
I . . , . .

DATA-PARALLEL
C O N C U R R E N T C O N S T R A I N T P R O G R A M M I N G

_ I

B Y
3 ^̂ Ĥ

B O - M I N G T O N G

I %
1 9

.‘

I •
I I

. " •
A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE D E G R E E OF MASTER OF PHILOSOPHY

DIVISION OF C O M P U T E R SCIENCE

GRADUATE SCHOOL

T H E CHINESE UNIVERSITY OF HONG HONG

JUNE 1 9 9 4

I •
• “ ^ . > / ’

(

. . . .

Acknowledgement

I wish to thank my supervisor, Dr Ho-Fung Leung, without whose continuous

support and encouragement this thesis would not have been possible. At times

I was arrogant and over-confident with my own abilities, yet at other times I

was ignorant of even the most basic concepts in logic programming. Yet at all

times, Dr Leung guided me along with patience. Gradually, I learned how to

« do research. We have always worked together closely, and his ideas were always

sound and insightful. For instance, he first suggested to me that Parlog could

be implemented on a data-parallel computer and that finite domain constraints

could be incorporated into a committed-choice language. This thesis turns out

to be a realization of these key concepts.

I wish to thank also Dr Jimmy Ho-Man Lee, who taught me a great deal oil

logic programming and on technical writing. Dr Kam-Wing Ng introduced me

to the exciting realm of logic programming and guided me through in the final

year project of my undergraduate studies.

Tak-Wai Lee devised the trailing scheme of suspension list updates described

in this thesis and all credits should go to him. Chong-Kan Chiu informed me

that the idempotence property of interval narrowing does not hold for finite

domains in general. I must also thank Daniel Diaz and Donald A. Smith, for

I ••
11

numerous insightful email discussions, and all the anonymous referees of my

papers, who gave many useful comments which lead to the improvement of this

thesis.

I would like to thank the system administrators, Philip Chan and Angus Sin,

for helping me whenever I encountered any problems concerning the DECmpp

massively parallel computer. Larry Levine of MasPar Customer Support helped

me in obtaining benchmark results.

Advices from the L^TEX guru Chung-Yuen Li was the most useful whenever

I encountered problems in the preparation of this manuscript. Chi-Shing Leung

taught me how to use the PiCIfeXsystem and provided me with lots of examples.

iii 1

To my grandmother

A

w

I

• i iv

Abstract

With the advent of cost-effective massively parallel computers, researchers con-

jecture that the future concurrent constraint programming system is composed

of a massively parallel constraint solver as the back-end with a concurrent in-

ference engine as the front-end [Coh90]. This thesis represents probably the

first attempt to build a concurrent constraint programming system on a mas-

• sively parallel SIMD computer. A concurrent constraint programming language

called Firebird is presented. Firebird can handle finite domain constraints and

supports both concurrency and data-parallelism. As a result, it is suitable for

implementation on both multiprocessors and SIMD computers. Concurrency

arises from the stream and-parallelism of committed-choice logic programming

languages. In a nondeterministic derivation step, one of the domain variables

is selected to create a choice point. All possible alternatives are attempted in

parallel. Data-parallelism is exploited in the resulting or-parallel execution.

The Data-Parallel Abstract Machine (DPAM) has been designed as the ba-

sis of implementation of Firebird. The concurrent process scheduler uses simple

data-parallel algorithms for process resumption and deadlock detection. On the

other hand, when the number of processor elements is not enough for exploit-

ing or-parallelism, the system resorts to parallel backtracking automatically. We

I v

present the data structures necessary for maintaining a vector trail stack and

methods for restoring all process queues to their original states upon backtrack-

ing.

An almost complete implementation of Firebird has been built on a DECmpp

12000 Sx-1001 massively parallel computer with 8,192 processor elements. The

performance of the implementation is compared with CHIP, a commercial se-

quential implementation. Our performance figures indicate that the parallelism

attained is usually counterbalanced by the poor performance of individual pro-

cessor elements. Nevertheless, our results also indicate that a speedup of 2

orders of magnitude is possible when we compare the performance using 8,192

processor elements and the performance using a single processor element of the

same machine. Furthermore, the speedup is scalable, provided that the problem

• size is large enough for effective exploitation of or-parallelism. On the other

hand, we measured the effects of several control strategies and optimizations oil

execution time and memory consumption in a data-parallel context.

1 DECmpp 12000 Sx-100 is equivalent to MasPar MP-1.
i

' >. :: . : r : _ ' vi

Contents

1 In t roduct ion 1

1.1 Concurrent Constraint Programming . 2

1.2 Finite Domain Constraints 3

2 T h e Firebird Language 5

2.1 Finite Domain Constraints 6

2.2 The Firebird Computation Model 6

2.3 Miscellaneous Features (

2.4 Clause-Based Nondeterminism 9

2.5 Programming Examples . 10

2.5.1 Magic Series • . 1 0

2.5.2 Weak Queens 14

3 Operat ional Semantics 1 5

3.1 The Firebird Computation Model 16

3.2 The Firebird Commit Law 1 7

3.3 Derivation 1 7

3.4 Correctness of Firebird Computation Model 18

vii 1

4 Exploitation of Data-Parallelism in Firebird 24

4.1 An Illustrative Example . • 25

4.2 Mapping Partitions to Processor Elements . • . • 26

4.3 Masks 2 7

4.4 Control Strategy . . 27

4.4.1 A Control Strategy Suitable for Linear Equations 28

5 Data-Parallel Abstract Machine 3 0

5.1 Basic DPAM . . . 31

5.1.1 Hardware Requirements • • . 31

5.1.2 Procedure Calling Convention And Process Creation • . 32

5.1.3 Memory Model 34

5.1.4 Registers . . • • • . . 41

5.1.5 Process Management 41

- 5.1.6 Unification. . 49

5.1.7 Variable Table 4 9

5.2 DPAM with Backtracking 50

5.2.1 Choice Point 5 2

5.2.2 Trailing . 5 2

5.2.3 Recovering the Process Queues 57

6 Implementation 58

6.1 The DECmpp Massively Parallel Computer 58

6.2 Implementation Overview • 59

6.3 Constraints . 6 0

6.3.1 Breaking Down Equality Constraints 61

viii 1

6.3.2 Processing tlie Constraint 4As Is' 62

6.4 The Wide-Tag Architecture • • • • • . 63

6.5 Register Window • . • • • • • • • • • • • • . . 64

6.6 Dereferencing : • • • . . • . 65

6.7 Output 66

6.7.1 Collecting the Solutions • • . • 66

6.7.2 Decoding the solution 68

T Performance

7.1 Uniprocessor Performance , 71

7.2 Solitary Mode . • . , 7Z

7.3 Bit Vectors of Domain Variables • . • 75

7.4 Heap Consumption of the Heap Frame Scheme • • • . • 77
? 7.5 Eager Nondeterministic Derivation vs Lazy Nondeterministic Deriva-

. tion 78

7.6 Priority Scheduling 79

7.7 Execution Profile 8 0

7.8 Effect of the Number of Processor Elements on Performance . . 82

7.9 Change of the Degree of Parallelism During Execution 84

8 Related Work 8 8

8.1 Vectorization of Prolog % 89

8.2 Parallel Clause Matching . • • . 90

8.3 Parallel Interpreter 90

8.4 Bounded Quantifications 91

8.5 SIMD MultiLog • • • • • 91

ix 1

9 Conclusion 93

9.1 Limitations 94

9.1.1 Data-Parallel Firebird is Specialized . . . • . 94

9.1.2 Limitations of the Implementation Scheme . 95

9.2 Future Work . / . . • . 95

9.2.1 Extending Firebird 95

9.2.2 Improvements Specific to DECmpp 99

9.2.3 .Labeling . . • . . / . . .

9.2.4 Parallel Domain Consistency . . . • . . . 101

9.2.5 Branch and Bound Algorithm . • • . . . • 102

9.2.6 Other Possible Future Work 102

Bibliography 104
n

X '

List of Tables

2.1 Informal rules for evaluation of cardinality constraints 12

5.1 Comparison of suspension list update with and without time stamp 54

7.1 Benchmark set • 70

7.2 Benchmark: uniprocessor performance 72

7.3 Execution time of machine instructions (in machine cycles) . . . 72
r

7.4 Benchmark: solitary mode performance . 74

- 7.5 Benchmark: on demand creation of bit vectors 76

7.6 Benchmark: heap fragmentation 77

7.7 Benchmark: lazy nondeterministic derivation vs eager nondeter-

ministic derivation • . 78

7.8 Benchmark: priority scheduling 80

7.9 Benchmark: execution profile (in %) 81

xi 1

List of Figures

4.1 Constraints remaining after first deadlock 25

4.2 Or-parallel branches in the 5-queens example 26

5.1 Example: mask bit vector 33

5.2 Memory areas and scalar registers . . • . 35

5.3 Example: tag-on-term and tag-on-data representations of a (b ,c) 35

* 5.4 Example: a /i-variable . •

5.5 Example: a ^-variable • 37

5.6 Example: building of a heap frame 40

5.7 Suspension . 44

5.8 Example: resumption of suspension lists 46

6.1 Heap cell format 63

6.2 Examples: reference pointer, atom, list and compound term • . 64

6.3 Unbound variable representations of WAM and DPAM 64

6.4 Register windows 65

7.1 Benchmark: run time of ?i-queens program 82

7.2 Benchmark: speedup of N-Queens Program 83

7.3 Execution trace of 8-queens, #proc==8,192 85

' xii

7.4 Execution trace of 8-queens, #]?roc=64 • 87

,r xiii

Chapter 1

Introduction

With the advent of cost-effective massively parallel computers, researchers con-

jecture that the future concurrent constraint programming system is composed

of a massively parallel constraint solver as the back-end with a concurrent infer-

ence engine as the front-end [Coh90]. This thesis represents probably the first

attempt to build a concurrent constraint programming system on a massively

parallel SIMD computer.

Shared-memory multiprocessors have been regarded as the architecture of

choice in traditional concurrent constraint programming research. Efficient im-

plementations with near linear speedup has been reported [Cra90a, CWY91]

but the inherent bus contention bottleneck of this architecture makes massive

parallelism impossible. Therefore, we have chosen one of the most scalable ar-

chitectures instead—the SIMD architecture with distributed local memory.

A new finite domain constraint language called Firebird has been designed.

Its syntax is similar to mainstream concurrent logic programming languages,

and in particular, flat GHC [Ued85]. The most distinguishing semantic feature

1

Chapter 1 Introduction

of this language is that committed-choice indeterminism is integrated with don't

know nondeterminism by introducing the notion of domain-variable-based choice

points. In ail indeterministic derivation step, execution consists of guard tests,

commitment and spawning in the same manner as committed-choice languages.

In a nondeterministic derivation step, one of the domain variables in the system

is chosen and all possible values in its domain are attempted in an or-parallel

manner. Alternatively, a choice point based on the domain variable is set up

and each possible value in its domain is attempted by backtracking.

Firebird could be implemented efficiently on many architectures. On se-

quential machines and shared-memory multiprocessors it is expected to be more

efficient than languages using the Andorra Model [War90] because 110 determi-

nacy test is needed. On data-parallel computers, or-parallelism is exploited by

r attempting all possible values in the domain of a variable in parallel after the

variable has been labeled. In this way, thousands of finite domain constraints

can be solved in a single step.

In the rest of this chapter, we shall present the preliminaries. The Firebird

language will be introduced in chapters 2 and 3. The data-parallel execution

model, its implementation and evaluation will be presented in chapters 4-7. We

cite related work in chapter 8. Finally, we conclude and give suggestions of

future work in chapter 9.

1.1 Concurrent Constraint Programming

ALPS [Mah87] is a scheme to integrate constraint logic programming and con-

current logic programming. Saraswat [Sar88, SR90] developed the ideas further

2

Chapter 1 Introduction

by introducing the concurrent constraint programming framework. Computa-

tion is modeled as the interaction of concurrent, cooperating agents1 exchanging

j information via a global store, which is a conjunction of constraints. An agent

may assert (te/Q new constraints to the store, as well as query (ask) whether a

constraint is implied {entail) by the store. The constraints in the store must be

consistent (satisfiable), or the computation aborts.

Since each tell constraint is conjoined to the current store, the store is mono-

tonically refined: As a result, a successful ask operation will remain successful

throughout the rest of the computation. Thus, synchronization can be achieved

by blocking ask—an agent blocks until the store is refined enough to entail the

constraint it wants to ask. It remains blocked until some other concurrently

executing agents have added enough information to the store so that it is strong

• enough to entail the ask constraint. However, this may never happen. It is also

possible that the ask constraint is simply unsatisfiable, and the computation

aborts.

1.2 Finite Domain Constraints

A domain is a finite non-empty set of constants. A domain variable, or simply

a d-variable, is a variable which ranges over a domain. Recent treatment of

finite domain constraints in the concurrent constraint programming framework

[VHSD93, DC93] represents a domain variable X with domain ^ as a constraint

X € d. As constraints are added to the store, the domain of each related variable

shrinks, until it becomes a singleton. For example, X may take any value from 1

^ n agent corresponds to a goal in traditional logic programming.

3

Chapter 1 Introduction

to 10 initially. A constraint X>4 will rule out some of the elements in d. Now

X can only range from 5 to 10. When a constraint X < 6 is added, X becomes

a singleton, and X is equal to 5. Usually a disequality constraint X ^Y will

block until either X or F is bound. If all constraints and goals block then a

deadlock or a floundering is said to have occurred. To avoid deadlock there

is usually a system predicate which attempts each possible value of a domain

variable and the variable is said to be labeled.

The r eade r s referred to [VH89] for a full treatment of finite domain con-

straints in the traditional logic programming framework [Llo87]. It is sum-

marized as follows. Ordinary variables are t e r m e d /i-variables (h stands for

Herbrand). A d-variable X with domain d is denoted by Xd. The imification

algorithm must be modified to support rf-variables. The modified algorithm is

. termed d-unification. When a /i-variable is unified with a ^-variable, the former

is bound to the latter. When a constant c is unified with a J-variable Xd, X is

bound to c if c is in d. Otherwise the unification fails. When two ^-variables,

Xd and y e , are unified, both of them are bound to the variable Zf where

/ d e. If / is a singleton {c}, both variables are bound to the constant c.

If f is empty, the unification fails. SLD resolution extended with ^unification

is termed SLDD resolution. However, the introduction of ^-unification alone is

insufficient to solve finite domain constraints efficiently. Disequality, inequal-

ity, (arithmetic) equality constraints, and even user-defined constraints, must

also be handled. The forward checking and looking ahead inference rules are

introduced as both a theoretical basis and an implementation scheme for such

constraints.

Chapter 2

The Firebird Language

The syntax of Firebird is almost identical to flat GHC [Ued85]. Each clause

consists of a head, a guard part (consisting of ask constraints) and a body (tell

^ constraints and goals). The following is a Firebird program which solves the

n_queens problem.

queen(N,L) gen.list(N,L), L in 1..N constraint(L).

constraint(•).

constraint([XIT]) safe(X T l) constraint(T).

safe(X,[],N).

safe(X,[Y|T],N) noattack(X,Y,N) , N2 is N + 1 safe(X,T,N2).

noattack(X,Y,N) :- X #\= Y, X #\= Y + N X #\= Y - N.

gen_list(0,L) :- L = • •
gen_list(N L) N \== 0 I L = [H|T] , N2 is N - 1, gen_list(N2,T).

5

Chapter 2 The Firebird Language

2.1 Finite Domain Constraints

In Firebird programs, finite domains are denoted by 1. .u. The domain of an

unbound variable X can be specified by in/2. A list of unbound variables can

be initialized at once. For example,

[X] in 1. .10.
[A B C] in 1..100.

