada. Além disso, as diferenças de pressão entre o último protótipo desenvolvido e o sistema de referência foram, em média, ≤ 5 ± 8 mmHg, satisfazendo os critérios de exatidão de sistemas de medição de PAS clinicamente validados. Embora estudos de validação clínica sejam ainda necessários, os resultados globais obtidos neste trabalho para os dois principais tipos de protótipos dão bons indicadores quanto à sua utilização como alternativas válidas aos sistemas atualmente disponíveis, tanto em ambientes clínico quanto de investigação.Cardiovascular diseases (CVDs) are the leading cause of death worldwide and largely responsible for the ever increasing costs in healthcare systems. In the last few years, the medical community has demonstrated a great interest in local arterial stiffness, central blood pressure assessment and pressure waveform analysis, due to their predictive values in the development of this type of pathologies. Despite their significance, these hemodynamic parameters remain particularly challenging to measure in standard clinical practice since most available devices require high technical expertise (introducing operator dependence), burdensome technologies and/or present ineffective analysis approaches. This research work finds its motivation in the potential impact that non-invasive, accurate and easy-to-use instrumentation could have on the monitoring of hemodynamic condition and on the diagnosis and control of early stages of CVDs. In this context, a new generation of prototypes based on the combination of different types of electromechanical sensors, along with a set of signal processing algorithms suited to the extraction of multiple hemodynamic parameters were developed. Two major groups of devices were designed depending on the cardiovascular risk marker to be assessed. The first group, focused on local arterial stiffness evaluation, explored an innovative double headed probe configuration of acoustic or piezoelectric (PZ) sensors for the measurement of pulse wave velocity (PWV) and other relevant time-based indices, in a short segment of the carotid artery. The other main group, centered on the continuous assessment of arterial blood pressure (ABP) and arterial pressure waveform (APW), also at the carotid artery, used a vibrator-accelerometer unit mounted in a common support that enabled the accelerometer to sense the produced vibrations, attenuated and modulated in amplitude when in mechanical contact with the vessel wall. The developed prototypes were extensively characterized in test bench systems, purposely built and capable of reproducing the variability of a wide range of clinically relevant situations, as well as in in vivo conditions. Regarding local arterial stiffness evaluation, the first and second generations of developed prototypes presented good accuracy in time resolution experiments on elastic tubes at the test bench. Cross-correlation algorithm exhibited the capability of measuring high PWVs (≈ 19 ms-1 and 14 ms-1) with relative errors and coefficients of variation lower than 10 % for the different prototypes. The acquired signals proved to be robust and repeatable, not suffering from crosstalk effect. The results obtained in a pre-clinical validation trial of twenty healthy subjects with the second generation of prototypes were very satisfactory, demonstrating that the mean carotid PWVs obtained were linearly and strongly correlated and were in agreement with other reference studies. Additionally, the ability to reproduce distinct wave pressure profiles using the PZs probes was also shown, either using the demodulation algorithm-based process or a special circuit for electronic integration. Concerning APW and ABP assessment, the demodulation process yielded excellent results in recovering the morphology of pressure wave in test bench and in in vivo conditions. For the two developed prototypes, several waveforms were accurately extracted from the acceleration, current or power modulated carriers using the envelope and product detector algorithms. It was possible to reproduce the pressure waveform for successive higher applanation positions of the elastic tube at the test bench with a root mean square error of 2.4 ± 0.51 %, when considering the best extracting method. The effectiveness of a novel calibration method focused on the use of empirical curves which convert acceleration into pressure was also demonstrated. Through the conservation of the acceleration carrier amplitude, it was possible to determine the maximum, minimum, mean and pulse pressure values with relative errors lower than 10 % in bench conditions. Also, the mean pressure differences between the latest prototype and the reference system were, on average, ≤ 5 ± 8 mmHg, satisfying the accuracy criteria of clinically validated ABP devices. Although clinical validation studies are still required, the global results obtained in this work for the two major types of prototypes provide great prospects regarding their use as valid alternatives to currently available systems, both in clinical and research settings

    Non-invasive vascular assessment using photoplethysmography

    Get PDF
