
I . . , . . 

DATA-PARALLEL 
C O N C U R R E N T C O N S T R A I N T P R O G R A M M I N G 

_ I 

B Y 
3 ^̂ Ĥ 
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Abstract 

With the advent of cost-effective massively parallel computers, researchers con-

jecture that the future concurrent constraint programming system is composed 

of a massively parallel constraint solver as the back-end with a concurrent in-

ference engine as the front-end [Coh90]. This thesis represents probably the 

first attempt to build a concurrent constraint programming system on a mas-

• sively parallel SIMD computer. A concurrent constraint programming language 

called Firebird is presented. Firebird can handle finite domain constraints and 

supports both concurrency and data-parallelism. As a result, it is suitable for 

implementation on both multiprocessors and SIMD computers. Concurrency 

arises from the stream and-parallelism of committed-choice logic programming 

languages. In a nondeterministic derivation step, one of the domain variables 

is selected to create a choice point. All possible alternatives are attempted in 

parallel. Data-parallelism is exploited in the resulting or-parallel execution. 

The Data-Parallel Abstract Machine (DPAM) has been designed as the ba-

sis of implementation of Firebird. The concurrent process scheduler uses simple 

data-parallel algorithms for process resumption and deadlock detection. On the 

other hand, when the number of processor elements is not enough for exploit-

ing or-parallelism, the system resorts to parallel backtracking automatically. We 
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present the data structures necessary for maintaining a vector trail stack and 

methods for restoring all process queues to their original states upon backtrack-

ing. 

An almost complete implementation of Firebird has been built on a DECmpp 

12000 Sx-1001 massively parallel computer with 8,192 processor elements. The 

performance of the implementation is compared with CHIP, a commercial se-

quential implementation. Our performance figures indicate that the parallelism 

attained is usually counterbalanced by the poor performance of individual pro-

cessor elements. Nevertheless, our results also indicate that a speedup of 2 

orders of magnitude is possible when we compare the performance using 8,192 

processor elements and the performance using a single processor element of the 

same machine. Furthermore, the speedup is scalable, provided that the problem 

• size is large enough for effective exploitation of or-parallelism. On the other 

hand, we measured the effects of several control strategies and optimizations oil 

execution time and memory consumption in a data-parallel context. 

