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ABSTRACT OF THE DISSERTATION

AN OPTICAL DESIGN CONFIGURATION FOR WIRELESS DATA

TRANSMISSION

by

Seyed Mohammad Amin Motahari Bidgoli

Florida International University, 2016

Miami, Florida

Professor Malek Adjouadi, Major Professor

The concept of 2D barcodes is of great relevance for use in wireless data transmission

between handheld electronic devices. In a typical setup, any file on a cell phone for

example can be transferred to a second cell phone through a series of images on the

LCD which are then captured and decoded through the camera of the second cell

phone. In this research, a new approach for data modulation in 2D barcodes is intro-

duced, and its performance is evaluated in comparison to other standard methods

of barcode modulation. In the proposed method, Orthogonal Frequency Division

Multiplexing (OFDM) modulation is used together with Differential Phase Shift

Keying (DPSK) over adjacent frequency domain elements to modulate intensity of

individual pixels. It is shown that the bit error rate performance of the proposed

system is superior to the current state of the art in various scenarios. A specific

aim of this study is to establish a system that is proven tolerant to camera motion,

picture blur and light leakage within neighboring pixels of an LCD. Furthermore,

intensity modulation requires the input signal used to modulate a light source to

be positive, which requires the addition of a dc bias. In the meantime, the high

crest factor of OFDM requires a lower modulation index to limit clipping distortion.

These two factors result in poor power efficiency in radio over fiber applications in

which signal bandwidth is generally much less than the carrier frequency. In this

vi



study, it is shown that clipping a bipolar radio frequency signal at zero level, when

it has a carrier frequency sufficiently higher than its bandwidth, results in negligi-

ble distortion in the pass band and most of the distortion power is concentrated in

the baseband. Consequently, with less power provided to the optical carrier, higher

power efficiencies and better receiver sensitivity will result. Finally, a more effi-

cient optical integrated system is introduced to implement the proposed intensity

modulation method which is optimized for radio over fiber applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

From fire signaling methods of ancient times to the sophisticated semaphore-line

system proposed in the 17th century [Bur04] to the recent NASAs Lunar Laser

Communications Demonstration (LLCD) [BSM+09] project, light has always been

used as a reliable communications method throughout history. Unlike radio commu-

nications, optical medium is intrinsically more secure as the transmitter can send

the signal on a narrow light beam. Moreover, signal interference which requires

strict regulations to ensure reliable performance is much less an issue in optical

communications as high isolations can easily be achieved. After all, extremely high

transmission bandwidth available for optical communications is also another impor-

tant motivation for research on this topic.

1.2 General Statement of Problem Area

Barcodes, as traditional means of optical communications, continue to play a great

role in facilitating numerous identification processes since their invention in 1952

[WS52]. In fact the notion of barcodes is a simple cost-effective method for storing

machine readable digital data on paper or product packages. As pressing needs

to transfer even more data faster and with higher reliability have emerged, there

have been many improvements that were made on the original barcode design. The

invention of two dimensional (2D) or matrix barcodes opened new fronts in their

application to more complex data transfer scenarios like storing contact information

and URLs among other things, in which Quick Response (QR) codes [Int06] have
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become increasingly popular. A typical 2D barcode performance in camera phone

applications can be found in [KT07a].

Barcodes dynamically shown on the LCD of a handheld device can be used to

transfer a stream of data to a receiving device as implemented in [LDL08], achieving

bit rates of under 10 kbps for state-of-the-art mobile devices. Later, the idea was

further developed in [PAK10] for which a computer monitor and a digital camera are

used for transmission and reception with bit rates of more than 12Mbps achieved in

docked transmitter and receiver conditions. The superior performance of the later

implementation is achieved using a more effective modulation and coding scheme

for mitigation of image blur and pixel to pixel light leakage [RMA12].

1.2.1 Barcode Modulation

The general idea for providing a viable solution to barcode modulation is to use the

inverse Fourier transform (IFT) of data, like in the OFDM method, to modulate the

light sources, i.e. the LCD pixels. While image blur and light leakage greatly reduce

the performance of QR decoders, they still have a limited effect on OFDM modula-

tion. Furthermore performance degradation in OFDM is confined to known portions

of the decoded data. This prior knowledge on non-uniform error probability may be

used for adaptive error correction coding based on data region as in [PAK10]. There

is an increasing interest in design and implementation of LCD-camera based commu-

nication systems as indicated in [MSWS13], [PZZ13] and [KWH13]. Nevertheless,

this would require additional investigations in determining optimal modulation and

demodulation schemes for this type of innovative communications medium.

2



1.2.2 Unipolar OFDM

Dynamic barcode transmission like many Visible Light Communications (VLC)

modulations utilizes intensity modulation. However, non negativity of light intensity

by it’s definition, imposes that the modulating signal be unipolar, requiring special

techniques. The most obvious one would be adding a dc offset to the signal called

DCO-OFDM [Arm09], which requires a high average power. A more power efficient

method is modulation of odd carrier frequencies in an OFDM signal and then clip-

ping the negative part which is called ACO-OFDM [AL06]. It can be shown that

all the distortions related to clipping would occur on even frequency components

while odd frequency components would only be attenuated by 3dBs. In [LRBK09]

a method similar to ACO-OFDM is introduced using only imaginary components

of OFDM for modulation. There is also SFO-OFDM [AFH11] which is marginally

better than ACO-OFDM but far more computationally complex.

The research for finding the best intensity modulation method in terms of power

and bandwidth usage remains a worthwhile endeavor for its many potential applica-

tions. In Radio-over-Fber (RoF) systems, intensity modulation is used to transmit a

high frequency signal often in the range of 60GHz over a fiber optic channel. In this

case, the power and cost efficiency of the system are far more important than the

bandwidth efficiency on optical channel. Moreover, as the data transmitted opti-

cally is supposed to be sent on a wireless radio channel after detection, the choice of

the modulation method is limited by the radio channel requirements and standards.

Optical carrier suppression along with double side band modulation is thus used in

many systems.

3



1.2.3 High frequency optical modulation apparatus

The communications distance in RoF systems is rather short compared to long-

haul optical communications networks which span over longer distances. On the

other hand, the number of nodes is much higher. As a result, power efficiency,

complexity and channel dispersion requirements are totally different from other fiber

optic applications. In many cases, due to short communications distance, even the

use of an optical amplifier would no longer be necessary if an efficient modulation

is used. In this study, an innovative method is also introduced that can efficiently

modulate an optical signal for RoF applications.

1.3 Significance of study

Why is it helpful to transmit more data reliably using dynamic barcodes? Apart

from the general advantages of VLC for transmission of data, virtually any electronic

device with LCD display would be able to transmit data to a cell phone without any

hardware modifications, requiring instead only a software update. This applies to

printers, scanners, digital cameras, cell phones, among other devices. Furthermore,

the security and privacy issues are going to be reinforced in this kind of communi-

cations. An eavesdropper would be required to have a camera in front of the LCD

of a transmitting device at the time of data transmission which is not trivial as the

legitimate receiver could be blocking the line of sight.

To be more ambitious, NASAs Lunar Laser Communications Demonstration

(LLCD) [BSM+09] revealed that Visible Light Communication (VLC) can be the

future for space communications. Such a VLC system is comprised of a diode laser

transmitter and four superconducting nanowire single photon detectors playing the

role of a receiver. When an array of transmitting lasers are coupled with an array

4



of photo detectors to accommodate demanding bandwidth requirements of the the

future, it might well seem like a laser generated barcode with Giga frames per

second rate. To maximize data transmission rate, one should consider extracting

maximum data from a single image shown on an LCD and then increase the rate

at which consecutive frames will be decoded. In relation to this issue, any method

that is introduced should efficiently utilize the available bandwidth while taking into

consideration any potential motion distortions.

Coherent optical communications still dominates long-haul applications where

ideal performance efficiencies are required to utilize maximum capacity available

from expensive intercontinental fiber lines. However a lot of shorter range fiber

applications can benefit from research on intensity modulation / direct detection of

optical signals.

One of the challenges for the next generation of wireless networks is in managing

the distribution of a signal from a central station to other base stations. High band-

width requirements along with scarcity of low frequency bands have pushed for the

adoption of mm-Wave bands around 60GHz to be the next choice for implementing

wireless data networks. Higher attenuation of RF signals in mm-Wave band results

in utilization of smaller cells which in turn requires more base stations. Copper is

not a viable choice for distribution of signal from central station to base stations due

to its high attenuation of the mm-Wave RF signals. As a result fiber optics cables

have been used for this propose. These fiber optic cables are cheap and attenuate

much less the embedded optical signal than a copper cable would attenuate an RF

signal.

With an increase in the number of base stations to provide seamless coverage, the

cost per base station is of utmost importance in the adoption of such technologies.

In an ideal case, the base station is merely a repeater which receives the RF signal

5



modulated on optical carrier and transmits the mm-Wave RF signal after amplifica-

tion. On the uplink side, the base station receives a mm-Wave signal form a mobile

station and modulates it on an optical carrier before transmitting it back to the

central station through fiber optic cable. Ideally, no RF power amplification would

be required and the optical signal would have enough power to create a sufficiently

powered mm-Wave RF signal at the base station. Thus a cost-effective intensity

modulation method for RoF applications can greatly impact their adaptation as a

reliable distribution method of RF signals.

Modulation of baseband electrical signal onto optical carrier can be done in

various ways each with certain benefits and drawbacks balancing performance vs

complexity and cost. Handling RF electrical signals to modulate the optical carrier

is one of the cost increasing factors in these systems. If the baseband electrical

signal can be used to modulate the optical carrier in a way that optically generates

the RF mm-Wave signal, the system will be much simpler in its design construct.

1.4 Display-Camera communications channel

1.4.1 Display

In a typical LCD or liquid crystal display, a polarized back-light is passed through a

mesh of polarized filters creating pixels. Polarization in each pixel can be modified

by applying an electrical field. When polarizations for back-light and the pixel

align the back-light passes with a minimal loss resulting in a bright pixel. On the

other hand, when the polarizations are normal between back-light and pixel, only

a small amount of back-light passes resulting in a dark pixel. When the back-

light is generated by LED (Light Emitting Diode) the diplay is said to be an LED
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backlighted LCD, which can be marketed as LED display. Eventually each pixel

can also be an independent LED creating an LED display.

To create a color display, pixels have also some chromatic filters according to a

predefined subpixel geometry which depends on the technology and manufacturer.

This geometry defines the pattern by which red, green and blue pixels are arranged.

In order to create the perception of whole color range, the intensity of each colored

pixel can be adjusted independently. Regardless of the implementation technology,

these displays can be considered as an array of intensity modulators. Thus digital

data like files on a cell phone can be transmitted by this array of pixels by a proper

modulation scheme.

1.4.2 Camera

An image sensor is an array of arranged photo detectors generally implemented by

CCD (Charge-coupled device) or CMOS (Complementary metal-oxide semiconduc-

tor) technology [Nak05]. These sensors also have a mesh of chromatic filters to pass

selective light spectra. Combined with an optical lens the image sensor will be a

digital camera.

1.4.3 Data Transmission

When the camera is focused on an LCD display, each pixel of the display will be

mapped to multiple image sensor pixels. As a result, the image sensor can digitally

sample the LCD display. If the Nyquist sampling criteria is satisfied, a replica of the

signal shown on the display can be generated with proper filtering and perspective

correction. If the camera and LCD are carefully fixed to eliminate movement, the
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transfer function from LCD to image sensor can be extracted by showing known

patterns on the LCD and comparing it to the received signal at the image sensor.

1.4.4 Distortion

If one or both of the camera or LCD move during the capture process. The resulting

image would suffer from random motion blur distortion. Upon careful examination

of the motion blur, it can be seen that the relative movements during image capture

causes the photons accumulated on a single pixel of the image sensor to be com-

ing from multiple adjacent pixels of the display. A somewhat similar phenomenon

happens in multi-path radio channels. Thus it is expected that the modulation

methods capable of mitigating multi-path like OFDM will be well suited to resolve

this relevant issue.

1.4.5 Information Theoretic Limits

While the performance of OFDM modulation in various radio channels has been

studied extensively, it remains an open question for studying the theoretical lim-

its of dynamic barcode modulation under relative movement conditions between

transmitter and receiver. Although the work done on intensity modulation for VLC

applications may be extended to 2D barcode modulation with adequate effort, it

should be noted that current formulated VLC capacity limits are based on average

power constraints, while in a dynamic barcode modulation using LCD as transmit-

ter, maximum power would be the constraint not the average.
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1.4.6 Perspective Correction

Each static barcode standard has its own guide patterns to help the receiver find

the location of data. Design of these patterns requires trade-off between size of

the pattern, accuracy, required processing and power for detection, among others.

While detection of static patterns is based on capture of multiple frames from the

same barcode, in an asynchronous dynamic barcode each frame is only captured 2

times in order to have at least one acceptable frame. Furthermore, time required

to detect the guidance pattern is ought to be minimized, otherwise the system may

not work in real time.

1.4.7 Location Aware Modulation

In dynamic barcode modulation using OFDM, signal attenuation at the receiver

depends on the location of frequency element as discussed in [PAK10]. While a pre-

liminary study is done there, a present problem remains to find the best modulation

and bit loading method for such circumstances.

1.5 Unipolar OFDM for Intensity Modulation

Intensity modulation and direct detection (IM/DD) has always been a cost-effective

method for utilizing optical communications. Moreover, OFDM modulation as a

well-suited method for mitigating channel dispersion requires transmission of bipolar

signals. Adapting OFDM to intensity modulation, calls for extra measures which

require careful consideration of the application requirements. In the special case

of RoF communications, the signal transmitted on the fiber should be relayed to

a wireless RF transmitter without much processing after detection. Consequently,

9



many innovative solutions which require special modification of the transmitted

OFDM signal are rendered useless as they cannot be forwarded directly to the RF

transmitter.