    Photoplethysmography (PPG) has become widely accepted as a valuable clinical tool for performing non-invasive biomedical monitoring. The dominant clinical application of PPG has been pulse oximetry, which uses spectral analysis of the peripheral blood supply to establish haemoglobin saturation. PPG has also found success in screening for venous dysfunction, though to a limited degree. Arterial Disease (AD) is a condition where blood flow in the arteries of the body is reduced,a condition known as ischaernia. Ischaernia can result in pain in the affected areas, such as chest pain for an ischearnic heart, but does not always produce symptoms. The most common form of AD is arteriosclerosis, which affects around 5% of the population over 50 years old. Arteriosclerosis, more commonly known as 'hardening of the arteries' is a condition that results in a gradual thickening, hardening and loss of elasticity in the walls of the arteries, reducing overall blood flow. This thesis investigates the possibility of employing PPG to perform vascular assessment, specifically arterial assessment, in two ways. PPG based perfusion monitoring may allow identification of ischaernia in the periphery. To further investigate this premise, prospective experimental trials are performed, firstly to assess the viability of PPG based perfusion monitoring and culminating in the development of a more objective method for determining ABPI using PPG based vascular assessment. A complex interaction between the heart and the connective vasculature, detected at the measuring site, generates the PPG signal. The haemodynamic properties of the vasculature will affect the shape of the PPG waveform, characterising the PPG signal with the properties of the intermediary vasculature. This thesis investigates the feasibility of deriving quantitative vascular parameters from the PPG signal. A quantitative approach allows direct identification of pathology, simplifying vascular assessment. Both forward and inverse models are developed in order to investigate this topic. Application of the models in prospective experimental trials with both normal subjects and subjects suffering PVD have shown encouraging results. It is concluded that the PPG signal contains information on the connective vasculature of the subject. PPG may be used to perform vascular assessment using either perfusion based techniques, where the magnitude of the PPG signal is of interest, or by directly assessing the connective vasculature using PPG, where the shape of the PPG signal is of interest. it is argued that PPG perfusion based techniques for performing the ABPI diagnosis protocol can offer greater sensitivity to the onset of PAD, compared to more conventional methods. It is speculated that the PPG based ABPI diagnosis protocol could provide enhanced PAD diagnosis, detecting the onset of the disease and allowing a treatmenpt lan to be formed soonert han was possible previously. The determination of quantitative vascular parameters using PPG shape could allow direct vascular diagnosis, reducing subjectivity due to interpretation. The prospective trials investigating PPG shape analysis concentrated on PVD diagnosis, but it is speculated that quantitative PPG shaped based vascular assessment could be a powerful tool in the diagnosis of many vascular based pathological conditions

    Non-Invasive Hemodynamic Parameters Assessment using Optoelectronic Devices

    Get PDF
    Tese de doutoramento em Engenharia Biomédica, apresentada à Faculdade de Medicina da Universidade de CoimbraA grande incidência das doenças cardiovasculares no mundo estimulou a procura de novas soluções que permitam a deteção precoce de processos patológicos associados a este tipo de doenças. Especial ênfase foi dada a métodos que permitem a monitorização da pressão arterial e da forma de onda de pressão arterial, que fornecem uma ferramenta precisa que complementa o diagnóstico baseado em múltiplos parâmetros. Da análise das características da forma de onda da pressão arterial, e da sua velocidade de propagação, podem ser extraídas importantes parâmetros clínicos de modo a avaliar o risco cardiovascular, a adaptação vascular e a eficácia terapêutica. O uso de múltiplos parâmetros permite minimizar erros na estimação de um dos parâmetros. As soluções emergentes para a monitorização cardiovascular têm-se afastado de tecnologias invasivas e caras para soluções não invasivas e sem contacto. Neste sentido, os sistemas ópticos apresentam uma grande vantagem devido ao grande progresso tecnológico sofrido nas últimas décadas. A natureza de não contacto desta tecnologia permite a medição sem distorção da forma da onda arterial ultrapassando as limitações dos aparelhos comerciais usados para este tipo de avaliação. O principal objetivo deste trabalho consistia em demonstrar que é possível adquirir através do uso de uma metodologia óptica, a forma da onda de pressão arterial sem contacto, com uma configuração que permite medir a velocidade onda de pulso (VOP) local e determinar os principais parâmetros usando algoritmos dedicados. Foram desenvolvidos quatro protótipos: três baseados em luz não-coerente e um em luz coerente. As sondas foram desenvolvidas usando uma configuração comum, composta por dois fotodetectores distanciados de 2 cm, o que garante a deteção da onda de pulso em dois pontos distintos e permite uma determinação rigorosa do tempo de trânsito. Nas sondas de luz não-coerente foram testados três fotodetectores: fotodíodos de avalanche, fotodíodos planares, e fotodíodos de efeito lateral (LEP). Os componentes do sistema óptico (protótipos das sondas e caixa de aquisição) foram desenhados com as características físicas que permitem o uso clínico, como a portabilidade, o tamanho compacto, leves, de baixo consumo e com materiais de baixo custo, ergonómicas para o operador e confortáveis para o paciente, de modo a serem consideradas uma solução interessante para a comercialização. Os testes in vivo permitiram a seleção da melhor combinação sonda/algoritmo para a determinação da PWV, usando o método da correlação e a sonda baseada em fotodíodos planares que demonstrou ser mais eficiente para a aquisição de sinais em humanos. O sistema óptico desenvolvido mostrou boa reprodutibilidade na avaliação inter e intra-operador. Um estudo alargado foi desenvolvido em 131 