1 DECmpp 12000 Sx-100 is equivalent to MasPar MP-1. 
i 

' >. :: . : r : _ ' vi 



Contents 

1 In t roduct ion 1 

1.1 Concurrent Constraint Programming . 2 

1.2 Finite Domain Constraints 3 

2 T h e Firebird Language 5 

2.1 Finite Domain Constraints 6 

2.2 The Firebird Computation Model 6 

2.3 Miscellaneous Features ( 

2.4 Clause-Based Nondeterminism 9 

2.5 Programming Examples . 10 

2.5.1 Magic Series • . 1 0 

2.5.2 Weak Queens 14 

3 Operat ional Semantics 1 5 

3.1 The Firebird Computation Model 16 

3.2 The Firebird Commit Law 1 7 

3.3 Derivation 1 7 

3.4 Correctness of Firebird Computation Model 18 

vii 1 



4 Exploitation of Data-Parallelism in Firebird 24 

4.1 An Illustrative Example . • 25 

4.2 Mapping Partitions to Processor Elements . • . • 26 

4.3 Masks 2 7 

4.4 Control Strategy . . 27 

4.4.1 A Control Strategy Suitable for Linear Equations . . . . 28 

5 Data-Parallel Abstract Machine 3 0 

5.1 Basic DPAM . . . 31 

5.1.1 Hardware Requirements • • . 31 

5.1.2 Procedure Calling Convention And Process Creation • . 32 

5.1.3 Memory Model 34 

5.1.4 Registers . . • • • . . 41 

5.1.5 Process Management 41 

- 5.1.6 Unification. . 49 

5.1.7 Variable Table 4 9 

5.2 DPAM with Backtracking 50 

5.2.1 Choice Point 5 2 

5.2.2 Trailing . 5 2 

5.2.3 Recovering the Process Queues 57 

6 Implementation 58 

6.1 The DECmpp Massively Parallel Computer 58 

6.2 Implementation Overview • 59 

6.3 Constraints . 6 0 

6.3.1 Breaking Down Equality Constraints 61 

viii 1 



6.3.2 Processing tlie Constraint 4As Is' 62 

6.4 The Wide-Tag Architecture • • • • • . 63 

6.5 Register Window • . • • • • • • • . . . . • • • . . . . . . • • . . 64 

6.6 Dereferencing : • • • . . • . 65 

6.7 Output 66 

6.7.1 Collecting the Solutions • • . • 66 

6.7.2 Decoding the solution 68 

T Performance 

7.1 Uniprocessor Performance , 71 

7.2 Solitary Mode . • . , 7Z 

7.3 Bit Vectors of Domain Variables . . . . • . • 75 

7.4 Heap Consumption of the Heap Frame Scheme • • • . • . . . . . 77 
? 7.5 Eager Nondeterministic Derivation vs Lazy Nondeterministic Deriva-

. tion 78 

7.6 Priority Scheduling 79 

7.7 Execution Profile 8 0 

7.8 Effect of the Number of Processor Elements on Performance . . 82 

7.9 Change of the Degree of Parallelism During Execution . . . . . 84 

8 Related Work 8 8 

8.1 Vectorization of Prolog % 89 

8.2 Parallel Clause Matching . • • . 90 

8.3 Parallel Interpreter 90 

8.4 Bounded Quantifications 91 

8.5 SIMD MultiLog • • • • • 91 

ix 1 



9 Conclusion 93 

9.1 Limitations 94 

9.1.1 Data-Parallel Firebird is Specialized . . . • . 94 

9.1.2 Limitations of the Implementation Scheme . 95 

9.2 Future Work . / . . • . 95 

9.2.1 Extending Firebird 95 

9.2.2 Improvements Specific to DECmpp 99 

9.2.3 .Labeling . . • . . / . . . 

9.2.4 Parallel Domain Consistency . . . • . . . 101 

9.2.5 Branch and Bound Algorithm . • . . . . . . . . • . . . • 102 

9.2.6 Other Possible Future Work 102 

Bibliography 104 
n 

X ' 



List of Tables 

2.1 Informal rules for evaluation of cardinality constraints 12 

5.1 Comparison of suspension list update with and without time stamp 54 

7.1 Benchmark set • 70 

7.2 Benchmark: uniprocessor performance 72 

7.3 Execution time of machine instructions (in machine cycles) . . . 72 
r 

7.4 Benchmark: solitary mode performance . 74 

- 7.5 Benchmark: on demand creation of bit vectors 76 

7.6 Benchmark: heap fragmentation 77 

7.7 Benchmark: lazy nondeterministic derivation vs eager nondeter-

ministic derivation • . 78 

7.8 Benchmark: priority scheduling 80 

7.9 Benchmark: execution profile (in %) 81 

xi 1 



List of Figures 

4.1 Constraints remaining after first deadlock 25 

4.2 Or-parallel branches in the 5-queens example 26 

5.1 Example: mask bit vector 33 

5.2 Memory areas and scalar registers . . • . 35 

5.3 Example: tag-on-term and tag-on-data representations of a (b ,c) 35 

* 5.4 Example: a /i-variable . • 

5.5 Example: a ^-variable • 37 

5.6 Example: building of a heap frame 40 

5.7 Suspension . 44 

5.8 Example: resumption of suspension lists 46 

6.1 Heap cell format 63 

6.2 Examples: reference pointer, atom, list and compound term • . 64 

6.3 Unbound variable representations of WAM and DPAM . . . . . 64 

6.4 Register windows 65 

7.1 Benchmark: run time of ?i-queens program 82 

7.2 Benchmark: speedup of N-Queens Program . . . . . . . . . . . . 83 

7.3 Execution trace of 8-queens, #proc==8,192 85 

' xii 



7.4 Execution trace of 8-queens, #]?roc=64 • 87 

,r xiii 



Chapter 1 

Introduction 

With the advent of cost-effective massively parallel computers, researchers con-

jecture that the future concurrent constraint programming system is composed 

of a massively parallel constraint solver as the back-end with a concurrent infer-

ence engine as the front-end [Coh90]. This thesis represents probably the first 

attempt to build a concurrent constraint programming system on a massively 

parallel SIMD computer. 