In the meantime, the high crest factor of OFDM requires lower modulation

index to limit the clipping distortion. As a result, single or double side band optical

modulation along with carrier suppression is used in RoF applications. However, In

RoF systems, signal bandwidth is much less than the carrier frequency and the rest

of the spectrum is unused and is available only for utilization in a way to increase

power efficiency. In this research, it is shown that clipping a bipolar radio frequency

(RF) signal at zero level, when it has a carrier frequency sufficiently higher than its

bandwidth, imposes negligible distortion in the pass band, and most of the distortion

power is concentrated in the baseband. Consequently, with less power provided to

the optical carrier, higher power efficiencies and better receiver sensitivity will result.

The proposed unipolar OFDM method is based on an electrically upconverted

signal which adds cost and complexity considering high frequencies involved in mm-

wave RoF applications. There will be a significant improvement if it can be paired

with optical upconversion in a way that yields the same results. Moreover, it is also

favorable if the system can be integrated in a single optical chip. Having a lower

cost due to integration and lack of high speed electronics, the integrated system can

modulate baseband OFDM signal.

These requirements can be met by appropriately using of two electro-absorption

modulators coupled to opposite ends of a mode locked laser cavity and combining

their outputs. If the mode locked laser is tuned to have a mode spacing equal to

the intended mm-Wave carrier, it can be shown that the combined output will be

an efficient intensity modulated optical signal around the carrier frequency.
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1.6 Research Purpose

The main purpose of this research endeavor is to develop efficient modulation al-

gorithms for data transmission in LCD-camera communications systems that can

tolerate relative movements without dropping any data frames. Developing novel

unipolar OFDM techniques capable of achieving better power efficiencies in inten-

sity modulation scenarios would complement this research. Performance of these

algorithms are evaluated against current state of the art methods to validate their

superiority.

1.7 Research Questions and Hypotheses

Question 1: Current methods of 2D barcode modulation like QR-codes are just

fine. In these systems, the major challenge of camera distortion is not the Inter-

Symbol Interference (ISI), but the blurring. This leads to the question as to why a

new modulation method is needed?

Hypothesis 1:The current challenge in the detection of 2D barcodes would be

pixel blur either due to camera defocus or in the leakage of light from bright pixels

into dark ones. However, this is true for the case of detecting a single non-variant

barcode image, where several frames captured with a camera in preview mode are

analyzed to select the least distorted picture before decoding the barcode. Thus,

due to the low frequency oscillating nature of hand movements, there would be

little motion at the peaks of the movement and capture of some frames with little

ISI distortion is guaranteed. In fact, when a handheld reader is hovering over a

barcode, it will not decode the barcode if the platforms (reader and barcode) are

not stable to some extent. On the other hand, for the case of dynamic barcode

transmission, considering that the data shown as a barcode is different for every
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captured frame (or every two frames in case of asynchronous image capture) then

there would be only one image for each shown barcode with a high probability that

this image has a considerable ISI due to movement of sending or receiving platforms

at the particular shutter opening time of that frame. This hypothesis is evaluated

by measuring decoding probability for QR-codes under platform movement.

Question 2: How does differential modulation yield better performance in dynamic

barcode transmission versus other modulation methods?

Hypothesis 2: While compensation of LCD-camera relative motion may be pos-

sible using pilot tones when there is only a simple linear motion, it is expected to

be extremely difficult when there are complex motions between frames. However,

in differential modulation, although the phase at a particular frequency bin may

have completely changed at the receiver, the difference between adjacent bins only

changes only slightly. Therefore application of differential modulation may be the

ultimate answer even with doubling of error rate due to contribution of each phase

value to two symbols in differential modulation.

Question 3: What happens when only the positive parts of a bipolar real OFDM

signal is used to modulate the light intensity?

Hypothesis 3: It is known that if only the odd subcarriers of the OFDM signal are

modulated with data then the distortion resulting from clipping it at zero level and

sending only the positive part of the signal only affects even subcarriers. However

this distortion gradually decreases with frequency, it is expected that if the original

OFDM signal is modulated on a carrier with a high frequency compared to OFDM

bandwidth, then zero clipping distortions will be diminished before reaching the

original OFDM signal around the carrier frequency.

Question 4: Is there a better way to generate the intensity modulated signal for

RoF applications rather than using mm-Wave up-conversion circuitry?
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Hypothesis 4: Further examinations reveal that if subsequent pulses in an optical

pulse train can be modulated independently with positive and negative parts of the

OFDM signal the result will be similar to the high frequency OFDM signal clipped

at zero. The hypothesis is that if the intensity of a pulsed light source can be

modulated separately for even and odd pulses, then an effective modulation method

can be implemented for various modulation schemes including the one proposed in

this dissertation.

1.8 Methods

Generally for performance evaluation, each system is implemented in MATLAB

where the input data is fed to the algorithm and the received data after modulation

or transmission is retrieved. The simulations include the distortions induced in

LCD-camera transmission in a controlled way such that the same distortion may

be applied to different algorithms. By selecting random data for transmission and

sufficient number of trials, Monte Carlo [JBS00] bit error rate calculations are used

for assessing the performance of various modulation/demodulation algorithms in

this context. The same method is also used for the evaluation of the Q-factor in the

proposed intensity modulation algorithms.

1.9 Dissertation Structure

A novel 2D barcode modulation method is introduced in chapter 2 which is shown

to be well suited for the transmission of data between an LCD and a handheld de-

vice. After a discussion on potential data transmission capacity of the system, an

experiment is made to study the effect of motion of the receiving device on the per-
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centage of the frames that can be decoded flawlessly in normal QR-Codes. Then the

similarities between LCD-camera communications medium and multi-path wireless

radio channel are discussed, establishing the basis of using an OFDM signal as the

barcode in order to mitigate the effects of relative movement between transmitter

and receiver.

Due to unknown camera movements relative to LCD it is not trivial to cancel

motion effects on the captured image. As a result, this can greatly distort the phase

of the received signals extracted from the Fourier transform of the image. However,

it is expected that the distortion would be limited between adjacent frequency com-

ponents. As a result, an algorithm is introduced to create a 2D barcode from input

bits using DPSK-OFDM and its bit error rate is compared to simple Quadrature

Phase Shif Keying (QPSK) OFDM and Pulse Amplitude Modulation (PAM) as used

in regular 2D barcodes. Defining comparison metrics, various simulations are made

showing that that the performance of the proposed Differential Phase Shift Keying

(DPSK) is superior to simple QPSK OFDM and PAM when used as a barcode mod-

ulation method and in fact it can be reliably used along with current error correction

technologies to implement motion tolerant LCD-Camera data transmission systems.

In chapter 3, a unipolar OFDM method suitable for intensity modulation in RoF

systems is introduced. This led to the design of power efficient intensity modulation

methods for the algorithm created in chapter 2. Starting with a review of current

systems, a mathematical analysis of the proposed method is provided essentially

for proving that clipping an RF signal at zero level to create a unipolar OFDM

signal has a better performance under appropriate assumptions. There are also

some simulations performed to compare the proposed system to current intensity

modulation techniques used in RoF systems, which confirm the validation of the

results obtained.
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Chapter 4 introduces a novel integrated configuration for intensity modulation

well suited for implementation of the method discussed in chapter 3. It starts with

a mathematical analysis on the generation of RF Clipped Optical-OFDM (RFCO-

OFDM) signals that results in an alternative method of generating them instead

of using high frequency electrical up-conversion circuits. The study is augmented

by providing a schematic for the proposed system and discussing some details on

key elements within it. To asses the effect of carrier frequency and modulation

index, simulations are performed for the proposed system and the single modulator

counterpart.

Conclusions on findings and design perspectives of this dissertation together with

a retrospective on final thoughts related to pertinent issues are provided in 5.
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CHAPTER 2

BARCODE MODULATION METHOD FOR DATA TRANSMISSION

IN MOBILE DEVICES

Barcodes have played a great role in facilitating numerous identification processes

since their invention in 1952 [WS52]. In fact barcode is a simple and cost-effective

method of storing machine readable digital data on paper or product packages.

As pressing needs to transfer even more data faster and with high reliability have

emerged, there have been many improvements that were made on the original bar-

code design. Invention of two dimensional (2D) or matrix barcodes opened a new

front for these cost-effective codes and their application in more complex data trans-

fer scenarios like storing contact information, URLs among other things, in which

QR codes [Int06] have become increasingly popular. A comparison of 2D barcode

performance in camera phone applications can be found in [KT07a].

Much of the efforts in matrix barcode development have been dedicated to bar-

codes displayed on a piece of paper as that is the way they are normally used.

With the replacement of books with tablets and e-Book readers one could contem-

plate that replacement of the paper with LCD may open another promising front for

broader applications of 2D barcodes as a mean of data transfer. Moreover unlike the

static paper, the LCD may display time-varying barcodes for the eventual transfer

of streams of data to the receiving electronic device(s) as depicted in Fig. 2.1.

This idea has been implemented in [LDL08] where transmission of data between

two cell phones through a series of 2D QR codes is studied, achieving bit rates of

under 10 kbps for state of the art mobile devices. Later the idea was further de-

veloped in [PAK10] in which a computer monitor and a digital camera are used for

transmission and reception with bit rates of more than 14Mbps achieved in docked

transmitter and receiver conditions over distances of up to 4 meters. However, this
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Figure 2.1: An illustration of transmission of data between two handheld camera-
phones using a sequence of 2D barcodes.

rate drops to just over 2Mbps when the distance is increased to 14 meters. The

superior performance of the later implementation is achieved using a more effective

modulation and coding scheme for mitigation of image blur and pixel to pixel light

leakage. The general idea is to use the inverse Fourier transform (IFT) of data like

OFDM to modulate LCD pixels. While image blur and light leakage greatly reduce

the performance of QR decoders they have a limited effect on OFDM modulation.

Furthermore their performance degradation is confined to known portions of the

decoded data. This prior knowledge on non-uniform error probability may be used

for adaptive error correction coding based on data region as in [PAK10]. There is

an increasing interest in design and implementation of LCD-Camera based commu-

nication systems as indicated in [MSWS13], [PZZ13] and [KWH13]. This would
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require additional investigations in determining optimal modulation and demodula-

tion schemes for this type of innovative communications medium.

The OFDM modulation uses orthogonal frequency subcarriers to transfer data

and can confine image blur, which is essentially a low pass filter, to high frequency

components such that low frequency data bits are transmitted intact. This method

requires high phase coherency to detect the data bits correctly. The current study

extends this idea through additional modifications on the modulation scheme in

a way to mitigate LCD-camera relative movements during the capture of a sin-

gle frame, which results in motion blur distortion on the captured images. This

kind of distortion as would be detailed later severely degrades the performance of

Quadrature Phase Shift Keying (QPSK) modulated OFDM signals.

The required movement tolerance is achieved by putting data in phase differences

of adjacent frequency components leading to a DPSK-OFDM scheme which would

be called simply the DPSK method throughout this dissertation. Observing that

any phase distortion due to motion blur would affect neighboring frequency compo-

nents negligibly, data may be transmitted reliably even in the vicinity of high LCD,

camera relative motion. A diagram of the system envisioned is shown in Fig.2.2.

This method also eliminates the channel estimation requirements resulting in lower

processing power.

To maximize data transmission rate, one should consider extracting maximum

data from a single image shown on an LCD and then increase the rate at which

consecutive frames will be decoded. In consideration of this issue, any method that

is introduced should efficiently utilize the available bandwidth considering motion

distortions.

Previous studies have demonstrated the feasibility of such systems and have ad-

dressed the effects of single distortions like linear misalignment [MA12], defocus blur
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Figure 2.2: A diagram of the algorithm used for data transfer. Data stream is
supposed to include source coding and error correction coding

[RMA12] and vignetting [MA14] on the modulation methods under consideration,

but they have not provided a comparative assessment of these systems in a con-

trolled environment. Moreover, no comparisons were made in case of LCD camera

motions which greatly affect the performance of the system in applications that in-

volve handheld camera-phone receivers. As a consequence, this chapter introduces

DPSK-OFDM as a means of mitigating LCD camera motion distortions and sets a

series of simulations based on mathematical modeling for blur and motion on the

received images in a way that the distortion would be the same for PAM (Pulse

Amplitude Modulation), QPSK-OFDM and DPSK-OFDM modulations. As a re-

sult, a reliable comparison can be made between these major modulation methods

regardless of other parameters affecting the performance of such practical systems.

2.1 Data Transfer Capacity

There are many factors affecting the amount of data that can be extracted from

a particular LCD, some of them depend on the LCD design itself and others on

the camera working as the receiver. Moreover, there are some limitations due to

the system’s processing capability and power consumption. Although in practice, it

might be challenging to obtain a fair assessment of the system’s performance, it is
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important to know what affects the transfer rate and what can be done about each

limiting factor in this data transmission medium. The data capacity of an LCD

may be calculated by considering for instance the maximum number of bits in a

raw image as shown on the LCD. A display having the MD rows and ND columns,

showing a color image in LD channels (typically LD = 3 for red, green and blue)

and color bit depth of BD bits per channel, would have the maximum information

of:

CI = MD ×ND × LD ×BD bits per image (2.1)

This is the maximum information that can be shown on the LCD on a single image

due to the discrete nature of the data shown. A refresh rate of R for the LCD leads

to a data rate of CV = R×Ci. For a state of the art cell phone with a high resolution

display having 16M colors, the parameters would be MD = 1136, ND = 640, PD = 3,

BD = 8 and RD = 60Hz resulting in CI ≈ 17 Mbits and CV ≈ 1Gbps, which is an

extremely high data rate even when compared to current radio frequency wireless

technologies. Unfortunately, this rate cannot be achieved due to the limitations as

described in the next sections:

2.1.1 Camera Limitations

A digital camera could be considered as a device which digitally samples a 2D signal.

