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Abstract

Since blood pressure is a significant parameter to examine people’s physical attributes

and it is useful to indicate cardiovascular diseases, the measurement/estimation of blood

pressure has gained increasing attention. The continuous, cuff-less and non-invasive blood

pressure estimation is required for the daily health monitoring. In recent years, studies

have been focusing on the ways of blood pressure estimation based on other physiological

parameters. It is widely accepted that the pulse transit time (PTT) is related to arterial

stiffness, and can be used to estimate blood pressure.

A promising signal processing technology, Hilbert-Huang Transform (HHT), is intro-

duced to analyze both ECG and PPG data, which are applied to calculate PTT. The

relationship between blood pressure and PTT is illustrated, and the problems of calibra-

tion and re-calibration are also discussed. The proposed algorithm is tested based on the

continuous data from MIMIC database. To verify the algorithm, the HHT algorithm is

compared with other used processing technique (wavelet transform). The accuracy is cal-

culated to validate the method. Furthermore, we collect data using our own developed

system and test our algorithm.
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Chapter 1

Introduction

1.1 Background

Blood pressure carries a great deal of information about people’s physical attributes. In

recent years, blood pressure has been paid increasing attention because it is useful to

indicate cardiovascular diseases, such as hypertension, heart attack and asthma. Blood

pressure is the pressure of blood against the walls of the arteries as the blood is circulating

in the arteries [1]. It is the driving force of pushing blood to flow in the vessels. The history

of blood pressure measurement can be traced back to the year of 1733. Stephen Hales, a

British veterinarian, recorded blood pressure of animals by using brass pipes [2]. In 1896,

the traditional blood pressure instrument known as a sphygmomanometer was developed

by an Italian physician Scipione Riva-Rocci [2].

Systolic blood pressure (SBP) is the peak pressure in the arteries when the blood flows

from the ventricles to the arteries, which occurs near the end of the cardiac cycle as the

ventricles are contracting. Diastolic blood pressure (DBP) is the minimum pressure in the

arteries during ventricular diastole, which occurs near the beginning of the cardiac cycle

when the ventricles are full of blood [1]. The metrical unit of blood pressure is called

millimeters of mercury (mmHg). Normal blood pressure in adults is lower than 120/80

mmHg [3].

As blood pressure is the power of blood flowing down the aorta and into distributing

arteries, blood could not supply the whole body if blood pressure is too low. On the

contrary, the vessels might be injured by the too high blood pressure, or even some ab-

normities of the heart happen [4]. Some factors, such as stature, age, density of blood,

posture, resistance of vessel, drugs, diet, disease, etc., could affect the blood pressure.

Moreover, it changes during the day. When one is asleep, blood pressure is lowest and it

increases as one is awake. It can also change with the mood. Blood pressure is so im-
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portant because it is a valuable indication of body status. Due to the high stress of the

modern society, increasing numbers of people have hypertension, especially, the elderly.

It is said that hypertension happens in more than half of all Americans aged 65 years or

older [5]. Hypertension, defined as the value of SBP/DBP is higher than 140/90 mmHg,

can cause heart attacks, strokes and other problems. Hypertension is also a major cause

of disability, and it is an important risk factor for death, about 7.5 million deaths per year

(13% of all deaths) [6]. Daily monitoring of blood pressure provides vital feedback to the

prevention of hypertension. The daily blood pressure monitoring removes the white coat

hypertension and masked hypertension problems. And it is more convenient for patients

and may lead to better blood pressure control [7]. Therefore, observation of blood pressure

is really essential.

1.2 Conventional approaches to measure blood pressure

The approaches to measure blood pressure can be classified into invasive and non-invasive

methods. The invasive blood pressure measurement is a gold standard which can give more

accurate reading of beat-to-beat blood pressure. It is often used when rapid changes of

blood pressure are anticipated, or the long-term recording of blood pressure is required.

This invasive method uses catheter over a needle to insert in patient’s artery to measure

blood pressure directly. A needle with catheter is entered into the vessel first, and when the

blood flows through the needle, the catheter is advanced over the needle into the vessel.

The pressure-transducing system connects with the catheter [1]. The basic components

of the system are intra-arterial cannula, tubing (incorporating an infusion system), trans-

ducer, microprocessor and display screen, and mechanism for zeroing and calibration [2].

Both numerical and graphical information are available by this continuous invasive method.

Although it is continuous and accurate, it makes patients uncomfortable. It needs close

supervision because it might cause severe bleeding if the measurement system is discon-

nected. Moreover, it is difficult to operate and there is the possibility of infection and pain.

Therefore, it is desirable to develop the non-invasive method.

The existing non-invasive methods to measure blood pressure include non-continuous

methods, which contain auscultatory and oscillometric methods, and continuous methods,

which contain arterial tonometry, plethysmography and pulse transit time (PTT)-based
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method [8]. The auscultatory method is based on a blood pressure cuff placed around

the arm of the subject to stop the blood flow in the artery. The Korotkoff sounds can be

detected as the slow deflation of the blood pressure cuff with a stethoscope placed on the

brachial artery. The systolic blood pressure is determined as the pressure of the inflated cuff

when Korotkoff sounds are first detected, while the cuff pressure when Korotkoff sounds

become muffled or disappear represents the diastolic blood pressure. As the heart beats

are actually felt by an operator, this method is still acceptable rather than the invasive

way. However, the Korotkoff sounds are difficult to detect for patients who are in low-flow

state and it also needs a trained person to detect the Korotkoff sounds [9]. Sometimes, the

Korotkoff sounds do not disappear for some patients, which means one could not identify

the diastolic blood pressure.

Similar to the auscultatory method, the oscillometric method also requires a blood

pressure cuff around the arm of the patients to stop the blood flow. A pressure trans-

ducer is used to record the pressure instead of detecting the Korotkoff sounds. Arterial

pulsations cause oscillations in the cuff pressure. The cuff pressure is equal to the mean

arterial pressure when the oscillations are at their maximum and the systolic blood pres-

sure and diastolic blood pressure are estimated from the mean blood pressure and the

oscillation pattern [10]. For this method, one has to make sure the measurement position

of the subject’s arm is at the same level of the heart. Otherwise, it would give a false

result. Therefore, doctors prefer three measurements in a row to get more accurate results.

Moreover, it does not work well for the patients who have irregular heart beats. These two

methods using cuffs can not provide continuous measurement of blood pressure with the

cuff inflation and deflation.

In recent years, the non-invasive blood pressure monitors have been widely applied

in hospitals and clinics. However, clinical research studies have shown that the difference

between direct blood pressure and non-invasive blood pressure by various monitors is within

5 mmHg on average [11]. They also demonstrate that the difference could be 37 mmHg by

the non-invasive blood pressure measurement. Therefore, the non-invasive blood pressure

measurement should be further investigated with different methods or some consecutive

measurements by a non-invasive blood pressure monitor. Moreover, the cuff size should be

proper to an individual. A too large cuff will cause inaccurately low results whereas a too

small cuff will lead to inaccurately high results. The width of a cuff should be equal to
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40% of the arm circumference [11]. Inaccurate recordings of blood pressure could happen

under some conditions, like highly irregular or rapid cardiac rhythms. As the oscillometric

method is dependent on the regular cardiac rhythms, some subject movements or external

movements such as that from an ambulance transport can disturb the measurements.

The continuous and cuff-less measurement of blood pressure is desirable for home

health-care or easing workload of clinicians at hospitals. Tonometry can determine beat

to beat arterial blood pressure by adjusting the pressure required to the artery located

between a tonometer and a bone. It was firstly invented in 1963 [12]. This system includes

four basic steps and applies a tissue stress sensor. The continuous diaphragm of the tissue

stress sensor is placed against a tissue with an artery nearby, and the sensor is used to bear

against the tissue. Then, the monitor portion on the sensor is determined and the stress

caused by the arterial pulsations is detected at the monitor portion. It is able to offer the

continuous pressure waveform but it is subject to the relatively high cost compared with

a conventional sphygmomanometer and its accuracy is decreased by the high sensitivity

to sensor position and wrist movements [13]. The plethysmographic method measures the

change in volume of blood in an extremity, which is caused by the arterial pulsations [1][14].

A finger cuff is applied to detect the minimum pressure and maintain a constant finger

blood volume. The changes of finger blood volume are detected and the cuff pressure is

adjusted to track the blood pressure. But this method does not work for patients with low

peripheral perfusion, hypothermia or low-flow states [1].