Shared-memory multiprocessors have been regarded as the architecture of 

choice in traditional concurrent constraint programming research. Efficient im-

plementations with near linear speedup has been reported [Cra90a, CWY91] 

but the inherent bus contention bottleneck of this architecture makes massive 

parallelism impossible. Therefore, we have chosen one of the most scalable ar-

chitectures instead—the SIMD architecture with distributed local memory. 

A new finite domain constraint language called Firebird has been designed. 

Its syntax is similar to mainstream concurrent logic programming languages, 

and in particular, flat GHC [Ued85]. The most distinguishing semantic feature 
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Chapter 1 Introduction 

of this language is that committed-choice indeterminism is integrated with don't 

know nondeterminism by introducing the notion of domain-variable-based choice 

points. In ail indeterministic derivation step, execution consists of guard tests, 

commitment and spawning in the same manner as committed-choice languages. 

In a nondeterministic derivation step, one of the domain variables in the system 

is chosen and all possible values in its domain are attempted in an or-parallel 

manner. Alternatively, a choice point based on the domain variable is set up 

and each possible value in its domain is attempted by backtracking. 

Firebird could be implemented efficiently on many architectures. On se-

quential machines and shared-memory multiprocessors it is expected to be more 

efficient than languages using the Andorra Model [War90] because 110 determi-

nacy test is needed. On data-parallel computers, or-parallelism is exploited by 

r attempting all possible values in the domain of a variable in parallel after the 

variable has been labeled. In this way, thousands of finite domain constraints 

can be solved in a single step. 

In the rest of this chapter, we shall present the preliminaries. The Firebird 

language will be introduced in chapters 2 and 3. The data-parallel execution 

model, its implementation and evaluation will be presented in chapters 4-7. We 

cite related work in chapter 8. Finally, we conclude and give suggestions of 

future work in chapter 9. 

1.1 Concurrent Constraint Programming 

ALPS [Mah87] is a scheme to integrate constraint logic programming and con-

current logic programming. Saraswat [Sar88, SR90] developed the ideas further 
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Chapter 1 Introduction 

by introducing the concurrent constraint programming framework. Computa-

tion is modeled as the interaction of concurrent, cooperating agents1 exchanging 

j information via a global store, which is a conjunction of constraints. An agent 

may assert (te/Q new constraints to the store, as well as query (ask) whether a 

constraint is implied {entail) by the store. The constraints in the store must be 

consistent (satisfiable), or the computation aborts. 

Since each tell constraint is conjoined to the current store, the store is mono-

tonically refined: As a result, a successful ask operation will remain successful 

throughout the rest of the computation. Thus, synchronization can be achieved 

by blocking ask—an agent blocks until the store is refined enough to entail the 

constraint it wants to ask. It remains blocked until some other concurrently 

executing agents have added enough information to the store so that it is strong 

• enough to entail the ask constraint. However, this may never happen. It is also 

possible that the ask constraint is simply unsatisfiable, and the computation 

aborts. 

1.2 Finite Domain Constraints 

A domain is a finite non-empty set of constants. A domain variable, or simply 

a d-variable, is a variable which ranges over a domain. Recent treatment of 

finite domain constraints in the concurrent constraint programming framework 

[VHSD93, DC93] represents a domain variable X with domain ^ as a constraint 

X € d. As constraints are added to the store, the domain of each related variable 

shrinks, until it becomes a singleton. For example, X may take any value from 1 

^ n agent corresponds to a goal in traditional logic programming. 
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Chapter 1 Introduction 

to 10 initially. A constraint X>4 will rule out some of the elements in d. Now 

X can only range from 5 to 10. When a constraint X < 6 is added, X becomes 

a singleton, and X is equal to 5. Usually a disequality constraint X ^Y will 

block until either X or F is bound. If all constraints and goals block then a 

deadlock or a floundering is said to have occurred. To avoid deadlock there 

is usually a system predicate which attempts each possible value of a domain 

variable and the variable is said to be labeled. 

