9 research outputs found

    Semantic models for concurrent logic languages

    Get PDF
    AbstractIn this paper we develop semantic models for a class of concurrent logic languages. We give two operational semantics based on a transition system, a declarative semantics and a denotational semantics. One operational and the declarative semantics model the success set, that is, the set of computed answer substitutions corresponding to all successfully terminating computations. The other operational and the denotational semantics also model deadlock and infinite computations. For the declarative and the denotational semantics we extend standard notions such as unification in order to cope with the synchronization mechanism of the class of languages we study. The basic mathematical structure for the declarative semantics is the complete lattice of sets of finite streams of substitutions. In the denotational semantics, we use a complete metric space of tree-like structures that are labelled with functions that represent the basic unification step. We look at the relations between the different models. We relate first the two operational semantics and next the declarative and denotational semantics with their respective operational counterparts

    Programming Languages for Distributed Computing Systems

    Get PDF
    When distributed systems first appeared, they were programmed in traditional sequential languages, usually with the addition of a few library procedures for sending and receiving messages. As distributed applications became more commonplace and more sophisticated, this ad hoc approach became less satisfactory. Researchers all over the world began designing new programming languages specifically for implementing distributed applications. These languages and their history, their underlying principles, their design, and their use are the subject of this paper. We begin by giving our view of what a distributed system is, illustrating with examples to avoid confusion on this important and controversial point. We then describe the three main characteristics that distinguish distributed programming languages from traditional sequential languages, namely, how they deal with parallelism, communication, and partial failures. Finally, we discuss 15 representative distributed languages to give the flavor of each. These examples include languages based on message passing, rendezvous, remote procedure call, objects, and atomic transactions, as well as functional languages, logic languages, and distributed data structure languages. The paper concludes with a comprehensive bibliography listing over 200 papers on nearly 100 distributed programming languages

    Data-parallel concurrent constraint programming.