1.3 Methods of blood pressure measurement/estimation us-

ing signal processing techniques

The continuous, cuff-less and non-invasive measurement of blood pressure is more desirable

for people to regularly monitor their blood pressure. In recent years, the estimation of blood

pressure using other physiological parameters has been studied extensively. In this section,

these methods are reviewed in terms of the main idea, the results, the advantages and the

limitations of each method. Particularly, PTT, photoplethysmographic signal and heart

rate are considered in this section.
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1.3.1 The blood pressure measurement based on pulse transit time

It is commonly accepted that PTT can be regarded as an index of arterial stiffness, and

has been employed as an indirect estimation of blood pressure [15]. PTT can be measured

as the time interval between the peak of R wave of the electrocardiogram (ECG) and a

characteristic point at predetermined thresholds of the photoplethysmogram (PPG) in the

same cardiac cycle, which is the blood propagation period from the aortic valve to a pe-

ripheral site. ECG describes and records the electrical activity of the heart by detecting

and amplifying the tiny electrical changes using the skin electrodes, and it consists of P

wave, QRS complex and T wave. Each part of ECG waveform has its physical meaning.

The QRS complex of it represents the ventricular contraction, corresponding to the depo-

larization of the right and left ventricles. PPG measures the volume change of blood in an

organ. It is obtained by a pulse oximeter by illuminating the skin and measuring the light

amount of either transmitted or reflected. The starting point of PTT is the R wave peak

of ECG, and mainly there are several different choices of the ending point [16]. Figure 1.1

gives the definition of PTT.

PTT was originally applied in the area of blood pressure estimation by Gribbin et al.

in 1976. Since then, researchers have studied the mechanism and feasibility of this method.

In 1979, Obrist discussed that PTT can be used as an index of blood pressure [17]. Lane

studied the relationships between PTT and SBP, DBP, and mean arterial blood pressure

by experiments in 1983 [18]. They found the correlations were dependent on individuals.

Different expressions have been derived to characterize the relationship between the blood

pressure and the PTT. Most effective ones are Moens-Korteweg’s [19] and Bramwell-Hill’s

[20], which have been widely used and extended. Essentially, the elasticity of an artery was

early recognized to be related to the velocity of the volume pulses propagating through it

[21][22]. When blood pressure goes up, the arterial compliance decreases, and the pulse

wave velocity is higher, PTT is reduced. Therefore, the PTT-based method is to apply

the relationship to estimate blood pressure.

The pulse wave velocity PWV is defined by Moens and Korteweg as a function of such

factors as the thickness of vessel wall t, the elasticity of the arterial wall, the density of

blood ρ and the interior diameter of the vessel d. The equation is shown as follows [19]:

PWV =

√
tE

ρd
, (1.1)
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Figure 1.1: The definitions of different PTTs. PTT-peak, PTT-middle and PTT-
foot are the time intervals measured from the R-wave peak of ECG to the peak,
middle and foot of PPG, respectively. Diastolic time is from the peak to the foot of
PPG.
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where E stands for the Young’s modulus describing the elasticity of the arterial wall, and

generally it is not a constant. Further, the Young’s modulus E was described by Geddes as

E = E0e
αP [19], where E0 is the modulus of the zero pressure, α is a constant that depends

on the vessel, varying from 0.016 mmHg−1 to 0.018 mmHg−1, P is the blood pressure, and

e is 2.71828. Then we have

PWV =

√
tE0eαP

ρd
. (1.2)

In the work, the relationship formula developed in [23] based on the above Moens-Korteweg

formula will be applied.

Bramwell and Hill have found that the propagation velocity of the pulse wave in the

artery filled with blood is related to the volume-pressure relationship of the artery, with

the assumption that the artery is an elastic tube filled with an incompressible and invisible

liquid, which can be written as [20]:

PWV =

√
V

ρ

∆P

∆V
, (1.3)

where PWV is the velocity of pressure wave, V is the volume of the tube, ρ is the density of

the blood, ∆V is the volume change, and ∆P is the change in the distending pressure. The

velocity of pressure wave can also be described as PWV = L
T , where L is the length of the

pulse wave propagation along the artery, and T represents the pulse transit time. Therefore,

the velocity of local pressure wave can be readily estimated by using this equation. It

requires no knowledge of the thickness and diameter of the vessel, or of the elasticity of

the arterial wall, but only the rate of increase of volume with pressure, which is simply

and directly observable. The compliance, C, which represents how much the change in the

volume is in response to a given change in the distending pressure:

C =
∆V

∆P
. (1.4)

Thus, PTT can be written in terms of compliance and volume [24]:

(
L

T
)2 =

V

ρC
. (1.5)

According to the above discussion, the blood pressure is inversely proportional to PTT,

and the relationship between them is individual-dependent, thus, many researchers apply

the linear regression in estimating the blood pressure [25]: first, the coefficients of the
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model are identified based on the experimental data; second, the model is used for blood

pressure estimation.

According to the Association for the Advancement of Medical Instrumentation (AAMI),

an organization responsible for the safety and efficacy of medical instrumentation, blood

pressure estimation, for both SBP and DBP, must have an absolute value of error mean

less than 5 mmHg and the error standard deviation less than 8 mmHg. Most researchers

use this standard to verify their results.

In 1981, Geddes et al. measured diastolic blood pressure and pulse arrival time to

analyze the relationship using 10 anesthetized dogs. They showed PTT detected in different

locations along the vessel was highly related to diastolic time [26]. Marie et al. found out

that PTT was highly related to blood pressure during dynamic and static exercise [27].

Okada analyzed some factors (age, SBP, DBP, phospholipid) that might be related to pulse

wave velocity in 1988. The transmission time used in his work was obtained from fingertip

to toe tip [28]. ECG, the peripheral plethysmographic wave and the intra-aortic pressure

were studied by Franchi et al. in 1996. They obtained the correlation between the pressure

and two delays, from ECG R-wave to the aortic pulse and from aortic pulse to ear lobe

pulse [29].

In the 2000s, PTT-based blood pressure estimation method gained a great deal of

attention. In 2002, Nitzan et al. compared the time delay between ECG R wave and the

arrival time at the toe with the time difference from the finger to the toe, which were both

related to pulse wave velocity. Both of them showed high correlation with SBP, which

with the correlation coefficients -0.670 and -0.515, respectively [20]. Fung et al. applied

the kinetic energy of the wave and the gravitational potential energy on the study of the

relationship between the PTT and blood pressure in 2004 [30]. In the same year, Lass

et al. proposed that it was possible to estimate the beat to beat systolic arterial blood

pressure based on PTT during the exercise [31]. The auscultatory method was used at the

end of each recording minute to measure blood pressure and a continuous measurement

Finapres was also applied to record the beat to beat blood pressure during the test. Park

et al. introduced some other physical parameters (weight and arm length) together with

PTT to estimate unspecified people’s SBP in 2005. The model gave the acceptable results

compared with the standard by AAMI [32]. Ahlstrom investigated if this method can be

used in hemodialysis patients. The results showed the large sudden pressure changes like
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in sudden hypovolemia can be detected [15]. Foo et al. got the results that SBP had

the strongest correlation with vascular transit time, which was measured from PPG and

phonocardiography. The regression equation of blood pressure and vascular transit time

was modeled in the project, and it showed DBP and mean blood pressure could also be

estimated by vascular transit time [33].

In [34], the system of collecting ECG and PPG was introduced, and the non-invasive

continuous blood pressure was measured. A novel adaptive algorithm for calibrating non-

invasive PTT measurements to arterial blood pressure was presented in [35]. This new

algorithm allowed complete calibration of PTT to BP without the use of an oscillometric

blood pressure cuff or external pressure sensor. It used the natural motion to do the

calibration. The natural motion includes varying the height of the sensor relative to the

heart to alter hydrostatic pressure at the measurement site and adjusting proximal joint

posture to vary the external arterial pressure at the measurement site. The techniques

of analyzing pulse wave velocity were discussed by Boutouyrie et al. in 2009 [36]. They

reviewed the methods of measuring PTT and the available devices to measure pulse wave

velocity.

The main work of [25] was to determine which time parameters from ECG and PPG

were better to estimate SBP and DBP, respectively. The results showed that PTT cal-

culated between ECG R-wave and maximum first derivative PPG was strongly related to

SBP, and diastolic time, which was from PPG, had better performance to determine DBP.

Moreover, for SBP, individual regression method was more accurate. There was not much

difference for DBP.

Heart rate was introduced to estimate blood pressure combined with pulse arrival time

in [37]. The results showed better performance compared with the method only using

pulse arrival time for the blood pressure estimation. Moreover, they analyzed the effect

of skew and jitter on blood pressure estimation. They talked about the methods of initial

calibration (least-squares algorithm), adaptive re-calibration (RLS algorithm recursions),

enhancing robustness (keeping the parameters within certain limits), and fixing the bias.

The study in [38] aimed to test if PTT can be used to estimate SBP during steady state

exercise. The results showed that PTT reflected the changes of blood pressure, cardiac

output and arterial stiffness during steady state exercise, but should not be applied as the

only index of blood pressure estimation. In the experiments, twelve male subjects cycled
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for 70 mins in three different conditions. Meanwhile, ECG, PPG, blood pressure, cardiac

output and respiratory frequency were measured. The results showed the changes of PTT

was related with SBP (r=-0.66), however, the regression analysis showed that SBP only

described 29 % of the observed variability in PTT.