The r eade r s referred to [VH89] for a full treatment of finite domain con-

straints in the traditional logic programming framework [Llo87]. It is sum-

marized as follows. Ordinary variables are t e r m e d /i-variables (h stands for 

Herbrand). A d-variable X with domain d is denoted by Xd. The imification 

algorithm must be modified to support rf-variables. The modified algorithm is 

. termed d-unification. When a /i-variable is unified with a ^-variable, the former 

is bound to the latter. When a constant c is unified with a J-variable Xd, X is 

bound to c if c is in d. Otherwise the unification fails. When two ^-variables, 

Xd and y e , are unified, both of them are bound to the variable Zf where 

/ d e. If / is a singleton {c}, both variables are bound to the constant c. 

If f is empty, the unification fails. SLD resolution extended with ^unification 

is termed SLDD resolution. However, the introduction of ^-unification alone is 

insufficient to solve finite domain constraints efficiently. Disequality, inequal-

ity, (arithmetic) equality constraints, and even user-defined constraints, must 

also be handled. The forward checking and looking ahead inference rules are 

introduced as both a theoretical basis and an implementation scheme for such 

constraints. 



Chapter 2 

The Firebird Language 

The syntax of Firebird is almost identical to flat GHC [Ued85]. Each clause 

consists of a head, a guard part (consisting of ask constraints) and a body (tell 

^ constraints and goals). The following is a Firebird program which solves the 

n_queens problem. 

queen(N,L) gen.list(N,L), L in 1..N constraint(L). 

constraint( •). 

constraint([XIT]) safe(X T l) constraint(T). 

safe(X,[],N). 

safe(X,[Y|T],N) noattack(X,Y,N) , N2 is N + 1 safe(X,T,N2). 

noattack(X,Y,N) :- X #\= Y, X #\= Y + N X #\= Y - N. 

gen_list(0,L) :- L = • • 
gen_list(N L) N \== 0 I L = [H|T] , N2 is N - 1, gen_list(N2,T). 

5 



Chapter 2 The Firebird Language 

2.1 Finite Domain Constraints 

In Firebird programs, finite domains are denoted by 1. .u. The domain of an 

unbound variable X can be specified by in/2. A list of unbound variables can 

be initialized at once. For example, 

[X] in 1. .10. 
[A B C] in 1..100. 

In CHIP [DVHS+88], a domain declaration is used to specify the domain of 

an argument of a predicate. The argument will be unified with a new domain 

variable with, the specified domain when the predicate is called. A domain 

declaration can be regarded as an implicit unification in the head matching 

phase. On the other hand, there are no domain declarations in Firebird. This 

is because the flat GHC rule that all arguments are in input mode and all 

unifications must be stated explicitly in the body will be violated otherwise. 

Permitted ask and tell constraints include = , ^ ? < , < , > , > on any linear 

expressions. We extend the suspension rule of flat GHC to accommodate ask 

constraints. If ail ask. constraint attempts to reduce the domain of a global 

variable, it will also suspend. For example, if the domain of variable X is {1,7}, 

then the ask constraint X > 6 will suspend until some other goal remove 1 from 

the domain of X. 

2.2 The Firebird Computat ion Model 

The Firebird Computation Model is a new approach to handle finite domain con-

straints in concurrent constraint programming languages Unlike the Andorra 
I 
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Chapter 2 The Firebird Language 

Computation Mode/ [War90] in w h i c h nondeterministic goals are the basis for 

setting up choice points or the exploitation of or-parallelism, the Firebird Com-

putation Model uses domain variables instead. Intuitively, there are two kinds 

of derivation steps in Firebird, called the indeterministic derivation step and the 

nondeterministic derivation step. An indeterministic derivation step is identical 

to a derivation step in a committed-choice concurrent constraint programming 

language. In a nondeterministic derivation step, if there is an unbound do-

main variable X in the system with domain {au .. •, an}, Firebird will create 

n or-parallel branches, each of which executes with an additional constraint 

X = a“ 1 < i< n. Alternatively, a choice point based on X can be set up and 

each of the values is attempted by backtracking. X is said to be labeled. 

Execution consists of alternating indeterministic and nondeterministic 

derivations. How the two are interleaved is unspecified and left to the im-

plementation. At the lazy nondeterminism extreme, indeterministic derivation 

always takes precedence, and consequently nondeterministic derivation is only 

used to resolve deadlocks. At the eager nondeterminism extreme, nondetermin-

istic derivation always takes precedence. Our data-parallel implementation uses 

a control strategy which lies somewhere in between these two extremes. 