sujeitos jovens, com um valor médio PWV de 33.33±0.72 ms-1, confirmando o seu aumento com a idade. O teste comparativo entre a onda de distensão medida com o sistema óptico na carótida e o perfil da onda de pressão adquirida invasivamente por um cateter intra-arterial mostrou uma grande correlação entre as duas ondas (valor médio de 0.958), validando a capacidade das sondas ópticas para estimar a forma da onda de pulso de modo não-invasivo e sem contacto. A sonda óptica baseada em luz coerente foi testada em combinação com algoritmos de processamento de sinal baseados nos métodos short time Fourier transform e empirical mode decomposition, demonstrando ser capaz de determinar os pontos característicos da forma de onda com baixo erro (menor que 5ms). Uma configuração alternativa foi testada usando um fotodetector com uma maior área que permitiu obter o efeito de self-mixing fora da cavidade laser. Esta característica abriu a possibilidade de construir uma nova sonda adaptada a esta nova técnica de modo a melhorar a qualidade do sinal e permitir uma aplicação biomédica. Globalmente, os resultados obtidos para a metodologias desenvolvidas (protótipos e ferramentas de processamento de sinal associados) mostraram ser possível de medir a onda de pulso arterial na carótida, para determinar vários parâmetros clínicos e avaliar a condição cardiovascular.The world wide incidence of cardiovascular diseases (CVDs), has spurred the research efforts targeting new solutions that may be able to perform an early detection of the pathological processes associated with these diseases. Special emphasis has been given to the methods that allow the monitoring of the blood pressure and the arterial pulse waveform, thus providing a more precise tool to complement the diagnosis process based on a multi-parameter assessment approach. From the analysis of arterial pulse pressure waveform features, and its propagation velocity, important clinical parameters can be extracted in order to evaluate the CVD risk, the vascular adaptation and the therapeutic efficacy. The use of multiple parameters allows to minimize the error when compared to the approach where a subject is classified solely based on a single parameter. Emerging trends in cardiovascular monitoring are moving away from invasive and costly technologies towards non-invasive and low-cost solutions. In this sense, optical solutions represent a great advantage due to the immense technological progresses observed in the recent decades. The truly non-contact nature of optical techniques allows measurements without distortion in the shape of the pulse curve, which is one of the main limitations of the current commercial devices used in hemodynamic parameters assessment. The main objective of this work consists in demonstrating that with an optical system it is possible to acquire the arterial pulse waveform with a configuration that allows the local pulse wave velocity (PWV) measurement and the determination of the most important clinical parameters using dedicated algorithms, without physical contact with the skin of the patient. Four prototypes were developed: three based in non-coherent light and one with coherent light. All the developed optical probes have a common design structure. They include two identical photodetectors placed 2 cm apart from each other to guarantee accurate determination of local pulse transit time. Relatively to the non-coherent light probes three different probes base on photodetectors were tested: an avalanche photodiode, a planar photodiode and a lateral effect photodiode (LEP). The optical system components (probe prototypes and acquisition box) were designed to meet specific requirements that allow the clinical use, such as portability, compact size and low weight, low cost, limited power consumption, ergonomics and easy user-interface in order to be considered as an interesting solution for commercial purposes. The in vivo tests allowed the selection of the best algorithm and probe combination to determine PWV: cross-correlation algorithm and the probe with planar photodiodes demonstrated to be the most efficient. This system showed good reproducibility, as evaluated by both inter-operator and intra-operator analysis. A large study was performed in 131 young subjects, obtaining a mean value for PWV of 3.33±0.72 ms-1, thus confirming its significant increase with age. A comparative test between the distension waveform measured with the optical probe at the carotid artery and the invasive profile of the pulse pressure acquired by an intra arterial catheter showed a strong correlation (mean value of 0.958), and validates the ability of this non-invasive device to estimate the arterial pulse waveform. Also a coherent light probe was developed and tested using several processing techniques based on the short time Fourier transform and empirical mode decomposition algorithm. This approach demonstrated the ability to determine the main feature points in the waveform with low error in the pulse transit time determination (less than 5ms). An alternative configuration for the Doppler effect-based probe was tested, using a photodetector with a larger area in order to obtain the self-mixing effect outside the laser cavity. This feature opened the possibility to improve the quality of the signal which may foresee potential future biomedical applications. Globally, the results obtained with the developed methodologies (prototypes and associated algorithmic tools) proved that it is possible to measure the arterial pulse waveform in the carotid artery, to determine several clinical parameters and assess the cardiovascular condition with optical technology.Fundação para a Ciência e Tecnologia - SFRH / BD / 79334 / 201
    corecore