For correct sampling of consecutive frames in time, camera capture rate should be 2

times the display refresh rate (RD) unless there is a synchronization system in place

to activate the camera shutter when the image is stabilized on the display (exactly

between frame changes). As it is not normally the case, if the camera capture rate

is for example RC = 8Hz then the display refresh rate could not exceed 4Hz.
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To satisfy the Nyquist criteria for image resolution, each pixel of the image shown

on the LCD should be sampled by 2 or more pixels in the camera [GW07]. The

image sensor uses limited number of bits per channel for conversion of each color

pixel, resulting into quantization noise. To limit the effect of this noise on the overall

detection performance it should be maintained 6 − 10dB below system noise level

[SS77], which on the other hand must be maintained well below signal power level,

depending on the modulation method used, in order to have acceptable bit error

rates (BER) [PS07].

2.1.2 Power Limitations

The capacity of every communication channel depends on the power of the signal

sent through that medium as predicted by Shannon theorem [CT06], and in this

case the power would be limited by the intensity of light an LCD can generate.

Increasing this intensity would improve signal to interference and noise ratio (SINR)

in the receiver. Like RF power transmitters, LCD displays are limited in terms of

the maximum power leading to the Peak to Average Power Ratio (PAPR) limitation,

which is a common challenge for OFDM signals. When maximum available intensity

is fixed, higher PAPR yields lower average intensity and thus lower SINR. Therefore

transmission of OFDM signals over an LCD requires a trade-off between the average

power transmitted and the resulting distortion due to clipping of the peaks, another

issue that is addressed in this study. Although various PAPR reduction methods are

available, they would affect QPSK-OFDM and DPSK-OFDM methods in a same

manner, and DPSK modulation would still be superior when the same method of

PAPR reduction is used. Further discussions on clipping OFDM signals can be

found in [OI02a] and [DSH12a].
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2.1.3 Inter-Symbol Interference (ISI)

When a barcode is printed on paper, a white pixel does not affect its neighboring

black pixels provided that the print quality is good and the resolution is high enough.

On the other hand, when data is shown on an LCD, light that is passing through

white pixels may leak into neighboring black pixels making them look gray. The

straightforward solution to this problem is to increase the size of the pixels so that

they have minimal effects on each other. This is called barcode granularity in

QR coding [Int06]. On a lower level this is exactly the way a printed barcode is

generated, where each printed dot is not corresponding to a data symbol but rather

many printer dots contribute to a single black symbol. In the case of LCD, each

k × k pixel set is assigned the same color to generate just one symbol, isolating the

center pixel from bordering pixels that may be affected by neighbors. Unfortunately

this method greatly decreases the transfer rate because the M×N independent data

symbols reduce to M
k
× N

k
which leads to a k2 to 1 rate decrease. The inter-symbol

interference could happen in the receiver camera as well becoming a major obstacle

for increasing the pixel density of barcodes.

Moreover, any movements between camera and LCD during the capture of an

image for barcode processing results in motion blur which is translated into ISI

as neighboring pixels affect each other in the captured image. At first this effect

might not be evident based on common experiments with 2D barcodes like QR

codes. These codes are decoded successfully without major efforts in terms of sta-

bility of code or camera. While performance of some QR code detection algorithms

are studied in [LYL08] and first read rate performances of some 2D barcodes have

been studied in [KT07b], the research is rather focused on user experience as an

important factor, which is to determine if the user is able to decode the barcode at

first try. In fact, performance of 2D barcode decoders are measured by the frames
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processed per second, thus when a barcode scanner tries to decode a stationary 2D

barcode, multiple frames are processed within a second and a successful decode will

be reported if only one frame is captured in good conditions.

To investigate if a relative barcode camera motion affects the performance of the

decoder, the following experiment was conducted. Alphanumeric strings of various

lengths of number π were encoded into QR Codes of increasing dimensions, in a

way to fill the barcode capacity as shown in Fig. 2.3. Error correction level is set

to medium (M) which is capable of correcting roughly 15% error rate. Consecutive

frames were captured using a hand-held camera phone, first by fixing the camera

and then by holding it in one hand by a non-experienced user. Camera focus was

locked the same way in both cases and normal office lighting and a distance of 12cm

were maintained. Moreover, the width of rectangular QR code pixels was .312mm

regardless of the code capacity. As a result the largest QR code which had 121×121

pixels was 37.7mm in width which is double the density of ordinary QR barcode.

Encoding and decoding of the QR codes were accomplished using ZXing open-source

libraries [IEE14].

In order to limit the effect of perspective distortion, camera and barcode are

held parallel in the docked case, and although this angle cannot be guaranteed in

the handheld scenario, the performance drop would be negligible as reported in

[AJG+14]. The captured images taken at 10 frames per second where processed to

detect the QR code, and the percentage of decodable images are shown in Table

2.1. As can be seen from these results, for smaller QR codes it does not make any

difference if the camera is held by hand or fixed as all the frames would be detected

successfully. However, as the size of the QR code increases, more and more frames

are dropped in the moving case compared to the fixed camera setup. In any setup

studied, user experience would not be a problem as there was at least one detectable

23



Figure 2.3: Various truncations of number π encoded into QR codes to test the read
rate in docked and handheld camera situations.

frame within one second of recording onset.

Table 2.1: Read rate of QR codes in docked and handheld conditions

QR Version V1 V6 V11 V16 V21

QR Size 21×21 41×41 61×61 81×81 101×101

Docked 100% 100% 97% 99% 10%

Handheld 100% 100% 84% 71% 6%
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After all, the current challenge in detection of 2D barcodes is be pixel blur either

due to camera defocus or in the leakage of light from bright pixels into dark ones.

However, this is true for the case of detecting a single non-variant barcode image,

where several frames captured with a camera in preview mode are analyzed to select

the least distorted picture before decoding the barcode.

Thus, due to the low frequency oscillating nature of hand movements, there

would be little movement at the peaks of the motion and capture of some frames

with little ISI distortion is guaranteed. In fact when a handheld reader is hovered

over a barcode, it will not decode the barcode if the platforms (reader and barcode)

are not stable to some extent.

On the other hand, for the case of dynamic barcode transmission, considering

that the data shown as a barcode is different for every captured frame (or every two

captured frames in case of asynchronous image capture) then there would be only

one image for each shown barcode and there is a high probability that this image

has a considerable ISI due to movement of sending or receiving platforms at the

particular shutter opening time of that frame.

Moreover, although there is a considerable body of literature about motion de-

blurring, its application to traditional stationary barcode detection is limited be-

cause of the availability of tens of images from a single barcode within a reasonable

time to select a clear shot in current static barcode decoding scenarios.

2.1.4 Interference, Distortion and Noise

When a camera is used to take a picture of a 2D barcode, certain image artifacts

could impact the result of data extraction method. These artifacts are mainly due

to the following:
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• Distance and angle between Camera and LCD (Perspective distortion)

• Camera and subject relative motion

• Out of focus lens

• Compression Distortions

• Unwanted ambient light sources

• Dirt and permanent marks on the LCD

• Noise (primarily additive Gaussian noise)

Moreover, nonlinear distortions exist in a typical optical wireless data transmission

setup due to transmitter and receiver physical limitations that are discussed in

[TSH13]. These undesirable effects should be addressed to ensure the feasibility

of the algorithm under realistic scenarios, while preserving the ability for attaining

high data transfer rates.

2.2 DPSK-OFDM

While LCD technology is improving on pixel to pixel isolation, some of the image

capture distortions still remain, causing neighboring pixels of the barcode mix up in

the image and resulting in some kind of Inter Symbol Interference. The main idea

in resolving this problem is to interpret the barcode image as a wireless radio signal

for which ISI reduction techniques have already been proven successful. One of the

best and most feasible modulation methods capable of coping with severe conditions

in band limited communication channels is the so-called Orthogonal Frequency Di-

vision Multiplexing or OFDM [NP00]. The general idea is that when dealing with

band-limited, power-constrained, multipath channels, it is more efficient to transfer

a bunch of narrow-band signals in parallel instead of a single high bandwidth signal.
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2.2.1 Similarities of barcode and wireless RF channel

For simplicity each 2D image is reformulated into a 1D row vector containing all pix-

els in the 2D image. Each row can be considered as a time domain signal which has

Pulse Amplitude Modulation (zeros are black and ones are white pixels). Consider

taking a picture of this single row, in a band limited channel which has a combi-

nation of camera focus problems, resolution limitations, light leakage from white to

black pixels, among other things. Moreover in a multipath channel in which the

camera moves during image capture and mixes up the image of several neighboring

pixels, the resulting image will suffer from high ISI. To solve these problems in a

time domain radio signal, OFDM method is used to essentially divide the channel

into multiple orthogonal low bandwidth channels and the low rate data is sent into

these channels in parallel. So in case of the 1D data the inverse Fourier transform

is used for displaying the data instead of using the PAM modulated process, where

Hermitian symmetry conditions should be met to have real-valued outputs. As a re-

sult, most artifacts only affect the high frequency components leaving low frequency

components intact for data transmission.

This idea may be generalized to 2D signals to meet the requirement for trans-

ferring the entire image at once. Instead of 1D inverse Fourier transform, the 2D

version is used such that the effect of artifacts acting on two axes would be confined

to high frequency components. The exact modulation scheme will be discussed later

in this chapter.

In general each sub-carrier in an OFDM signal is modulated using M-quadrature

amplitude modulation (M-QAM). Thus proper phase shift of each element should

be estimated and compensated for before demodulation. This generally requires

specific conditions on the channel characteristics like fast fading where pilot tones

are used for channel estimation or slow fading where most methods would require
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multiple symbols in seeking similar channel responses (i.e. similar transfer functions)

[CEPB02] and [MM01].

When using OFDM for transmission of data as images, all the channel equaliza-

tion computations should be based on a single OFDM frame due to the independent

channel response between subsequent frames, unless the frame rate is very high. In

fact each frame is distorted by LCD-Camera relative motion during its own capture

time. To mitigate this problem the phase difference between adjacent elements is

used to convey data. Using DPSK modulation prior to applying the inverse Fourier

transform in OFDM modulation, data would not have to be stored in the absolute

phase of the received elements but rather in its phase difference to the neighboring

element, which eliminates the requirement for channel estimation and equalization

if the channel response does not vary abruptly between adjacent subcarriers.

2.2.2 Transmitter

One of the advantages of using OFDM is its effective computation method which uses

the Inverse Fast Fourier Transform (IFFT) to modulate input data into orthogonal

frequencies. The modulated signal should be real-valued in order to be shown on an

LCD, so the input to the IFFT algorithm should have Hermitian symmetry. This

requirement is shown in the following equation:

T(M −m,N − n) = T(m,n)∗ (2.2)

where 0 ≤ m < M and 0 ≤ n < N , and ∗ denotes the complex conjugate op-

erator. Figure 2.4 shows the elements relationship in order to have a real-valued

IFFT for T matrix. In this configuration, only regions 1 and 2 are used for data

transmission independently, and regions 3 and 4 are calculated accordingly to have
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a real-valued IFFT. Moreover, the symmetry requirements for elements that have

been deliberately set to zero would be automatically satisfied.

Figure 2.4: Hermitian symmetric matrix used for DPSK-OFDM modulation. The
IFFT of this matrix would have real-valued output on display. Bended lines show
location of complex conjugate pairs.

Constellation Mapping

The input data is decomposed into 2-bit symbols. Each symbol is converted to a

complex phase by the following rules:

11→ ej
1π
4 , 10→ ej

7π
4 , 01→ ej

3π
4 , 00→ ej

5π
4

Therefore the first bit modulates the real component and the second bit modu-

lates the imaginary component of the phase for each data symbol. These symbols
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are placed in a M−2
2
× N−2

1
matrix S which contains the absolute phase elements

that are going to be modulated using DPSK.

Differential PSK

Matrix S is transferred into a differential matrix D using the following method:

• D(0, 0) = S(0, 0)

• D(0, n) = D(0, n− 1)× S(0, n)

1 ≤ n < N − 2

• D(m,n) = D(m− 1, n)× S(m,n)

1 ≤ m < M
2
− 1, 0 ≤ n < N − 2

Subsequently, the DPSK modulated D matrix is divided into two matrices:

• D1(m,n) = D(m,n)

• D2(m,n) = D(m,n+ N−2
2

)

where 0 ≤ m < M
2
− 1, 0 ≤ n < N

2
− 1. These two matrices are used to fill

regions 1 and 2 of the matrix T. Regions 3 and 4 of T are generated based on the

Hermitian symmetry requirement, and all the remaining strips on T are set to zero.

These small regions, especially around region 1 (left top corner), may be used for

special data transmission such as frame rate or type of error correction coding used.

Inverse FFT

Considering T is the frequency domain representation of the signal, the IFFT is

applied on it to have the time domain signal referred to as Di. This signal would

have zero mean because T(0, 0) = 0, so it should be adjusted in order to use the

full dynamic range of pixels.
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PAPR adjustment

Di is a real-valued 2D signal with high peak to average ratios. In fact, the probability

of having a high PAPR increases as the number of frequency components increases

as can be seen in Fig. 2.5. There are several methods to limit the PAPR of OFDM

signals which might be applied here with slight modifications for 2D signals. One of

the most practical methods would be soft clipping of the signal in which a threshold

level of Amax based on signal average power level is set such that:

ClippRatio =
Amax√
Pavg

(2.3)

where Pavg is average power per element in the OFDM signal before clipping. Any

components with higher amplitude than Amax are consequently clipped to Amax

resulting in a 2D matrix Dc.

Amplitude adjustment

The pixel levels in the PAPR adjusted image need to be transformed into LCD

dynamic range levels for efficient utilization of transmission power. Normally the

intensity levels on the LCD goes from 0 to Imax. So Dc values are transformed

linearly to this range using the following equation:

Da(i, j) =
Dc(i, j)−Min(Dc)

Max(Dc)−Min(Dc)
Imax (2.4)

Thus the average power of Da is maximized for LCD projection.

Finder patterns

Proper demodulation of data requires precise extraction of the modulated data from

captured image and compensating for any perspective distortions. While finder

patterns to seek specific points in a barcode are generally expandable to dynamic
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Figure 2.5: The probability that the OFDM modulated 2D signal has a PAPR
greater than a certain value for different image sizes.

barcode case, two challenging issues should be met for any pattern to be applicable.