In CHIP [DVHS+88], a domain declaration is used to specify the domain of

an argument of a predicate. The argument will be unified with a new domain

variable with, the specified domain when the predicate is called. A domain

declaration can be regarded as an implicit unification in the head matching

phase. On the other hand, there are no domain declarations in Firebird. This

is because the flat GHC rule that all arguments are in input mode and all

unifications must be stated explicitly in the body will be violated otherwise.

Permitted ask and tell constraints include = , ^ ? < , < , > , > on any linear

expressions. We extend the suspension rule of flat GHC to accommodate ask

constraints. If ail ask. constraint attempts to reduce the domain of a global

variable, it will also suspend. For example, if the domain of variable X is {1,7},

then the ask constraint X > 6 will suspend until some other goal remove 1 from

the domain of X.

2.2 The Firebird Computat ion Model

The Firebird Computation Model is a new approach to handle finite domain con-

straints in concurrent constraint programming languages Unlike the Andorra
I

gĵ ^̂ ^̂ jml̂ wjfe l/*::-'1?.fA-"rl':• "- ; :..: “. ..:-. . ‘ , “ ‘ ‘ f
6 “ ,

W U ^ /-, . . r -J't , , - ' ' • v. ••••»•

Chapter 2 The Firebird Language

Computation Mode/ [War90] in w h i c h nondeterministic goals are the basis for

setting up choice points or the exploitation of or-parallelism, the Firebird Com-

putation Model uses domain variables instead. Intuitively, there are two kinds

of derivation steps in Firebird, called the indeterministic derivation step and the

nondeterministic derivation step. An indeterministic derivation step is identical

to a derivation step in a committed-choice concurrent constraint programming

language. In a nondeterministic derivation step, if there is an unbound do-

main variable X in the system with domain {au .. •, an}, Firebird will create

n or-parallel branches, each of which executes with an additional constraint

X = a“ 1 < i< n. Alternatively, a choice point based on X can be set up and

each of the values is attempted by backtracking. X is said to be labeled.

Execution consists of alternating indeterministic and nondeterministic

derivations. How the two are interleaved is unspecified and left to the im-

plementation. At the lazy nondeterminism extreme, indeterministic derivation

always takes precedence, and consequently nondeterministic derivation is only

used to resolve deadlocks. At the eager nondeterminism extreme, nondetermin-

istic derivation always takes precedence. Our data-parallel implementation uses

a control strategy which lies somewhere in between these two extremes.

2.3 Miscellaneous Features

If /2 is used in place of in/2, the ^-variables created will never be subject to

a nondeterministic derivation step.

Chapter 2 The Firebird Language

If no processes (goals and constraints can be regarded as concurrent pro-

cesses) suspend on a variable the variable will not be used in a nondetermin-

istic derivation because labeling the variable is futile

H X is originally a /i-variable, but becomes a variable when its domain can

be inferred from a constraint [e.g. X = 7 + 1 , ^ € { 1 , 2 }) X will never be

subject to a nondeterministic derivation. It is inefficient to label both X and

y since they are related to each other. Applying nondeterministic derivation

to Y a l o n e is sufficient. Ideally, the entire constraint network can be analyzed

to determine which d-variables should be used in nondeterministic derivations.

However, if the programmer creates no more variables using in /2 than nec-

essary and let the system infer the domain of other ^-variables, such expensive

analysis becomes unnecessary.

In Firebird, it is not allowed to build arithmetic expressions at runtime and

pass them to tell constraints like the CHIP system [DVHS+88]. We justify this

omission by showing the semantic complications which may arise. Suppose there

is a tell constraint X = V-h Z where X is an unbound "-variable and F , Z are

unbound variables with domain 0..5. In Firebird, X is bound to a domain

variable with domain 0..10 automatically. Had we allowed X to be bound to an

arithmetic expression like A + at runtime, we could have been forced to use

an unification algorithm which interpret arithmetic functions, resulting in a tell

constraint
X = A + B.

We find the ability to bind a /i-variable to a variable automatically very

important because sometimes initial domains of variables in a tell constraint

need not be specified. To avoid the complications described above, runtime

binding of arithmetic expressions to variables in a tell constraint is treated as

i (8

Chapter 2 The Firebird Language

an error.

2.4 Clause-Based Nondeterminism

Firebird, though a committed-choice language, is by no means less expressive

than a language adopting the Andorra model [War90]. This is because clause-

based nondeterminism can be emulated using domain-variable-based nondeter-

m i n i s m . A namway of mechanically translating flat Pandora [Bag91] programs

to Firebird is as follows. For each, don't know flat Pandora procedure P

P — Gi’i,... Gi,mi I i

P — ^2,1?… ^2,m2 I

P <r- Gn,l, . • . , Gn^mn I Bn

where n is the number of clauses and mt- is the number of ask constraints in

clause i, construct a Firebird clause

P a: € 1. •. n Ai , . . . , An

where x is a new domain variable v/hich does not appear in P or any Gitj,Bi.

For each ask constraint G , 1 < i < n, 1 < j < add a clause

Ai <- -^Gij

where ftj denotes the negation of Gij. Finally, add

Ai '(r- x = i \ … Gi,mi, B{

for each i,l<i<n. The idea is to use x to denote the set of candidate clauses.

If any ask constraint in clause i fails, i will be removed from the domain of

9

. D ,”•*,, “‘ ‘ - • • • “‘ ‘ , ‘," '• . . • ‘ , ‘ • •“ ’ .•‘'.;- _ . ‘ ‘ - . “

Chapter 2 The Firebird Language

x clause f will never be considered a candidate clause. If only clause i is

- satisfiable, x will become a singleton, resulting in a commitment to clause i. The
; ask constraints will be told to the store as in ALPS [Mah87] and the Andorra

Model [Wax90]. Finally, if a deadlock occurs, will be labeled by the system

using nondetermmistic derivation and as a result all the satisfiable clauses will

be attempted. With some adaptation, the decision graph compilation teclmique

for nondeterminate concurrent logic programs [KT91] can be used in place of

our naive translation algorithm.

2.5 Programming Examples

2.5.1 Magic Series

The magic series s 0 , s i , i s a non-empty finite series of non-negative in-

tegers, sucii that Vz, 0 < i < n, {j 0 < j < n, where the

cardinality of a set S is denoted by \S\.

2.5.1.1 Using Choice Points

To solve this problem, we count, for each position z, the total number of s,s

which is equal to i. Since the s / s are initially unknown, to count the number

of occurrences of z, we could make choices, one assuming Sj i and the other

assuming Sj + i. This approach is taken by [VH89] and the program is shown

below.

- 1 0 ‘

Chapter 2 The Firebird Language
v

magic(N,L)
M i s N + 1,
length(L M),
L :: 0..M,
occurrences(L,0,L)
labeling(L).

occurrences([] ,N,L).
occurrences([XIY],N,L):-

occur(X,N,L),
N1 is N + 1,
occurrences(Y N1 L).

occur(0,Val,L):-
outof(Val,L).

occur(N,Val, [Val Hail])
N > 0
N1 is N - 1,
occur(Nl,Val,Tail).

occur(N,Val, [First I Tail])
N > 0,
Val #\= First,
occur(N,Val,Tail).

outof (X, •).
outof (X, [HIT]):-

X #V= H,
outof(X,T).

labeling(D).
labeling([H|T]):-

indomain(H),
labeling(T).

I

. -_ . _ ‘ , ‘ I" (I I

Chapter 2 The Firebird Language

In Firebird, the clause-based nondeterminism of the above program can be

emulated by using domain variables. Though much more efficient than using

backtracking alone, the search space is not pruned in a completely "a priori^

manner.

2.5.1.2 Using Cardinality Constraints

[HD91] tackles this problem by introducing the cardinality operator #• The

cardinality constraint # (“ u , c i , c 2 , . . . , cn) states that the number of constraints

c.5 i < i < which are true, lies between I and u. Thus, we could evaluate the

cardinality constraint by tlie following informally defined rules. The reader is

referred to [HD91] for formal definitions.

Trivial Satisfaction~I if / < 0 A u > n, the cardinality constraint is
trivially satisfied.

Positive Satisfaction if / < u A u n, tell . . . , cn to the store.
Negative Satisfaction iH g u u 0, tell q , . . . , cn to the store.
Positive Reduction""" if c{ is true, rewrite the constraint as

#(l — {c1? . . . ,C‘ i’CI+i, . . • ,Cn}).
Negative Reduction if Q is false, rewrite the constraint as

(/ , U, { C 1 ; … Q - 1 , CJ + 1 , . . . , C N]) .

Failure if / u, the constraint fails.

Table 2.1: Informal rules for evaluation of cardinality constraints

The magic series problem can be expressed by cardinality constraints. For

instance, each should satisfy # ({ = s 2 = … 5n = i}). Although

Firebird does not support cardinality constraints, it is by no means a limitation,

as we shall see shortly. ‘ 1. .';' ‘ ‘

(12

Chapter 2 The Firebird Language

2.5.1.3 Using Concurrent Processes

We hope to express the magic series problem without resorting to any specialized

language constructs. The following constraint, which gives the cardinality of a

single equality constraint, is taken from [CCD94].

bool(X,Y,B) X = Y I B = 1,
bool(X Y B) X \== Y I B = 0.
bool(X,Y,l) X = Y.
bool(X,Y,0) f- X #\= Y.

We could find the number of occurrences of an integer TV in a list L using

the following predicate.

occur(X,N, []) - X = 0.
occur(X,N,[Y|T]) [B] 0 . . 1 bool(Y,N,B), X #= XI + B,

occur(XI N T).

The remaining parts of our magic series program in Firebird are given below.

magic(N L) M is N + 1, gen list(M L) L in 0..M,
occurrences(L,0,L).

occurrences ([] N L).
occurrences ([XlT] ,N,L) :- occur(X N L), N1 is N + 1,

occurrences(T,N1,L).

gen ist(0 L) L = •.
gen_list(N,L) N \== 0 | L = [H|T], N1 is N - 1, gen ist(N1 T).

13

Chapter 2 The Firebird Language

2.5.2 Weak Queens
The weak queens problem is a variation of the n-queens problem. Instead of
placing n queens on an n x n board, a queen is placed on each column of an
infinitely long band of width n. A queen can attack horizontally, vertically or
diagonally, but the horizontal and diagonal attack range of a queen is only k,
k < n . Hence a queen in this problem is 'weaker' than a normal queen. Queens
can be put on columns A: + 1, fc + 2 ” . . For example, if n 5 and k = 2, one
of the solutions is (2 4 1,3 5,1 . . .)• The following is a Firebird program which

solves the weak queens problem.

weak.queens(N,K,L) K < N I L in 1 . .N, constraint(K,L).

constraint(K, •).
constraint(K,[XIT]) safe(K,X,T,l), constraint(K,T).

safe(K,X,„,N) :- N > K true.
safe(K,X,[Y|T],N) N =< K I

noattack(X Y N), N2 is N + 1 safe(K X T N2).

noattack(X,Y,N) X #\= Y, X #\= Y + N, X #\= Y - N.

We can apply the lazy evaluation technique to this program.

consumer(0,L) :- L =[].
consumer(M,L) M > 0 I L = [H|T] , M2 is M - 1 consumer(M2,T).

In the query

weak_queens(5,2,L),consumer(6 L)•

the goal weak queens/3 will produce the solution to the first 6 columns one by

one upon request from the consumer.

14

Chapter 3

Operational Semantics

The semantics of Firebird is based oil the formalism of [Mah87]. The domain

theory D allows constraints of finite set membership over constants.

A domain variable x with domain 5 is represented by a variable x and a

constraint x E S.

A program P consists of one or more clauses. A clause is of the form

H — G\B B'

where G is a conjunction of ask coiistraints, B is a conjunction of atoms and Bf

a conjunction of tell constraints, assuming that all head matchings have been

transformed to ask constraints [CG85]. We define a goal G to be a multiset

A of atoms plus a multiset C of constraints. G and its multiset of atoms and

constraints are annotated by a (possibly empty) list cr of non-negative integers

and subscripted by an integer i, i.e. Gf = (Af U Cf). A query'is represented as

Go = (A0 U Co) annotated by an empty list of non-negative integers.

‘ 15

Chapter 3 Operational Semantics

3.1 The Firebird Computat ion Model

Definition 3.1 A derivation step using the Firebird Computation Model from

a goal Gf (Af U Cf) to a goal G] = [A] U CJ), written as

G\ =>f GTj

is defined as follows.

1. If there is a goal AeAa
{ and there is a clause H G\B, B' in the program

such that A can commit to that clause subject to the commit law stated

below, then j = i + 1, t = q =(Af \ {A}) U B and CJ = C[U {A =

H] u G U B'. This is called an indeterministic derivation step. If there

is only one clause that A can commit to, then Gf is called a deterministic

goal and the derivation step is called a deterministic derivation step.

2, Let^ denotes the complement of S with respect to the Herbrand Universe.

If there is a constraint x e S such that D _ Cf 0 € J d

J = {au...,an},n > I, then j = 0,R = AF and CJ = C[U(x

/),1 < k < n provided that Cf (ak) is consistent. Here is the

‘append, operator. This is called a nondeterministic derivation step.

S. The indeterministic derivation step and the nondeterministic derivation

step are the only derivation steps allowed. If both the indeterministic

derivation step and the nondeterministic derivation step are applicable,

only one of them will be selected.

' 16

Chapter 3 Operational Semantics

3.2 The Firebird Commit Law

Following the flat GHC convention, the commit law of Firebird is simpler than

that of ALPS [Mah87]: a clause H — G\B,B can be committed to only if the

clause is validated. In the other words, given an atom A selected from A we

must find a clause with a head and ask constraints which satisfies the following

condition.

D [= \/xg(C[4 3xi{A ^ HAG))

Here, and xt denote the variables in G\ (the ‘global variables) and the vari-

ables local to the clause respectively. Likewise, a clause is invalidated if

D | = = F Cf A G)

3.3 Derivation

Definition 3.2 A derivation from a goal G to a goal G], written

G^fG]

is a (possibly empty) sequence of derivation steps such that either

G — T

1 j

or there exists goals G^ G^,. •., Of" such that

F Gf GT2 F . . .

and in = j and an t. G] is said to be derivable from G ..

17

Chapter 3 Operational Semantics

A" = 0.

oo

i=l

w h e r e C l , C 2 , . . . are final constraint sets associated with the successful deriva-

tions, and yi are the variables local to Ci .

p r o of We shall prove this lemma using mathematical induction on the height

/i of a Firebird search tree.

R a s e c a s e h ^ l . The Firebird search tree is in either of the following two

forms.

1. If a deterministic derivation step is applied on Go = (^o U C0) using a

completed clause then it has only one child G (0UCx) and

Q C0 G A0 B' . Since D {== • (C0 — 3 ‘ ‘ G))y

we have P\D j= ^o ^ ^Vi{Ci) where Vl are the variables local to Cl

2. If a n o n d e t e r m i n i s t i G derivation step is applied on G0 (0UCo), it will have

n children GJ = (0 U ^ 1) , … , = (0 U Q) such that for some variable

D |= C0 — (€ … } … }) and Q = ((: =

Co), l<i<n. Clearly we have ^ h ^o ^ (By^^o1) • • • .V 3yn(C0
n)),

where the y?s are the variables local to Cl
Q.

Induction hypothesis: the lemma is true {oil<h<k.

Induction step: h = k + 1. Consider a Firebird search tree of height k + 1.

1. If a deterministic derivation step is applied on G0 = (Ao U C0) using a

completed clause H ^ G\B,B', then it has only one child G1 = (AiUCi)

— i p * is the Clark's completion [Cla78] of program P.

20'

Chapter 3 Operational Semantics

where Ax = ((A \ {A}) B) and G = (C G (A = iJ) B' . Since

D |= 4 rr/((A = if) (7)), we have P\ D \= G0 ^ Now that

the subtree rooted at Gi, is of height less than or equal to fc, we have

oo
P\ D \= Gr ^ \J 3yi(Ci)

i=i
Hence

oo

where Ci, C2,... are final constraint sets associated with the successful

derivations, and is the variables local to Ci.