Foo and Wilson [39] reviewed the clinical applications of PTT-based method and the

advantages and limitations of it. It could be applied in respiratory sleep studies and

cardiovascular studies, and it had potential to use for small infants during critical care.

Comparing with the conventional non-invasive blood pressure measurements, the PTT

method provides the beat to beat readings. Multiple readings might minimize the white-

coat effect and increase the probability of hypertension investigation. In addition, the

conventional methods also face the problems of selecting the proper cuff size and position

to ensure the accuracy.

In recent years, two research groups have studied the method, which are led by Zhang

in Chinese University of Hong Kong, and by Muehlsteff in Philips Research Europe, re-

spectively. The results of them will be discussed in the following parts.

Starting with the year of 2005, the group of Zhang analyzed the relationship between

PTT and other cardiovascular variabilities, especially blood pressure. They collected con-

tinuous blood pressure, ECG and PPG signals from 11 healthy persons. The results indi-

cated PTT can be used to estimate BP for the healthy static body state [16]. In [9], they

found out that the PTT-based method had the potential to be applied in wearable devices,

compared with the standard of AAMI.

In 2006, they began to consider exercises in their project. They compared the results

with the measurements by Finometer, and there was only occasional discrepancy during

the recovery period [13]. As the PTT-based method is dependent on individuals, they

introduced a model that solved the individualized calibration problem. Hand elevation was

used to obtain the individualized coefficients, which made the estimation more accurate

and robust [40]. Because the experiments carried out before indicated that the contact

force between the PPG sensor and the fingertip affected the values of PTT, they studied

the pressure of the sensors by theoretical modeling in 2007. In the theoretical model,

a nonlinear arterial Pressure-Volume curve described the bio-mechanical property of the

finger arterial wall. Based on the simulation results, it was obvious to see that if the applied

contact force increased, PTT went up. So they were suggesting the sensor applied on the
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fingertip should be carefully controlled in the experiments to guarantee the PTT values

[21].

Another attention was paid to the pre-ejection period effect on the estimation of blood

pressure based on the PTT method in 2008. They systematically observed and verified

the inclusion of pre-ejection period in PTT for this non-invasive blood pressure estimation

[41]. In [42], they found the median correlation of beat to beat PTT and invasive blood

pressure was reduced from -0.73 to -0.63 as the number of the beats went up from 15 to

360. Since the relationship between blood pressure and PTT changed with time, frequent

calibration was required to estimate beat to beat blood pressure. Least-squares regression

was used to estimate BP in the first test and a repeatability test carried out half year later

in [43]. Blood pressure in the repeatability test was also estimated using the regression

coefficients in the first test. The results in the first and repeatability tests illustrated

that after exercises, blood pressure increases and PTT decreased, and SBP was strongly

related to PTT. However, the regression coefficients obtained firstly could not be applied

to estimate blood pressure accurately.

In [44], they analyzed the influence of running on the PTT-based blood pressure es-

timation. The results showed that SBP was more closely related to PTT-foot than to

PTT-peak, and re-calibration was needed during the continuous exercises. They arranged

the experiments with four main periods: Pre-exercise, Post-exercise 1 (after 3 min of

10km/h running), Post-exercise 2 (after 3 min of 8km/h running) and Recovery. The

exercises affected blood pressure estimation using PTT because exercises influenced the

geometric and elastic properties of arteries which were related to PTT. The results showed

re-calibration was needed because the influence of exercises could last more than 30 min

and the dependance of arteries on the intensity of exercises.

Philips Research Laboratories Europe also explored this topic. In 2006, they investi-

gated the effect of pre-ejection period on pulse arrival time more than PTT [45]. In [46],

they indicated that the effect of PTT and pre-ejection period on blood pressure estima-

tion. The results showed that SBP was highly related to pulse arrival time which was the

combination of PTT and pre-ejection period. They applied the PTT-based method to a

wearable body sensor network in 2008. The device and the wireless data transmission were

discussed in [47]. They studied the influence of posture on the PTT measurement. The

context information on posture and physical activity was required in the application of the
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PTT-based method [48].

As PTT has been accepted as a main indication of blood pressure estimation, the PTT-

based blood pressure estimation method has been applied in some health monitor systems.

In 2000, Heard et al. tested the DxTek monitor, which uses the PTT-based non-invasive

and continuous blood pressure estimation [49]. They recorded blood pressure using DxTek

monitor, oscillometric method and intra-arterial method in intensive care unit patients.

The results that they found out was the DxTek monitor could give an accurate recording

of blood pressure of intensive care unit patients compared with the oscillometric method.

A wireless body sensor network was developed by Espina et al. in 2006 [50]. The wireless

body sensor network provides continuous cuff-less blood pressure monitoring based on the

PTT-based method. The measure positions are waist for ECG and ear for PPG.

The Wearable Intelligent Sensor and System for e-Health was developed in 2006 [51].

It can monitor the continuous health condition and display it. Moreover, treatment and

alarming are conducted if needed. The health-shirt, which is part of the system, is wearable.

In their test experiment, Finometer was employed to measure the continuous blood pressure

as a reference. The continuous biological signals, including ECG, PPG, SBP and DBP,

were recorded for 15 mins, which included pre-exercise for 5 mins, riding on a bicycle for

5 mins and rest for 5 mins. The results showed that the error of the estimated blood

pressure was quite large. The smart vest, a wearable multi-parameter remote physiological

monitoring system, was developed to monitor ECG, PPG, heart rate, body temperature,

galvanic skin response, SBP and DBP [52]. In the blood pressure estimation, it applied

the PTT-based method.

It is worth noting that PTT-based blood pressure estimation method has gained much

focus. It gives promising results by the previous study. The signal processing procedure

would be studied to improve the accuracy of this method.

1.3.2 The blood pressure measurement based on photoplethysmogram

signal

From the previous introduction, the estimation of blood pressure based on PTT can be

recognized as an accurate non-invasive and cuff-less method. However, it requires two

independent channels to measure the time interval, which increases inconvenience to users

and the probability of errors’ occurring. Due to these, some attempts are made to estimate
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blood pressure just based on PPG signal. PPG is a volumetric measurement of an organ

using a pulse oximeter.

The PPG signal can be analyzed in both time domain and frequency domain to estimate

blood pressure. Teng and Zhang chose four features of PPG signals, which were width of

2/3 pulse amplitude, width of 1/2 pulse amplitude, systolic upstroke time and diastolic

time, to find an optimal feature for estimating blood pressure [53]. In the analysis of

PPG signals, continuous wavelet transform was used to solve the problems of unclear foot

position and foot position shift. Linear regression line in the form of y = ax + b was

established for SBP and DBP respectively using the data of some trials, and then, some

other trials from the same subject were applied to estimate blood pressure. The results

showed that the systolic upstroke time and diastolic upstroke time from the PPG signals

have higher correlation with blood pressure. In general, there is better performance in DBP

estimation, with the mean differences using systolic time and diastolic time, respectively,

but worse performance in SBP estimation [53].

A new feature, normalized harmonic area, which is obtained from PPG signal in the

frequency domain, has been showed that it has high correlation with blood pressure by Yan

and Zhang [54]. In this method, the discrete period transform algorithm, which is good at

solving low frequency signals such as PPG signals (approximately 0.1-10 Hz), is used to

calculate the spectrum of each beat in frequency domain. The results of the experiment,

which involved 28 healthy volunteers, aged 24-30 years, shows normalized harmonic area

has more significant correlation with blood pressure and smaller error than both PTT

and diastolic time. The mean differences and standard deviations of SBP and DBP are

0.37 ± 4.3 mmHg and 0.47 ± 4.8 mmHg [54]. However, the physiological mechanisms of

the relation are needed to be explored. Later, they did more research on the PTT-based

method.

The estimation of blood pressure only based on PPG signal requires more studies on

its relation between blood pressure and PPG, which results in that more research and

publications are focusing on PTT-based methods.

1.3.3 The blood pressure measurement based on heart rate

Biologically, heart rate is the number of heart beats per minute. It is related to blood

pressure. The two main determinants of blood pressure are cardiac output, which is the
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volume of blood pumped by heart per minute, and systemic blood vessel’s resistance, which

is determined by many factors, including vasomotor tone in arterioles, terminal arterioles,

or precapillary sphincters [55]. Blood pressure can be expressed as:

BP = CO × SV R, (1.6)

where BP is blood pressure, CO is cardiac output and SV R is systemic vascular resistance.