Firstly, the pattern should not alter the integrity of data bearing image because

OFDM symbol should be maintained intact. Secondly, knowing the approximate

location of the finder pattern should reduce the complexity of finding it because the

location is minimally changed in a frame by frame basis. Thus patterns like QR

code finder become favorable. General finder patterns used with 2D barcodes may

be used here like the 1,1,3,1,1 pattern used in QR-codes, for which fast and efficient

detection algorithms have already been developed in [BH13] and [LF13].
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Image Size

If the display has more pixels than OFDM symbol which is usually the case, multiple

OFDM symbols may be used next to each other considering the guard band involved.

This method was successfully used in the PixNet system [PAK10], and hence can

be applied here too. Although larger images where tested in our simulations and

had good results, they were not provided here on the account that perspective

correction requirements would not be met in a practical system using larger single

symbol images. Moreover, the largest size defined for a QR-code is 177x177 and

many decoders have problem dealing with larger barcode sizes. A sample 128× 128

image generated by the preceding transmitter is shown in Fig. 2.6 as it would be

seen on the LCD of the transmitting device.

Cyclic Extension

OFDM systems require cyclic extension to prevent inter carrier interference (ICI)

[MCW01]. To be sufficient, the length of the added cyclic extension must be more

than the time spread of the channel. In case of the 2D barcode, periodic extension

of the image generated by 2D-IFFT is required to prevent ICI. The length of this

extension is determined by the impulse response of the channel, which in turn de-

pends on the image blur and the amount of movement anticipated between LCD

and camera. However, since in this research the channel response is modeled in the

frequency domain, frequency domain filtering [GW07] is applied on the barcode,

and effective cyclic extension is achieved by frequency domain multiplication which

results in time domain cyclic convolution. Hence in all the following simulations

the length of the cyclic extension is the same for DPSK-OFDM and QPSK-OFDM

ensuring ICI elimination in the longest channel responses simulated.

33



Figure 2.6: Final image shown on the LCD after applying the DPSK-OFDM mod-
ulation algorithm

2.2.3 Receiver

After displaying the generated image of Fig. 2.6, the receiver uses its camera for

sampling and registering the acquired image so that a fairly acceptable copy of Da

is created at the receiver end. The effects of interference, noise and distortions

encountered in this step are addressed in the simulation section. To obtain the

transmitted data successfully, the following steps should be taken into consideration

at the receiver end:
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Image Capture

Digital camera and display systems have a limited refresh rate which tends to be

more than 23 Hz for different standards. In a synchronous system the camera can

capture each displayed frame at the exact moment when it is fully stable. However if

the receiver does not know when a new frame is ready on the display, the sampling

rate should be at least twice the display rate to ensure capture of at least one

acceptable frame. Moreover the relative distance and angle between camera and

display is bounded by the Nyquist criteria where each pixel on the display frame

should map into a minimum of 2× 2 block in the camera.

Image Registration

The first step in processing the captured image is to extract the displayed image

from background which depends on predefined finder patterns put into the image.

For example, data matrix guidance lines are used in [PAK10]. Because measurement

errors in finder pattern location and perspective correction errors are not part of this

study, the simulated images and their distorted received signals are ideally registered

isolating the effects of blur and camera movement on error rate of different schemes.

FFT

Applying Fast Fourier Transform on the registered image results in frequency domain

data which is comprised of the differential phase modulated elements stored in Rf

matrix.

DPSK Demodulation

The original constellation mapped data can be extracted using phase differences

between respective elements, but first data corresponding to regions 1 and 2 should
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be concatenated together to form matrix R corresponding to the transmitted matrix

T.

• Rd(0, 0) = R(0, 0)

• Rd(0, n) = R(0, n)×R∗(0, n− 1)

0 < n < N − 2

• Rd(m,n) = R(m,n)×R∗(m− 1, n)

0 < n < N − 2, 0 < m < M
2
− 1

The resulting Rd would be a distorted copy of S in transmitter path.

Detection

Now that the phase differences have been extracted, each input bit may be calculated

using the constellation map of the transmitter. Each element is evaluated using its

real and imaginary components. The sign of the real component determines the first

bit and the sign of the imaginary component determines the second bit.

2.2.4 Error Correction

Error correction coding is often used in communication systems to correct for the dif-

ferent number of bits lost in the transmission process. For example, Reed-Solomon

(RS) coding is used in QR codes, where depending on the level of error correction

used, error rates of 7% up to 30% can be corrected at the receiver end [Int06].

While the selection of error correction coding has a great influence on the over-

all performance of the communication system, they are generally used on top of

the modulation-demodulation scheme and after source coding. Therefore, based on

the achievable error rates without error correction coding, one can select an ap-

propriate coding scheme to create a reliable communication channel. As a result,

36



when considering the BER performance plots provided in the simulation section, it

should be noted that error rates in excess of 30% are not correctable even with the

most redundant RS codes defined in [Int06] and would consequently be considered

a non-reliable channel for this kind of transmission.

2.2.5 Computational Complexity

An important issue regarding the applicability of such a system would be the com-

putational power required to implement the system. Although a thorough investi-

gation of such requirements and any optimization process can be subject to further

study, it should be noted that the proposed DQPSK-OFDM system has a limited

processing overhead compared to the equivalent QPSK-OFDM system which is al-

ready implemented and tested. More specifically, on the transmitter side, although

the differential modulation is described by complex multiplications, it can be eas-

ily implemented using a small look-up table taking current phase and data to be

modulated as inputs. However, in the receiver side about M × N multiplications

are required to extract phase differences before detection which is not prohibitive

compared to the complexity of the 2D FFT preceding it which is in the order of

M ×N × log (M ×N).

2.3 Simulation

Current 2D barcodes use PAM as the preferred modulation method [Int06]. To

compare them with the proposed modulator and demodulator, both systems are

implemented in MATLAB. A Simple PAM modulator which translates bits into

light and dark pixels of an image is compared to the proposed DPSK-OFDM method

which uses the described algorithm for modulation and demodulation. Furthermore,
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the performance of QPSK-OFDM [ST01], which is essentially the same as 4-QAM

(Quadrature Amplitude Modulation) OFDM used in PixNet [PAK10], is compared

to the proposed DPSK-OFDM system. The main parameters that are considered

include:

• Noise and Clip Ratio

• Low pass filtering

• Camera Movement

To study the effect of each of these parameters, first a random data stream is

modulated to the displayed image using the algorithm under test. Then a controlled

distortion is applied to the image before passing it to the receiver. The bit stream

at the output of the decoder is compared to the input random stream to count for

erroneous bits. This process is repeated several times using various random data

streams and the same amount of distortion. The average result would be the bit

error rate corresponding to that particular situation and assumed distortion. The

process is then repeated for another distortion amount resulting in a plot for bit

error rate against distortion.

It should be noted that, the parameters used are based on the models assumed

for the distortions involved. For instance, here a linear motion during a camera

shutter open and close interval is assumed and motions magnitude and angle are

considered as parameters of the movement. Another study might consider a more

complex motion and selects the parameters accordingly. The fact is that the differ-

ential nature in DPSK modulation will help it outperform the other methods when

reasonable motion is involved. Of course if motion is so harsh that phase difference

applied by the motion to adjacent subcarriers is substantially different, the DPSK-

38



OFDM method would fail. However, the other two methods would have failed long

before that.

2.3.1 Noise and Clip Ratio

In a barcode setup where PAM is used to modulate data onto image pixels, the

average power is maximized. Consider the maximum amplitude driving a fully ”on”

pixel is Ap leading to a transmitted energy of Pp. In QR coding which uses binary-

PAM, amplitude of each pixel may be either 0 or Ap. Considering that the dc

offset is removed, each element would then have an amplitude of ±Ap
2

, yielding the

following average power per pixel:

Pave =
Pp
A2
p

1

M ×N

M∑
m=1

N∑
n=1

A2
mn (2.5)

where Amn is the amplitude of element (m,n). Thus Pave = Pp
4

. Moreover peak

power in a PAM scheme would be Pp
4

too. The fact that peak to average power

ratio in binary-PAM signal is always 1 no matter what the data is, makes it suitable

for situations where there is a limit on peak available power like LCD transmission.

On the other hand, OFDM modulation has the intrinsic problem of PAPR which

increases with increasing number of elements. In Fig. 2.5 PAPR for different image

sizes is calculated. The figure shows the probability of PAPR being greater than a

certain value.

High PAPR and limited peak power enforces a reduction in average power for the

signal if it is going to be transmitted as is. Low average power means higher error

rate in the presence of noise. To mitigate this problem, PAPR should be decreased

as the maximum power is limited by physical constraints of LCD. Here soft clipping

method is used as described before and the output after clipping is mapped linearly
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to the [0 255] interval for a grey scale image. In Fig. 2.7 the effect of various clipping

levels is shown along with additive white Gaussian noise. As the clipping increases,

the average power also increases due to fixed maximum power and lower PAPR.

However this increased average power is at the expense of a more distorted signal

which translates into more BER. In this figure BER approaches 18% as clipping

ratio decreases. Moreover, increasing noise level forces the BER approach 50%. It

can also be observed that increased noise level requires a lower clipping threshold to

obtain optimal error rate, but the induced distortion causes the benefit of increased

average power to be limited and at some point BER actually starts to increase while

average power is also increasing.

Figure 2.7: Bit error rate vs. clip ratio and noise power. As noise level increases
clip ratio should be increased in order to maintain optimum bit error rate.

40



2.3.2 Low Pass Filtering

Inter symbol interference and out of focus lens may be modeled by applying low pass

filtering on the captured image. To simulate this out of focus effect, the Butterworth

low pass filter in the frequency domain is used with various cutoff frequencies and

the resulting BER is measured. Equation 2.6 defines the applied filter.

L(u, v) =
1

1 + (u2 + v2)n/d2n0
(2.6)

The resulting BER-based performance plots using different modulation methods

are shown in Fig. 2.8. It can be observed in these plots that the BER increases

with lower cutoff frequencies. Here D0 = d0/N defines the cutoff frequency as a

percentage of image width (N). It can be seen that unless the cutoff frequency is

less than 20%, frequency domain modulations have better error performance than

the PAM method.

Figure 2.9 shows the effect of 20% filtering on the 128 × 128 DPSK modulated

image of Fig. 2.6. Consider the raw data which was mapped to matrix S described

in 2.2.2. After decoding the signal at the receiver and comparing it to S, matrix

E may be generated to show the location of each detected bit that differs from its

corresponding bit in S. To show the errors both in real and imaginary parts of S,

the lower half of E provides errors in the imaginary part of S while the upper part

indicates errors in the real part of S. The generated E is shown in Fig. 2.10, An

interesting point that can be seen here is that unlike PAM modulation, the location

of error bits are not distributed randomly. In fact error bits are more concentrated

in the high frequency areas of the OFDM based modulation methods.
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Figure 2.8: Effect of low pass filtering on BER performance. When cutoff frequency
is higher than 20%, OFDM based methods are superior to the PAM method.

2.3.3 Camera movement

Assuming linear image motion in x and y directions and instantaneous shutter open-

ing and closing, the motion may be modeled by the following transfer function as

described in [GW07]:

H(u, v) =
T

π(ua+ vb)
sin[π(ua+ vb)]e−jπ(ua+vb) (2.7)

where T is the exposure time, the a and b elements are the assumed image movements

in the x and y direction respectively during the exposure time. As can be observed,

this transfer function consists of a sinc function which is in fact blurring the image

due to motion and a translation function which shifts the image. To asses only the
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Figure 2.9: 20% Butterworth filter applied to DPSK modulated signal

effect of camera motion it is supposed that the received image is ideally located and

registered at the receiver end. So by shifting the image half the induced camera

motion, the processed image would be at the exact same location of the transmitted

image but is blurred due to motion. Figure 2.11 shows the effect of linear motion

with and without the translation portion. Thus the following centralized transfer

function is used to simulate the camera motion effect:

Hc(u, v) =
T

π(ua+ vb)
sin[π(ua+ vb)] (2.8)

It was already shown that OFDM based modulations have a great advantage

over PAM modulation in dealing with image blur. The QPSK-OFDM had a slight

advantage over DPSK-OFDM in that case. However, when the camera motion

43



Figure 2.10: Location of erroneous bits. White areas are detected correctly

effect is considered, DPSK-OFDM shows its superiority. When Hc is applied to the

received image in the frequency domain it may attenuate some elements resulting

in SINR decrease or it may reverse the phase of the original elements resulting in

constellation rotation and hence in error bits. Frequency attenuation in sub channels

is something that affects both OFDM methods. On the other hand, constellation

rotation does not affect DPSK-OFDM decisively because the sign of Hc would be

the same for adjacent sub channels unless Hc is near zero where attenuation would

dominate the capability of the system in detecting the modulated data.

The linear motion described by Eq. 2.7 can be considered as a motion of mag-

nitude r =
√
a2 + b2 and angle θ = arctan(a

b
). The Hc transfer function for each

magnitude and angle is calculated using Eq. 2.8. Two dimensional plots of BER for
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Figure 2.11: (a) Sample image. (b) H(u, v) applied. (c) Hc(u, v) applied.

different r and θ are shown in Figs. 2.12, 2.13 and 2.14.

BER for OFDM and PAM modulations introduces oscillations as a function of

motion’s magnitude and angle due to the sampling point residing between transmit-

ted pixels. In order to eliminate these oscillations, sub-pixel registration measures

are required as described in [BOO98].

In the proposed DPSK-OFDM method BER is maximized as θ reaches about

π/2. This is the case where the motion is perpendicular to the differential phase

modulation path. Because vertical phase difference of the elements is what transfers

data, if the movement is in the vertical direction, then errors may emerge. On
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Figure 2.12: BER for various r and θ in PAM modulation

the other hand, if the movement is horizontal it is not going to change the phase

differences of elements in two consecutive rows, thus no error is generated (The

errors, if any, in that case will be due to amplitude attenuation). Exact vertical

movement has slightly less error rate in Fig. 2.14 due to the fact that the first row

is modulated horizontally and vertical movement has minimal effect on it.