    Get PDF
    by Bo-ming Tong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1994.Includes bibliographical references (leaves 104-[110]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Concurrent Constraint Programming --- p.2Chapter 1.2 --- Finite Domain Constraints --- p.3Chapter 2 --- The Firebird Language --- p.5Chapter 2.1 --- Finite Domain Constraints --- p.6Chapter 2.2 --- The Firebird Computation Model --- p.6Chapter 2.3 --- Miscellaneous Features --- p.7Chapter 2.4 --- Clause-Based N on determinism --- p.9Chapter 2.5 --- Programming Examples --- p.10Chapter 2.5.1 --- Magic Series --- p.10Chapter 2.5.2 --- Weak Queens --- p.14Chapter 3 --- Operational Semantics --- p.15Chapter 3.1 --- The Firebird Computation Model --- p.16Chapter 3.2 --- The Firebird Commit Law --- p.17Chapter 3.3 --- Derivation --- p.17Chapter 3.4 --- Correctness of Firebird Computation Model --- p.18Chapter 4 --- Exploitation of Data-Parallelism in Firebird --- p.24Chapter 4.1 --- An Illustrative Example --- p.25Chapter 4.2 --- Mapping Partitions to Processor Elements --- p.26Chapter 4.3 --- Masks --- p.27Chapter 4.4 --- Control Strategy --- p.27Chapter 4.4.1 --- A Control Strategy Suitable for Linear Equations --- p.28Chapter 5 --- Data-Parallel Abstract Machine --- p.30Chapter 5.1 --- Basic DPAM --- p.31Chapter 5.1.1 --- Hardware Requirements --- p.31Chapter 5.1.2 --- Procedure Calling Convention And Process Creation --- p.32Chapter 5.1.3 --- Memory Model --- p.34Chapter 5.1.4 --- Registers --- p.41Chapter 5.1.5 --- Process Management --- p.41Chapter 5.1.6 --- Unification --- p.49Chapter 5.1.7 --- Variable Table --- p.49Chapter 5.2 --- DPAM with Backtracking --- p.50Chapter 5.2.1 --- Choice Point --- p.52Chapter 5.2.2 --- Trailing --- p.52Chapter 5.2.3 --- Recovering the Process Queues --- p.57Chapter 6 --- Implementation --- p.58Chapter 6.1 --- The DECmpp Massively Parallel Computer --- p.58Chapter 6.2 --- Implementation Overview --- p.59Chapter 6.3 --- Constraints --- p.60Chapter 6.3.1 --- Breaking Down Equality Constraints --- p.61Chapter 6.3.2 --- Processing the Constraint 'As Is' --- p.62Chapter 6.4 --- The Wide-Tag Architecture --- p.63Chapter 6.5 --- Register Window --- p.64Chapter 6.6 --- Dereferencing --- p.65Chapter 6.7 --- Output --- p.66Chapter 6.7.1 --- Collecting the Solutions --- p.66Chapter 6.7.2 --- Decoding the solution --- p.68Chapter 7 --- Performance --- p.69Chapter 7.1 --- Uniprocessor Performance --- p.71Chapter 7.2 --- Solitary Mode --- p.73Chapter 7.3 --- Bit Vectors of Domain Variables --- p.75Chapter 7.4 --- Heap Consumption of the Heap Frame Scheme --- p.77Chapter 7.5 --- Eager Nondeterministic Derivation vs Lazy Nondeterministic Deriva- tion --- p.78Chapter 7.6 --- Priority Scheduling --- p.79Chapter 7.7 --- Execution Profile --- p.80Chapter 7.8 --- Effect of the Number of Processor Elements on Performance --- p.82Chapter 7.9 --- Change of the Degree of Parallelism During Execution --- p.84Chapter 8 --- Related Work --- p.88Chapter 8.1 --- Vectorization of Prolog --- p.89Chapter 8.2 --- Parallel Clause Matching --- p.90Chapter 8.3 --- Parallel Interpreter --- p.90Chapter 8.4 --- Bounded Quantifications --- p.91Chapter 8.5 --- SIMD MultiLog --- p.91Chapter 9 --- Conclusion --- p.93Chapter 9.1 --- Limitations --- p.94Chapter 9.1.1 --- Data-Parallel Firebird is Specialized --- p.94Chapter 9.1.2 --- Limitations of the Implementation Scheme --- p.95Chapter 9.2 --- Future Work --- p.95Chapter 9.2.1 --- Extending Firebird --- p.95Chapter 9.2.2 --- Improvements Specific to DECmpp --- p.99Chapter 9.2.3 --- Labeling --- p.100Chapter 9.2.4 --- Parallel Domain Consistency --- p.101Chapter 9.2.5 --- Branch and Bound Algorithm --- p.102Chapter 9.2.6 --- Other Possible Future Work --- p.102Bibliography --- p.10

    Design, application and implementation of a paralled logic programming language

    Get PDF
    Imperial Users onl

    Algebraic Stream Processing

    Get PDF
    We identify and analyse the typically higher-order approaches to stream processing in the literature. From this analysis we motivate an alternative approach to the specification of SPSs as STs based on an essentially first-order equational representation. This technique is called Cartesian form specification. More specifically, while STs are properly second-order objects we show that using Cartesian forms, the second-order models needed to formalise STs are so weak that we may use and develop well-understood first-order methods from computability theory and mathematical logic to reason about their properties. Indeed, we show that by specifying STs equationally in Cartesian form as primitive recursive functions we have the basis of a new, general purpose and mathematically sound theory of stream processing that emphasises the formal specification and formal verification of STs. The main topics that we address in the development of this theory are as follows. We present a theoretically well-founded general purpose stream processing language ASTRAL (Algebraic Stream TRAnsformer Language) that supports the use of modular specification techniques for full second-order STs. We show how ASTRAL specifications can be given a Cartesian form semantics using the language PREQ that is an equational characterisation of the primitive recursive functions. In more detail, we show that by compiling ASTRAL specifications into an equivalent Cartesian form in PREQ we can use first-order equational logic with induction as a logical calculus to reason about STs. In particular, using this calculus we identify a syntactic class of correctness statements for which the verification of ASTRAL programmes is decidable relative to this calculus. We define an effective algorithm based on term re-writing techniques to implement this calculus and hence to automatically verify a very broad class of STs including conventional hardware devices. Finally, we analyse the properties of this abstract algorithm as a proof assistant and discuss various techniques that have been adopted to develop software tools based on this algorithm
    corecore