2.3 Miscellaneous Features 

If /2 is used in place of in/2, the ^-variables created will never be subject to 

a nondeterministic derivation step. 



Chapter 2 The Firebird Language 

If no processes (goals and constraints can be regarded as concurrent pro-

cesses) suspend on a variable the variable will not be used in a nondetermin-

istic derivation because labeling the variable is futile 

H X is originally a /i-variable, but becomes a variable when its domain can 

be inferred from a constraint [e.g. X = 7 + 1 , ^ € { 1 , 2 } ) X will never be 

subject to a nondeterministic derivation. It is inefficient to label both X and 

y since they are related to each other. Applying nondeterministic derivation 

to Y a l o n e is sufficient. Ideally, the entire constraint network can be analyzed 

to determine which d-variables should be used in nondeterministic derivations. 

However, if the programmer creates no more variables using in /2 than nec-

essary and let the system infer the domain of other ^-variables, such expensive 

analysis becomes unnecessary. 

In Firebird, it is not allowed to build arithmetic expressions at runtime and 

pass them to tell constraints like the CHIP system [DVHS+88]. We justify this 

omission by showing the semantic complications which may arise. Suppose there 

is a tell constraint X = V-h Z where X is an unbound "-variable and F , Z are 

unbound variables with domain 0..5. In Firebird, X is bound to a domain 

variable with domain 0..10 automatically. Had we allowed X to be bound to an 

arithmetic expression like A + at runtime, we could have been forced to use 

an unification algorithm which interpret arithmetic functions, resulting in a tell 

constraint 
X = A + B. 

We find the ability to bind a /i-variable to a variable automatically very 

important because sometimes initial domains of variables in a tell constraint 

need not be specified. To avoid the complications described above, runtime 

binding of arithmetic expressions to variables in a tell constraint is treated as 

i ( 8 



Chapter 2 The Firebird Language 

an error. 

2.4 Clause-Based Nondeterminism 

Firebird, though a committed-choice language, is by no means less expressive 

than a language adopting the Andorra model [War90]. This is because clause-

based nondeterminism can be emulated using domain-variable-based nondeter-

m i n i s m . A namway of mechanically translating flat Pandora [Bag91] programs 

to Firebird is as follows. For each, don't know flat Pandora procedure P 

P — Gi’i,... Gi,mi I i 

P — ^2,1?… ^2,m2 I 

P <r- Gn,l, . • . , Gn^mn I Bn 

where n is the number of clauses and mt- is the number of ask constraints in 

clause i, construct a Firebird clause 

P a: € 1. •. n Ai , . . . , An 

where x is a new domain variable v/hich does not appear in P or any Gitj,Bi. 

For each ask constraint G , 1 < i < n, 1 < j < add a clause 

Ai <- -^Gij 

where ftj denotes the negation of Gij. Finally, add 

Ai '(r- x = i \ … Gi,mi, B{ 

for each i,l<i<n. The idea is to use x to denote the set of candidate clauses. 

If any ask constraint in clause i fails, i will be removed from the domain of 

9 
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x clause f will never be considered a candidate clause. If only clause i is 

- satisfiable, x will become a singleton, resulting in a commitment to clause i. The 
; ask constraints will be told to the store as in ALPS [Mah87] and the Andorra 

Model [Wax90]. Finally, if a deadlock occurs, will be labeled by the system 

using nondetermmistic derivation and as a result all the satisfiable clauses will 

be attempted. With some adaptation, the decision graph compilation teclmique 

for nondeterminate concurrent logic programs [KT91] can be used in place of 

our naive translation algorithm. 

2.5 Programming Examples 

2.5.1 Magic Series 

The magic series s 0 , s i , i s a non-empty finite series of non-negative in-

tegers, sucii that Vz, 0 < i < n, {j 0 < j < n, where the 

cardinality of a set S is denoted by \S\. 