2. If a nondeterministic derivation step is applied on Go = (Ao U Co), then

it has n children G^ = (Aj U C^1),… = (AJ U Q) such that for

some variable a:,D C0 (x e {au...,an} Ax ^ {aUf..,an}) and

Ct
0 = (x = m A Co), ̂ - A0,1 < z < n. Therefore we have P\ D ^ G0 ^

(GJ •. • A Now as subtrees rooted at CJ, • • • 5 GQ are of height less

than or equal to /e, we have

00
P-D^G^ V 3 Q)

ji=i
where Cj:s are final constraint sets associated with the successful deriva-

tions in the subtree rooted at Gl
0, and t/j.'s are the variables local to C^ s,

I <i <n. By the distributive properties of disjunction, we have

0 0

P^D^Go^MByiiCi)
i=i

where Ci, C 2 , . . . are final constraint sets associated with the successful

derivations, and y{ is the variables local to C“

i • .

21

Chapter 3 Operational Semantics

Theorem 3.1 (Soundness of Firebird Computation Model) Given a pro-

gram P if a query Go = (AoUCo) has a successful derivation with final constraint

set C, then

Proof This is a direct consequence of Lemma 3.2 and the definition of successful

derivation.

Theorem 3.2 (Conditional Completeness of Firebird Computation

Model) Given a program P and a query Go = (Ao U Co), if P*, D \= C

Ao Cq, and for every goal G" = (A" U C") derivable from Go, one of the

following condition holds,

1. G" is a deterministic goal.

2. a nondeterministic derivation step is applied to G".

3. A" = 0.

then Go has a successful derivation with a final constraint set C[such that

Proof By Lemma 3.3 we have
oo

P\D\=GQ^\l3yi{Ci)

where Ci, C2,.. . are final constraint sets associated with the successful deriva-

tions, and yi is the variables local to C“ under the conditions as specified in the

lemma. Hence we have

00
p\D h ^ ^ v M m

i=i

22

Chapter 4 Exploitation of Data-Parallelism in Firebird

, 4.1 A n Illustrative Example

To illustrate how Firebird exploits data-parallelism, it is helpful to trace

I t h e execution of 5-queens using t h e p r o g r a m presented before and the query

queen(5,[Xl,X2,X3,X4,X5]). At the first deadlock, the system has the fol-

lowing suspended constraints. All the other goals have been reduced, and all

variables have the same domain {1,2,3,4,5}.

. X1 ^ X2 XI ^ X2 + 1 XI ^ X2 - 1
XI + X3 XI # X3 + 2 XI ^ X3 - 2
IX + X4 XI ^ X4 + 3 XI ^ X4 - 3
XI — X5 XI ^ X5 + 4 XI # X5 - 4
X2 + X3 X2 _ X3 + 1 X2 ^ X3— 1
X2 — X4 X2 ^ X4 + 2 X2 ^ X4 - 2
X2 # X5 X2 ^ X5 + 3 X2 ^ X5 - 3
X3 ^ X4 X3 — X4 + 1 X3 ^ X4 - 1 ,
X3 ^ X5 X3 # X5 + 2 X3 ^ X5 - 2
X4 ^ X5 X4 ^ X5 + 1 X4 # X5 - 1

Figure 4.1: Constraints remaining after first deadlock

If we label XI and try the 5 possible values in a data-parallel fashion, we

can evaluate the first 12 constraints with an ideal 5 times speedup on a SIMD

machine. A second deadlock will occur. If each branch chooses to create a choice

point on X2, there will be 3+2+2+2+3 = 12 branches (see Figure 4.2). Thus the

next 9 constraints can be solved with 12 times speedup. X3 will also be labeled,

giving rise to a total of 14 branches. Therefore, the remaining 9 constraints

can be evaluated with 14 times speedup. Thousands of processor elements can

be fully utilized easily in this way because many problems are combinatorial in

nature.

’ 25

Chapter 5 Data-Parallel Abstract Machine

5.1 Basic D P A M

5.1.1 Hardware Requirements

Different data-parallel computers have different capabilities. Therefore, the min-

i m u m hardware requirements are defined in such a way that DPAM can be im-

plemented on most of the recent data-parallel computers. The hardware consists

of the following components:

1 • a processor element array, consisting of a number of identical processor ele-

ments, executing in a synchro-parallel manner, each with its local memory,

known collectively as vector memory. In a memory-read operation, each

processor element may access a different memory location (known as lo-

cal indirect addressing), but in a memory-write operation, all processor

elements must access the same location1. There is no inter-processor com-

munication. Each processor element has a mask bit. A processor element

executes instructions if and only if its mask bit is set, except that there

are special instructions which move a bit to the mask bit uncontingently.

2. a host computer, which is responsible for dispatching instructions to all

processor elements. The host computer has its own store called scalar

memory. The host computer may broadcast a data item to all processor

elements whose mask bits are set or receive a data item from an arbitary

processor element. The host computer must also have the ability to check

~ i s o m e data-parallel computers have faster memory access if all processor elements access
the same memory location (e.g. Maspar MP-1, Connection Machine CM-2 some vector su-
percomputers like Hitachi S-820). We impose this restriction because it leads to performance
improvement on such computers. Furthermore, it is expected that more real-world machines
can be mapped to a more restrictive abstract machine.

- I

' 31

I Chapter 5 Data-Parallel Abstract Machine

if none of the processor elements have their mask bits set, which is useful

for conditional branching.

The above features are directly available or can be emulated on most of the

recent SIMD computers. Since different machines has different interprocessor

communication topologies, DPAM does not require any form of interprocessor

communication except moving data to and from the host computer. Likewise,

since some machines (e.g. supercomputers) have a single, shared memory space

for all processor elements whereas some have memory distributed over the pro-

cessor elements, we assume that the memory is distributed. Nevertheless, some

older machines, including Cray-1, do not have local indirect addressing and

hence do not meet our minimum hardware requirement.

5.1.2 Procedure Calling Convention And Process Cre-

ation

In DPAM, a procedure is defined to be an executable subroutine. An n-ary goal

or constraint is compiled to a procedure which takes n input arguments, which

are stored in general purpose vector registers pi to pn. The mask (Section 4.3) bit

vector defines the set of p h y s i c a l partitions in which the procedure is applicable.

In WAM [AK91], failure is like an exception. When a failure occurs execution

continues directly at the next clause. This is not possible in a data-parallel

system because the failure of a physical partition does not imply the failure of

all physical partitions. Therefore, upon return, the procedure signifies that a

physical partition has succeeded by setting, the mask bit and that a physical

partition has failed by clearing the mask bit.

32

I Chapter 5 Data-Parallel Abstract Machine

In Figure 5.1 we Illustrate how the mask bit vector is changed during execu-

tion of 3 call instructions on a 8-processor machine. Note that the mask shrinks

monotonically. .

procedure call input mask output mask
c a l l p /0 1111111111011111
c a l l q/0 11011111 01011001
c a l l r / 0 01011001 00011000

Figure 5.1: Example: mask bit vector

The concurrent process scheduler, or simply scheduler, is responsible for exe-

cuting procedures. The scheduler treats all procedures as black boxes. It simply

performs a subroutine call to the procedure after loading the input arguments.

A procedure may call other procedures in the same manner.

If a procedure (a compiled goal or constraint) wants to suspend, it calls a sys-

tem library subroutine suspend^rocess which saves all the argument registers

and other status information {e.g. continuation pointer) in a process structure.

The procedure must tell suspend—process the set of physical partitions which

need suspension by setting the mask bit vector. Then the procedure returns

control to the caller with the mask bit set to the set of physical partitions which

have either succeeded or suspended. In other words, the caller cannot distinguish

whether the callee has succeeded or suspended (the scheduler can, of course).

The evaluation of tell constraints is left to the particular implementation.

DPAM defines only the interface—the constraint must obey the abovementioned

calling convention, and it must call suspend^rocess for a suspension.

In DPAM, ask constraints never appear in any process queues. They do not

33 '

Chapter 5 Data-Parallel Abstract Machine

(low) (low)

input/output hb
b u f F e r heap

I h f ~ ^
•:.•••:•:•:•:•:•:•:•:••••:•::::••:••••::::••::::::••::: hp

• •.••••• ••••• •••••••••••••••••_.••••.••• • '1
* * •*• • • • •

••••••••••••••••••••.••••••.•••••••••••••••.••••••••••••••• • •

• t r ••,••,.•••.-.•.•.-.-...-,
choice point

stack trail

process argument

stack stack

• • • • • • * • • • • • • • ,
• • • • • • • » / • • • • • • • *

• •••••••••••••••••••••••••••••••)(•••••••••••••••••••••• •••••• •••••••••••••••••••••••••••••••• *"•••••*•••••••••••••••
• *

• •
• ,..,.**.*

• • • • .*.•.*.•.*.•.•.*•.*.•.• • * • • • •
.• j ‘ • • • •
• •••••••••••••••••••••••••.•.•.• ••• ‘•••••••••••••••••••••••••‘••••• J

.•.••.••.•.•.•••••••••.•.•.•,.• ?••••.•.••..•,•.•••...•••••.•_•
PDL PDL

((high)

scalar memory vector memory

Figure 5.2: Memory areas and scalar registers

ref j \ str

a _ 2 str ’ ― ^ a / 2

b 0 str b con

c I 0 str c con

a. tag-on-data b. tag-on-term

Figure 5.3: Example: tag-on-term and tag-on-data representations of a (b ,c)

. . . . '.... v • i

' 35

Chapter 5 Data-Parallel Abstract Machine

o pointer to bit vector representation of the domain.

The bit vector is accessed via a pointer so that any changes are backtrackable

:: (this will be explained later in Section 5.2.2.2). The pointer to the bit vector

always points to the address which would have contained the value 0 even if 0

is outside the range of the domain. For the example in Figure 5.5, the domain

of the variable is 0..159 and the bit vector is stored at address 120 (hex). The

pointer to the bit vector field will be 120 (hex) because the bit representing the

value 0 is stored at 120 (hex). In this way, there is no need to update the bit

vector and its pointer when the minimum and maximum fields are changed. For

instance, if the minimum is changed to 96, the pointer to bit vector field remains

to be 120 (hex), although the locations 120-12b (hex) have become garbage.

v v
I ref process-id dvar 0 dvar

process-id dvar

0 dvar

min ~|
max

1 0 - 3 1 j
32-63
6 4 - 9 5 1

j 96..127
I 128..159 I

bit vector

Figure 5.5: Example:. a ^-variable

37

i Chapter 5 Data-Parallel Abstract Machine
I •

Unlike the memory write operation the ability for each processor element

to read a different memory location in parallel is mandatory. Consider the

dereferencing of a vector of reference chains, for instance.
‘‘

5.1.4 Registers

The host computer has the following scalar registers in addition to a file of

general purpose scalar registers c l to cn (see Figure 5.2 again).

hp heap pointer

hf heap frame pointer
I

hm heap pointer maximum

hb heap pointer at last choice point I • t r trail pointer
l |

b current choice point

ip instruction pointer
cp continuation pointer (keeps return address of procedure invocation)

Vector registers include the process count (c) and the status word (sw), in

addition to a number of general purpose vector registers (pO to pin).

I

5.1.5 Process Management

5.1.5.1 Process Structure

A process structure must contain enough information for the reinvocation of a

I process when the process is resumed. In DPAM, the process structure is scalar

and resides on the host computer. The arguments are stored separately in the

,vector argument stack. The process structure consists of the following fields.
R i

41

K'

• Chapter 5 Data-Parallel Abstract Machine

o process-id

o continuation pointer

• number of arguments

o pointer to the argument vectors on the argument stack

• pointers to the next and the previous process structures

• pointers to the next and the previous processes in a suspension queue (to

be discussed in Section 5.2.2.1)

To save storage, the mask of a process is indicated by its first argument

vector. A physical partition is outside the mask of a process if it has a zero first

argument. A pseudo-argument vector which stores the mask will be added to

0-ary processes.

5.1.5.2 Overview of System Queues

The system maintains hash queues, the ready queue^ the resumption queue and

free lists for the creation and scheduling of processes. Both the next and pre-

vious pointer fields are used in hash queues, which are doubly linked circular

lists used to locate a process with a given process-id in a resumption opera-

tion. Alternatively, the next and previous pointers can be used as primary and

secondary linkage pointers so that a process can be in two singly linked lists

simultaneously. The ready queut^ the resumption queue and free lists use the

primary linkage pointer and the labeling queue uses the secondary one.

Each process in the ready queue is executed and then the process structure

is placed back in one of the free lists. When a process is created, DPAM tries

to reuse process structures in the free lists first before it allocates new space

42 '

*

— — ~
on the process stack and the argument stack. When a process is resumed it is

first placed in the resumption queue. After the ready queue is exhausted the

processes in the resumption queue will be moved to the ready queue.

5.1.5.3 Suspension and Resumption

There are two possible ways of implementing suspension and resumption.

M e t h o d 1 If there is a suspension, a new process structure will be created,

and a process-id will be assigned to it. The new process will be placed in one

of the hash queues. Its process-id will be stored in a suspension list node which

becomes the head of the suspension list of the unbound variable. New suspension

list nodes can be inserted at the head of the suspension list, by copying the old

list head to the top of the heap and replacing the old list head by the newly

created node (see Figure 5.7).

When a variable is assigned, each process-id in the suspension lists is fetched.

If a process can be found in one of the hash queues, it is removed from the hash

queue and added to the resumption queue. Otherwise, the process has already

been resumed by another assignment and can be ignored.

Naturally, each processor element may have a suspension list with different

processes. To resume them the following algorithm is devised.

1. Select an arbitrary processor element G.

2. Each processor element fetch the process-id in the head of the suspension

list, unless the list is empty.

3. Let the process-id as obtained from step 2 by processor element G be i.

Resume the process with process-id i.

43 '

I ::: :

‘
Chapter 5 Data-Parallel Abstract Machine

I
, (l o w)

ref
• 1 1 •

L I
^ — ^ - hvar I

I 0 Hvar j

I hb

I 1 hvar I

— - H
1. suspension list head copied to top of heap

I 1 I r e f l I I

I I • • • •
^ 2 hvar I

^ ^ H • I
0 hvar

H b

^ 1 hvar

2. old suspension list head is overwritten

Figure 5.7: Suspension

I 44

I Chapter 5 Data-Parallel Abstract Machine

4. Every processor element whose process-id in the head of suspension list is

equal to i may proceed to the next suspension list node.

5. Repeat steps 2-4 until the entire suspension list of parition G has been

traversed.

6. Select another processor element G and repeat steps 2-5 until the suspen-

sion list of every processor element has been traversed.

See Figure 5.8 for an example of the above algorithm at work.

Method 2 The traditional scheme using no hash queues can be used.

Instead of a process-id, the head of each suspension node contains the pointer

to a scalar hanger [Cra90a] residing on the host. The hanger will point to the

process structure. When a process is resumed the hanger will be zeroed to

prevent the process from being resumed more than once. An algorithm similar

to that of method 1 can be used to resume a vector of suspension lists.

The first method will be slower because of searching but it makes simpler

memory management possible. This is because it is not necessary to write a

separate garbage collector to clear obsolete hangers from the host's memory.

Both schemes allow old process structures to be freed and reused.

To resume a process, we can do either of the following.

1. The process is resumed in all physical partitions even if the variable is

assigned in some physical partitions only.