Moreover, the cardiac output can be deduced by the stroke volume and heart rate as

following:

CO = HR× SV, (1.7)

where HR is heart rate and SV is the stroke volume. Then, according to these two

equations, blood pressure has the correlation with heart rate as shown:

BP = SV × SV R×HR. (1.8)

Type-2 fuzzy system has been introduced in this method by Mahmood, Al-Jumaily

and Al-Jaafreh [56]. As well known, type-2 fuzzy system is one of the most significant

techniques to deal with high uncertainty, sensitive and non-linear problem [57]. So this

type-2 fuzzy system is used to estimate blood pressure using heart rate as the input. Al-

Jaafreh and Al-Jumaily set up different type-2 fuzzy systems to estimate systolic blood

pressure and diastolic blood pressure respectively, which both use heart rate as the inputs.

And then, the mean arterial blood pressure is calculated by SBP and DBP using the

equation as the following:

MBP = DBP +
1
3
× (SBP −DBP ). (1.9)

The design of a type-2 fuzzy system for the estimation of blood pressure includes four

steps, i.e. fuzzification, rules, inference engine and output process [56]. Firstly, the input

HR is fuzzified into five grades. If the heart rate has non-zero membership value in two

grades, assign it with higher membership grade. Secondly, the rule, which has ”If” and

”Then” part, is applied. Next, the inference engine applies the fuzzy rules on truth values of

input variables to obtain a corresponding output. The widely used methods are minimum

t-norm and product t-norm. The scale of output blood pressure applies the product t-norm

inference method. Finally, the method named center of sets was used to reduce the type of

the system, and then, the defuzzifier uses the mid point of type reduced sets as the output

value.
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The results based on 30 adult healthy subjects showed that the mean differences and

standard deviations of SBP, DBP and MBP are 3.8 ± 12.8 mmHg, −5.0 ± 8.6 mmHg

and 4.6 ± 10.3 mmHg [58]. In order to obtain better results, the fuzzy logic system can

be programmed into a micro-controller. The type-2 fuzzy system achieves encouraging

outcomes, which the absolute value of mean differences of SBP, DBP and MBP are less

than 5 mmHg. However, the error standard deviation needs to be improved to meet the

standard of AAMI.

It can be obviously seen that using heart rate to estimate blood pressure based on

type-2 fuzzy system has worse accuracy.

1.3.4 Summary

The methods of measuring blood pressure have been reviewed as above. The continuous,

non-invasive and cuff-less method is more desired with considering the regular measurement

of blood pressure necessarily. The estimation of blood pressure based on other physical

parameters has a potential because of its convenience and accuracy. One of the most widely

used parameters is PTT, which would be focused on.

1.4 Contributions and outline

1.4.1 Objectives and contributions

As blood pressure is one of the most vital signs for clinical use and the continuous non-

invasive cuff-less blood pressure estimation is desirable in wearable health devices, PTT-

based blood pressure estimation is discussed in our work. We propose the following research

topics in the thesis:

• PTT-based blood pressure estimation using Hilbert-Huang Transform: In

the method of PTT-based blood pressure estimation, signal processing is one of the

crucial parts. Due to the inherent nonlinear and non-stationary properties of the

ECG and PPG signals, Hilbert-Huang Transform (HHT) technique can be applied

to process the signals and improve the accuracy of the estimation. The theory of the

HHT algorithm is introduced and our algorithm is discussed.
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• Testing PTT-based blood pressure estimation on elderly: Since the daily

monitoring of blood pressure for elderly is really demanded, we focus on applying

the PTT-based blood pressure estimation using the HHT algorithm to older adults.

Some details of the method, such as the correlation of blood pressure and PTT,

the ending point of PTT, and re-calibration are analyzed. To verify our algorithm,

the wavelet transform is applied to compare with the HHT algorithm. Moreover,

the Multi-innovation Recursive Least Square algorithm is applied to estimate the

unknown parameter vector. Its application to elderly is studied to guarantee the

acceptable results.

• The application of PTT-based blood pressure estimation to the data by

the developed device: Continuous ECG and PPG can be recorded by the device

developed in the FANFARE project. By applying HHT algorithm, the data are

analyzed to obtain PTT values. Based on the equations in Chapter 3, the changes

of blood pressure are calculated and its relationship with PTT is studied.

The main contributions of the thesis can be briefly summarized as follows:

• To the best of our knowledge, the HHT technique is, for the first time, applied to

the PTT-based blood pressure estimation method. Due to the nonlinear and non-

stationary properties of the physiological signals, the introduction of HHT algorithm

could improve the results.

• We verify that the PTT-based blood pressure estimation method can be used in

elderly. According to the comparison of the wavelet transform, the accuracy can

validate our algorithm. To improve the results of re-calibration, the Multi-innovation

technique is introduced to the Recursive Least Square.

• Both ECG and PPG data are collected by the developed device, and the proposed

algorithm is tested based on the data.

For the sake of concentrating on the development of the PTT-based blood pressure

estimation method, the main theme of the thesis is to apply a proper signal processing

technique to smoothen signals for the acceptable accuracy, especially for the elderly.
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1.4.2 Outline of the thesis

As the background of blood pressure measurement and the review of continuous cuff-free

blood pressure estimation has been presented in the previous part, the remainder of the

thesis is organized as follows:

Chapter 2 gives the introduction of the HHT algorithm. Other signal processing tech-

niques are reviewed, and the properties of HHT algorithm are discussed.

Chapter 3 presents the HHT algorithm and the application to PTT-based blood pres-

sure estimation. The HHT algorithm is firstly introduced and algorithm is developed and

presented, and finally, the results are illustrated.

Chapter 4 highlights that the proposed algorithm can be applied to older adults. HHT

is used on the data from MIMIC database, and the comparison with wavelet transform

is illustrated. In addition, the choice of the ending point and the relationship between

blood pressure and PTT are presented. Multi-innovation technique is used to improve the

accuracy of the re-calibration.

In Chapter 5, the developed data collection system is introduced, and the analysis of

the data is discussed. The results of the relationship between blood pressure and PTT

based on the collected data is given in this chapter.

The conclusion is provided in Chapter 6. Some suggestions for the future work on

PTT-based blood pressure estimation are summarized also.
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Chapter 2

Hilbert-Huang Transform

Signal processing plays a vital part in the PTT-based blood pressure estimation. It is

obvious that if a proper technique is applied to analyze the signals, the accuracy in this

point can be improved. To provide a more efficient method of filtering of a signal from

noise for nonlinear, non-stationary data, Huang, et al. [59][60] introduced a new approach

called the Hilbert-Huang Transform (HHT). To understand the promising Hilbert-Huang

Transform well, a review of other signal analysis methods will be firstly given.

2.1 Non-stationary signal processing techniques

In digital signal processing area, Fourier spectral analysis is a vital technique [61]. Gen-

erally speaking, Fourier spectral analysis is used to break the complicated signals into a

sum of simpler pieces. Due to the outstanding characters that Fourier spectral analysis

has, it has gained lots of attention and has been applied to all kinds of applications, such

as physics, mathematics, probability, statistics, acoustics, optics and signal processing.

Although it is valid under usual conditions, there are some inherent shortcomings: the

system must be linear and stationary. The linear system must meet two requirements:

superposition and homogeneity. Linear systems have the features and properties that are

much easier than nonlinear systems. Although some natural phenomena can be approxi-

mated by linear systems or a sum of linear systems, most physical systems are inherently

nonlinear. In this case, Fourier spectral analysis may cause some problems, giving some

inaccurate results. In addition to linearity, Fourier spectral analysis must also be applied

in stationary process. It is defined as a random process that joint probability distribution

does not depend on the location of the sample. Some parameters such as the mean and co-

variance do not change with time. Most signal processing techniques require the property

of stationarity. However, few data in practice can satisfy this requirement.
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The spectrogram is another basic signal processing technique. It uses a short-time

Fourier Transform, so the data should satisfy piecewise stationary, which the non-stationary

data could not always meet [62]. Moreover, it is hard to choose the window size. This

method is of limited use.

The wavelet analysis is a common tool for extracting information from data. Wavelet

transform can be considered as a form of time-frequency representation [63]. It has gained

extreme attention of some fields. Many applications are in edge detection and image

analysis. However, wavelet analysis is non-adaptive, which means once the basic wavelet

is selected, all the data have to be analyzed using it. Moveover, the leakage generated by

the limited length of the basic wavelet function makes the quantitative definition of the

energy-frequency-time distribution difficult. Despite these demerits, wavelet analysis still

has been applied to analyzing the non-stationary data. Some researchers introduced it to

the PTT-based blood pressure estimation [30][34][53]. So this technique will be considered

as a comparison in our work.

Some other miscellaneous techniques also have some inherent shortcomings. Since all

the discussed methods fail in one way or another, a good technique for the PTT-based

blood pressure estimation is needed to be introduced to guarantee the results.