2.5.1.1 Using Choice Points 

To solve this problem, we count, for each position z, the total number of s,s 

which is equal to i. Since the s / s are initially unknown, to count the number 

of occurrences of z, we could make choices, one assuming Sj i and the other 

assuming Sj + i. This approach is taken by [VH89] and the program is shown 

below. 

- 1 0 ‘ 



Chapter 2 The Firebird Language 
v 

magic(N,L) 
M i s N + 1, 
length(L M), 
L :: 0..M, 
occurrences(L,0,L) 
labeling(L). 

occurrences([] ,N,L). 
occurrences([XIY],N,L):-

occur(X,N,L), 
N1 is N + 1, 
occurrences(Y N1 L). 

occur(0,Val,L):-
outof(Val,L). 

occur(N,Val, [Val Hail]) 
N > 0 
N1 is N - 1, 
occur(Nl,Val,Tail). 

occur(N,Val, [First I Tail]) 
N > 0, 
Val #\= First, 
occur(N,Val,Tail). 

outof (X, •). 
outof (X, [HIT]):-

X #V= H, 
outof(X,T). 

labeling(D). 
labeling([H|T]):-

indomain(H), 
labeling(T). 

I 
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Chapter 2 The Firebird Language 

In Firebird, the clause-based nondeterminism of the above program can be 

emulated by using domain variables. Though much more efficient than using 

backtracking alone, the search space is not pruned in a completely "a priori^ 

manner. 

2.5.1.2 Using Cardinality Constraints 

[HD91] tackles this problem by introducing the cardinality operator #• The 

cardinality constraint # ( “ u , c i , c 2 , . . . , cn) states that the number of constraints 

c.5 i < i < which are true, lies between I and u. Thus, we could evaluate the 

cardinality constraint by tlie following informally defined rules. The reader is 

referred to [HD91] for formal definitions. 

Trivial Satisfaction~I if / < 0 A u > n, the cardinality constraint is 
trivially satisfied. 

Positive Satisfaction if / < u A u n, tell . . . , cn to the store. 
Negative Satisfaction iH g u u 0, tell q , . . . , cn to the store. 
Positive Reduction""" if c{ is true, rewrite the constraint as 

#( l — {c1? . . . ,C‘ i’CI+i, . . • ,Cn}). 
Negative Reduction if Q is false, rewrite the constraint as 

# ( / , U, { C 1 ; … Q - 1 , CJ + 1 , . . . , C N ] ) . 

Failure if / u, the constraint fails. 

Table 2.1: Informal rules for evaluation of cardinality constraints 

The magic series problem can be expressed by cardinality constraints. For 

instance, each should satisfy # ( { = s 2 = … 5n = i}). Although 

Firebird does not support cardinality constraints, it is by no means a limitation, 

as we shall see shortly. ‘ 1. .';' ‘ ‘ 

( 12 



Chapter 2 The Firebird Language 

2.5.1.3 Using Concurrent Processes 

We hope to express the magic series problem without resorting to any specialized 

language constructs. The following constraint, which gives the cardinality of a 

single equality constraint, is taken from [CCD94]. 

bool(X,Y,B) X = Y I B = 1, 
bool(X Y B) X \== Y I B = 0. 
bool(X,Y,l) X = Y. 
bool(X,Y,0) f- X #\= Y. 

We could find the number of occurrences of an integer TV in a list L using 

the following predicate. 

occur(X,N, []) - X = 0. 
occur(X,N,[Y|T]) [B] 0 . . 1 bool(Y,N,B), X #= XI + B, 

occur(XI N T). 

The remaining parts of our magic series program in Firebird are given below. 

magic(N L) M is N + 1, gen list(M L) L in 0..M, 
occurrences(L,0,L). 

occurrences ( [] N L). 
occurrences ([XlT] ,N,L) :- occur(X N L), N1 is N + 1, 

occurrences(T,N1,L). 

gen ist(0 L) L = •. 
gen_list(N,L) N \== 0 | L = [H|T], N1 is N - 1, gen ist(N1 T). 