2. The process is split into two. One of the processes, with the mask set to

consist of the physical partitions in which the resumption has taken place,

will be placed in the resumption queue. The other process, consisting of

45

I Chapter 5 Data-Parallel Abstract Machine

P I 9 — 8 P I [T]

P2 8 6 — » 3 — P 2 8 — 6 — > 3 1

P3 8 — » 6 — » 1 P3 8 — 6 — 1

1. select partit ion 1 2. resume process 9

PI PI

P2 6 3 1 P2 3 ~ ^ 1

P3 6 — > 1 P3

3. resume process 8 4. resume process 6
select partit ion 2

P I P I

P2 P2

P3 P3

5. resume process 3 6. resume process 1

Figure 5.8: Example: resumption of suspension lists

physical partitions in which the resumption has not taken place, will be

left in the suspension list.

We took the first method because it is simpler and does not have the overhead

of splitting. Oil a SIMD computer, the time to execute a process is unrelated to

the number of active processor elements. The falsely resumed physical partitions

will execute the process alongside with the others without any additional cost.

If these physical partitions commit we actually save execution time. Otherwise,

46 '

I Chapter 5 Data-Parallel Abstract Machine

they will just re-suspend.

Unlike Parallel Parlog [Cra90a], we do not make any distinction between

single-suspension and multi-suspension because

1. The Parallel Parlog scheme improves the efficiency of single-suspension,

but for finite domain constraints, multi-suspension is more the rule than

the exception. All unary constraints in the form X op n, where op is

a equality, inequality or disequality relation, can be solved immediatel}^

without suspension. Other constraints suspend on two or more variables

(multi-suspend).

2. In Parallel Parlog, the pointer to the next process structure resides in

the process structure itself in a single-suspension. However, we have a

vector of variables in a variable assignment, resulting in several threads

of processes to be resumed in general. Thus the next field of the DPAM

process structure, which is scalar, cannot be used.

5.1.5.4 Deadlock Detection

A labeling process is responsible for labeling a c?-variable in a nondeterministic

derivation step. It is created and placed in the labeling queue whenever a process

suspends on a ^-variable for the first time, unless

1. the c?-variable is created by : : /2, or

2. the variable is originally a /i-variable whose domain is inferred from an

equality constraint. For example, suppose X is a /i-variable and there is

a constraint X = Y + l,Y e {1,2}. It is sufficient to label Y only but a

labeling process for X is never created.

47 '

I : .
, Chapter 5 Data-Parallel Abstract Machine

In order to detect deadlock of individual physical partitions, a process count

and a deadlock flag are maintained in each physical partition. The process count

of a physical partition keeps track of the number of processes in that physical

partition. The deadlock flag is a bit in the status word which is initially set.

When a process is resumed in some physical partitions, the deadlock flags of

those physical partitions are cleared. When the ready queue is exhausted, the

physical partitions are checked for deadlock.

1. If the process count of any physical partitions are zero, those physical

partitions have succeeded.

2. If there are any physical partitions which have not succeeded, and any of

them have set deadlock flags, a deadlock has occured. A process is moved

from the labeling queue to the ready queue. If the labeling queue is empty,

the deadlock is irrecoverable.

3. If the resumption queue is empty, a deadlock has occured. A process is

moved from the labeling queue to the ready queue. If the labeling queue

is empty, the deadlock is irrecoverable.

4. After checking, append all processes in the resumption queue to the ready

queue. (In other words, if a deadlock has occured, the ready queue will

consist of a labeling process followed by other resumed processes. Other-

wise, the ready queue will consist of resumed processes only.) Set deadlock

flag for all physical partitions again.

' 48

B Chapter 5 Data-Parallel Abstract Machine

^ c a t i o n

Following JAM [Cra90b] (an abstract machine for the parallel execution of Par-

log [CG86]) and WAM [AK91], when two unbound /i-variables, X and Y are

unified, the one which is created later is bound to the one which is created first.

In WAM, this age comparison reduces the chance of trailing and avoids the

binding of a heap variable to a stack variable4. However, in JAM and DPAM,

the age comparisiori ensures the correct operation of the X = Y ask constraint

(where both. X and Y are unbound). X = Y will suspend only on the variable

created later.

If a A-variable is unified with a (^-variable, the /i-variable is bound to the

J-variable. Therefore, if a process asks whether X = y where X is a /i-variable

and y is a <i-variable, the process should suspend on X.

5.1.7 Variable Table

In JAM [Cra90b], when the truth value of a guard cannot be determined because

of an unbound variable, that variable is stored temporarily in a variable table.

If a commitment to another clause is made, the variable table can simply be

ignored. If a suspension is really needed for the process, it will suspend on all

variables in the variable table. The variable table is a fixed array.

The same concept is adopted in DPAM. However, each entry in the variable

table is extended to a < mask, variable pair. The DPAM instruction suspend
4A stack variable, as mentioned in another footnote before, is a self-referential pointer in

the environment stack, saving the space of 1 heap cell. A heap variable is a self-referential
pointer on the heap. Since a heap variable is permanent but a stack variable is freed after
the procedure completes its execution, a heap variable must not be allowed to be bound to a
stack variable,

I '.' ;. : ' 49

I Chapter 5 Data-Parallel Abstract Machine

stores a variable in the variable table together with the current mask. The

variable table is not a fixed array but resides on the vector PDL5. The following

example illustrates the necessity of this.

a (l ,Y) _ b(Y) .

a(X l) : - b(X)‘

b (x) .
b (y) .

When a/2 is executed, some physical partitions will commit to the first

clause (let Pi be the set of such physical partitions). The others, however, may

potentially suspend on V and therefore Y is stored in the variable table (let the

set of these physical partitions be P2). Next, b(Y) will be executed, with the

mask set to I \ . Note that b /1 maintains its own variable table which must not

have any conflicts with that of a/2. Hence the vector PDL is chosen as the place

to store the variable table.

5.2 D P A M with Backtracking

Like any or-parallel logic programming system, the number of parallel branches

explodes combinatorially in Firebird. For example, more than 2,000 proces-

sor elements are required to solve 8-queens. When the processor elements are

exhausted, the system resorts to parallel backtracking, in which the partitions

create choice points and backtrack in parallel.

In general, the number of or-branches is different for each partition because

the domain size of the domain variable used to set up the choice point varies
5In WAM terminology [AK91], the PDL is a stack for miscellaneous purposes. Please see

Figure 5.2 oil page 35 again.

50

I Chapter 5 Data-Parallel Abstract Machine

from partition to partition. As a result, some partitions will finish attempting

all the alternatives earlier than the others.

We adopt the synchronous backtracking approach, in which the partitions

which have finished wait until all partitions have finished before going back to

I the last choice point. The advantage of this approach is lower trail and choice-

^ point management overhead. If the finished partitions go back to the last choice

point immediately, a higher degree of parallelism may result but we have not

yet implemented it to evaluate it empirically.

All partitions will resort to backtracking if any of the partitions do not have

enough processor elements. In this way, more parallelism can be exploited if

there is a nondeterministics derivation step afterwards with domain sizes small

enough so that backtracking is unnecessary. In synchronous backtracking, a

physical partition will be idle after all its alternatives have been attempted.

As a result, even if we exploit or-parallelism in partitions with enough proces-

sor elements, such partitions will still have to wait for those partitions using

backtracking.

Like WAM [AK91], a choice point is freed before the last possible value is at-

tempted (since only one choice is left, the system may ‘commit, to that choice).

Whereas WAM has try_me_else, retry_me_else and t r u s t e e instructions to

create, update and remove a choice point, such, instructions does not exist in

DPAM. A choice point is created by the labeling process if needed and up-

dated/removed by the scheduler.

We shall present trailing and the recovery of process queues in detail. Both

of them has only one objective—to restore the machine to its original state when

backtracking occurs. The reader is encouraged to verify herself/himself whether

51

Chapter 5 Data-Parallel Abstract Machine

this objective is met in our designs

5.2.1 Choice Point

A choice point is created when there are not enough processor elements to be

divided among the alternatives in a nondeterministic derivation step. The scalar

register b points to the top of the (scalar) choice point stack. A choice point

contains the following fields:

• process-id allocation counter at last choice point

• ready queue at last choice point

• labeling queue at last choice point

• trail pointer (t r) at last choice point

o hb at last choice point

o restore queue

o head and tail of suspension queue

The process count, status word and processor element allocation information

are saved on top of the heap rather than the choice point stack because they are

vectors. They can be accessed at any time via hb. The consumed heap space

can be reclaimed when the choice point has finished.

5.2.2 Trailing

The trailing scheme of WAM [AK91] is extended for use in a data-parallel con-

text. The trail stack resides in the vector memory of the processor element array.

Each entry in the trail is composed of a <mask, address, old value triplet. The

52 1

I Chapter 5 Data-Parallel Abstract Machine

scalar t r points to the top of the trail stack. The hb (heap pointer at last choice

point), which, is scalar like hp, is used to determine whether a variable should

be trailed. If trailing is not needed by any physical partition then no trail entry

is created on the trail stack. Otherwise the mask field, which is set to the set of

physical partitions which require trailing, is recorded together with the address

and old value fields on the trail.

5.2.2.1 Trailing of Suspension List Updates

Several processes may suspend on an unbound variable in between two choice

points. As a result, the unbound variable (or the suspension list and touch list

fields of a domain variable) may be updated several times, which may lead to

multiple trailing. Multiple trailing refers to the problem that a memory location

is trailed more than once in between two consecutive choice points. This is

inefficient because only the first trail entry is sufficient for restoring the heap to

its original state when backtracking occurs.

We observe that when a new node is inserted at the head of a suspension

list, the first suspension list node is copied to the top of the heap. Then it is

overwritten by the new suspension list node (see Figure 5.7 on page 44 again).

The link field of the new node provides a clue to the age of the variable. At

the next time the variable is updated, trailing is required only if it points to an

address below hb. In other words, when a variable is bound or a new suspension

list node is added, it is the link field of the first suspension list node rather

than the address of the suspension list node itself which is compared with hb.

The empty node of a freshly created unbound variable has a zero process-id as

head and hp at the time of creation as tail. Table 5.1 compares the operations

53 '

I Chapter 5 Data-Parallel Abstract Machine

required by a system using time stamps and one which does not.

operation with time stamp without time stamp
variable creation read current time stamp

create time stamp field
create empty suspension list create empty suspension list

update list read suspension list read suspension list
resume resume
read time stamp
check time stamp check address
trail time stamp
update time stamp
copy node to top of heap copy node to top of heap
trail node trail node
update node “ update node

dereferencing unaffected unaffected
unwind copy time stamp and node copy node only

Table 5.1: Comparison of suspension list update with and without time stamp

It is evident that efficiency can be improved no matter trailing is needed or

not. In addition, we save the memory used for storing time stamps.

This age comparision is different from the age comparison in the unification of

two unbound /i-variables (see Section 5.1.6, page 49 again). They are compared

as follows.

o To determine whether to suspend on X or y in an ask constraint X = Y

(or to determine whether X or ^ should be bound to the other in a tell

constraint X = K), the time of creation of the variables is considered.

Therefore, it is the reference pointers to the unbound cells which are com-

pared.

o To avoid multiple trailing, the time of last modification is considered.

Therefore, the link field of the first suspension list node is compared with

54

B Chapter 5 Data-Parallel Abstract Machine

hb.

5.2.2.2 Trailing of Domain Variables

We do not trail the whole bit vector as in [DC93], but create a new bit vector on

the top of the heap, modify the bit vector pointer field of the domain variable and

trail the modification of the pointer instead. Like the trailing of a suspension

list update, the bit vector pointer field itself is compared with hb to check if

trailing is necessary.

In the time-stamp approach, the time-stamp itself must be trailed as well,

and the bit vector is copied twice (when it is trailed and when the trail is

unwound). In our approach, however, the bit vector is copied only once. We

saved trail space, but at the expense of heap space. In both cases the memory

can be reclaimed upon backtracking.

There are no pointers in the minimum and maximum fields of a variable

which can be used to infer the age. Therefore, unlike suspension list or bit vector

updates, time stamps are associated with the minimum and maximum fields in

order to avoid multiple trailing. We use the value of hp at the last time the field

is updated as the time stamp.

When the domain of a domain variable is modified, the touch list (discussed

in Section 5.1.3.2) will be resumed and replaced by an empty list. The process-id

field is set to zero as usual, and the link field is set to hp at the time of modi-

fication. As a result, the information on when the touch list field of a domain

variable is last modified is captured, regardless of whether the modification is

an insertion at the head or a deletion of the whole list.

i

^ 8 _ _ _ _ . 55

I Chapter 5 Data-Parallel Abstract Machine

5.2.2.3 Correctness Issues

Consider the following scenario.

1. An invalid value is removed from the domain of a domain variable. As a

result, the processes in the touch list of the variable are resumed. After

the resumptions the touch list field of the variable is cleared, and replaced

by ail empty suspension list node with a zero process-id and the current

hp as the liMc field, as an indication of the time of the lastest update.

2. No heap space is consumed afterwards, and a choice point is created. Note

that hp = hb.

3. A process suspends on the touch list of the domain variable. Since the link

field of the first node is equal to hb, the update is not trailed, leading to

incorrect result.

Therefore, at least one of the following conditions must be met to ensure

correct operation of our trailing mechanism.

1. The update is ultimate (e.g. binding a domain variable to a constant), or

2. The update consumes heap space (e.g. inserting a node at the head of a

suspension list (see Figure 5.7, page 44 again) or creating a new bit vector

and updating the pointer to bit vector field of a domain variable).

DPAM enforces condition 2 and ensures correct operation by storing partition

allocation information, the status word and the process count on the heap (see

Section 5.2.1 on page 52 again) when a choice point is created.

56 '

Chapter 5 Data-Parallel Abstract Machine

5.2.3 Recovering the Process Queues

The system maintains a process-id allocation counter. When a process is created

its process-id is set to the process-id allocation counter, and then the counter is

incremented. The process-id provides processes with a convenient age. Processes

can be trailed like heap terms: at each choice point the process-id allocation

counter is saved. If a ready process has an id greater than process-id allocation

counter at last choice point, then it is created after the choice point and can be

discarded and returned to the free lists after being executed. Otherwise it must

be retained.

Apart from the linkage pointers no fields in the process structures are mod-

ified in DPAM. Therefore to recover the ready queue and the labeling queue

upon backtracking we just record the heads of the queues in the choice point. If

a process suspended before the last choice point is resumed and removed from

a hash queue, it should be restored to the hash queue upon backtracking. The

restore queue is a singly linked list in each choice point consisting of these pro-

cesses. When a process which suspended before the last choice point is resumed,

it is added to both the resumption queue as usual and the restore queue as well.

The restore queue uses the secondary linkage pointer. Hashing on the process-id,

processes in the restore queue can be returned to the appropiate hash queue.

If a process suspends after the last choice point and has not resumed, the

process should be removed from the hash queue and freed upon backtracking. In

each choice point there is a suspension queue which is a doubly linked circular list

of all processes suspended after the last choice point. When a process suspended

after the last choice point is resumed it is removed from the suspension queue.

57

Chapter 6

Implementat ion

6.1 The D E C m p p Massively Parallel Computer

T t i e Firebird language is implemented on a DECmpp [Bla90], which consists

of a front-end UNIX workstation and a back-end data-parallel unit. The data-

parallel unit in turn consists of an array control unit (ACU), a processor element

array (PE) and an inter-processor communication network which supports both

m e s h and arbitrary c o m m u n i c a t i o n patterns. The ACU dispatches a single in-

struction stream to the processor elements. In addition, it broadcasts data to

the processor elements and receives the logical or-ing of data from them. A

processor element may choose to execute or ignore an instruction based on its

contingent bit Each processor element has its own local memory. Memory

operations can be overlapped with computation. To achieve this the processor

elements maintain FIFO queues to store pending memory requests. The system

will stall if any instruction cannot proceed because it depends on the result of a

memory instruction which has not completed.
,1 f ' , I

f 58

. :

Chapter 6 Implementation

I A scalar1 pointer may point to a scalar memory location or a vector memory

location. In the latter case, each processor element reads from the same address

when the pointer is dereferenced. A vector pointer always points to vector

memory locations. Each processor element reads from (or writes to) a different

I address. This is termed local indirect addressing. It is 2-3 times slower than a

normal memory operation2.