2.2 The advantages of Hilbert-Huang Transform

HHT can overcome the limitations of the above mentioned methods. It can analyze the

nonlinear and non-stationary data. HHT is the first adaptive method for measuring things

that do not stay still and do not follow regular patterns. The result is a more precise defi-

nition of particular events in time-frequency space, and a more meaningful interpretation

of underlying dynamic processes that can be obtained by historical methods [64]. HHT is a

combination of the empirical mode decomposition (EMD) method and Hilbert Transform.

By EMD, the complicated data can be decomposed into a collection of function compo-

nents. The energy-frequency-time distribution of the decomposed data is created by the

Hilbert Transform. The key point of this method is the introduction of EMD, which can

decompose data into a number of intrinsic mode functions (IMF). IMF is a function having

the same numbers of zero-crossing and exterma, and symmetric envelops defined by the

local maxima and minima respectively. This method is highly efficient and adaptive, and
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it is applicable to nonlinear and non-stationary data.

HHT consists of two steps. Firstly, the EMD method is used to obtain finite IMFs. Sec-

ondly, with the Hilbert Transform, the IMFs yield instantaneous frequencies as functions

of time. Finally, the Hilbert Spectrum can be obtained, which is an energy-frequency-time

distribution. Since the decomposition is based on the local characteristic time scale of the

data, it is applicable to nonlinear and non-stationary processes. The detailed dynamics

characteristic of a nonlinear system through the instantaneous frequency can be examined

using this technique. The main flow of the HHT algorithm is shown in Figure 2.1.

With the attractive advantages, HHT has successfully found a wide variety of applica-

tions: Basic nonlinear mechanics, climate studies, earthquake engineering, geophysical ex-

ploration, submarine design, structural damage detection in bridges and buildings, speech

signal processing and satellite data analysis.

2.3 The theory of Hilbert-Huang Transform

According to the properties of HHT algorithm, it is applied to our work to solve the signal

processing problem. The whole theory of HHT is introduced in this section. The Hilbert

Transform and two significant concepts, including instantaneous frequency and intrinsic

mode functions, are discussed first. Then, the Hilbert-Huang Transform is introduced.

2.3.1 Hilbert Transform

The Hilbert Transform is an operator which starts from a real function and produces a

function in the same domain. A real function and its Hilbert Transform are related to

each other. A strong analytic signal, which can be written with an amplitude and a phase,

is together created by the real function and its Hilbert Transform. The derivative of the

phase can be called as the instantaneous frequency.

For an arbitrary time series, f(t), its Hilbert Transform f̂(t) can be expressed as [64]

f̂(t) =
1
π

P

∫
f(τ)
t− τ

dτ, (2.1)

where P represents the Cauchy principal value. The conjugate pair f(t) and f̂(t) can

create the analytic signal Z(t) as

Z(t) = f(t) + if̂(t) = a(t)eiµ(t), (2.2)
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Figure 2.1: The brief idea of HHT.
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in which

a(t) = [f2(t) + f̂2(t)]
1
2 ; (2.3)

µ(t) = arctan(
f̂(t)
f(t)

). (2.4)

Equation 2.1 describes the Hilbert Transform as the convolution of f(t) with 1/t. It

can pinpoint the local properties of f(t). The analytic signal gives the local nature, both

the amplitude and phase information in equation 2.2.

2.3.2 Instantaneous frequency

Instantaneous characteristics of signals gain lots of interested from researchers. The in-

stantaneous energy or the instantaneous envelope of the signal is already accepted, whereas

the idea of the instantaneous frequency is not clearly defined. Two basic difficulties with

accepting the notion of the instantaneous frequency are as follows:

• The effect of the Fourier spectral analysis: Under the framework of the tra-

ditional Fourier analysis, the frequency is determined as the sine or cosine function

through the whole length of the data with certain amplitude. Extending from this

definition, the instantaneous frequency still has to involve the sine or cosine function.

Hence, at least one full oscillation of a sine or a cosine wave is needed to define the

local frequency value. Based on this logic, nothing shorter than a full wave will make

sense. Furthermore, such a definition would not be applicable for non-stationary

data whose frequency changes from time to time. The analysis of this difficulty, on

the other hand, motivates us to jump out of the framework of the Fourier analysis

to hunt for new tools, especially for non-stationary and non-linear signal analysis.

• The non-unique way of the definition of instantaneous frequency: There

are numerous ways of defining the imaginary part, however, the Hilbert Transform

defines the instantaneous frequency in a unique way as

ω(t) =
dµ(t)

dt
. (2.5)

There is still considerable controversy in the definition of instantaneous frequency.
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We have to impose the restrictive conditions on the data to acquire the meaningful

instantaneous frequency. The restrictive condition is that the real part of the Fourier

Transform has to have only positive frequency, which is still global. Therefore, a local

condition instead of the global one is developed to obtain the instantaneous frequency.

Taking a sine function as an example, the instantaneous frequency can be defined only if

the function is restricted to be symmetric locally with respect to the zero mean level. This

local restriction gives us a hint of the way of decomposing the data into components so

that the instantaneous frequency can be defined. To this end, we are naturally led to a

class of functions, called IMF, whose instantaneous frequency can be defined.

In summary, physically, the necessary conditions to define the meaningful instantaneous

frequency are that the functions are symmetric with respect to the local zero mean, and

have the same numbers of zero crossings and extrema [60].

2.3.3 Intrinsic mode functions

The IMF is determined by satisfying these two conditions:

• The number of the extrema must be equal to the number of the zero crossings in the

whole data set or differ at most one.

• The mean value of the local maxima envelope and the local minima envelope is zero

at any point. This condition is the local requirement modified from the global one.

In order to obtain the instantaneous frequency, the data can be decomposed into IMF

components according as the conditions, and the instantaneous frequency can be defined

by each IMF component. The EMD method is applied to decompose the data into IMFs.

2.3.4 Hilbert-Huang Transform

Firstly, the EMD method, which can deal with the non-stationary and non-linear data, is

used to obtain the IMFs. This method is adaptive and efficient. The sifting procedure of

the method can be summarized as follows:

• Step 1: Find out the envelopes determined by the local maxima and minima respec-

tively. All the local extrema are detected first, and then a cubic spline line is used to

link all the local maxima to get the upper envelope. The lower envelope is obtained
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in the same way. All the data should be between the upper and lower envelopes.

Then we have:

f(t)−m1 = h1, (2.6)

where f(t) indicates the data, m1 represents the mean of the upper and lower en-

velops, and h1 is considered as the first component.

• Step 2: We take h1 as the data, then

h1 −m11 = h11. (2.7)

Repeat the sifting procedure k times until h1k is an IMF:

h1(k−1) −m1k = h1k. (2.8)

The first IMF component from the data can be expressed as:

c1 = h1k. (2.9)

• Step 3: To make sure that the IMF components have enough physical sense of

both amplitude and frequency, the standard deviation, SD, calculated from the two

consecutive sifting results, is used as a criterion to stop the sifting procedure.

SD =
T∑

t=0

[
|h1(k−1)(t)− h1k(t)|2

h2
1(k−1)(t)

]. (2.10)

Normally, SD is set between 0.1 and 0.3.

• Step 4: Separate c1 from the data by

f(t)− c1 = r1, (2.11)

where r1 indicates the residue.

• Step 5: Repeat the above procedures to get the IMF components.

r1 − c2 = r2, · · · , rn−1 − cn = rn. (2.12)
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The predetermined value of substantial consequence can be used as the criterion to

stop the sifting process. Or, no more IMF can be extracted because the residue, rn,

stays monotonic.

Finally we would get

f(t) =
n∑

i=1

ci + rn. (2.13)

Once the IMF components are obtained, it will be straightforward to apply the Hilbert

Transform to each component, and get the instantaneous frequency through equation 2.5.

After conducting the Hilbert Transform to each IMF component, the original data can be

demonstrated as:

f(t) =
n∑

j=1

aj(t)ei
R

ωj(t)dt. (2.14)

The residue, rn, is not considered because it is either a constant or a monotonic function.

2.4 Summary

To sum up, the HHT algorithm is a promising method to solve the non-linear and non-

stationary data. Both ECG and PPG signals are inherently non-linear and non-stationary

due to lots of interference, and the data are changing with time due to the physiological

status [65][66][67]. So the HHT is employed to process the ECG and PPG signals to

estimate the PTT.
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Chapter 3

Pulse transit time-based blood pressure estima-

tion using Hilbert-Huang Transform

PTT-based blood pressure estimation has received considerable attention. The PPG

sensor was developed in [68]. In [40], some important factors that could affect the accuracy

of the estimation method were explored. The wavelet transform was employed to detect

the peak value of the signals and then calculated the PTT [30][34][53]. However, most

of the existing methods in the literature have not fully considered the inherent nature of

the nonlinear and non-stationary properties of the measured ECG and PPG signals when

applying different kinds of signal processing techniques. In this section, we aim to process

the measured signals by using the Hilbert-Huang Transform (HHT) that can effectively

process the nonlinear and non-stationary signals [69].