Because in practical data transmission scenarios frame to frame relative move-

ment of camera and LCD may be considered uniformly distributed over different

angles, it is safe to average the BER over θ where 0 ≤ θ < π. This result is shown

in Fig. 2.15 for 128× 128 image.

This is where DPSK modulated OFDM shows its promising capabilities in mit-

igating aggressive relative movements between transmitter and receiver. Moreover

it should be noted that in Fig. 2.15, PAM modulation is using about 5dB more
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Figure 2.13: BER for various r and θ in QPSK-OFDM modulation

average power than OFDM and DPSK methods. This is due to the fact that the

peak and average power of PAM are the same, and the full intensity range of LCD

is utilized. As any practical system would use full power of the LCD, this type of

comparison between the three methods is meaningful. Should the SNR for all three

methods be the same, BER performance for PAM would be worse than what is

shown in Fig. 2.15.

2.4 Conclusion

In this chapter, Differential Phase Shift Keying was combined with Orthogonal

Frequency Division Multiplexing in order to modulate data stream into visual two

dimensional barcodes. It was shown that QPSK-OFDM modulation has serious
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Figure 2.14: BER for various r and θ in DPSK-OFDM modulation

shortcomings in the mitigation of camera LCD movements where the phase of each

element changes continuously. On the other hand, addition of a differential phase

modulator before OFDM to modulate the data stream into phase differences of

adjacent elements (DPSK-OFDM) causes the motion effect to increasingly weaken

because of its gradual change from element to element, contributing to a small

deviation from the ideal phase in the received signal.

It was observed that under relative LCD-camera motions that generate error

rates in excess of 30% in PAM and QPSK-OFDM, the proposed system of DPSK-

OFDM will maintain an error rate less than 8% which is practically correctable

using error correction coding. Future inquiries in a resolution to this problem have

to address the best choice of differential pattern to optimize performance for various

motion scenarios. Moreover, extension of the current two-bit per symbol constella-
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Figure 2.15: BER for various r averaged uniformly over angle range for three mod-
ulation methods studied.

tions increases data transfer capacity, and its BER performance evaluation would

be required. Nevertheless, a study on the effect of perspective correction errors on

the BER performance of this algorithm compared to the other ones could augment

our understanding of its applicability to real world scenarios.
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CHAPTER 3

RF CLIPPED OPTICAL OFDM

The requirement for fast and reliable wireless communications networks has grown

rapidly during the past two decades. Cellular communications as a means of sharing

valuable time-frequency resources is the main method of answering this demand.

Moreover, with rapid growth of tablet and smart-phone adoption together with

the requirements of high quality multimedia sources, it is always a challenge for

wireless operators to keep up with this ever-expanding demand. As a result RoF

technology has been proposed for distribution of radio signals from a central station

(CS) to various base stations (BS) [WNG10]. RoF has the capability of dramatically

reducing infrastructure costs as most of the expensive hardware would be kept at

the central station and the radio signals can be transmitted over fiber optics medium

to relatively long distances without requiring amplification [BCA+13]. In the mean

time, congestion in current cellular communications bands and high cost of leasing

these frequencies has been a great motivation to push the research in finding viable

solutions for using higher frequencies in cellular communications.

Abundance of unlicensed low cost frequency bands between 57 to 64 GHz has

made mm-wave wireless communication a good candidate for 5G cellular networks

[RMA+13]. In a typical topology as shown in Fig. 3.1, a single central station

connected to fiber backbone can drive numerous base stations covering a large area

or different floors of a building. To minimize the cost of high-speed electronics, radio

circuits and system maintenance in these networks, it is advisable to concentrate

most of the components in the central stations to minimize the costs for the base

stations. An ideal solution is for these base stations to serve as the RF front end.

In this setup, a base station receives the RF radio signal from the central station

and transmits it to the mobile station on the downlink path. For the uplink path,
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the base station receives the RF signal from mobile stations and transfers it back

to the central station. Ideally, the central station is to send the RoF signal in a

way that its detection by a photo detector generates mm-wave radio signal at the

base station. This method ensures that no expensive up/down conversion circuitry

is required at the base stations.

Figure 3.1: In a typical RoF application, mm-Wave signal passes from the central
station to the base station through fiber optics, and transmitted to mobile stations
by wireless RF transceiver and vice versa.

Thus, the most cost effective optical modulation scheme to use would be the In-

tensity Modulation/Direct Detection (IM/DD) where the electrical signal modulates

the intensity of the laser rather than that of the optical field.

Direct modulation of the laser is a unique way of implementing IM/DD, requiring

no additional components. This task requires applying the correctly biased electrical
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signal to the input current of the laser. Although frequency chirp and laser nonlin-

earities greatly limit the performance of direct modulation, its lower cost and lesser

complexity serve as great motivation to improve its bandwidth and power efficiency.

To enhance direct modulation performance, optical injection may be employed as

in [NFP+10].

Another method for generating RoF signals is through the use of an external

modulator (EM) [LY03]. In this case, the laser itself works in a continuous way,

resulting in higher stability. A Mach Zehnder modulator (MZM) or an electro-

absorption modulator (EAM) will be able to modulate the laser intensity. The

MZM modulator should be biased at quadrature point to achieve optimum perfor-

mance in terms of linearity and dynamic range [HF05]. Intensity modulation by

definition requires unipolar signals as there can be no negative intensity. In all of

these methods, we add an appropriate dc bias to the signal to create a unipolar

modulation signal. The added dc bias translates into an optical carrier component,

which is necessary for direct detection of the signal received by the photo detector.

Performing carrier suppression after modulating the signal using a large dc bias is

essential in order to achieve better performance and receiver sensitivity.

Currently, orthogonal frequency division multiplexing (OFDM) remains the dom-

inant modulation scheme for wireless and wireline communication systems. That

includes current Wi-Fi and LTE (Long Term Evolution) wireless networks as well

as DSL (Digital Subscriber Line) and DTV (Digital TV). It is also the default path

for future expansion of cellular networks [ABC+14]. Consequently, in many RoF

applications, we transmit an OFDM signal over the fiber to mitigate channel dis-

persion in the wireless medium after RF transmission in the base station, as the

fiber is usually short enough to have negligible dispersion effects compared to the

wireless portion of the signal path. As a result, IM/DD, which normally results
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in optical double side band (ODSB) that is less tolerant to fiber dispersion, is still

an effective option for RoF applications. However, OFDM signals intrinsically have

high crest factor, which depends on the number of subcarriers used. Inevitably, we

clip the signal in order to have good power efficiency. It can be shown that the signal

power before clipping should be equal to carrier power in order to have optimum

performance [SD09].

In this study, we propose an OFDM electrical signal modulated to an RF carrier

frequency that is clipped at zero level to create a unipolar signal in which distortion

power will be concentrated in the baseband. The clipping would have negligible

effect on the RF signal. When peak signal level is limited either by laser power

or by EM linearity requirements, the proposed RF clipped optical OFDM (RFCO-

OFDM) method achieves higher sensitivity compared to a biased and clipped optical

OFDM (BACO-OFDM) even when employing carrier suppression. This means that

the proposed RFCO-OFDM method achieves the required Q-factor under lower

optical signal to noise ratio (OSNR) conditions.

With this retrospective, the structure for the remainder of this chapter is as fol-

lows: Section II introduces the mathematical framework to prove that zero clipping

of the OFDM RF signal creates a unipolar signal with much of the resulting distor-

tions concentrated in baseband. Section III provides the derivations of the limits on

the in-band distortion such that the effects of zero clipping are negligible. Section

IV discusses the parameters affecting the simulated systems. Section V presents the

simulation results that exemplify improvements achieved under various conditions.

Section VI provides concluding remarks and suggestions for future work.
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3.1 RFCO-OFDM

The previous section provided a retrospective on the various methods for imple-

menting a RoF system; however, intensity modulation for its lower cost and lesser

complexity is of interest here. In a typical IM/DD RoF scheme, the base band

OFDM signal modulates the RF carrier. The resulting RF signal with the added dc

bias is hence used to either modulate the input current of a laser diode directly or

the laser light using an external modulator.

In the proposed RFCO-OFDM, instead of adding a dc bias to make the modulat-

ing signal unipolar, we clip the RF electrical signal at zero level before modulating

the laser. Fig. 3.2 illustrates the block diagram of the proposed system. Clipping

the RF signal thus creates a distorted signal which, based on Busgang’s theorem,

has two component as discussed in [OI02b] and [DSH12b]. The first component is a

scaled version of the input signal, with an amplitude attenuated by a factor of two.

The other is the distortion component, which is uncorrelated to the first component

and hence uncorrelated to the input signal. This uncorrelated component, as proven

through the derivations presented next, has most if its power in the baseband fre-

quencies; and if the carrier frequency is high enough compared to the bandwidth of

the OFDM signal, the distortion can be effectively filtered out.

3.1.1 Zero clipping an RF signal

Suppose s(t) is the time domain representation of an arbitrary baseband signal with

bandwidth B. As a result S(f) which is the frequency domain representation of s(t)

is zero if |f | ≥ B where 2B is the passband bandwidth of the signal. As depicted

in Fig. 3.2, this signal modulates an RF carrier at frequency fc, with the resulting

signal being:
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Figure 3.2: Proposed system structure, an optical filter along with optical amplifier
may be used after intensity modulator for carrier suppression.

x(t) = s(t) cos(2πfct) (3.1)

By discarding the negative portion of x(t), we express the x+(t) signal as follows:

x+(t) =
x(t)

2
+
|x(t)|

2
(3.2)

The first term is a scaled copy of the signal x(t), which carries the desired data

and is detected by the receiver. The second term |x(t)|/2 is the distortion caused by

clipping. If the power of |x(t)| can be decreased arbitrarily at the desired modulated

subcarriers in x(t), then clipping is not going to affect the SNR of the received signal,

except for the .5 amplitude attenuation, as suggested in (3.2).
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3.1.2 Resulting distortion

The absolute value denoted by |.|, is a nonlinear function that generates all even

harmonics of the input signal at its output. However, for a bandpass x(t) in (4.1),

|x(t)| is:

|x(t)| = |s(t)|| cos(2πfct)| (3.3)

This can be interpreted as sampling |s(t)| through the use of | cos(2πfct)|. To de-

termine the resulting distortions in the frequency domain, we know that the highest

frequency component in s(t) is at B. Passing S(t) through the nonlinear absolute

value function creates harmonics with higher frequencies. Without loss of generality,

we assume that −1 < s(t) < 1.The absolute value function may be represented by

the sum of its basis functions as detailed in [MH02] in the following way:

|x| = 2

π
− 4

π

∞∑
b=1

(−1)b T2b(x)

−1 + 4b2
(3.4)

where Tn(x) is Chebyshev polynomial of the first kind of degree n. There are

different explicit expressions for these polynomials [Pra04]. For Tn(x) we have:

Tn(x) =
n

2

bn2 c∑
k=0

(−1)k
n

n− k

(
n− k
k

)
2xn−2k , for n > 0 (3.5)

Therefore, it is evident that if we assume a low-pass signal band limited to B into

this nonlinear system polynomial, the output cannot have any components above

nB frequency, which is the degree of the polynomial times the maximum frequency

in the baseband signal. Considering that n goes to infinity in (3.4), for this method

to work properly, Tn(x) should diminish considerably as n increases.
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3.2 Limits on distortion

Next step is to find limits on the amount of high frequency harmonics after the

application of the nonlinear absolute value function. Consider an arbitrary constant

α to be the largest integer such that the following holds:

2αB < fc −B (3.6)

As a result harmonics generated by the first α basis functions, accumulate up

to frequency 2αB and are not going to affect data bearing frequency range from

fc − B to fc + B. Subsequently, ŝ(t) defined as an estimate of |s(t)| using the first

α Chebyshev polynomial terms
(
up to T2α(x)

)
can be evaluated as:

ŝ(t) =
2

π
− 4

π

α∑
b=1

(−1)b T2b(s(t))

−1 + 4b2
(3.7)

Thus

|s(t)| = ŝ(t) + Er(t) (3.8)

Where Er(t) is the error in estimating |s(t). Figure 3.3 shows Chebyshev poly-

nomial approximation of |x| for α = 2. As can be seen, the truncated Chebyshev

series closely follows the |x| function with maximum error happening around 0.

The absolute value of error, |Er(t)|, is bounded by the Chebyshev truncation

theorem [Boy00]:

|Er(t)| ≤ 4

π

∞∑
b=α+1

∣∣∣∣ (−1)b

−1 + 4b2

∣∣∣∣ (3.9)

Which is the sum of the absolute values of all the remaining Chebyshev polynomial

coefficients not used in the approximation. Calculating the infinite sum results in

the following relation:
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Figure 3.3: Approximation of |x| using Chebyshev polynomials and α = 2. Only
T2(x) and T4(x) are used in this approximation.

|Er(t)| ≤ 1

π(α + 1
2
)

(3.10)

The error for the whole [-1, 1] range is shown in Fig. 3.4 for α = 2, 5, 10. The

maximum of each plot, which is at the zero input level, exactly matches the predicted

value from (3.10).

It can be shown that by selecting an appropriate value for α the in-band distor-

tions caused by clipping the RF signal would be limited to arbitrarily small values

as predicted by (3.10). On the other hand, equation (3.6) can be rewritten as:

fc
B
> 2α + 1 (3.11)
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Figure 3.4: Error in different approximations of |x|. Error amplitude is inversely
proportional to the number of Chebyshev polynomials used in the approximation.

The use of equations (3.10) and (3.11) will determine the required carrier to

bandwidth ratio for the system to work in a way that its performance is limited by

receiver noise level instead of by clipping distortion. In fact, considering that these

systems generally use an analog to digital converter (ADC) with limited resolution in

the receiver, maximum error in the time domain samples can be lowered to become

comparable to the quantization level of the ADC.