6.2 Implementat ion Overview

In our implementation, both the ACU and PE array are responsible for pro-

g r a m execution. ACU serves as the host computer of the data-parallel abstract

machine. The f r o n t - e n d workstation is used only for input and output. Since

each processor element is very small and slow3, parallelism is easily counter-

balanced by the slow execution of the processor elements, Memory operations

are particularly slow. When they cannot be avoided, we try to make use of the

architectural feature of DECmpp and overlap them with non-memory instruc-

tions. In addition, we abandon interpretation and write a native code generator

to convert DPAM to assembly code. Despite all such efforts, the machine is still

too slow for our implementation to outperform a good emulator implementation

of Prolog on programs where no or-parallelism can be exploited, such as reverse

""" i ln the terminology of DECmpp, registers and memory in the ACU are called singular and
those in the PE array, plural.

2 A 3 2 , b i t indirect memory load operation on the processor element array without overiap-
pincr takes over 200 clock cycles on DECmpp 12000 Sx-100. The machine runs at 12.5Mhz.
DECmpp 12000 Sx-200 (equivalent to MasPar MP-2) is about twice as fast on the same

OPe3For0example a 32-bit register to register addition requires about 24 clock-cycles, and a
32-bit multiplication requires more than 200 clock cycles on DECmpp 12000 Sx-100 (The
machine runs at 12.5 MHz).

‘ 59

Chapter 6 Implementation

and append,

We have f u l l y implemented backtracking, trailing, suspension/resumption of

constraints/goals, deadlock detection and handling (i.e. labeling). We have also

implemented decision graph compilation for the most commonly used ask con-

straints, joining of tail-recursive call, compilation of u se r constraints (any linear

ask/tell inequality, equality and disequality constraint), DPAM code generator

and native code generator for DECmpp. However, a number of less commonly

used ask and tell constraints, borrowing and a g a r b a g e collector are yet to be

implemented.

6.3 Constraints

Our current implementation compiles tell constraints directly to DECmpp na-

tive code. The compilation is very simple While clp(FD) [DC93] has abstract

machine instructions to install tell constraints, it is not needed in a fully con-

current system like Firebird. Since all tell constraints are regarded as processes,

the same call instruction can be used for both goals and constraints.

As the result of compilation, we do not have to interpret tell constraints

at runtime. We have employed a number of optimizations, like using a shift

instruction for multiplying and dividing a constant which is a power of 2 (i.e.

We shall compare and contrast the handling of equality tell constraints

adopted by Firebird and that of CHIP [DVHS+88].

60

Chapter 6 Implementation

6.3.1 Breaking Down Equality Constraints

According to [VH89], A linear constraint of the form

aiXi + •: • + anXn + c = 6 + … + bmYm

where a i , . •): an , . . . ,6n are natural numbers and X i , . . . • • • are

rf-variables with noil-negative domains, is broken down into two constituents.

aiXi + …+ anXn + c = Z

Since the two constraints are similar, we shall consider aiA^H YanXn-\rC

Z only. We deduce that, for l<i <n,

x . =
 z - Sj^t

“ ‘ ai

Since all the coefficients and variables are positive, we can deduce the new upper

and lower bounds of Xi given the upper and lower bounds of XjJ + i. The

division must be performed with inward rounding. The order which the A^'s

should be handled is not stated clearly in [VH89], but from a commercially

available CHIP system we know that each Xi is handled only once and finally

Z is handled. Then the constraint is considered to be locally stable.

The reason why it works most of the time is as follows.

1. Z is handled after X“ 1 < i < n, using the most updated upper and lower

bounds of Xi.

2. As a result, any change in X“ I <i<n will cause a change in Z •

61

Chapter 6 Implementation

3. Any change induced by axXx + •< • + anXn + c = Z to Z causes b^ +

• 4. bmYm = Z to be re-evaluated. Evaluating hYi H + bmYm = Z m

turn causes Z to be changed, reinvoking aiXi H h anXn + c = Z. The

two constraints are evaluated in a coroutine-like manner.

In general, this method does not give the smallest interval for all X“ A

I counterexample is 5Xi = 3R + , ^ = 4, VI, % € [0,6]. The constraint is

broken down to = Z and 3Fi + 2Y2 = Z. Z is found to be 20. Yi is found to

be [3,6]. Next, V2 is found to be [1,5]. However, if we handle Yx again, it can be

further reduced to [4,6]. From a commercially available CHIP system, we obtain

Yi € [3,6]. The inconsistency is not discovered until Yi is labeled. However, if

we repeat the constraint again [i.e. stating the same constraint twice in the

query), we obtain Yi € [4,6].

6.3.2 Processing the Constraint 4As Is,

In Firebird, a linear constraint

aiXi + ‘.. + anXn + c == 0

is processed 'as is', without any decomposition. Furthermore, a u . . . ,a n and

•.., Xn are not required to be non-negative. For each Xiy the following

formula is used to deduce the upper/lower bounds of Xi given the upper/lower

bounds of each Xj, j ^ i.
‘ c — a j X j
Xi = —

di
The X , s are processed in turn repeatedly until all of their upper and lower

bounds become stable. Compared to CHIP, the pruning of invalid values is

more complete.

62 -

Chapter 6 Implementation

6.4 The Wide-Tag Architecture

One of the main problems we encounter in our implementation is that only 64K

bytes of memory is available for each processor element. To save memory, the

wide-tag memory architecture is used. For 32-bit heap cells, only 14 bits are

required to address the memory/ These 14 bits are used to store the address of

the first argument of a compound term and the remaining bits can be used to

store the principalfunctor and arity. Figure 6.1 shows the heap cell format used

in our DECmpp implementation. As a corollary, the differentiation between

structure, list and constant becomes obsolete. A reference pointer becomes a

compound term with functor and arity fields zeroed (Figure 6.2a), a constant is

represented by a term with zero arity and no first argument pointer (Figure 6.2b)

and a list becomes . /2 (Figure 6.2c). A compound term is shown in Figure 6.2d.

Unlike WAM, ail unbound variable is not a self-referential pointer but a reference

pointer pointing to an unbound variable cell (see Figure 6.3), in which the head

and the tail of a suspension list node are packed. Stack variables4 are not possible

and every variable must occupy at least a single heap cell.
4In WAM, a permanent variable which appears only in the body of a clause is stored as a

single cell on the environment stack, consuming no heap space. This is called a stack variable.

reference 0 s pointer (14 bits) OF"
structure functor (11 bits) arity (5 bits) pointer (14 bits) 00
h-variable head (16 bits) tail (14 bits) “ 01

integer value (30 bits) 10
d-variable head (16 bits) | tail (14 bits) 11

Figure 6.1: Heap cell format

63

Chapter 6 Implementation

0 00
 r ~ ^ ~ ~ r - r—]

. . • a 0 0 00
to next cell m L__J J
reference chain

a. reference pointer b. atom

f n 1 00

. 2 I 00 ~ a r g 1

p ar6 2

^ head _ — — .

tail :

arg n

c l s t d. compound term

Figure 6.2: Examples: reference pointer, atom, list and compound term

0 r e f

ref 1 j 0 j j |hvar

unbound variable in W A M unbound variable in DPAM
(with empty suspension list)

Figure 6.3: Unbound variable representations of WAM and DPAM

6.5 Register Window

The ACU has 32 32-bit scalar registers (called CReg), and each processor element

has 40 32-bit vector registers (called PReg). A vector register is addressable by

a scalar register plus an offset. Register windows are used to pass call arguments

and store local variables, as follows. A scalar register is used as the register

64

Chapter 6 Implementation

pointer (rp). A procedure must not access any register whose number is lower

than rp. The caller sets rp before calling another procedure and registers below

rp are safe and wilfe remain the same upon return. The caller has a register

frame pointer \rf) to keep track of its own rp. The relationship between r p

and r f is analogous to that between the stack pointer and the frame pointer

in i m p e r a t i v e languages (see Figure 6.4). Consequently an environment stack

frame is not necessary under most circumstances.5

'" arguments of p arguments of p

local variables of p local variables of p

rp—~ r f >
arguments of q arguments of q

local variables, of q

p sets rp and calls q q saves rf and sets rf to rp

Figure 6.4: Register windows

6.6 Dereferencing

The dereferencing operation often introduces pipeline stalls in implementations6.

The problem is worse on DECmpp since local indirect addressing is particularly

5in order to support register windows, we do not use the MasPar Application Language
(MPL) [Chr90] to implement our system libraries but assembly language is used instead.

6Pipelining is very popular in modern microprocessor design. Memory operations fre-
quently use different pipeline stages from other operations, resulting in empty (hence under-
utilized) pipeline stages. This is termed a pipeline stall. If one examines the disassembly
of the dereferencing operation, she/he may find (depending on the particular compiler and
architecture) that the data obtained from a memory fetch instruction is immediately used in
the next instruction, leading to pipeline stalls.

65 -

Chapter 6 Implementation

slow. Therefore, we implemented a low-level operation called deref -double

which performs the dereferencing of two terms simultaneously. While one thread

is performing a memory load, the other is checking the tag. This operation is

up to 30% faster than two separate dereferencing operations for two reference

chains of equal length. The operation is used in many system library predicates

(e.g. i n / 2 , i s / 2 , =/2).

6.7 Output

Displaying all the solutions on the front-end workstation of a massively parallel

computer turns out to be the bottleneck of the system. To partially alleviate

this, a parallel reduction algorithm has been implemented both to compress the

solutions before they are transferred from the back-end to the front-end and to

facilitate output. The idea is based on sequential backtracking.

6.7.1 Collecting the Solutions

The solutions from the data-parallel back-end are collected and stored in a scalar

output buffer. If there is only one solution, the solution (which is a term, and

hence a tree) is traversed in a depth-first, left-to-right manner and each visited

node is copied to the output buffer. The result will be a prefix representation

of the solution tree.

Consider the case with, more than one solution. The tree is traversed as

usual if the visited node is the same in all physical partitions. Otherwise, a

choice point is created, a mark is written on the output buffer and ail arbitrary

alternative is taken. The mask is set to the set of physical partitions which take

66 -

Chapter 6 Implementation

the chosen alternative. Other alternatives will be taken upon backtracking. For

example, if there are 5 partitions,

a(l x) .
a (l , y) .
a (l , z) .
a(2 x) .
a (2 ,y) .

We start at the root and write an a/2 to the output buffer. Next the first

argument is traversed and there are 2 alternatives. A mark is written on the

output buffer and the alternative with 1 as the first argument is taken. The

partitions with 2 as the first argument will stay idle until backtracking. At this

point the output buffer will be

a /2 mark 1

The second argument is traversed and an additional choice point is created,

a /2 mark 1 mark x/0

Upon backtracking, the other alternatives (either y/0 or z/0) are taken.

Suppose y/0 is taken. A mark is written on the output buffer, followed by y/0.

a /2 mark 1 mark x/0 mark y/0

Execution continues and the final output buffer is

a /2 mark 1 mark x/0 mark y/0 z/0 2 mark x/0 y/0

A combined environment/choice point stack, similar to that of WAM [AK91],

is employed to maintain the choice points and traverse the tree. The stack has

both scalar and vector components. The specific implementation details are out

of the scope of this thesis. If the solution contains unbound domain variables,

they are labeled on the fly.

V 67

Chapter 6 Implementation

6.7.2 Decoding the solution

To display the solutions on the front-end workstation, another combined envi-

ronment/choice point stack a text buffer is maintained. The pointer to the

top of the text buffer, called text pointer is saved in each choice point so that the

first part of the text buffer can be reused. Using the example in the last section

(Section 6.7.1), after a/2 is processed the following is written on the text buffer:

r . a(

Since a mark follows, a choice point is created and the text pointer is saved.

Execution continues and another mark is encountered.

As a result, another choice point is created. Finally, the first solution is

formed and displayed.

a (l x) .

Backtracking is needed and the text pointer is restored.

a (l ,

The word y/0 in the output buffer is processed.

a (l , y) .

In a similar manner the other solutions are displayed. Our algorithm can

also handle operators and lists, but once again, such implementation details are

out of the scope of this thesis.

« 68

Chapter 7

Performance

The aim of this chapter is to evaluate the performance of our data-parallel

implementation and to analyze the effects of a number of design decisions.

The reader may find the following performance results unsatisfactory. While

one would expect a linear speed up of 8,192 on 8,192-processor elements, we

attain a maximum speedup of only 121 on the 9-queens problem. The speedup

drops to 20.3 when the p e r f o r m a n c e of a 8,192-processor DECmpp is compared

to CHIP on DECstation 3100, and the speedup figure will look even less impres-

sive when compared to say a sequential implementation on DEC Alpha AXP.

However, the reader is reminded that:

1. Firebird is not optimized for linear speedup but for extremely high degrees

of parallelism.

2. We use a machine with 8,192 tiny, slow 4-bit engines using the accumulator

architecture. 16 such tiny processor elements form a cluster and share a

single 8-bit memory port. Our implementation platform is inherently slow.

Therefore, poor performance is not necessarily an indication of poor design.

69

Chapter 7 Performance

We axe also unable to test v e r y large problems due to the limited amount of

local memory available on each processor element (64K bytes). Again this is not

a r e s t r i c t i o n imposed by Firebird or DPAM. Although there is always room for

improvement in Firebird, the reader is requested to distinguish the limitations

of a particular implementation platform from the limitations of our data-parallel

execution model.

In all of the following benchmarks, tu t2, etc are execution times for all

solutions in seconds, #proc is the number of processor elements, DL the number

of deadlocks, BT the number of backtrackings and P the number of partitions.

p m a y change in the course of execution, but it can never exceed the number of

processor elements. Only the value of P taken at the end of execution is given. A

dash indicates that a benchmark is not available because memory is not enough

for its execution. Since many parameters are studied, only one parameter is

varied in each benchmark. The other parameters are listed below each table.

The benchmark set is shown in Table 7.1.

s e n d S E N D + M O R E = M O N E Y

eqlO 10 simultaneous linear equations over 7 variables
eq20 20 simultaneous linear equations over 7 variables
q u e e n n-queens problem
magic magic series problem
magich magic series problem with redundant constraint Sj = n.

Table 7.1: Benchmark set

70 *

Chapter 7 Performance

7.1 Uniprocessor Performance

We measure the performance of our implementation on a DECmpp 12000 Sx-

100 m a s s i v e l y parallel computer, but using only one of the processor elements.

The result is compared with CHIP version 3.2 on a DECstation 3100. The

CHIP benchmark is obtained using generalized forward checking but no first fail

heuristics. The Firebird system is modified to apply nondeterministic derivation

(i.e. labeling) to_.tlie domain variables in the order they are created. These

ensure that the order of labeling of CHIP is the same as Firebird. The time

used to find all solutions in seconds, neglecting any time used for input/output,

is given in Table 7.2.

Except for the magic series problem, the results indicate that our implemen-

tation has very poor performance compared to CHIP. The magic series problem

has good performance because Firebird is a concurrent language which allows a

different formulation of the problem (see Section 2.5.1.3).