3.1 Algorithm description

3.1.1 PTT estimation

HHT is applied to process the ECG and PPG signals, respectively, to obtain the intrinsic

mode functions. To achieve so, we need to accurately determine the time instance of the

R wave peak in the ECG signal, and recognize several related characteristic points in the

PPG signal. First, the IMFs are obtained using the EMD procedure. Second, the signal

without noise is reconstructed by ignoring the IMFs corresponding to noise part. Third,

each interested IMF is compared with the rebuilt signal to see which one shows better

performance on the time instance. The logic flowchart to decompose the input signal into

successive IMFs is illustrated in Figure 3.1. The spline interpolation is applied to get the

maximal and minimal envelopes based on the maximal and minimal points. Then, the

IMF components can be obtained using the standard deviation as a criterion, which is
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used to make sure that each IMF has enough physical meaning. The process to obtain

IMF is stopped when the maximal and minimal envelopes could not be detected.

Figure 3.1: The logic flowchart to decompose the input signal into successive IMFs.

Generally, PTT is defined as the time interval between the R wave peak of ECG and

the peak of PPG in the same cardiac cycle [32].
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3.1.2 The estimation of blood pressure

The mathematical expression that describes the relationship between the blood pressure

and the pulse wave velocity PWV are given in the Moens-Korteweg equation:

PWV =

√
tE

ρd
, (3.1)

where t represents the vessel wall thickness, ρ indicates the blood density, and d is the

interior diameter of the vessel. According to the derived results of [23], the pulse wave

velocity can be described by the distance L for the pulse wave to transit and the transit

time T as:

PWV =
L

T
. (3.2)

The elastic modulus is indicated as:

E = E0e
αP , (3.3)

where E0 is the modulus as the pressure is zero, α is dependent on the vessel, and P is the

blood pressure. Substituting equations 3.2 and 3.3 into the Moens-Korteweg formula, we

have
L

T
=

√
tE0eαP

ρd
, (3.4)

then it follows that

P =
1
α

[ln
L2ρd

tE0
− 2 ln T ]. (3.5)

If the changes in the wall thickness and the diameter of the vessel with respect to the

change in blood pressure are negligible, and the change in the modulus E0 is slow enough,

the change of blood pressure, which is linearly related to the change in the PTT, can be

described as:

4P = − 2
αT

dT. (3.6)
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Remark 3.1. It can be seen that the change of blood pressure is related to the PTT. After

accurately estimate the PTT, the variation of blood pressure can be readily calculated using

(3.6).

3.2 Results

In this section, for the measured ECG and PPG signals, which are collected at 256 Hz in

World Wide Electronic Technology Ltd., the HHT method is applied to estimate the PTT,

and further calculate the change of blood pressure.

The original signals and the empirical mode decomposition components are listed in

Figure 3.2 and Figure 3.3, respectively. The Ci indicates each IMF component obtained

by EMD method in the time domain. By applying the criteria of SD = 0.1, which is used

to guarantee that each IMF has enough physical meaning, the ECG is decomposed into

seven components C1-C7, while the PPG is decomposed into nine components C1-C9.

The peak detection of ECG is performed on the rebuilt signal, which is reconstructed

by adding C3 to C7 together and shows clear waveforms to detect the R-wave peaks, as

shown in Figure 3.4. For the PPG, it is noticed that the third IMF of PPG shows better

performance in the peak detection comparing with other functions and the rebuilt PPG

signal. After detecting the peak of the signals, the time interval between ECG and PPG

in the same cardiac cycle can be determined, which will be used to estimate the blood

pressure.

The ECG and PPG are collected at 256 Hz and the constant parameter α is fixed

as 0.017 mmHg−1. The change of blood pressure can be readily calculated: Some of the

estimated data are shown in Table 3.1.

Remark 3.2. A good estimation of the blood pressure variation is very useful in mon-

itoring patients’ health status, and it can be potentially applied to the fall and near-fall

detection system, developed by our research team. If the base blood pressure level is

known, then the estimated blood pressure can be obtained.
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Figure 3.2: The original ECG and the empirical mode decomposition components
C1-C7.

Table 3.1: The pulse transit time and the change of blood pressure.

Peak of ECG Peak of PPG PTT (s) Change of BP (mmHg)

157 223 0.2578

395 460 0.2539 1.8100

636 700 0.2500 1.8382

876 942 0.2578 -3.5651

1116 1183 0.2617 -1.7559
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Figure 3.3: The original PPG and the empirical mode decomposition components
C1-C9.
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Figure 3.4: The detection of the peak based on the rebuilt ECG and IMF C3 of
PPG.
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3.3 Summary

In this chapter, we propose to apply the HHT to process the measured ECG and PPG

signals, and further estimate the PTT, and finally calculate the variation of blood pressure.

Simulation results for the measured ECG and PPG signals illustrate the effectiveness of

the proposed method. It is worthwhile noting that to further explore the efficiency of this

method, the real values of blood pressure should be calculated and the comparison with

other signal processing techniques should be considered, which will be discussed in the

following chapters.

33



Chapter 4

Testing pulse transit time-based blood pressure

estimation on elderly

Due to the effectiveness of the HHT application in PTT-based blood pressure estima-

tion, it is employed to the data from MIMIC database [70]. The MIMIC database includes

signals and periodic measurements obtained from the bedside monitors. The data are

recorded continuously, and the information of the patients can also be provided, such as

gender and age. Continuous ECG, PPG are available, and blood pressure is recorded by

the invasive way, which can give the continuous and accurate reading. Because elderly

people are the primary objects of daily health monitor, the algorithm is tested on the data

of elderly from MIMIC database. Furthermore, the values of blood pressure are included,

then the accuracy can be obtained to verify our algorithm.

4.1 Algorithm description

The HHT algorithm is applied on the data from MIMIC database to obtain the filtered

ECG and PPG. Then, R wave peaks of ECG and characteristic points of PPG are detected.

Different PTTs are calculated and used to estimate blood pressure. Since PTT is highly

related to blood pressure [9][10][13][23], the model for each individual is linearized as: BP =

a · PTT + b. Least Square algorithm is employed to determine the unknown coefficients

a and b, which is considered as the calibration process. As the blood pressure values are

available in the database, the estimated blood pressure results by the PTT-based method

can be compared with the actual blood pressure values. The error mean, error standard

deviation and correlation coefficient are presented.

After the original calibration, the different PTTs are discussed. The error mean and

error standard deviation are the criteria to choose the better one. Other than the linear

model, BP = a · lnPTT + b is also studied. In order to verify the HHT algorithm,
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another popular technique, wavelet transform, is introduced for comparison. Furthermore,

the re-calibration problem, which is essential to the application, is explained. The Multi-

innovation Recursive Least Square algorithm is employed to re-calibrate the model and

update the parameter vector.

4.1.1 Original calibration

When the PTT values are detected, original calibration is performed firstly when the

method is used for blood pressure estimation. About 40 values of PTT are required for the

original calibration for the acceptable outcome. Least Square algorithm [71] is a prevalent

statistical method that has been widely employed in many applications. It minimizes the

sum of the squares of the errors to achieve the proximal values. The original calibration

in our work is accomplished through Least Square method. The procedure is stated as

follows. The unknown coefficients a and b are gathered into the matrix

β =


 a

b


 (4.1)

for SBP and DBP respectively. We collect the blood pressure and PTT into matrices

Yn =




BP1

...

BPn


 (4.2)

Xn =




PTT1 1
...

...

PTTn 1


 , (4.3)

where n denotes the nth measurement.

The coefficient matrix β is obtained from the minimization of ‖Yn −Xnβ‖2:

β = [XT
n Xn]−1XT

n Yn. (4.4)

Whereafter, the estimation of blood pressure Ŷ can be obtained from Ŷ = Xβ, when

the new measurements of PTT (X) are given.
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4.1.2 Different PTT descriptions

Since blood pressure has been verified that it is related to PTT, many researchers have

studied the different PTTs [16][37][44][46]. As shown in Figure 1.1, four different PTTs,

from R wave peak of ECG to peak, middle, or foot of PPG respectively (PTT-peak, PTT-

middle, PTT-foot), and diastolic time, are all considered in our work. We calculate the

results of each one and do the comparison to testify which one should be employed in our

work.

4.1.3 The relationship between blood pressure and PTT

The fact that blood pressure wave propagates through the arteries depends on the blood

and the elastic properties of the arteries. There are a number of researches dictating the

relationship between blood pressure and PTT. From equation 1.2 and 1.3, it is worthily

noting that there is a logistic relation between blood pressure and PTT. A widely used

model is BP = a · PTT + b. Different models have been tried in other studies. In our

work, we focus on the linearized model and also do the comparison with the logarithmic

model, BP = a · lnPTT + b, which has been used in [45][42].