For example, a 6-bit ADC used to digitize the [0 1) range has a quantization

level of 1/64. This in turn is equivalent to α ≥ 20 from (3.10). Hence, carrier to

bandwidth ratio should be greater than 41. This means that a 1.46 GHz signal

could modulate a 60 GHz carrier frequency and then clipped at zero with in-band

distortions less than the quantization error of the ADC at the receiver.
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This particular example serves as a rather conservative way for calculating the

signals bandwidth. In the next section, we demonstrate that even with much lower

carrier to bandwidth ratios, the resulting in-band distortions will be less significant

in comparison to a clipped OFDM signal biased at the optimum dc level.

3.3 Parameters Affecting performance

Performance analysis of optical communication systems traditionally uses Q-factor

instead of SNR. It is mainly because that for on-off keying (OOK) modulation used

in fiber communications, shot noise would be different for on and off states. The

Q-factor takes that into account this difference and gives a realistic sense of signal

quality which can easily be translated into bit error ratio (BER). The Q-factor for an

optical OFDM system can similarly be defined using the signal constellation points

as in [LDA07]: q = µx/σx = µy/σy where µ is the mean and σ is the standard

deviation in each direction assuming the decision threshold levels are on x = 0 and

y = 0. This definition results in the BER being simply Q(q) where Q(.) is the

normal Q-function [PS08].

In this section it is considered that the external modulator is biased at quadra-

ture point which is the best bias point in terms of available linear dynamic range

[SBC+10]. Although modulator nonlinearities are not considered here for the sake

of simplicity, they can be fairly compensated using pre-distortion techniques as

described in [KWM+05]. System performance through simulations is affected by

various parameters that are discussed next.
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3.3.1 OFDM Modulator

Constellation size does not have a meaningful effect on the optimum bias and clip-

ping levels of normal optical OFDM as discussed in [CKE12]. The assumption is

that frequency difference between subcarriers ∆f is constant and will depend on par-

ticular transmission channels parameters. For a RoF system, ∆f generally should

meet the requirements of the wireless radio channel between base and mobile station.

As a result, increasing the number of subcarriers translates into higher bandwidth.

Considering a fixed carrier frequency, the carrier to bandwidth ratio changes, which

in turn affects the in-band distortion noise for RFCO-OFDM signals as predicted

by (3.11) and (3.10).

Most of the experimental RoF systems use the whole 57 to 64 GHz bandwidth

proposed for mm-wave radio applications. However the number of subcarriers uti-

lized is different depending on the application; for example 37 subcarriers are used in

[JLN+10] while 32 and 128 are both implemented in [SMAB15] and 480 subcarriers

in [AAI+14]. It is generally accepted that more than 64 carriers are sufficient for

the OFDM symbol to have Gaussian amplitude. In this study, 250 subcarriers are

considered with a a ∆f of 10MHz, which corresponds to 5GHz of RF bandwidth.

In an alternates case, 150 carriers are also used to study the effect of lower 3GHz

RF bandwidth.

3.3.2 Biasing and Clipping

With different peak to average power ratio, the optimum bias and clipping level

would be different for every OFDM frame. Some systems rely on adding sufficient

bias to eliminate clipping and make it a statistically rare event, which is not power

efficient. However, simultaneous biasing and clipping can result in optimum perfor-
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mance in term of overall BER. Optimum levels can be found by exhaustive search

for every symbol, and theoretical optimum bias levels are thoroughly studied in

[CKE09]. A general rule is that half of the power should be devoted to the optical

carrier [SD09].

Dc bias level and subsequent clipping have a great impact on power efficiency

and distortion as revealed in [DSH12b, ZZ14]. OFDM clipping is often considered

in the normalized form of clipping ratio:

γ =
Vclipp
σ

(3.12)

Where Vclipp is the clipping threshold and σ is the standard deviation of the electrical

OFDM signal. Considering the driving voltage to be in the 0 to 1 range, the external

modulator is biased at .5, which corresponds to half its maximum intensity. Thus

Vclipp is fixed at .5 and σ is adjusted by scaling the input OFDM signal to achieve

the desired γ level. The resulting signal then mapped to the actual input range of

the external modulator. We define modulation index to be the standard deviation of

this electrical signal as a percentage of the input range for the intensity modulator.

The input range is in fact the the range of electrical signals that drive the modulator

from 0 to 100% intensity.

To have a fair comparison, we consider that the total transmitted optical power

is the same for both systems where a power amplifier is involved. Because in IM

the laser intensity is proportional to the input signal voltage, the average optical

power is assumed proportional to E[x(t)] and not E[x2(t)]) [LRBK09]. As a result,

the dc bias level determines the average optical power, and by setting it to half the

maximum intensity, every simulation uses the same average optical power.
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3.3.3 Optical Amplifier

For long haul communications, optical amplifiers are required to occasionally boost

signal power along the fiber. However in short range applications it is possible to

use the optical output of the external modulator paired with a sufficiently powered

laser without amplification as suggested in [NS09]. As a result, we consider two cases

here. The first, no optical amplifier is involved, which imposes no carrier suppression,

and signal power is directly determined by laser power and modulation index. In

this case the proposed method of RF clipping is expected to be a power efficient

alternative for biased OFDM. The second case is when an optical amplifier is used

after external modulation along with carrier suppression as proposed in [LDA07]. In

this case, carrier suppression can enhance the power efficiency of the biased OFDM

method by decreasing the power wasted on optical carrier. However, the proposed

method of RFCO-OFDM still outperforms the suppressed carrier optical OFDM.

Modulation indexes less than 10% are not practical, as they require very high gain

amplifiers in order to create the required signal power. As a result 12% modulation

index is selected along with a 23dB carrier attenuation as proposed by [LDA07].

3.3.4 Noise

In most practical direct detection systems, thermal noise is much larger than quan-

tum shot noise and determines the performance of the receiver [RSS10]. However,

in RoF systems, detection is not performed at the optical receiver, and the signal

is relayed to the radio receiver over wireless RF channel rendering the base station

node as a non-regenerative amplifier. As a result, the RoF system should have a

high quality signal at the photo detector so that there are no significant distortions

with the resulting RF signal before its transmission through the wireless channel.
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Therefore, RoF systems can be considered similar to analog optical communications

systems in which higher signal to noise ratio is required compared to digital systems

[Ale97]. Consequently, in these systems intensity noise of the laser and the ampli-

fied spontaneous emission (ASE) of optical amplifier limit the performance of the

system. For simplicity, we consider that as an effective additive Gaussian noise in

electrical field [GM90] and its power is set by Optical SNR (OSNR).

3.4 Simulation

In measuring the Q-factor as the definitive performance factor, more than 105 ran-

dom bits where modulated into both systems and an average Q-factor for each data

point is measured. As discussed earlier, two different scenarios where simulated:

3.4.1 Without optical amplifier

In RoF applications where no optical amplifier is used, there is no advantage in

implementing carrier suppression, and we compute the output signal power using the

modulation index along with input optical power. As a result, biased OFDM cannot

benefit from high output power and low distortion simultaneously. If modulation

index is set too high, clipping distortion will be high and if it is set too low, signal

power will be low.

The output optical power of a BACO-OFDM modulator is set to half intensity

when biased at quadrature point while the output optical power of the RFCO-OFDM

depends on the modulation index. Figure 3.5, demonstrates the power dependence

on the modulation index. The plots show how much the output optical power

of BACO-OFDM is higher than RFCO-OFDM. The highest curve corresponding to
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the case without carrier suppression shows BACO-OFDM has a much higher optical

power in low modulation indexes.

Increasing modulation index increases the output optical power in RFCO-OFDM.

This particular behavior is due to the fact that average output power in BACO-

OFDM remains the same and does not depend on modulation index. On the other

hand, for RFCO-OFDM the average output power increases by increasing modula-

tion index because higher dc value in the zero clipped signal. However increasing

the modulation index also increases the probability of signal highs being clipped.

Considering that on average half of the output samples are zero and the other half

at most have the full intensity, the average output optical power of RFCO-OFDM

is limited to half the intensity which is equal to BACO-OFDM. Thus, as the mod-

ulation index increases, both systems tend to have the same output optical power.

In practice an OSNR of around 20dB is required to have a reliable link perfor-

mance [RSS10]. On the other hand, Q-factor should also be higher than 7 to have a

negligible bit error rate. Thus, the modulation index that cannot achieve a Q-factor

of 7 is not desirable. Figure 3.6 shows the Q-factor in the absence of noise (due to

clipping only) for various modulation indexes. As can be seen in Fig. 3.6, systems

achieve almost the same Q-factor for higher modulation indexes.

However, when modulation index is low, clipping of the peaks in BACO-OFDM

becomes a rare event resulting in high Q-factor values. On the other hand, in-band

distortion due to zero clipping limits the RFCO-OFDM performance, which clearly

depend on the bandwidth of the OFDM signal assuming a fixed carrier frequency.

This situation completely changes when measurements are done at the receiver

end. High Q-factors for lower modulation indexes were achieved by dedication a

high power optical carrier in BACO-OFDM. However having a fixed OSNR at the

receiver results in low signal power for BACO-OFDM. This effect is shown in Fig.
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Figure 3.5: Power difference between BACO-OFDM and RFCO-OFDM calculated
using 10log(PBACO/PRFCO).

3.7 where a 20dB OSNR is assumed at the receiver for BACO-OFDM. It should be

noted that because of the difference in optical power between two schemes as shown

in Fig. 3.5 then OSNR for BACO-OFDM is higher than RFCO-OFDM if the same

noise level is present at the receiver.

This situation completely changes if we take the measurements at the receiver

end. To achieve high Q-factors for lower modulation indexes, we need to provide

high power to the optical carrier in BACO-OFDM. However, having a fixed OSNR

at the receiver results in low signal power for BACO-OFDM. Figure 3.7 illustrates

this effect with a 20dB OSNR at the receiver for BACO-OFDM. Because of the

difference in optical power between two schemes as shown in Fig. 3.5, we observe
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Figure 3.6: Q-factor comparison for two different number of subcarriers correspond-
ing to 5GHz and 3GHz signal bandwidth. It is measured at the output of the
modulator were noise power is negligible.

that OSNR for BACO-OFDM is higher than RFCO-OFDM if the same noise level

is present at the receiver.

3.4.2 With optical amplifier

For applications requiring an optical amplifier after modulating the signal, carrier

suppression makes using a low modulation index possible. In such a case, OFDM

modulations can benefit from less distortion due to clipping while at the same time

carrier to signal ratio can be adjusted to achieve optimum performance. However,

carrier suppression is only advantageous in BACO-OFDM where dc bias level and
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Figure 3.7: Q-factor comparison for two different number of subcarriers correspond-
ing to 5GHz and 3GHz signal bandwidth. Measurements are done at the receiver
input considering a 20dB OSNR for BACO-OFDM.

modulation index are independent. In RFCO-OFDM, bias is created by clipping the

signal at zero, depending as a result on signal power. For low modulation indexes

where clipping is negligible, dc bias for RFCO-OFDM is proportional to modula-

tion index. As a result, suppressing carrier in RFCO-OFDM actually decreases its

performance unlike on BACO-OFDM.

Figure 3.8 shows Q-factor for various modulation indexes and carrier suppression

ratios in BACO-OFDM. As can be seen here, the higher modulation indexes require

less carrier suppression to achieve their respective maximum Q-factors. However,

they tend to have lower Q-factors due to clipping noise resulting from increased

probability of reaching the clip level.
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On the other hand, lower modulation indexes can achieve higher Q-factors be-

cause clipping becomes a rare event. In the mean time lower modulation index

results in a strong optical carrier component which requires higher carrier suppres-

sion and optical amplification to obtain optimum performance. A suppression ratio

of 23dB along with an 11% modulation index achieves good performance while the

required amplifier gain is still reasonable. Figure 3.5 also shows the difference in

optical power between RFCO-OFDM and BACO-OFDM for various modulation

indexes and carrier suppression levels. As can be observed, RFCO-OFDM requires

less amplifier gain to achieve the same power level as BACO-OFDM for practical

carrier suppressions of higher than 20dB and modulation indexes of higher than 6%.

Figure 3.9, shows a comparison between Q-factor from BACO-OFDM with a

carrier suppression of 23dB and RFCO-OFDM for various modulation indexes. Con-

sider that both systems are taking advantage of optical amplifiers, thus in RFCO-

OFDM lower modulation index is translated into lower clipping probability and does

not mean lower output power. In fact, for modulation indexes lower than 15%, Q-

factor for RFCO-OFDM is limited by OSNR rather than clipping noise. However for

modulation indexes over 15% clipping noise starts to affect the system performance

leading to a decrease in the Q-factor. Note that a modulation index of 11% reaches

the maximum Q-factor for BACO-OFDM, which is still more than 6dB bellow the

Q-factor achieved by RFCO-OFDM.

To see the improvement in sensitivity, Fig. 3.10 shows Q-factor under various

OSNR conditions. Observe that in order to have a Q-factor of 10dB, BACO-OFDM

with carrier suppression of 23dB and 11% modulation index requires about 7 dB

more OSNR, which translates into higher sensitivity of the proposed RFCO-OFDM

system.
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Figure 3.8: Effect of carrier suppression and modulation index on Q-factor for
BACO-OFDM.

3.5 Conclusion

In this chapter, an optical modulation method was introduced in order to achieve

better Q-factors than carrier suppressed biased optical OFDM. The method is espe-

cially suited for RoF applications with the RF carrier being high enough as compared

to signal bandwidth. In fact, the proposed approach proved analytically that higher

carrier to bandwidth ratios result in lower distortion levels due to clipping the sig-

nal at zero. The study provides a comparison of system performance for two cases

with and without optical amplification. In both cases RFCO-OFDM achieves higher

Q-factor as compared to carrier suppressed BACO-OFDM under same OSNR con-
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Figure 3.9: BACO-OFDM with 23dB carrier suppression compared to RFCO-
OFDM for various modulation indexes.

ditions. Moreover, the study also shows that when effective carrier suppression is

applied, output optical power of RFCO-OFDM is higher than carrier suppressed

BACO-OFDM.
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Figure 3.10: Q-factor achievable on different OSNR values at the receiver.

