192 research outputs found

    A New Vehicle Localization Scheme Based on Combined Optical Camera Communication and Photogrammetry

    Full text link
    The demand for autonomous vehicles is increasing gradually owing to their enormous potential benefits. However, several challenges, such as vehicle localization, are involved in the development of autonomous vehicles. A simple and secure algorithm for vehicle positioning is proposed herein without massively modifying the existing transportation infrastructure. For vehicle localization, vehicles on the road are classified into two categories: host vehicles (HVs) are the ones used to estimate other vehicles' positions and forwarding vehicles (FVs) are the ones that move in front of the HVs. The FV transmits modulated data from the tail (or back) light, and the camera of the HV receives that signal using optical camera communication (OCC). In addition, the streetlight (SL) data are considered to ensure the position accuracy of the HV. Determining the HV position minimizes the relative position variation between the HV and FV. Using photogrammetry, the distance between FV or SL and the camera of the HV is calculated by measuring the occupied image area on the image sensor. Comparing the change in distance between HV and SLs with the change in distance between HV and FV, the positions of FVs are determined. The performance of the proposed technique is analyzed, and the results indicate a significant improvement in performance. The experimental distance measurement validated the feasibility of the proposed scheme

    OCC Future and Obstacles under 5g Requirements

    Get PDF
    Telecommunications specifications of the fifth-generation (5 G) are being established to satisfy the rising demands of high-speed broadband networks (i.e., a few tens of Gigabits every second). The 5 G standard derives primarily from a rising number of subscribers and a multitude of various apps, commonly referred to as smart devices, communicating as part of Internet-of-Things (IoT) network For 5 G, a few possible developments such as millimeter waves, large multiple-input multiple-output, and small cell connectivity have appeared. While such technologies will meet 5 G specifications, attention is being given to a complementary potential wireless optical wireless communication (OWC) system. Clear light contact (VLC) as part of OWC. Among the most desirable solutions for 5 G networks and beyond are optical camera communications (OCCs). As part of future smart cities, VLC with huge frequency spectrum integrated with IoT that opens up a broad range of indoor and outdoor applications. This paper gives a description of the VLC-centric all-optical IoT and Potential implementations and issues centered on OCC under 5 G Requirement

    Design of an Optical Position Sensor for Microfiber Actuators

    Get PDF
    This thesis introduces a new type of sensor that detects the position information of a paramagnetic microfiber and transforms it to computational electrical signal. The original purpose of the sensor is to solve the problem of feedback signal detection of the microfiber control system, which is the problem of detecting the position information for the microfiber. The microfiber will be presented as the experimental object of this sensor to test its capability. A novel optical based approach is used to transfer the position signal to a computer scrutable signal for further analysis. The purpose of the sensor design comes from the question of how to detect the position information in the feedback section of the microfiber control system. It is crucial since it provides the feedback for the whole control system. The information can be difficult to detect since our microfiber is designed to achieve high frequency (up to 100 ~ 1000 Hz ) low range reciprocating motion and low frequency high range movement in future. Thus, a sensing system is required to be able to input high speed movement and output analytical electrical signal. A high-speed camera can be used with an approach of image processing techniques, but considering the high-end and high-cost camera be applied in a simple purpose as in our system is inefficient, and another disadvantage relates to the image processing speed will be a limitation which will affect speed of signal detection. A general idea of the design of the sensing system is presented in this thesis. The sensor relies on optical based sensing method. This method with related electronic components is able to sense fast speed movement and high frequency reciprocating motion. A modulation and demodulation approach is also included to eliminate the possible noise from the environment. Results are presented in the thesis to show the effectiveness of the sensing system and to indicate in general the sensor is providing a robust result for the microfiber\u27s position analysis

    An Optical Design Configuration for Wireless Data Transmission

    Get PDF
    The concept of 2D barcodes is of great relevance for use in wireless data transmission between handheld electronic devices. In a typical setup, any file on a cell phone for example can be transferred to a second cell phone through a series of images on the LCD which are then captured and decoded through the camera of the second cell phone. In this research, a new approach for data modulation in 2D barcodes is introduced, and its performance is evaluated in comparison to other standard methods of barcode modulation. In the proposed method, Orthogonal Frequency Division Multiplexing (OFDM) modulation is used together with Differential Phase Shift Keying (DPSK) over adjacent frequency domain elements to modulate intensity of individual pixels. It is shown that the bit error rate performance of the proposed system is superior to the current state of the art in various scenarios. A specific aim of this study is to establish a system that is proven tolerant to camera motion, picture blur and light leakage within neighboring pixels of an LCD. Furthermore, intensity modulation requires the input signal used to modulate a light source to be positive, which requires the addition of a dc bias. In the meantime, the high crest factor of OFDM requires a lower modulation index to limit clipping distortion. These two factors result in poor power efficiency in radio over fiber applications in which signal bandwidth is generally much less than the carrier frequency. In this study, it is shown that clipping a bipolar radio frequency signal at zero level, when it has a carrier frequency sufficiently higher than its bandwidth, results in negligible distortion in the pass band and most of the distortion power is concentrated in the baseband. Consequently, with less power provided to the optical carrier, higher power efficiencies and better receiver sensitivity will result. Finally, a more efficient optical integrated system is introduced to implement the proposed intensity modulation method which is optimized for radio over fiber applications

    Color television study Final report, Nov. 1965 - Mar. 1966

    Get PDF
    Color television camera for transmission from lunar and earth orbits and lunar surfac

    Imaging Polarimetry with Polarization-Sensitive Focal Plane Arrays

    Get PDF
    Polarization is an intrinsic property of light, like frequency or coherence. Humans have long benefited from our ability to distinguish light of different frequency based on its color. However, our eyes are not sensitive to the polarization of light. Devices to measure polarization are relatively rare and expertise in polarimetry even more so. Polarization sensors based on micropolarizer arrays appear to be the first devices capable of bringing polarimetric capability to a wide range of applications. Whereas previous polarimeters were built to perform very specific measurements, the same micropolarizer-based camera can be used on a telescope, a microscope, or with a conventional camera lens. In this work, I investigate the operating principles of micropolarizer arrays using high resolution 3D simulations and describe several strategies to fabricate and characterize micropolarizer-based imaging polarimeters. Furthermore, I show how to incorporate the device characterization into a calibrated demodulation procedure to extract polarimetric quantities from the raw pixel intensities. As part of this effort, I show how the measured sensor properties, like pixel throughput and contrast ratio, can be used to construct a software model to produce synthetic observations of various scenes. These synthetic data are a powerful tool to study the many effects which can give rise to systematic and/or random errors during the data analysis process. Finally, I present the polarimetry performed on several astronomical sources using the RIT Polarization Imaging Camera and compare my results to previous measurements made with conventional polarimeters. Using the current calibration of the RIT Polarization Imaging Camera, I was able to achieve a polarimetric accuracy of ~0.3% in images of extended objects and unresolved sources
    corecore