13 



Chapter 2 The Firebird Language 

2.5.2 Weak Queens 
The weak queens problem is a variation of the n-queens problem. Instead of 
placing n queens on an n x n board, a queen is placed on each column of an 
infinitely long band of width n. A queen can attack horizontally, vertically or 
diagonally, but the horizontal and diagonal attack range of a queen is only k, 
k < n . Hence a queen in this problem is 'weaker' than a normal queen. Queens 
can be put on columns A: + 1, fc + 2 ” . . For example, if n 5 and k = 2, one 
of the solutions is (2 4 1,3 5,1 . . . )• The following is a Firebird program which 

solves the weak queens problem. 

weak.queens(N,K,L) K < N I L in 1 . .N, constraint(K,L). 

constraint(K, •). 
constraint(K,[XIT]) safe(K,X,T,l), constraint(K,T). 

safe(K,X,„,N) :- N > K true. 
safe(K,X,[Y|T],N) N =< K I 

noattack(X Y N), N2 is N + 1 safe(K X T N2). 

noattack(X,Y,N) X #\= Y, X #\= Y + N, X #\= Y - N. 

We can apply the lazy evaluation technique to this program. 

consumer(0,L) :- L =[]. 
consumer(M,L) M > 0 I L = [H|T] , M2 is M - 1 consumer(M2,T). 

In the query 

weak_queens(5,2,L),consumer(6 L)• 

the goal weak queens/3 will produce the solution to the first 6 columns one by 

one upon request from the consumer. 
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Chapter 3 

Operational Semantics 

The semantics of Firebird is based oil the formalism of [Mah87]. The domain 

theory D allows constraints of finite set membership over constants. 

A domain variable x with domain 5 is represented by a variable x and a 

constraint x E S. 

A program P consists of one or more clauses. A clause is of the form 

H — G\B B' 

where G is a conjunction of ask coiistraints, B is a conjunction of atoms and Bf 

a conjunction of tell constraints, assuming that all head matchings have been 

transformed to ask constraints [CG85]. We define a goal G to be a multiset 

A of atoms plus a multiset C of constraints. G and its multiset of atoms and 

constraints are annotated by a (possibly empty) list cr of non-negative integers 

and subscripted by an integer i, i.e. Gf = (Af U Cf). A query'is represented as 

Go = (A0 U Co) annotated by an empty list of non-negative integers. 
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Chapter 3 Operational Semantics 

3.1 The Firebird Computat ion Model 

Definition 3.1 A derivation step using the Firebird Computation Model from 

a goal Gf (Af U Cf) to a goal G] = [A] U CJ), written as 

G\ =>f GTj 

is defined as follows. 

1. If there is a goal AeAa
{ and there is a clause H G\B, B' in the program 

such that A can commit to that clause subject to the commit law stated 

below, then j = i + 1, t = q =(Af \ {A}) U B and CJ = C[ U {A = 

H] u G U B'. This is called an indeterministic derivation step. If there 

is only one clause that A can commit to, then Gf is called a deterministic 

goal and the derivation step is called a deterministic derivation step. 

2, Let^ denotes the complement of S with respect to the Herbrand Universe. 

If there is a constraint x e S such that D _ Cf 0 € J d 

J = {au...,an},n > I, then j = 0,R = AF and CJ = C[U(x 

/ ),1 < k < n provided that Cf ( ak ) is consistent. Here is the 

‘append, operator. This is called a nondeterministic derivation step. 

S. The indeterministic derivation step and the nondeterministic derivation 

step are the only derivation steps allowed. If both the indeterministic 

derivation step and the nondeterministic derivation step are applicable, 

only one of them will be selected. 

' 16 
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3.2 The Firebird Commit Law 

Following the flat GHC convention, the commit law of Firebird is simpler than 

that of ALPS [Mah87]: a clause H — G\B,B can be committed to only if the 

clause is validated. In the other words, given an atom A selected from A we 

must find a clause with a head and ask constraints which satisfies the following 

condition. 

D [= \/xg(C[ 4 3xi{A ^ HAG)) 

Here, and xt denote the variables in G\ (the ‘global variables) and the vari-

ables local to the clause respectively. Likewise, a clause is invalidated if 

D | = = F Cf A G) 

3.3 Derivation 

Definition 3.2 A derivation from a goal G to a goal G], written 

G^fG] 

is a (possibly empty) sequence of derivation steps such that either 

G — T 

1 j 

or there exists goals G^ G^,. •., Of" such that 

F Gf GT2 F . . . 

and in = j and an t. G] is said to be derivable from G .. 