We attribute this to the deficiency of our implementation platform. We pro-

file our execution and find that an average machine instruction requires about

10 machine cycles to execute on our 12.5 MHz DECmpp 12000 Sx-100. In gen-

eral, most sequential instructions require only 1 machine cycle to execute, while

some parallel instructions take several hundred cycles. Table 7.3 lists the aver-

age execution time, in machine cycles, of a number of machine instructions. The

operands of the instructions are registers. Each machine instruction in DECmpp

has only 2 operands. Sometimes two 2-operand instructions are required to do

the same task as a single 3-operand instruction typical of modern RISC archi-

tectures. Furthermore, we found that some other instruction sequences can be

, 71

Chapter 7 Performance

I I - j Firebird CHIP
benchmark tx PL BT h h/U

I send :Q28 2 3 .007 .25
e q l O 4.720 21 163 .660 .14

I e q 2 0 5.153 ~ 1 1 5 .848~ .16

q u e e n (4) ~ 0 2 8 3 5 .007 .25

queen (6) .239 27 39 .047 .20

q u e e n (8) 3.172 265 415 .512 .16

q u e ^ n (l O) _ 6 o j o 2] ^ 2 2 9 6665 8.547 .14

queen (12) - - __- 211.948 ^
m a g i c (3) .110 2_ 7 .051 .46

m a g i c (6) 2.128 5 31 6 . 3 7 8 ^ _ 3 00_

m a g i c (8) 8.634 7 ^ J ^ ^ ^ J A ^

m a g i c h (3) .127 6 .058 .46

m a g i c h (6) “ 1.112 4 _ _

m a g i c h Q) I 4.747 7 41 140.886 29.68

Test conditions: #proc=l, eager bit vector creation, eager nondeterministic
derivation, no solitary memory access, no priority scheduling.

Table 7.2: Benchmark: uniprocessor performance

Parallel instructions Sequential instructions

mov32 I 18.9 11 add32 24_cmov32 1.0
l d 3 2 • ~ 79.0 mul32 , 244.6 cld32 5.2

Id32 (indirect) 224^ div32 422.9 cst32 6.3
l d s o l 3 2 1 8 . 6 mod32 469.3 cadd32 1.0
ldso!32 (indirect) 43.5 | shll32 63.9 || cjmp 3.2

Table 7.3: Execution time of machine instructions (in machine cycles)

’ 72

Chapter 7 Performance

replaced by a single instruction on a RISC computer1. For these reasons, we es-

timate that a single processor of our implementation platform is about 50 times

slower than an average workstation. The same result has been observed in the

implementation of SIMD MultiLog [Smi93].

One could always enhance the speed of individual processor elements to get

around this problem. We tested an earlier version of Firebird on a newer model,

MasPar MP-2, which was binary compatible with the DECmpp 12000 Sx-100 we

are currently using, and found that it was about 2 times faster on the n-queens

problem.2 See [TL93] for the benchmark.

T.2 Solitary M o d e

On our implementation platform, DECmpp, 16 processor elements form a cluster

and share a single 8-bit memory port. We would prefer each processor element

to have its own 32-bit memory port, giving 64 times of memory bandwidth, in

order to be competitive with a workstation. Although we used the overlapping

feature so that memory access can be performed in parallel with other machine

instructions whenever possible, a concurrent constraint programming system

is so memory intensive that performance is completely dominated by memory

access time.

We introduced a solitary mode to alleviate this memory bottleneck. Only

ipor example a conditional branch. One instruction is used to move each processor's flag
to the contingent bit. The next instruction obtains the global or-ing of all contingent bits and
stores the result in the carry flag of the array control unit. The last instruction is the actual
branch.

2The manufacturer claimed a speedup of up to 4.5, without any modifications to the pro-
gram. The exact reason why we obtained only a speedup of 2 was unknown, but we suspected
that this was because memory throughput was made only 2 times faster, and our system was
very memory intensive.

73

Chapter 7 Performance

1 processor element in each cluster is used, so that the processor element has

exclusive access to the memory port. Each Id (load) and s t (store) instruction

is replaced by the corresponding solitary equivalent (ldsol and s t so l) . The

performance of 512 processor elements in solitary mode is compared with 8,192

processor elements in normal mode. See Table 7.4.

solitary (#pn?c=512 normal (#proc=8,192)
benchmark h PL] P BT t2 PL \ P BT hjh
send .014 _ _ _ _ 0 L 3 6

" ^ 1 0 .701 6 76 28 6 _ 7 6 _ _ _ 9 .48
eq20 J I ^ L _ L I ^ - J L - — 3 1 4 0 " _ 0 . 6 9

queen(4) _ L _ . 0 1 4 2 — 0 L 5 6

queen(6) _ .028 _ _ I L _ 0 L 5 Q

qneen(8) “ .157 ~TT"T82 4 " ~ 1 0 1 548 _ _ 0 .64
queen(lO) 3.957 191 1.400 27 2399 _ 1 7 .35
queen (12) H H Z Z Z Z : 9 2 1 8 3 9 7 1 4 1 6 5 1 1 9 1 _ _ :
magic(3) .051 2 _ _ 1 1 _ _ _ 2 11 _ _ 0 1-45

magic(6) 2 3 8 _ _ 0 L 5 4

magicQ) _ 2 8 3 _ 0 r . 4 9

magich(3) _ _ _ _ _ 0 1.43
magich(6) _ 0 L 4 6

magich(9) 2 4 5 _ _ 0 L 4 5

magich(12) 1.787 2 78 2.544 2 78 0 L42

Test conditions: eager bit vector creation, eager nondeterministic derivation, no
priority scheduling.

Table 7.4: Benchmark: solitary mode performance

From Table 7.3, a solitary memory instruction is 4-5 times faster. By im-

proving the speed of memory access alone a speedup of 1.5 is attained (despite

74

Chapter 7 Performance

some memory instructions are executed in background). The advantage of soli-

tary mode is lost when 512 processor elements are not enough and backtracking

is required, as in eqlO, eq20 v queen(8) and queen(10) .

7.3 Bi t Vectors of Domain Variables

The domain of a domain variable is represented by a bit vector. Many newer

finite domain coiistraiiit programming systems, like clp(FD) [DC93] and cc(FD)

[VHSD93], does not have bit vectors for continuous domains. A bit vector is

created on demand only when the domain is broken into two parts because one

of the invalid values is removed. For example, if X € {1 . . . 5}, X ^ 1, then

x e {2. . 5} and a bit vector is unnecessary. However, if X G {1 . . . 5} ,X + 3,

then X e {1,2,4,5} and a bit vector representing the domain is created. We

test the effect of this optimization in a data-parallel context.

The optimization leads to a slight reduction of both heap consumption and

execution time, except for the n-queens problem, where both execution time

and memory consumption are made worse. We find that several bit vectors may

be created for a single domain variable. For example, suppose X G { 1 . . . 5 }

and X + y , where Y is 1 in partition 1, 3 in partition 2 and 5 in partition

3. As a result, a bit vector is created for the X in partition 2 only. If there is

another constraint X ^ Z, where Z-is 3 in partition 1, 4 in partition 2 and 5

in partition 3, a bit vector will be created for partition 1. Two bit vectors have

been created, leading to slower execution. Under the heap frame scheme both

bit vectors consume heap memory.
We devise an eager creation scheme to get around this problem. Note that

75 ,

4 “ •—

Chapter 7 Performance

a bit vector can be created only when a disequality constraint is encountered.

In processing a disequality constraint, if any of the physical partitions needs a

bit vector, bit vectors will be created for all physical partitions. Lazy creation

refers to the scheme in which bit vectors are created only for partitions in need.

The 3 schemes are compared in Table 7.5. The heap and trail usages are given

in bytes.

The eager creation scheme is slightly better than the unoptimized version on

average, and is preferred because sometimes very large continuous domains may

appear in users' programs. The eager bit vector creation scheme has been used

to obtain the performance results in previous sections.

eager creation lazy creation unoptimized
benchmark _ h \ heap trail h heap trail t3 heap trail

.019 460~ 0 .019" 460 _ _ 0 -019 472 _ _ 0 _

.345 1756 162

__.519 "l63~6 0 _ ^ _ j g 3 6 _ Z Z L . 5 2 8 3 6 6 4 _ L
queen(4) H T 440 0 .014 452 0 .013 444 _ 0 _
q U een(6) . 0 4 2 _ _ _ 9 6 ^] _ ^ _ 0 4 2 _] _ 9 9 6 _ _ 0 .042 968 _ 0 _
queen(8) " _ 1 ^ _ _ J 6 5 6 _ _ 0 ' 1 Q 1 1 6 6 0 _
queenClO) " T i o T 3208 J ^ ^ J ^ J I l ^ L 780 L 3 9 7 3 2 1 2 7 8 0

q ” T ^ 92.177 5484 1764 92.062 5408 1764

magic(3) ^ T 2044 “ _ _ ^ _ £ 7 4 _ _ 2 0 4 4 _ 0 .077 2252 _ 0 _
m a g i c (6) J ^ L I ^ L J - ' 7 9 1 1 3 5 1 2 _ _ 0 , 8 2 2 1 4 1 0 0 _
m a g i c (9)"""" 2.909 41476— 0 2.9oT 41480 _ _ 0 3.006 42644 _ 0 _

m a g i c h (3) " " ” ^ 8 6 “ " " “ 0 .090 2512 _ _ ^

m agich(6) , 4 1 1 9 2 7 6 _ 0 "4 2 9 9 8 0 0 0

magich(9) _ 0 1-260 25368 _ 0 _
"magich(12) 2.544 47596 0 2.543 47596 0 2.644 49432 0

Test conditions: #pn?c==8,192, eager nondeterministic derivation, no solitary
memory access, no priority scheduling.

Table 7.5: Benchmark: on demand creation of bit vectors

76 *

Chapter 7 Performance

7.4 H e a p Consumpt ion of the Heap Frame

Scheme

The heap frame scheme (Section 5.1.3.3, page 38) is aimed at improving memory

access time when building heap terms. However, it has the drawback that some-

times heap fragmentation occurs. Let F i be the heap consumption (in bytes)

when the heap frame scheme is used, and H2 be the heap consumption when

the heap frame scheme is not used. We define percentage fragmentation as

r H i “ H i x ioo%

Our results indicate that fragmentation occurs only in the magic series problem

(Table 7.6). For all the other programs in our benchmark set, fragmentation is

zero.

magic magich
3 I 6 1 ~ 3 1 6 1 9 12"

frag (%) ~ 9 6 5.98 7.69 1.03 1.21 5.27 6.19

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic
derivation, no solitary memory access, no priority scheduling.

Table 7.6: Benchmark: heap fragmentation

From Table 7.3 (page 72), we find that a direct addressing 32-bit load instruc-

tion (ld32) is 2.8 times faster than its local indirect addressing counterpart. We

have also shown in Section 7.2 (page 73) that memory access time has a great

impact on system performance. Therefore, we believe that the slight memory

overhead of the heap frame scheme is acceptable.

. - • 77

Chapter 7 Performance

7.5 Eager Nondeterminis t ic Derivation vs

Lazy Nondeterminist ic Derivation

As discussed in Section 4.4, it is not necessary or even desirable to wait for a

deadlock before a nondeterministic derivation step is applied. With eager nonde-

terministic derivation, a labeling process is moved to the ready queue whenever

“ lazy nondet. derivation eager nondet. derivation

benchmark h PL \ P\ BT t2 \ PL \ P BT h/U
send 0 . 0 1 9 2 4 0 L Q Q

^ ^ .537 4 164 0 .334 _ 4 181 _ 8 .62

e q 20 _ .791 _ _ 3 1 4 0 _ 0 , 6 6

queen (4) ~ _ _ Q - — ^ l l Z E _ _ 6 0 ‘ 8 8

qneen(6) 1 — 0 ‘ 0 4 2 4 4 0 _ ° ‘ 7 8

queen (8) " ~ 2 Q T ~ 7 " 416 0 .101 7 548 _ 0 .50
" ^ n (1 0) L 4 Q Q 2 7 2 3 9 9 1 7 ‘ 4 0

queen (12) j g g ^ 971 4165 1191 .44
magic ~ ~ ^ ^ T ^ T _ _ _ 0 .90

magic (6) _ 0 7 9 1 2 38 0 ‘97

magicO) Z j ^ I L - ^ - — ^ - ° 2-9°9 2 83 ° -86
magich(3) ~ ‘ 0 8 6 2 L _ 0 L Q Q

magich(6) ^25 ^ ^ ^ _ 0 . 2 2 1 _ 0 ‘ 9 7

magichQ) _ 0 L 2 1 0 2 45 _ 0 '94

magich(12) 2.721 | 2 | 74 Q 2.544 | 2 | 78 0 | .93

Test conditions: #^roc=8,192, eager bit vector creation, no solitary memory
access, no priority scheduling.

Table 7.7: Benchmark: lazy nondeterministic derivation vs eager nondetermin-
istic derivation

, 78

Chapter 7 Performance

deadlock of any physical partition is detected. Lazy nondeterministic deriva-

tion refers to the control strategy in which a labeling process is moved to the

ready queue only after the deadlock of all physical partitions is detected. Eager

nondeterministic derivation is chosen over lazy nondeterministic derivation for

DPAM and we justify this choice using empirical results (Table 7.7).

From the results, we find that lazy/eager nondeterministic derivation is ba-

sically an execution time/degree of parallelism tradeoff. Eager nondeterministic

derivation c r e a t e s partitions more aggressively. As a result more parallelism can

be exploited, leading to better performance. It is worth noting that although

lazy nondeterministic derivation reduces the number of backtrackings, it does

not lead to any performance gain.

T.6 Priority Scheduling

One of the ways to increase the degree of parallelism is to schedule those pro-

cesses resumed by a labeling process ahead of all the others. We have imple-

mented a prototype of this priority scheduling scheme on top of our system and

its effect on performance is measured (Table 7.8).

Priority scheduling is faster on average, with best performance on the n-

queens problem. A possible explanation is that priority scheduling is more suit-

able when disequality constraints are predominant.

79

Chapter 7 Performance

” ~ I ~ priority scheduling _ w/o priority scheduling

benchmark ~ h | DL h PL \ P | BT t2/h
send ~ r _ _ 0 .019 2 _ _ 4 0 1.00

.299 T" 226 5"" .334 _ 4 181 8 1.12

.429 ~ T 138 0 ~ .519 3 140 _ 0 1.21
queen (4) .013 2 6~ 0 ^ O l l I X _ ^ _ 0 L Q 8

queen(6) — .034 4 _ 0 L 2 4

qneen(8) ~ 0 7 5 _ t l l l ^ L 7 5 4 8 _ _ 0 L 3 5

queen(lO) 2 7 2 3 9 9 1 7 L 6 9

queen(12) 17.264 952 J ^ J ^ J ^ K 9 7 1 4 1 6 5 1 1 9 1 L 6 1

magic (3) ^ 7 6 2 s" 0 _ _ 0
magic (6) H j ^ I Z Z K 0 7 9 1 2 _ _ 3 8 0 L 1 3

magic (9) _ _ 0 2.909 2 83 _ 0 .91

magich(3) Z ^ Z X I l L 0 ' 0 8 6 2 _ L L ' 9 6

magich(6) _ 0 ' 4 1 1 2 2 1 ° _ _ ^
magich(9) ^ E I Z Z j L 0 L 2 1 Q 2 — _ _ _ ' 9 2

^ T c h (1 2) 2.729 I 2 I 78 I 0 2.544 2 | 78 | 0 | .93

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic
derivation, no solitary memory access.

Table 7.8: Benchmark: priority scheduling

7.T Execut ion Profile

We measure the time spent in nondeterministic derivation (ND), constraint solv-

ing (C), backtracking (BT) and the execution time up to the first deadlock

(FDL). The backtracking time includes the time to update the choice point,

unwind the trail and restore the process queues. The percentage time is shown

in Table 7.9.

80

Chapter 7 Performance

I benchmark FPL 1 C \ ND \ BT
send 75.0 78.0 2.5 _ 0 _
eqlO 7.0 95.8 _ . 7 1.9
eq20 16.2 98.1 _ _ 0 _
queen (4) “ 52.3 59.7 “ .06 _ 0 _

[' queen(6) 35.8 72.7~ .06 _ 0 _
queen(8) 25.8 80.6 .05 _ 0 _
queen (10) 2.9 91.3 3.4 2.7
queen (12) .08 90.9 2.8 3.7
magic (3) 4 0 . 6 57.1 .9 _ 0 _
magic (6) 11.0 63.2 .1 _ 0 _
magic(9)"""" 6.0 60.4 .04 _ 0 _
magich(3) 36.5 61.2 .9 _ 0 _
magich (6) 19.7 66.6 .3 _ 0 _
magich (9) 14.5 68.3 ,1 _ 0 _
magich(12) 1.3 68.5 .06 | 0

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic
derivation, no solitary memory access, no priority scheduling.