72



CHAPTER 4

INTEGRATED DUAL BEAM OPTICAL MODULATOR

In the previous chapter, It was shown that if a mm-wave RF signal is clipped

at zero level, the resulting unipolar signal can be used to modulate the intensity

of a laser with a better performance compared to carrier suppressed double side

band optical OFDM. However, no matter if the laser is modulated directly or an

external modulator is used, generation of the proposed unipolar signal requires high

frequency electronics that increase the complexity and cost of the system. In fact,

for the system to work, a mm-wave RF signal should be mixed with a baseband

OFDM signal and the result should be applied to the modulator with appropriate

biasing in order to clip the negative part.

In this chapter a novel method is proposed for implementing RFCO-OFDM.

The newly proposed modulator does not depend on high frequency electronic com-

ponents to create an optical mm-wave signal. Instead, it uses a baseband OFDM

signal to modulate consecutive optical pulses of an optical pulse train generated by

a mode locked laser (MLL) to create an optical signal similar to RFCO-OFDM.

This architecture will also be able to support other optical modulation schemes like

Optical Single Side Band (OSSB) as in [SYZ15] and [SF05].

4.1 Generating RoF signals

RoF systems can be classified by the method of generating mm-wave signal. In

electrical generation, an RF electrical signal is used to modulate a single mode laser.

Thus, basically an optical carrier is modulated by a high frequency electrical signal

to result in the desired RoF optical signal. In optical generation, mm-Wave signal is

created by beating two different optical wavelengths either from a multi-mode laser
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or from two separate lasers. In this case, generally one or both optical wavelengths

are modulated by a baseband signal albeit with low modulation indexes. Direct

detection at the receiver mixes these two signals together resulting in a mm-wave

RF signal and some other distortion components that can either be filtered out or

has minimal effect on in-band components.

4.1.1 Electrical Generation

There are two methods for electrical generation of mm-wave signals. The first one,

uses direct modulation of a single mode laser with a mm-wave electrical signal. To

decrease frequency chirp in direct modulation due to changes in refractive index of

the active region [SKM05], direct modulation may be applied to an Optical Injec-

tion Locked laser [LWW09]. The second Electrical generation method uses external

modulators to modulate an RF electrical signal on a single mode laser. External

modulation can be performed using MZM or EAM modulators as in [WHS+08] and

[LLSS04], respectively. Moreover, because of the inherent nonlinearity of external

modulators, mm-wave generation is possible by generating harmonics of an IF elec-

trical signal as in [LCS+10].

4.1.2 Optical Generation

In optical mm-wave generation, the RF signal is created by mixing of two separate

optical wavelengths in the receiver. This can be done by externally modulating a

dual-mode laser with mode separation equal to mm-wave signal as in [WLD95] or a

mode-locked laser as in [OSF+00]. It can also be done by heterodyning two separate

laser sources in an injection locked [HWH+02] or free running [IPS10] configuration.
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4.2 RFCO-OFDM

In the previous chapter it was shown that if a mm-wave electrical signal is clipped

at zero before being applied to an intensity modulator, the resulting optical signal

can achieve good performance with higher power efficiency than a carrier suppressed

optical OFDM. However, the method still requires up-converting the electrical signal

into mm-wave carrier frequency resulting in higher cost and complexity. To develop

a more efficient method of modulating RFCO-OFDM signals a closer examination

of their structure is necessary. Considering the following expression for the RF

modulated signal:

x(t) = s(t) cos(2πfct) (4.1)

Expanding this equation, the carrier signal can be defined as the sum of two sampling

impulse trains p(t) and p(t− Tc/2) where Tc = 1/fc is the period of the RF carrier

tone. This impulse train is then convolved in time domain by a half cosine pulse

shaping function g(t) as shown below:

x(t) = s(t)(p(t)− p(t− Tc/2)) ∗ g(t) (4.2)

where

p(t) =
∞∑

n=−∞

δ(t− nTc) (4.3)

and

g(t) =


cos(2πfct), if − Tc/2 < t < Tc/2

0, elsewhere

(4.4)
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Considering that the pulse shaping function g(t) ≥ 0 in (−Tc/2, Tc/2) and zero

elsewhere, clipping x(t) at zero results in x+(t) where:

x+(t) =


s(t)(p(t)) ∗ g(t), if s(t) ≥ 0

−s(t)(p(t− Tc/2)) ∗ g(t), if s(t) < 0

(4.5)

Thus x+(t) can be generated by adding two signals together. The first one is a pulse

train modulated by s(t) clipped at zero and the other one is a shifted pulse train

modulated by −s(t) clipped at zero, that is:

x+(t) =
1

2

[(
|s(t)|+ s(t)

)
p(t) +

(
|s(t)| − s(t)

)
p(t− Tc/2)

]
∗ g(t), (4.6)

Considering g(t) as a pulse shaping function, one can interpret the expression

for x+(t) as a combined intensity modulation of two fast laser pulse trains with

repetition rate of Tc and relative delay Tc/2. Consequently, if two phase locked

optical pulse trains are modulated with s(t) and −s(t) using two separate electro-

absorption modulators. The modulators must be carefully biased to clip the input

at zero. The combined output creates a RFCO-OFDM modulated signal without

any electrical RF up-conversion involved.

4.3 Double beam optical modulator

Here an integrated optical modulator is introduced based on a Mode Locked Lasers

(MLLs), two electro-absorption modulators and an optical coupler. The system can

modulate baseband OFDM signals into a mm-wave RF carrier with higher power

efficiencies. Figure 4.1 depicts the schematic diagram of a typical proposed system.

The basic idea is to get laser pulses from both facet mirrors of a laser cavity instead

of just one of them. In an MLL these two pulses are in sync and have a time
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difference equal to half of the laser cavity round trip time. Each of these pulse

trains is then modulated using preferably an EAM which can be integrated into the

laser itself.

Biasing EAMs at the verge of transmission, creates a condition in which EAM1

only modulates positive parts of the baseband signal and absorbs the laser pulses

when the baseband signal is negative. On the other hand because EAM2 receives

the inverted baseband signal, it modulates optical pulses whenever the input signal

is negative and blocks the path when it is positive. When these two pulse trains are

combined together in a coupler, the result is an efficient mm-wave signal modulated

around MLL pulse repetition frequency.

Figure 4.1: Schematic of the proposed modulator
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It should be noted that although Fig. 4.1 may imply a Fabry-Perot laser cavity,

the proposed method is applicable to most cavity configurations. The proposed

method of intensity modulation is like modulating a band limited signal on an RF

carrier where RF frequency is much higher than signal bandwidth and then removing

the negative part of the result. This process maintains the RF modulated signal

but introduces some distortion in the baseband which has negligible effect on the

demodulated signal in the receiver.

4.3.1 Mode Locked Laser

Mode Locked Lasers provide promising means to implement mm-Wave RF systems

as they are readily available in low cost configurations. They can also generate

optical and RF carriers simultaneously by tuning the frequency difference between

consecutive longitudinal modes of the laser. They can be modulated with an external

modulator operating at baseband frequency while requiring very low modulation

index as both the optical and RF carriers are being modulated. The low modulation

index decreases the sensitivity and efficiency of the system which in turn requires

using an optical amplifier afterwards.

In a typical diode laser, theoretically there is an infinite number of possible

longitudinal modes that can sustain inside cavity. In fact any wavelength with λ =

1/n∆f can resonate inside the cavity where ∆f = C/2L is the resonant frequency

spacing, C is the light speed in vacuum and L is the optical length of the cavity.

However, not all of these modes will be present in the output as the gain medium

inside the cavity has a limited bandwidth which results in a net gain on a number

of wavelengths. For continuous wave laser, these longitudinal modes have random

phases which create a random time behavior for the intensity of emitted light.
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To have a better insight, Fig. 4.2 illustrates the intensity of a continuous wave

(CW) laser oscillating on 5 longitudinal modes. In fact, this intensity is like the

output of an OFDM modulator when random data is modulated in it. However, in

a mode locked laser, the phases for all longitudinal modes in the cavity are locked

together in a linear form. In Fig. 4.2, the same 5 modes are locked together in a way

that φn − φn−1 = ∆φ, where φn is the phase of the nth longitudinal mode and all

modes have the same amplitude. It can be shown that the pulse width is inversely

proportional to the optical bandwidth or the number of modes locked together. As

a result, the short pulses required to generate the impulse train for the proposed

modulation can be generated by a MLL. There are several methods to achieve mode

locking in a laser which are referred to here:

Figure 4.2: Comparison of cw vs mode locked output intensity.
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Active mode locking requires modulation of either pump current, amplitude or

phase inside the laser cavity by an external oscillator [Sve10]. In these methods an

external electrical reference signal is used which should have the same frequency

as the fundamental cavity frequency (∆f) with a high precision. The requirement

for high frequency external oscillator shadows the cost effective requirements of the

system proposed here and thus Passive mode locking seems to be a more viable

solution. However, it is practical to use active mode locked laser as a pulse source

for the proposed system.

Passive mode locking takes advantage of a saturable absorber inside cavity to cut

off low intensity pulses [Hau00]. A single saturable absorber placed on one end of

the cavity results in a single high intensity pulse inside the cavity which is referred

to as fundamental mode locking. On the other hand, the saturable absorber can

be placed in different places inside cavity to achieve harmonic mode locking that

creates multiple simultaneous pulses inside cavity. The only requirement is that for

laser pulses to arrive at one cavity facet with half pulse repetition interval (Tc/2)

delay compared to the other facet. This in turn results in the MLL laser to be mode

locked in fundamental frequency or odd harmonics. For even harmonics there is

going to be optical pulses simultaneously at both cavity facets.

4.3.2 Electro-absorption Modulator

Electroabsorption modulators are probably the simplest of optical components. In

the most basic form this kind of modulator is in fact a piece of optical waveguide that

is reverse biased to lower the absorption edge which results in increased absorption

of incoming light [CCM12]. The attenuation is not linear on input voltage which is

not a problem for general on-off keying operation. However, linear operation is a
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requirement for OFDM modulation and as a result most of the times a pre-distortion

circuit is adapted to linearize the electro-absorption modulator as in [SHZ+10].

4.4 Frequency Stabilization

Frequency stabilization has a dramatic effect on the performance of any RoF system.

More importantly it is crucial for the system to always maintain the phase differ-

ence between two pulse trains. Any deviation from this requirement dramatically

decreases the Q-factor at the output. While single sideband modulation systems

like [SF05] and [SOS+01] use external phase shifters, the method proposed here in-

trinsically generates phase shifted outputs inside a single cavity. Any mechanical

or electrical distortion, while affecting the mode locked frequency, does not disturb

the orthogonality of two pulse trains. As a result, closed loop techniques used to

stabilize the mode locking frequency, maintain the phase difference as well. After

all, there might be slight variations in the pulse trains time difference.

4.5 Simulation

To make a comparison between the proposed system and intensity modulation ap-

plied on mode locked laser for RoF communications the systems are simulated in

MATLAB, Both methods are supposed to modulate a pulsed light source with the

same average power. Thus in case of the dual beam modulator, each beam has half

the intensity of the single beam mode locked laser.
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4.5.1 OFDM Modulator

The baseband OFDM modulator is where the input to optical modulators is gen-

erated first. To simulate the system, a 250 carrier OFDM modulator is used with

10MHz separation between orthogonal frequencies. Constellation size is 4 and af-

ter inverse Fourier transform with 2x oversampling, a 2.5GHz real baseband signal

is created. This signal is then fed into an electro-absorption modulator biased at

half intensity coupled to a mode locked laser to simulate a single modulator RoF

transmitter.

The positive and negative parts of the real OFDM signal are separately fed

into two electro-absorption modulators biased at null point. The output of these

modulators are combined to simulate dual beam optical modulator proposed in this

research. The electro-absorption modulator is simulated by changing the intensity

of the optical pulses which are simulated by corresponding electrical field. The result

will be in the form of double side band optical OFDM with 5 GHz bandwidth on

each sideband.

4.5.2 Electrical Field for Pulses

Electrical field for both mode locked pulses in which 9 longitudinal modes are locked

together are shown in Fig. 4.3. Mode separation frequency is 60GHz except when

modified as a simulation parameter. It is assumed that all modes have the same

amplitude. These two pulse trains are used for simulation of the proposed modula-

tion method while only one of them is used for simulation of the single modulator

system. Although their power spectral density is the same in frequency domain (as

shown in Fig. 4.4), their combination only has the even modes because the odd
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ones have opposite phases in each pulse train which tend to cancel each other at the

combined output.

Figure 4.3: Two pulse trains at the outputs of electroabsorption modulators.

In Fig. 4.5, the output spectrum of both modulators are shown in 0-120 GHz

range. It can be seen that while the intensity for data carrying frequencies are

the same for both systems, optical carrier have less power compared to the single

modulator mode locked laser output. Moreover no optical tone is present in the

data carrying band which reduces filtering requirements at the receiver. Thus unlike

intensity modulation of a single ended mode locked laser which requires RF carrier

suppression at the base station to meet power emission requirements, the signal

from the proposed system can be easily retransmitted.
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Figure 4.4: Spectrum of a single pulse train for the simulated mode locked laser.

4.5.3 Modulation Index

We define modulation index as the standard deviation of the electrical signal as a

percentage of the input range for the intensity modulator as in section 3.3.2. While

the single modulator is biased at 50% intensity, its average output power will remain

unchanged regardless of the modulation index. However, average optical power of

the dual modulator varies with modulation index. Figure 4.6 depicts the excess

optical power of single modulator vs the proposed dual modulator considering that

the detected electrical signal power at the modulated subcarriers is the same for

both systems. As a result, the proposed system has a 4dB sensitivity advantage

over the single modulator counterpart.
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Figure 4.5: Comparison of spectrum for the modulated signals.