4.1.4 Comparison with wavelet transform processing technique

To verify the acceptable results that we obtain using HHT, they are compared with the

results of wavelet transform. The wavelet transform has been used by [30][34][53]. We

follow their method to filter the same data from MIMIC database, and use the same

algorithm to initially calibrate the models. So the only effect on the different results is the

two processing techniques.

4.1.5 Periodic re-calibration

The estimation performance of the PTT-based blood pressure method retains accurate

within a certain period after the original calibration, so the periodic re-calibration is re-

quired. The periodic re-calibration is studied in terms of the requirements of AAMI.

One new measurement of SBP and DBP is used for the re-calibration. For the applica-

tion, SBP and DBP can be measured by some cuff-based method. Recursive Least Square

algorithm is employed to complete the re-calibration combined with the initial calibration
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(equation 4.4). The new records of SBP, DBP, and PTT are given, then the new parameter

matrix can be calculated from the minimization of ‖Yn+1 −Xn+1β‖2:

βn+1 = βn + Ln+1(yn+1 − xn+1βn), (4.5)

Ln+1 = λ−1[XT
n Xn]−1xT

n+1(1 + λ−1xn+1[XT
n Xn]−1xT

n+1)
−1, (4.6)

where

yn+1 =
[

BPn+1

]
, (4.7)

xn+1 =
[

PPTn+1 1
]
, (4.8)

and the range of the forgetting factor λ is 0 < λ ≤ 1.

By extending the conventional standard Recursive Least Square algorithm, the Multi-

innovation technique is introduced for linear regression models with unknown parameter

vectors [72][73]. Since the Multi-innovation Recursive Least Square algorithm uses more

than one innovation, the accuracy of the parameter estimation is expected to improve

compared with the standard Recursive Least Square algorithm.

In order to improve the accuracy, a number of innovations are well used to obtain the

parameter vector. The scalar innovations yn+1 and xn+1 in equation 4.5 are expanded to

the innovation vectors yn+1(p, t) and xn+1(p, t):

yn+1(p, t) =




BPn+1

BPn

BPn−1

...

BPn−p+1




, (4.9)

xn+1(p, t) =




PTTn+1 1

PTTn 1

PTTn−1 1
...

...

PTTn−p+1 1




, (4.10)

where p represents the innovation length.
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The accuracy of the Multi-innovation Recursive Least Square algorithm can be im-

proved because it applies not only the current data but also the past data at each iteration.

In our application, besides the new measurement of SBP, DBP and PTT, some innovations

from the first 40 measurements for initial calibration are also used for the re-calibration.

Different lengths of innovation need to be discussed to choose the better one.

4.2 Results

In this section, the algorithm as stated before is applied on the data chosen from MIMIC

database, which have the continuous ECG, PPG and blood pressure. Tables and figures

of the results are shown and explained as follows.

ECG and PPG are processed using HHT algorithm and characteristic points are de-

tected. The measured data are collected at 500 samples per second. The estimated blood

pressure are compared with the actual values. PTT-peak, PTT-middle, PTT-foot and

diastolic time are firstly analyzed. Due to the comparisons of error mean, error standard

deviation and correlation coefficient, PTT-peak shows better performance. Table 4.1 shows

the result of one subject using different PTTs to estimate blood pressure during about 10

mins. PTT-peak has the highest relation with blood pressure. In the following analysis,

the PTT-peak as the estimated parameter would be used.

Table 4.2 gives the error mean and error standard deviation of different records. It can

be seen that the results meet the requirements by AAMI, which is the absolute value of

error mean is less than 5 mmHg and the error standard deviation is less than 8 mmHg.

Wavelet transform has been applied for comparison with HHT. The result in Table 4.3

shows that wavelet transform has better performance in error mean, but worse in error

standard deviation and correlation coefficient. For the application of the PTT-based blood

pressure estimation, the error standard deviation is a main consideration. The results

by other studies have trouble in meeting the requirement of the error standard deviation

[37][44]. In this aspect, the HHT algorithm shows better results. Moreover, it still meets

the error mean standard. Therefore, the HHT is better since it meets more applicable

standards. For the correlation coefficient, the PTT of HHT technique shows higher relation

with blood pressure than that of wavelet transform, which is the basic of the PTT-based

blood pressure estimation method. Therefore, HHT is a promising technique to employ
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Table 4.1: Error mean (mean), error standard deviation (SD) and correlation co-
efficient (r) of different PTTs, for SBP (Top) and DBP (Bottom).

PTT-peak PTT-foot PTT-middle Diastolic time

mean (mmHg) -0.4361 -0.6332 -0.4668 -1.9685

SD (mmHg) 3.8456 5.4934 5.2761 4.6060

r -0.7115 -0.0899 -0.3190 0.5408

PTT-peak PTT-foot PTT-middle Diastolic time

mean (mmHg) -0.9337 -1.0471 -0.9601 -1.5973

SD (mmHg) 1.8384 2.6646 2.6716 2.5202

r -0.6936 0.0153 -0.2178 0.3252

Table 4.2: Error mean (mean) and error standard deviation (SD) for different
individuals.

SBP mean ± SD (mmHg) DBP mean ± SD (mmHg)

Subject 1 -1.2701±2.4806 -0.9841±1.4776

Subject 2 0.3475±0.9199 -0.6423±0.7969

Subject 3 -0.4361±3.8456 -0.9337±1.8384

Subject 4 -0.0865±3.7995 -0.2635±2.3611

Subject 5 0.2275±3.2126 0.1025±1.6439
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Table 4.3: Error mean (mean), error standard deviation (SD) and correlation co-
efficient (r) of Wavelet Transform (WT) and HHT.

SBP DBP

HHT WT HHT WT

mean (mmHg) -0.0865 0.0151 -0.2635 -0.2201

SD (mmHg) 3.7995 4.1703 2.3611 2.5692

r -0.6178 -0.5502 -0.5574 -0.4845

Table 4.4: Comparisons between two models: BP = a · PTT + b and BP =
a · lnPTT + b.

mean (mmHg) SD (mmHg) r

SBP BP = a · PTT + b -0.4361 3.8456 -0.7115

BP = a · lnPTT + b -0.4492 3.8772 -0.7050

DBP BP = a · PTT + b -0.9337 1.8384 -0.6936

BP = a · lnPTT + b -0.9400 1.8477 -0.6891

for data processing.

Figures 4.1 and 4.2 show the correlation between PTT-peak and SBP and DBP, respec-

tively. The regression line is obtained from the 40 measurements for original calibration.

The 40 measurements are denoted by the circles. The dots denote the actual values ob-

tained during the testing period. The estimated blood pressure should be in the line. From

this figure, it is obviously noting that PTT-peak is highly related to SBP and DBP. And

the estimated SBP and DBP based on the regression line are acceptable compared with

the actual values.

The models BP = a · PTT + b and BP = a · lnPTT + b are both studied. The same

procedure is conducted including the HHT processor and Least Square algorithm-original

calibration. It is shown that the linearized model gives better results, which are available

in Table 4.4.

40 measurements are done to initially calibrate the PTT-BP model. Table 4.5 gives

the results of different time periods. The periods of 30-mins and 60-mins can meet the
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Figure 4.1: The relationship between SBP and PTT-peak.
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Figure 4.2: The relationship between DBP and PTT-peak.
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Table 4.5: Error mean (mean) and error standard deviation (SD) for different time
periods.

SBP mean ± SD (mmHg) DBP mean ± SD (mmHg)

30-mins 0.8071 ± 5.4775 0.3388 ± 2.9381

60-mins -0.6336 ± 5.9834 -0.1868 ± 3.2071

90-mins -1.7655 ± 8.1509 -1.2189 ± 4.8499

requirements by AAMI, while for the 90-mins period, the standard deviation does not

satisfy, which is above 8 mmHg. The re-calibration period affects the performance of our

method. Longer period will improve the practicability while shorter period will increase

the accuracy. To meet the standards and achieve good recording, we select 60-mins as

the re-calibration period. The error mean and error standard deviation (mean ± SD) of

60-mins are −0.6336 ± 5.9834 mmHg and −0.1868 ± 3.2071 mmHg for DBP and SBP,

respectively. After 1 hour, the Recursive Least Square method is applied to re-calibrate

the model. The re-calibration needs one new measurement of SBP and DBP to meet

the requirements by AAMI. The forgetting factor is chosen as λ = 0.95 in our work.

To improve the re-calibration performance, the Multi-innovation algorithm is employed

to the standard Recursive Least Square. Figures 4.3 and 4.4 show the results of error

mean and error standard deviation with different innovation lengths. The x-axis indicates

the innovation length p, while p = 1 represents the standard Recursive Least Square.

The y-axis represents error mean (mmHg) and standard deviation (mmHg), respectively.