Table 7.9: Benchmark: execution profile (in %)

It is evident that constraint solving dominates execution time for large prob-

lems. This implies that compiler optimization may not be as useful as an efficient

constraint solver. The magic series problem uses less time to solve constraints

than other programs because a fair amount of time is spent in the bool /3 pred-

icate (refer to Section 2.5.1.3, page 13). Nondeterministic derivation and back-

tracking overhead is almost negligible.

81 1

Chapter, 7 Performance

7.8 Effect of t h e N u m b e r of Processor Ele-

ments on Performance

Figure 7.1 shows the execution time of n-queens, for A <n < 12, with 1 to

8,192 processor elements. We use priority scheduling because it is particularly

suitable for the n-queens problem.

time(sec)
loo 10 a I I ^ ^ ^

- —^ • e ^ e e e €>
:Q 4 ^ ^ ——I——I——i——I——I——I 1 ^

°- 0 1
 x " " " 5 ^ 8 16 32 64 128 256 512 1024 2048 4096 8192

•proc

Test conditions: eager bit vector creation, eager nondeterministic derivation,
no solitary memory access, priority scheduling.

Figure 7.1: Benchmark: run time of n-queens program

We do not have enough memory (each processor element has only 64K bytes)

to run 13-queens. Some data points are missing from the above graph for the

same reason. A lot of memory is consumed if backtracking is used because

process structures created before the last choice point cannot be freed until

’ 82

Chapter 7 Performance

backtracking occurs.

Figure 7.2 shows the speed up with respect to the execution time using 1

processor element as the number of processor elements is varied,

speedup

100— 7

— 8

J “
1 1 1 1 1 5

- ^ — — e — — e ~ ^ ― ^ e e °4

1 1 2 " " “ 4 8 1 6 32 64 128 256 512 1024 2048 4096 8192
proc

Test conditions: eager bit vector creation, eager nondeterministic derivation,
no solitary memory access, priority scheduling.

Figure 7.2: Benchmark: speedup of N-Queens Program

The speed up value continues to increase until there are too many processor

elements to be utilized. Otherwise, the speed up value is fairly independent

on problem size and fairly constant for a given number of processor elements.

Speed up is scalable but sublinear. For instance, the speed up of 7-queens

levels at about 15, but 512 processor elements are required to obtain this speed

up. The reason for this is that the processor elements are divided evenly in

83 *

Chapter, 7 Performance

a nondeterministic derivation step, which may not be the optimal processor

allocation strategy. Furthermore, a p r o c e s s o r element will be remain idle after

failure until the system backtracks.

We obtain a maximum speed up of 121 for 9-queens. We have only analyzed

the performance of n-queens in detail, and the reader is reminded that not all

other programs exhibit the same behaviour as n-queens.

7.9 Change of the Degree of Parallelism Dur-

ing Execut ion

We are interested in the change of the degree of parallelism during execution.

We count the number of active partitions when each constraint is executed and

plot the graph in Figure 7.3. We do not include anything before the first

nondeterministic derivation step, with the understanding that

1. there can only be a single active partition, and

2. execution time before the first nondeterministic derivation is only a small

portion of the total execution time.

Furthermore, since we have found out that priority scheduling can improve the

performance of the system, we use it when obtaining the plot. Other parameters

remain unchanged.

From the plot we can identify the nondeterministic derivation steps as sudden

leaps in the degree of parallelism. A peak of 510 is attained. After that, the

degree of parallelism drops because of the failure of some partitions. We are

actually approaching the theoretical limit of or-parallelism. Using or-parallelism

- 84

Chapter 7 Performance

degree of parallelism

500 ^ I

450 V
400 - \

350 : fx \

K V
300- … \

250 : \

\
200 - \

V
150 J \

100

50 I k
o "1 I I 1 I r 1 1 1 1

20 40 60 80
constraint

Test conditions: #proc=8,192, eager bit vector creation, eager .
n o n d e t e r m i n i s t i c derivation, no solitary memory access, priority scheduling.

Figure 7.3: Execution trace of 8-queens, #proc=^192

85

Chapter 7 Performance

I alone the peak of 510 can never be exceeded, although the more flexible MIMD

architecture may be able to exploit higher degrees of parallelism after that peak.

We conclude that the inherent limitation of or-parallelism will show up in

any massively parallel implementation. Degree of parallelism rises slowly at the

beginning, making full utilization of processor elements impossible. After the

peak is reached, some or-branches fail, again limiting the degree of parallelism

and hence processor element utilization.

Next, we show that when the number of processor elements is very small

when compared to the number of or-branches, reasonably high processor element

utilization can be maintained. For the 8-queens problem, 64 processor elements

is just enough for the first two nondeterministic derivation steps. The plot is

shown in Figure 7.4.

86 *

Chapter 7 Performance

degree of parallelism

n n

n i n
30- I ^ I

IMIiifc
0 1 i , I I I . I • • I ' ' ‘ ' I ' ' ' M ' ' ' M ' ' ' ' M ' ' ' I ' ' ' M ' ' ' ' I ' '

100 200 300 400 500 600 700 800 900
constraint

Test conditions: #proc==Q4, eager bit vector creation, eager nondeterministic
derivation, no solitary memory access, priority scheduling.

Figure 7.4: Execution trace of 8-queens, #proc=64

87 *

Chapter 8

Related Work

Firebird can be regarded as flat GHC [Ued85] extended with finite domain con-

straint handling capabilities. The finite domain constraints used in Firebird

originates from CHIP [VH89]. The semantics of Firebird is based on that of

the algorithmic programming language ALPS [Mah87]. The concepts of ALPS

can be applied to a large class of programs which arise in practice. However,

it is not applicable to certain domains, including the finite domain, where the

notion of nondeterminism is inherent. Nondeterministic derivation in Firebird

is inspired by the Andorra Model [War90], but the operational semantics are

fundamentally different.

In the early stage, we built a prototype implementation of a concurrent con-

straint logic programming language called FD-Parlog [LTC93], which is similar

to Firebird but is based on Parlog [CG86].

Although DPAM does not look like WAM [AK91], many concepts like choice

point and trailing are borrowed from WAM. The concurrent process scheduler

‘ ‘ 8 8

Chapter 8 Related Work

f is based on JAM [Cra90b] (the abstract machine of Parallel Parlog). The im-

plementation of Firebird is also influenced by BinProlog [Tar92a, Tar92b]. For

instance, the wide-tag memory architecture is a reminiscence of the tag on data

representation. Both schemes make the differentiation between lists, structures

and atoms unnecessary. They are also more suitable for decision graph compi-

lation [KS90] than WAM [AK91].

We are unaware of any parallel execution schemes for concurrent constraint

programming or constraint logic programming languages on massively paral-

lel SIMD computers. However, there have been a number of implementation

schemes of logic programming languages on SIMD computers. [KB87, NT88a,

NT88b, IIK90, BM92, BP92, Smi93].

8.1 Vectorization of Prolog

[KKS88] is probably the first or-parallel logic programming system on SIMD

computers. The n-queens program is manually vectorized and executed on a

Cray-type vector supercomputer, exploiting or-parallelism. Automatic vector-

ization is difficult. We address this problem by starting with a finite domain

constraint language, where the vectorization is inherent in the nondeterministic

derivation step (i.e. the labeling operation). Unlike supercomputers, the mem-

ory of DECmpp is distributed but we introduce a processor element allocation

strategy which eliminates the need for interprocessor communication. [KS89] is

the parallel backtracking scheme of [KKS88], but it has not been implemented.

- 89

Chapter 8 Related Work

8.2 Parallel Clause Matching

DAP Prolog [KB87] is an implementation of Prolog on DAP {Distributed Array

Processor), a SIMD machine with 1,024 processing elements, each having a local

memory with a mesh-style interconnection network. When a clause head is

matched against several clauses in the program, the unifications may be done

in parallel. No execution time figures are given. Because the unifications are

syndironized to begin simultaneously, sometimes large 'holes' may result and

severely limit the utilization of processor elements when all the other unifications

have finished, waiting for a very long one. Unfortunately, Firebird is susceptible

to a similar problem.

Firebird executes different possible values in a domain in parallel. In parallel

clause matching, the program is distributed over the processor elements, and a.

goal is matched against each clause in parallel. This precludes the possibility of

compilation. In Firebird, programs are compiled to DPAM code before being

interpreted or further translated to native code.

8.3 Parallel Interpreter

Theoretically, it is possible to emulate a MIMD machine using a SIMD ma-

chine. [NTSSa] took this approach to implement Fleng, a simplified version of

flat GHC, on the Hitachi S-820 supercomputer. They used vector instructions

to execute 256 processes in parallel. The operations are not synchronized. In-

stead, non-real-time operations are divided into small, real time steps. In their

implementation, there is a queue for each kind of operation. A single step yields

two queues, one for those processes which have not finished to be fed back for

90

Chapter 8 Related Work

the same operation again, and the other for those finished processes to proceed

to the next operation. Consequently, high processor element utilization, high

parallelism and near-linear speedup can be achieved. The inference engine can

attain 1.1 MLIPS.

They have also implemented their system on a Connection Machine [NT88b],

attaining a peak performance of about 108 KLIPS on a simulator. An alternate

version based on /iWAM, a simplified version of WAM achieved a maximum of

about 392 KLIPB on a simulator. Their low performance can be attributed to

both the overhead of interpretation and the extremely slow execution of each

individual processor element on the Connection Machine (65,536 single-bit pro-

cessor elements at a slow clock rate).

8.4 Bounded Quantifications

‘ Barklund and Millroth [BM92] transformed recursive programs to iterative pro-

grams for parallel execution. Their sequential version attained a speedup of 15,

but the implementation on Connection Machine model 200 with 4,096 processor

elements is only about 2 times faster than the sequential version (i.e. the total

speed up is about 30) [ABB92], Again, it can be attributed to the slowness of

each individual processor element on the Connection Machine.

8.5 SIMD MultiLog

SIMD MultiLog [Smi93] is another or-parallel system implemented on MasPar

MP-1. A new disj operator is introduced. All solutions to goal G are collected

91

Chapter 8 Related Work

when disj G is used. The solutions form a disjunctive set of environments and

goals appearing after G can be executed in these environments in parallel.

[KKS88], SIMD MultiLog and Firebird all execute goals over a disjunctive

set of environments, exploiting or-parallelism. [KKS88] relies on a vectorizing

compiler, MultiLog uses solution aggregation and in Firebird the environments

fall out of the labeling operation on domain variables naturally.

Like our approach, MultiLog has the advantage that traditional compilation

techniques are applicable. Furthermore, engine variables which reside on the

host computer is distinguished manually from multi variables which reside on the

processor elements. This leads to higher time and space efficiency. Automatic

compilation of the e n g i n e / m u l t i distinction is expected to be possible, and we

are looking forward to incorporate this feature to future versions of Firebird.

However, SIMD MultiLog has the overhead of environment copying which, is

not necessary in Firebird. [Smi93] points out that environment copying is a

bottleneck of SIMD MultiLog. Another drawback of SIMD MultiLog is that

processor element utilization is limited when backtracking is used. Backtracking

is not dynamically invoked but must be tuned by the user before execution.

The maximum s p e e d u p attained with a 8,192-processor machine over a single

processor element of the same machine is used is 1872.7 on the 20 bits palin-

drome problem with naive reverse. However, 11 queens (Bratko)1 attains only

a speedup of 2.5 and an execution time of 18.7 seconds.

""“iThis benchmark is taken from Prolog Programming for Artificial Intelligence by I. Bratko
[Bra90]

92 ’

Chapter 9

Conclusion

We have proposed a new concurrent constraint logic programming language

called Firebird and its execution model on data-parallel computers. Firebird

, supports both concurrency and data-parallelism. Concurrency arises from the

stream and-parallelism of ordinary committed-choice logic programming lan-

guages and can be exploited on shared-memory architectures. In a nondeter-

ministic derivation step, one of the domain variables is selected and labeled, and

each possible value in its domain is attempted in an or-parallel fashion. Data-

parallelism is exploited in the resulting or-parallel execution. The Data-Parallel

Abstract Machine is designed to implement this model. A subset of Firebird

has been implemented on a DECmpp massively parallel computer and we have

given some performance results.
We shall investigate the limitations of Firebird and suggest possible future

work.

93

Chapter 9 Conclusion

9.1 Limitations

9.1.1 Data-Parallel Firebird is Specialized

Just like a vectorizing Fortran compiler is targeted towards numerical prob-

lems, the data-parallel execution model of Firebird is aimed towards constraint

satisfaction problems. In our data-parallel model, only or-parallelism is possi-

ble. For this reason, no flat GHC program without constraints can yield any

speed up. Furthermore, although clause-based or-parallelism can be emulated by

domain-variable-based or-parallelism, it's not efficient in a data-parallel setting.

Consider the following example.

p(X) X = 0 I a , b .
p(X) X 1 I c , d .
p(X) X = 2 I e , f .

, The processes a to f cannot be executed in parallel under our data-parallel

execution model. Furthermore, the processor elements cannot be fully utilized—

only some of the processor elements execute each clause. A compiler utilizing a

join algorithm is effective only when two or more clauses have the same procedure

in the body. We can get around this problem if we build an interpreter which

executes the instructions of a, c and e simultaneously, effectively emulating a

MIMD machine using a SIMD macLine. We shall have to store a copy of the

program in each processor and interpretation introduces significant overhead,

even for programs which do not have this problem. Refer to [NT88b] for an

and-parallel concurrent logic programming system taking this approach.

, 94

Chapter 9 Conclusion

9.1.2 Limitations of the Implementation Scheme

Firebird successfully avoided all inter-processor communication with a processor

allocation strategy which allocates equal number of processor elements to each

possible alternative. However, this heuristic is much a matter of guesswork. The

exact number of processor elements needed by each alternative cannot be found

except by actual execution. Parallelism is limited because of the inaccuracy of

this guessing especially when the number of processor elements is large. On

the other hand, a failed partition will stay idle until backtracking occurs. This

again limits the degree of parallelism. Another factor limiting performance is

the inherent limitation of or-parallelism—the initial parallelism is small when

compared to and-parallelism. For instance, no parallelism can be exploited while

the constraints are being generated by the n-queens program. A small degree

‘ of parallelism is possible after the first nondeterministic derivation, and it takes

some time to reach the maximum degree of parallelism. We have shown the

effect of these factors by execution traces in Section 7.9 (page 84).

9.2 Future Work

9.2.1 Extending Firebird
In addition to the indeterministic and nondeterministic derivation steps, we
could incorporate a propagation step [LPW92] into Firebird. Consider the fol-
lowing example.

p(X) X >= 3, X =< 4 I true.
p(X) X >= 2 X =< 3 I true.

95

Chapter 9 Conclusion

Computation fail unless X >= 2 " and X =< 4. Therefore,

X >= 2 , X =< 4 is told to the store.

Definition 9.1 Let Gu …,Gn be the ask constraints of each clause of a predi-

cate. In a propagation step a constraint C, which satisfies the following condi-

tion, is told to the store.

i=i

Intuitively, the disjunction of ask constraints of each (satisfiable) clause, or

some sound approximation thereof, is told to the store. This extension general-

izes the following.

ALPS According to the commit law of ALPS [Mah87], a clause can be com-

mitted to if and only if it is validated or it is the only satisfiable clause.