Increasing the modulation index lowers the difference in average optical output

power of both systems; however, it also increases the distortion due to clipping of the

peaks of the OFDM signal. Figure 4.7 shows this decrease in Q-factor by increasing

modulation index. It is observed that at around 25% the Q-factor starts to rapidly

decrease. It should be noted that for fc of 60GHz both systems achieve nearly

identical Q-factors; however, lower fc forces more distortion on the dual modulator

which uses RFCO principle.
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Figure 4.6: Optical power difference between single modulator and the proposed
dual modulator. At lower modulation indexes dual modulator achieves the same
signal power at the receiver with much less optical power.

4.5.4 Mode Locking Frequency

If both systems are modulated with the same modulation index and clipping levels

for OFDM signal, the Q-factor is almost identical unless the carrier frequency is

too low compared to signal bandwidth resulting in zero clipping distortions to affect

the signal. Figure 4.8 shows the change in Q-factor due to changing the carrier

frequency which is in fact the mode locking frequency as no electrical carrier signal

is present here. Q-factor for single modulator is not expected to depend on carrier

frequency (unless it is less than signal bandwidth which causes the signal modulated
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Figure 4.7: Changes in Q-factor due to Modulation index.

on adjacent optical modes to interfere). Thus Q-factor at the output of the trans-

mitter is only a factor of modulation index and clipping levels. For single modulator

system it is about 45dB considering a 25% modulation index. Consequently, the

high Q-factor of the single modulator is retained even in lower carrier frequencies.

On the other hand, the dual modulator system loses Q-factor by lowering mode

locking frequency, which is a direct result of wider distortions on the baseband

frequencies as described in chapter 3. Despite this lower Q-factor, It can be seen

that the Q-factor curve almost flattens for carrier frequencies higher than 30-40GHz

when it reaches the maximum Q-factor achieved by single modulator system. As

mm-wave RoF systems generally use the 60GHz band, this dependence of Q-factor
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to carrier frequency should not have any practical problems for such a system.

Figure 4.8: Changes in Q-factor due to carrier frequency.

4.6 Results

In chapter 3, it was shown that RF clipped optical OFDM as an efficient method for

intensity modulation in RoF applications required a high frequency up-conversion

circuit to work with current external modulation methods. In this chapter it was

shown that the RFCO-OFDM modulation can be implemented using dual electro-

absorption modulators connected to both cavity ends of a mode locked laser. The

system proved to have better power efficiency compared to a single modulator system
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as less power is spent on optical carriers. It was also shown that modulation indexes

of 25% and mode locking frequencies above 40GHz both systems could achieve the

same Q-factor while the proposed system emitted 7 dB less optical power. Moreover

the proposed system can be implemented in a single optical integrated circuit which

greatly reduces the adoption cost for next generation radio over fiber infrastructures.
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CHAPTER 5

CONCLUSIONS AND RETROSPECTIVE

In this dissertation three innovative methods for optical modulation were introduced

and examined. At first a new 2D barcode modulation method was developed that

can mitigate extensive relative movements of the displayed barcode surface (in this

case an LCD) and the receiving camera.

Test results revealed that even slight hand movements during image capture

for barcode detection can result in high error probability. Most of the time the

movement renders the captured image useless and thus another frame needs to

be captured in order to correctly detect a 2D barcode. It was revealed that as

the barcode size increases detection probability decreases. For instance while the

frames captured from a paper printed V1 QR-Code almost always can be decoded

under our particular test conditions, only 6% of the V101 QR-Codes frames where

decodable.

It was shown that although using QPSK-OFDM for modulation of 2D barcodes

can enhance error rate in case of image blur and slight movements, it is out performed

by DPSK-OFDM. As a result, in this dissertation, differential phase shift keying

was combined with orthogonal frequency division multiplexing in order to modulate

data stream into visual two-dimensional barcodes. It was shown that QPSK-OFDM

modulation has serious shortcomings in the mitigation of camera LCD movements

where the phase of each element changes continuously. On the other hand, addition

of a differential phase modulator before OFDM to modulate the data stream into

phase differences of adjacent frequencies (DPSK-OFDM) causes the relative motion

to have less effect. This is due to the fact that the phase gradually changes between

adjacent frequency bins, contributing to a small deviation from the ideal phase in

the received signal. It was observed that under relative LCD-camera motions that
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generate error rates in excess of 30% in PAM and QPSK-OFDM, the proposed

system of DPSK-OFDM sustains an error rate less than 8% which is practically

correctable using error correction coding.

Future inquiries have to address the best choice of differential pattern to optimize

performance for various motion scenarios. Moreover, it is possible to increase the

bit per symbol for the OFDM signal from the current 4 bits to 8 bits and beyond

in order to increase the data transfer rate. However, extensive BER performance

evaluation is required to ensure that the error rate does not exceed error correction

requirements under normal LCD-camera movements. Nevertheless, a study on the

effect of perspective correction errors on the BER performance of this algorithm

compared to the other ones could augment our understanding of its applicability to

real world scenarios.

Although dc bias of the 2D OFDM signal was used for intensity modulation of

the barcode pixels, advantages of using more power efficient ACO-OFDM may be

investigated. Because ACO-OFDM sacrifices half of the usable frequency bins, in its

primitive form it can only achieve half of the bit rate of the DCO-OFDM system im-

plemented here. The proposed barcode modulation algorithm may be enhanced by

combining differential modulation with proper bit loading required for ACO-OFDM

to be efficient. While further research may be done to implement this combination,

the computational complexity may render any slight improvements in performance

useless due to power constraints in handheld devices. Saving some power on LCD

using the combined algorithm may ultimately require more power used in the pro-

cessing units of both transmitter and receiver, which is a main constraint when the

systems are battery powered.

The research to find more efficient intensity modulation method for optical com-

munications led us to the RF clipped optical OFDM modulation scheme. Although
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more efficient methods are already available for baseband intensity modulation, it

was shown that the proposed method has a clear advantage when used in RoF

applications. In RoF systems, the signal bandwidth is much less than the carrier

frequency. Moreover, base stations in RoF applications only retransmit the ampli-

fied optical signal which means that the detected optical signal should be the same

as the RF signal that is going to be retransmitted. Thus, any modulation scheme

that requires structural alteration of the RF OFDM signal cannot be adopted.

It was shown that RFCO-OFDM has a better power efficiency compared to

carrier suppressed double side band optical OFDM. In short range applications

where no optical amplifier is required, RFCO-OFDM can achieve the same Q-factor

with less total optical power. On the other hand when an optical amplifier was used

RFCO-OFDM can achieve higher a Q-factor when optical power at the output of

the amplifier is the same for both systems.

The performance of the system when used in a more efficient single side band

configuration can be the subject of future research. Although power efficiency re-

sulted from removing one of the side bands may be beneficial in a system that

uses optical amplifiers, current short range applications generally do not require

dispersion mitigation capabilities of single side band optical modulation.

The proposed intensity modulation method can be used in RoF systems by clip-

ping the RF signal which requires RF up conversion. However, a novel system was

introduced which can efficiently generate the RFCO-OFDM signal by using the base-

band OFDM and a novel double sided laser modulator. It was analytically shown

that the proposed optical integrated system can be used to efficiently implement the

RFCO-OFDM. The modulator works by applying positive and negative parts of a

baseband OFDM signal to successive pulses of a mode locked laser and combining

the results. Pulse separation for this purpose is achieved by getting mode locked
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optical pulses out of both facets of the laser cavity which makes them essentially in

quadrature phase. As a result, it can be used to implement other RoF systems that

require a quadrature optical modulator.

External modulators of the electro-absorption type used in the implementation

of the system are fed by baseband signal and not by a high frequency mm-Wave

signal. Thus their construction is much easier with less frequency chirp compensa-

tion requirements. Moreover, any frequency stabilization method used in the system

equally affects both pulse trains and thus the pulses maintain better orthogonality

under various thermal or mechanical variations.

Future investigations can focus on the optimum bias point for electro-absorption

modulators used in the system. The bias point along with the length of the EAM

modulator determines the optical carrier pulses passing through EAM when they are

supposed to be stopped which can affect efficiency and performance for the system.

Adaptation of the proposed method of generating RFCO-OFDM to other resonator

types such as ring resonators or dye lasers can be of future interest as these systems

see increased adaption in communications systems. Pre-distortion circuits optimized

for the proposed optical integrated modulator and their effect on the performance

of the system are also an interesting topic for future research.

Throughout this dissertation, the intent was to investigate various algorithms

and methods for optical modulation applications. Some of the proposed methods

may find applications in consumer devices in near future owing to their straightfor-

ward software-based implementation. However, others may require further adoption

of optical communications as a distribution method of RF signals for next generation

high bandwidth cellular communications to make them a feasible investment.

93



BIBLIOGRAPHY

[AAI+14] Iraj Sadegh Amiri, Sayed Ehsan Alavi, Sevia M. Idrus, Abu
Sahmah Mohd Supaat, Jalil Ali, and Preecha P. Yupapin. W-Band
OFDM transmission for radio-over-fiber link using solitonic millime-
ter wave generated by MRR. IEEE Journal of Quantum Electronics,
50(8):622–628, 2014.

[ABC+14] Jeffrey G. Andrews, Stefano Buzzi, Wan Choi, Stephen V. Hanly, An-
gel Lozano, Anthony C K Soong, and Jianzhong Charlie Zhang. What
will 5G be? IEEE Journal on Selected Areas in Communications,
32(6):1065–1082, 2014.

[AFH11] Kasra Asadzadeh, Ahmed A Farid, and Steve Hranilovic. Spectrally
factorized optical ofdm. In Information Theory (CWIT), 2011 12th
Canadian Workshop on, pages 102–105. IEEE, 2011.

[AJG+14] A Ashok, S. Jain, M. Gruteser, N. Mandayam, Wenjia Yuan, and
K. Dana. Capacity of pervasive camera based communication under
perspective distortions. In Pervasive Computing and Communications
(PerCom), 2014 IEEE International Conference on, pages 112–120,
March 2014.

[AL06] Jean Armstrong and AJ Lowery. Power efficient optical ofdm. Electron-
ics Letters, 42(6):370–372, 2006.

[Ale97] Stephen B Alexander. Optical communication receiver design. SPIE
Optical engineering press, Bellingham, Washington, USA, 1997.

[Arm09] Jean Armstrong. Ofdm for optical communications. Journal of light-
wave technology, 27(3):189–204, 2009.

[BCA+13] Joaquin Beas, Gerardo Castanon, Ivan Aldaya, Alejandro Aragon-
Zavala, and Gabriel Campuzano. Millimeter-Wave Frequency Radio
over Fiber Systems: A Survey. IEEE Communications Surveys & Tu-
torials, 15(4):1593–1619, 2013.

[BH13] Luiz F. F. Belussi and Nina S. T. Hirata. Fast Component-Based QR
Code Detection in Arbitrarily Acquired Images. J. Math. Imaging. Vis.,
45(3, SI):277–292, MAR 2013.

94



[BOO98] AM Bruckstein, L O’Gorman, and A Orlitsky. Design of shapes for
precise image registration. IEEE Trans. Inf. Theory, 44(7):3156–3162,
Nov 1998.

[Boy00] John P Boyd. Chebyshev and Fourier Spectral Methods: Second Edition.
DOVER Publications, 2 edition, 2000.

[BSM+09] D.M. Boroson, J.J. Scozzafava, D.V. Murphy, B.S. Robinson, and
H. Shaw. The lunar laser communications demonstration (llcd). In
Space Mission Challenges for Information Technology, 2009. SMC-IT
2009. Third IEEE International Conference on, pages 23–28, July 2009.

[Bur04] Russell W Burns. Communications: an international history of the
formative years, volume 32. IET, 2004.

[CCM12] Larry A. Coldren, Scott W. Corzine, and Milan L. Mashanovitch. Diode
Lasers and Photonic Integrated Circuits. John Wiley & Sons, Inc., 2nd
edition, 2012.

[CEPB02] S. Coleri, M. Ergen, A. Puri, and A. Bahai. Channel estimation tech-
niques based on pilot arrangement in OFDM systems. IEEE Trans.
Broadcast., 48(3):223–229, Sep 2002.

[CKE09] L. Chen, B. Krongold, and J. Evans. Performance Evaluation of Op-
tical OFDM Systems with Nonlinear Clipping Distortion. 2009 IEEE
International Conference on Communications, pages 1–5, 2009.

[CKE12] Liang Chen, Brian Krongold, and Jamie Evans. Theoretical character-
ization of nonlinear clipping effects in IM/DD optical OFDM systems.
IEEE Transactions on Communications, 60(8):2304–2312, 2012.

[CT06] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley
Interscience, Hoboken, N.J., second edition, 2006.

[DSH12a] Svilen Dimitrov, Sinan Sinanovic, and Harald Haas. Clipping Noise in
OFDM-Based Optical Wireless Communication Systems. IEEE Trans.
Commun., 60(4):1072–1081, Apr 2012.

[DSH12b] Svilen Dimitrov, Sinan Sinanovic, and Harald Haas. Clipping noise in
OFDM-based optical wireless communication systems. IEEE Transac-
tions on Communications, 60(4):1072–1081, 2012.

95



[GM90] J P Gordon and L F Mollenauer. Phase noise in photonic communica-
tions systems using linear amplifiers. Optics Letters, 15(23):1351–1353,
1990.

[GW07] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson
Education, Upper Saddle River, NJ, third edition, 2007.

[Hau00] Herman a. Haus. Mode-locking of lasers. IEEE Journal on Selected
Topics in Quantum Electronics, 6(6):1173–1185, 2000.

[HF05] P. Horvath and I. Frigyes. Effects of the nonlinearity of a Mach-Zehnder
modulator on OFDM radio-over-fiber transmission. IEEE Communica-
tions Letters, 9(10):921–923, 2005.

[HWH+02] Moon-Ki Hong, Yong-Yuk Won, Sang-Kook Han, K M Sauer, H Ko-
jucharow, D Kaluzni, W Sommer, and A Nowak. Gigabit radio-over-
fiber link for converged baseband and millimeter-wave band signal trans-
mission using cascaded injection-locked Fabry-Pérot laser diodes. IEEE
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