It can be seen that the absolute value of error mean gives the best result at p = 1,

while the best standard deviation occurs at p = 5. The results after re-calibration using

standard Recursive Least Square and Multi-innovation Recursive Least Square are shown

in Table 4.6. The Multi-innovation algorithm improves the error standard deviation, which

is a main consideration in the PTT-based blood pressure estimation method. Therefore,

in application, the algorithm with p = 5 gives promising result.
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Figure 4.3: The error mean values of different innovation length.

Table 4.6: Error mean (mean) and error standard deviation (SD) for re-calibration
with Multi-innovation Recursive Least Square at p = 5 (RE-MI), and standard Re-
cursive Least Square p = 1 (RE).

SBP DBP

RE-MI RE RE-MI RE

mean (mmHg) -3.1292 -1.7714 -1.9341 -1.0222

SD (mmHg) 6.2831 6.6999 3.8470 4.1047
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Figure 4.4: The error standard deviation of different innovation length.
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4.3 Summary

The algorithm is tested on elderly data from MIMIC database in this section. The al-

gorithm gives the acceptable results in terms of the requirements of AAMI. Compared

with the wavelet transform, the result of HHT technique gives better performance in error

standard deviation and correlation coefficient. The values of blood pressure are estimated

based on the models that describe the relationship between blood pressure and PTT.

The models are initially calibrated using Least Square algorithm and re-calibrated using

Multi-innovation Recursive Least Square algorithm, which improves the result. The proper

re-calibration period is discussed and picked as 60 mins. Furthermore, different PTTs are

compared and PTT-peak is the best choice. Based on the standard of AAMI, our results

illustrate the effectiveness of the proposed method.

46



Chapter 5

The application of pulse transit time-based blood

pressure estimation to the data by the devel-

oped device

According to the results in previous chapters, it has been shown that the PTT-based

blood pressure estimation offers promising results for continuous blood pressure monitoring.

Furthermore, it is quite essential to test the proposed algorithm based on the practical

data collected using the device developed in the FANFARE project. The wearable data

collection system is introduced and applied to collect continuous ECG and PPG signals.

The algorithm is applied on the data, and results are shown and discussed in the following

parts.

5.1 System description

The data collection system, which is developed by the FANFARE (Falls And Near Falls

Assessment Research and Evaluation) group at University of Saskatchewan, includes a

wearable device, a coordinator connected to the computer. Figure 5.1 shows the wearable

device, with sensors to measure 3-lead ECG and PPG, and the coordinator (i.e., the wireless

receiver). The ECG sensor, with three leads, is placed on the chest, and the PPG sensor

is put on the finger tip. The coordinator can transmit the data from the wearable device

to the computer. Figure 5.2 illustrates the physical data that measured by the sensors and

displayed on the computer, including ECG and PPG.

The three electrodes are placed on the subject’s chest to collect ECG, and PPG sensor

is placed on his/her finger tip, which will be modified to a wrist sensor. Continuous data

are collected at 40 Hz when the subject wearing the sensors is sitting.

47



Figure 5.1: The data collection system.
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5.2 Algorithm description

5.2.1 PTT estimation

Once the data is collected, the HHT algorithm is used to analyze the data. Since the

definition of PTT is the time period from R-wave peak of ECG to a characteristic point of

PPG, the time instance of the data is the information of our interest. The EMD method

of the HHT algorithm is applied firstly to obtain the IMFs. The standard deviation is

applied here to determine how many components Ci are for ECG and PPG, which is to

make sure they have enough physical meaning. While the maxima and minima envelops

could not be calculated, it will stop to detect IMF. Then the signal is rebuilt without the

IMFs regarding to the noise parts to obtain clear data. Based on the results that we got in

Chapter 4, the peak of PPG as the ending point of PTT shows better result. Thus, peaks

of PPG and R-wave peaks are detected on the rebuilt data obtaining from the summation

of Ci.

5.2.2 Blood pressure estimation

According to the Moens-Korteweg description (equation 1.2) of the correlation between

blood pressure and PTT, and the derivation by [23], the variation of blood pressure can

be calculated using

4P = − 2
αT

dT, (5.1)

where the parameter α is 0.017 mmHg−1.

From this equation, the changes of PTT can be obtained from the values of PTT and

the changes of it.

5.3 Results

The results of the processed data, the determination of PTT, and the blood pressure

variations are given in this section.

Figure 5.3 and Figure 5.4 illustrate the information of the original and processed ECG

and PPG, respectively. The rebuilt data without noise give better information of peaks,

which we are interested in. The Ci represents each IMF component obtained by EMD
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method. The rebuilt data is obtained by adding the components together ignoring the

component C1. Then, they show clear data to detect the peaks.

It is more reliable when the detection of peaks is performed on the clear rebuilt data, as

shown in Figure 5.5. Once the peaks of the data are detected, the time period between ECG

and PPG in the same cardiac cycle can be calculated. Then, it can be used to estimate

blood pressure variation. The determination of PTT is a vital part in the PTT-based

blood pressure estimation method.

Through the equation 5.1, the changes of blood pressure are obtained. In Figure 5.6,

the relationship between PTT and the blood pressure variation can be easily seen. They

are inversely related. If the value that the change of PTT divided by PTT increases, the

change of blood pressure decreases, and vice versa. It is agreeable to the widely accepted

concept that blood pressure is inversive-related to PTT.

5.4 Summary

The HHT algorithm is applied to process the ECG and PPG data measured by our device.

After the determination of PTT, the changes of blood pressure can be estimated. If the

actual continuous values of blood pressure are obtained, the estimated blood pressure

based on the data collected by the developed device could be detected. The results show

the application of the method to our data. It is commonly accepted that the blood pressure

variation estimation is beneficial to the daily health monitor.
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Figure 5.2: The data display.
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Figure 5.3: The original and rebuilt ECG and the IMF components C1-C5.
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Figure 5.4: The original and rebuilt PPG and the IMF components C1-C5.
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Figure 5.5: The original data and the detection of peaks based on the rebuilt data.
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Figure 5.6: The relationship between blood pressure variation and PTT. The x-axis
represents the number of cardiac pairs.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis explores a cuff-less blood pressure estimation method using signal processing

techniques. In the area of blood pressure measurement or even the health monitor field,

continuous, cuff-less and non-invasive blood pressure estimation is increasingly desirable.

The PTT, which is obtained from ECG and PPG signals, is a widely accepted index of

blood pressure estimation. Due to lots of interferer to the physiological data, the signal

processing procedure is a main consideration. The HHT algorithm is the signal processing

technique that is applied to solve this problem and it shows promising results.

In the Introduction, the main existing methods of blood pressure measurement were

introduced. The properties of each method were addressed. It is noting that the continuous,

cuff-less and non-invasive way is highly needed.

Chapter 2 discussed the theory of HHT algorithm. The review of other signal processing

techniques, and the main idea of HHT algorithm were presented.

In Chapter 3, the application of HHT algorithm to the blood pressure estimation were

discussed. The results demonstrated the efficiency of the method. The blood pressure

changes can be obtained, which is useful to monitor the health status.

In Chapter 4, we further studied the PTT-based blood pressure estimation method

and applied it to MIMIC database, which provides the continuous ECG, PPG and blood

pressure. According to the comparison with wavelet transform, it was verified that the

algorithm that used HHT technique was a promising method to give higher accuracy.

The definition of PTT was determined and the linearized model was calibrated and re-

calibrated. Multi-innovation Recursive Least Square algorithm was applied to update

the parameter vector of the model. Based on the standard of AAMI, our results were

acceptable. Since the health monitoring of elderly is more required, applying our method
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to the old adults from MIMIC database is necessary.

In Chapter 5, our developed wearable system was highlighted. After applying our

method to the measured data, the results indicated that our algorithm were applicable to

our data collection system.

6.2 Future work

Our work has achieved meaningful results. Since the blood pressure estimation is an

applicable problem, the various situations in the daily life should be considered.

In the blood pressure estimation method, the least square algorithm is applied to set up

the model. For the least square algorithm, the independence problem should be discussed.

When it is applied to the applicable systems, sometimes, it is defaulted as independence.

For the re-calibration, the forgetting factor λ in the recursive least square algorithm is

pre-fixed. The varying value of the forgetting factor can be further discussed to improve

the performance.

At the present time, the PPG signal by our system is detected from the finger tip.

However, it is not convenient for people who want to wash hands or lift things. Further-

more, the signal might be affected by the more often used fingers. Therefore, the PPG

signal could be modified and obtained from other sites, like at the wrist.

This blood pressure estimation method is only dependent on ECG and PPG signals,

so if the dynamic ECG and PPG are acceptable, our algorithm can be applied to the daily

health monitor system. The FANFARE system is designed to collect data for fall analysis.

Blood pressure is one of the most important information to supervise the health status.

Thus, our algorithm could be applied to the project.
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