“ Firebird covers only the first part of the commit law—it will only commit

‘ to a validated clause. However, if there is only one satisfiable clause, the

propagation rule may tell a constraint C which is the disjunction of the

ask constraints of the only satisfiable clause, and as a result the clause is

immediately validated and committed to.

Domain Independent Propagation The extension provides a convenient

syntactic construct for user-controlled generalized constraint propagation

[LPW92].

Disjunctive constraints in cc(FD) Users may define disjunctive constraints
[VHSD93] using a set of clauses with different ask constraints and a t r u e
body. For example, the following predicate quoted from the perfect square
problem in [VHSD93]

96 '

Chapter 9 Conclusion

nooverlap(XI,Y1,S1,X2,Y2,S2):-
XI + SI <= X2 \/
X2 + S2 <= XI \/
YI + SI <= Y2 \/
Y2 + S2 <= YI.

can be expressed as

n o o v e r l a p (X l , Y l , S l , X 2 , Y 2 , S 2) - XI + SI <= X2 I true,
nooverlap(XI,YI,SI,X2,Y2,S2) X2 + S2 <= XI I true,
n o o v e r l a p (X I , Y I , S I , X 2 , Y 2 , S 2) : - YI + S I <= Y2 t r u e .

n o o v e r l a p (X l , Y l , S l , X 2 , Y 2 , S 2) - Y2 + S2 <= YI I t r u e .

LAIR Users may define looking ahead constraints [VH89] using head matching
and ask constraints. For example, in Firebird extended with the propaga-

‘ tion step, we may define the logical or function as

or(0,X,X).
or(X,0,X).
o r (l l l) .

Suppose X 6 0, l , 0,1, Z = 0, we can deduce X 0, Y 0 using the

propagation rule. However, the propagation rule cannot subsume LAIR.

This is because Firebird is a flat language and therefore only flat guards

can be used for disjunction.

Suppose there are m constraints, c u . . . , c m . x u . . . , x n are the variables

appearing in cx , . . . cm. Let D{ be the reduced domain of variable if only q

is added to the store {Sj = 8 f\ Cj). If the disjunction of the m constraints is

97 1

Chapter 9 Conclusion

told to the store, the following definition by [VHSD93] is the most reasonable

approximation of consistency.

Definition 9.2 The generalization of a set of constraint stores 5U... ,Sm is the

constraint store
m m

€ |J ….A:RN € 1J DJ
n

j=i j=1

We must repeatedly perform the disjunction until

1 • one of the constraints is entailed by the store, resulting in commitment, or

2. all the constraints have failed. .

T h e o r e m 9.1 If a variable is missing from one of the satisfiable constraints

Ck) then the domain of Xi cannot be reduced after the disjunction.

Proof If is missing from ck, then the original domain Di will be
m

Di = D^c[jDi
j=i

Since the original domain is a subset of the new domain, it cannot possibly be

reduced.
Therefore, we make the following observations.

1. If a variable appear in only a subset of the satisfiable disjuncts, we can

save execution time by not attempting any pruning of invalid values from

that variable.

2. We should discard a disjunct as soon as it becomes invalidated. This

makes the optimization in point 1 impossible because in general we cannot

detect invalidation without reducing the domain of all the variables in a

constraint.

' 98

Chapter 9 Conclusion

Point 2 is not stated in [VHSD93], possibly because of efficiency reasons.

9.2.2 Improvements Specific to DECmpp

On our implementation platform, each processor in the back-end is much slower

I than the sequential host. Performance wil l be improved if sequential parts of the

execution can be separated out and performed at the front-end. We propose to

optimize the execution before the first nondeterministic derivation step. At the

implementation level, we may move low-level operations such as dereferencing

and unification to the front-end. An experiment showed that the dereferencing

operation was up to 7 times faster when moved to the front-end because local

j indirect addressing could be avoided and only the memory of a single processor

element was accessed1.
To attain higher performance, the compiler may generate two versions for

each predicate, one sequential and the other parallel. The former is used before

the first nondeterministic derivation step. At the first nondeterministic deriva-

tion step, the heap of the front-end is copied to the processor elements using a

garbage collection algorithm. To reduce the overhead of copying, domain vari-

ables are always created on the processor elements. In this way, no copying is

necessary for programs in which all constraints are generated before any of them

are solved.
In addition to these two approaches, we are designing compiler directives to

control the execution. For example, the sequent ia l directive suppresses the

generation of parallel code for a procedure. However, only the code size is made

i T h i s is because on DECmpp, processor elements are grouped into clusters of 16 processor
elements which s h a r e a single memory port. There is a load solitary instruction which is
optimized for the case when at most one processor element is active m each cluster.

, 99

Chapter 9 Conclusion

smaller but the execution speed is not improved.

9.2.3 Labeling

Since the size of the domains may be different in each partition, traditional

heuristics such as the first-fail principle no longer w o r k s . Currently, our imple-

mentation is based on generalized forward checking. We are looking for new

control strategies which do not depend on the domain size to make decisions.

Apart from the heuristic discussed in section 4.4.1, we can choose the most re-

cently changed domain variable to set up a choice point, etc. A performance

study is needed to be carried out to evaluate such possibilities.

Firebird offers only rudimentary user control over the l a b e l i n g operation.

The user cannot control any other thing than whether a domain variable should

‘ be labeled. We did not followed CHIP [DVHS+88] because the introduction

of the labeling predicate indomain/1 into a concurrent language without any

top-down, left-to-right execution order will not give the user any more control

ove r the labeling operation than the n o n d e t e r m i n i s t i c derivation of the Firebird

computation model. The indomain/1 predicates will not follow any top-down,

left-to-right execution order either. It is irrelevant to order the indomain/1

predicates in a program. [GY92] does not have this problem because in Andorra,

the top-down, left-to-right execution order is preserved for nondeterminate g o a l s . .

In any case, the best solution is a mechanism for user-defined deadlock handlers,

like that of Pandora [Bag91]. System predicates giving information on domain

size, maximum, minimum and range can be provided to be called by the user-

defined deadlock handler.
On the other hand, we may use a plain forward checking strategy, which is

100

Chapter 9 Conclusion

automatic and does not require any user intervention. The system avoids any

suspension by labeling the variable which would cause a constraint or goal to

suspend on the fly.

Modifying the labeling operation itself is also a possible direction of future

work. For instance, we ma.y just divide the domain of the labeled variable into

two or more equal parts. We may also divide the domain into continuous chunks

(e.g. If the domain is {1,2,3,7,8,9,10,11} we may divide it into {1,2,3}, {7,8,9}

and {10,11}). lil the finite domain part of CLP(BNR) [B094], a disequality con-

straint causes a continuous interval to be split into two intervals. It. is expected

that this can be implemented on a data-parallel machine as follows. Every dise-

quality constraint causes a labeling operation so that the two resulting intervals

can be processed in parallel.

9.2.4 Parallel Domain Consistency

By reasoning on variation intervals the minimum and the maximum possible val-

ues of a domain variable can be found. Values outside this range are eliminated

and this is called interval consistency. However, it is not guaranteed to rule out

all invalid values. Using the domain consistency technique, each combination

of possible values of the domain variables is attempted. This is more effective

in eliminating invalid values but consumes more execution time. Unlike cc(FD)

[VHSD93] in which the programmer has to specify whether interval consistency

or domain consistency is to be used, a Firebird implementation may choose be-

tween the two (or some intermediaries) depending on processor elements avail-

ability. If there are enough processor elements, each partition will check domain

.consistency in parallel, resulting in another kind of data-parallelism which can

101

Bibliography

[AB91] A. Aggoun and N. Beldiceanu. Overview of the CHIP compiler

system. In Koichi Furukawa, editor, Logic Programming: Proceed-

ings of the Eighth International Conference, pages 775-789, Paris,

France, 1991. The MIT Press.

[ABB92] H. Arro, J. Barklund, and J. Bevemyr. Parallel bounded

- quant i f iers—prel iminary results. Presented at JICSLP '92 Work-

shop on Distributed and Parallel Implementation of Logic Program-

ming Systems, Washington D. C., 1992.

[AK91] H. Ai't-Kaci. Warren's Abstract Machine: .4 Tutorial Reconstruc-

tion. MIT Press, 1991.

[Bag91] R. Baghat. Pandora: Non-Deterministic Parallel Logic Program-

ming. PhD thesis, Imperial College, London, 1991.

[Bla90] T. Blank. The Maspar MP-1 architecture. In Proceedings of the

IEEE COMPCON Spring 1990, pages 20-24, San Francisco, Febru-

ary 1990. IEEE.

: , 104

[BM92] J. Barklund and H. Millroth. Providing iteration and concurrency

in logic programs through bounded quantifications. In Proceedings

of the International Conference on Fifth Generation Computer Sys-

tems, pages 817-824, ICOT, Japan, 1992.

[B094] F. Benhamou and W. J. Older. Applying interval arithmetic to real,

integer and boolean constraints. The Journal of Logic Programming,

1994. To appear.

[BP92] A. K. Bansal and J. L. Potter, An associative model to minimize

matching and backtracking overhead in logic programs with large

knowledge bases. Engineering Applications of Artificial Intelligence,

5(3):247-262, 1992.

^ [Bra90] I. Bratko. Prolog Programming for Artificial Intelligence, 2nd Edi-

tion. Addison-Wesley, 1990.

[CCD94] B. Carlson, M. Carlsson, and D. Diaz. Entailment of finite domain

constraints. In Logic Programming: Proceedings of the Eleventh

International Conference, S. Margherita Ligure, Italy, 1994. MIT

Press.

[CG85] K. L. Clark and S. Gregory. Notes on the implementation of Parlog.

The Journal of Logic Programming, 2(l):17-42, April 1985”

[CG86] K. L. Clark and S. Gregory. Parlog: Parallel programming in

logic. ACM Transactions on Programming Languages and Systems,

8(l):l-49, January 1986.

[Chr90] P. Christy. Software to support massively parallel computing on

the Maspar MP-1. In Proceedings of the IEEE COMPCON Spring

1990, pages 29-33, San Francisco, February 1990. IEEE.

[Cla78] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker,

editors, Logic and Data Bases, pages 293-322. Plenum Press, New

York, 1978.

[Coh90] J. Cohen. Constraint logic programming languages. Communica-

tions of the ACM, 33(7):52-68, July 1990.

[Cra90a] J. Crammond. The abstract machine and implementation of Par-

allel Parlog. Technical report, Department of Computing, Imperial

College, London, July 1990.

[Cra90b] Jim Crammond. Scheduling and variable assignment in the par-

v allel PARLOG implementation. In Saumya Debray and Manuel

Hermenegildo, editors, Logic Programming: Proceedings of the 1990

North American Conference, pages 642-657, Austin, 1990. ALP,

MIT Press.

[CWY91] Vftor Santos Costa, David H. D. Warren, and Rong Yang. The

Andorra-I engine: A parallel implementation of the basic andorra

model. In Koichi Furukawa, editor, Logic Programming: Proceed-

ings of the Eighth International Conference, pages 825-839, Paris,

France, 1991. The MIT Press.

[DC93] Daniel Diaz and Philippe Codognet. A minimal extension of the

WAM for clp(FD). In David S. Warren, editor, Logic Programming:

[KS89] Y. Kanada and M. Sugaya. A vectorization technique for prolog

without explosion. In Proceedings of the International Joint Con-

ference on Artificial Intelligence, pages 151-156, 1989.

[KS90] S. Kliger and E. Shapiro. From decision trees to decision graphs. In

Saumya Debray and Manuel Hermenegildo, editors, Logic Program-

ming: Proceedings of the 1990 North American Conference, pages

97-116, Austin, 1990. ALP, MIT Press.

[KT91] M. Korsloot and E. Tick. Compilation techniques for nondeter-

minate flat concurrent logic programming languages. In Koichi

Furukawa, editor, Logic Programming: Proceedings of the Eighth

International Conference, pd^ges 457-471, Paris, France, 1991. The

MIT Press.

[Llo87] J. W. Lloyd. Foundations of Logic Programming, Second, Extended
v.

Edition. Springer-Verlag, 1987.

[LPW92] Thierry Le Provost and Mark Wallace. Domain independent propa-

gation. In Proceedings of the International Conference on Fifth Gen-

eration Computer Systems, pe.ges 1004-1011, ICOT, Japan, 1992.

[LTC93] H. F. Leung, B. M. Tong, and K. L. Clark. The Firebird com-

putation model for finite domain constraint solving in concurrent

logic programming and its realization in FD-Parlog. Unpublished

manuscript, 1993.

[LvE92] J. H. M. Lee and M. van Emden. Adapting CLP to floating-

point arithmetic. In Proceedings of the International Conference

I

on Fifth Generation Computer Systems, pages 996-1003, ICOT,

Japan, 1992.

[Mah87] M. J. Maher. Logic semantics for a class of committed-choice p r o

grams. In Proceedings of the Fourth International Conference on

Logic Programming, pages 858-876, Melbourne, 1987. The MIT

Press.

[NT88a] M ::Nilsson and H. Tanaka. A flat GHC implementation for su-

percomputers. In Logic Programming: Proceedings of the Fifth In-

ternational Conference and Symposium, pages 1337-1350, Seattle,

1988. The MIT Press.

[NT88b] M. Nilsson and H. Tanaka. Massively parallel implementation of

flat GHC on the Connection Machine. In Proceedings of the Inter-

national Conference on Fifth Generation Computer Systems, pages

1031-1040, Japan, 1988. ICOT.

[Sar88] V. A. Saraswat. A somewhat logical formulation of CLP synchroni-

sation primitives. In Logic Programming: Proceedings of the Fifth

International Conference and Symposium, pages 1298-1314, Seat-

tle, 1988. The MIT Press.

[Smi93] Donald A. Smith. Mu-ltiLog: Data or-parallel logic programming.

In David S. Warren, editor, Logic Programming: Proceedings of the

Tenth International Conference, pages 314-331, Budapest, 1993.

The MIT Press.

I [SR90] V. A. Saraswat and M. Rinard. Concurrent constraint program-

ming. In Proceedings of the 17th Symposium on Principles of Pro-

gramming Languages, pages 232—244, San Fransisco, 1990.

[Tar92a] P. Tarau. Low-level issues in implementing a high-performance con-

tinuation passing Prolog engine. Technical Report 92-02, Dept.

d'lnformatique, Univ. de Moncton, 1992.

[Tar92b] P.,-Tarau. WAM-optimizations in BinProlog: towards a realistic

continuation passing Prolog engine. Technical Report 92-03, Dept.

d'Informatique, Univ. de Moncton, 1992.

[TL93] Bo-Ming Tong and Ho-Fung Leung. Concurrent constraint logic

programming on massively parallel SIMD computers. In Dale

, Miller, editor, Logic Programming: Proceedings of the 1993 Inter-

national Symposium, pages 388-402, Vancouver, 1993. The MIT

Press.

[Ued85] K. Ueda. Guarded horn clauses. In E. Wada, editor, Logic Program-

ming ,85 — Proceedings of the 4th Conference, Lecture Notes in

Computer Science 221, pages 168-179, Tokyo, July 1985. Springer-

Verlag.

[VH89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming.

MIT Press, 1989.

[VHD87] R Van Hentenryck and M. Dincbas. Forward checking in logic pro-

gramming. In Proceedings of the Fourth International Conference

1

on Logic Programming, pages 229-256, Melbourne, 1987. The MIT

Press.

[VHSD93] P. Van H e n t e n r y c k , V. Saraswat, and Y. Deville. Design, implemen-

tation and evaluation of the constraint language cc(FD). Technical

Report CS-93-02, Department of Computer Science, Brown Univer-

sity, Providence, 1993.

[War90] B. H. D. Warren. The extended Andorra model with implicit con-

trol. Presented at ICLP '90 Workshop on Parallel Logic Program-

ming, Jerusalem, 1990.

te

V

•
1

"TuHK Li b r a r i es

maim .
•DDE4TE75

