79,288 research outputs found

    Exploring Design Space For An Integrated Intelligent System

    Get PDF
    Understanding the trade-offs available in the design space of intelligent systems is a major unaddressed element in the study of Artificial Intelligence. In this paper we approach this problem in two ways. First, we discuss the development of our integrated robotic system in terms of its trajectory through design space. Second, we demonstrate the practical implications of architectural design decisions by using this system as an experimental platform for comparing behaviourally similar yet architecturally different systems. The results of this show that our system occupies a "sweet spot" in design space in terms of the cost of moving information between processing components

    Resource-aware IoT Control: Saving Communication through Predictive Triggering

    Full text link
    The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.Comment: 16 pages, 15 figures, accepted article to appear in IEEE Internet of Things Journal. arXiv admin note: text overlap with arXiv:1609.0753

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    Efficient Methods for Automated Multi-Issue Negotiation: Negotiating over a Two-Part Tariff

    No full text
    In this article, we consider the novel approach of a seller and customer negotiating bilaterally about a two-part tariff, using autonomous software agents. An advantage of this approach is that win-win opportunities can be generated while keeping the problem of preference elicitation as simple as possible. We develop bargaining strategies that software agents can use to conduct the actual bilateral negotiation on behalf of their owners. We present a decomposition of bargaining strategies into concession strategies and Pareto-efficient-search methods: Concession and Pareto-search strategies focus on the conceding and win-win aspect of bargaining, respectively. An important technical contribution of this article lies in the development of two Pareto-search methods. Computer experiments show, for various concession strategies, that the respective use of these two Pareto-search methods by the two negotiators results in very efficient bargaining outcomes while negotiators concede the amount specified by their concession strategy

    A Value-Sensitive Design Approach to Intelligent Agents

    Get PDF
    This chapter proposed a novel design methodology called Value-Sensitive Design and its potential application to the field of artificial intelligence research and design. It discusses the imperatives in adopting a design philosophy that embeds values into the design of artificial agents at the early stages of AI development. Because of the high risk stakes in the unmitigated design of artificial agents, this chapter proposes that even though VSD may turn out to be a less-than-optimal design methodology, it currently provides a framework that has the potential to embed stakeholder values and incorporate current design methods. The reader should begin to take away the importance of a proactive design approach to intelligent agents

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    A Multi-Agent Simulation of Retail Management Practices

    Get PDF
    We apply Agent-Based Modeling and Simulation (ABMS) to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents do offer potential for developing organizational capabilities in the future. Our multi-disciplinary research team has worked with a UK department store to collect data and capture perceptions about operations from actors within departments. Based on this case study work, we have built a simulator that we present in this paper. We then use the simulator to gather empirical evidence regarding two specific management practices: empowerment and employee development
    corecore