17 
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A" = 0. 

oo 

i=l 

w h e r e C l , C 2 , . . . are final constraint sets associated with the successful deriva-

tions, and yi are the variables local to Ci . 

p r o of We shall prove this lemma using mathematical induction on the height 

/i of a Firebird search tree. 

R a s e c a s e h ^ l . The Firebird search tree is in either of the following two 

forms. 

1. If a deterministic derivation step is applied on Go = (^o U C0) using a 

completed clause then it has only one child G (0UCx) and 

Q C0 G A0 B' . Since D {== • (C0 — 3 ‘ ‘ G))y 

we have P\D j= ^o ^ ^Vi{Ci) where Vl are the variables local to Cl 

2. If a n o n d e t e r m i n i s t i G derivation step is applied on G0 (0UCo), it will have 

n children GJ = (0 U ^ 1 ) , … , = ( 0 U Q ) such that for some variable 

D |= C0 — ( € … } … }) and Q = ( ( : = 

Co), l<i<n. Clearly we have ^ h ^o ^ (By^^o1) • • • .V 3yn(C0
n)), 

where the y?s are the variables local to Cl
Q. 

Induction hypothesis: the lemma is true {oil<h<k. 

Induction step: h = k + 1. Consider a Firebird search tree of height k + 1. 

1. If a deterministic derivation step is applied on G0 = (Ao U C0) using a 

completed clause H ^ G\B,B', then it has only one child G1 = (AiUCi) 

— i p * is the Clark's completion [Cla78] of program P. 
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where Ax = ((A \ {A}) B) and G = (C G (A = iJ) B' . Since 

D |= 4 rr/((A = if) (7)), we have P\ D \= G0 ^ Now that 

the subtree rooted at Gi, is of height less than or equal to fc, we have 

oo 
P\ D \= Gr ^ \J 3yi(Ci) 

i=i 
Hence 

oo 

where Ci, C2,... are final constraint sets associated with the successful 

derivations, and is the variables local to Ci. 

2. If a nondeterministic derivation step is applied on Go = (Ao U Co), then 

it has n children G^ = (Aj U C^1),… = (AJ U Q ) such that for 

some variable a:,D C0 (x e {au...,an} Ax ^ {aUf..,an}) and 

Ct
0 = (x = m A Co), ̂  - A0,1 < z < n. Therefore we have P\ D ^ G0 ^ 

(GJ •. • A Now as subtrees rooted at CJ, • • • 5 GQ are of height less 

than or equal to /e, we have 

00 
P-D^G^ V 3 Q ) 

ji=i 
where Cj:s are final constraint sets associated with the successful deriva-

tions in the subtree rooted at Gl
0, and t/j.'s are the variables local to C^ s, 

I <i <n. By the distributive properties of disjunction, we have 

0 0 

P^D^Go^MByiiCi) 
i=i 

where Ci, C 2 , . . . are final constraint sets associated with the successful 

derivations, and y{ is the variables local to C“ 

i • . 
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Theorem 3.1 (Soundness of Firebird Computation Model) Given a pro-

gram P if a query Go = (AoUCo) has a successful derivation with final constraint 

set C, then 

Proof This is a direct consequence of Lemma 3.2 and the definition of successful 

derivation. 

Theorem 3.2 (Conditional Completeness of Firebird Computation 

Model) Given a program P and a query Go = (Ao U Co), if P*, D \= C 

Ao Cq, and for every goal G" = (A" U C") derivable from Go, one of the 

following condition holds, 

1. G" is a deterministic goal. 

2. a nondeterministic derivation step is applied to G". 

3. A" = 0. 

then Go has a successful derivation with a final constraint set C[ such that 

Proof By Lemma 3.3 we have 
oo 

P\D\=GQ^\l3yi{Ci) 

where Ci, C2,.. . are final constraint sets associated with the successful deriva-

tions, and yi is the variables local to C“ under the conditions as specified in the 

lemma. Hence we have 

00 
p\D h ^ ^ v M m 

i=i 
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Chapter 4 Exploitation of Data-Parallelism in Firebird 

, 4.1 A n Illustrative Example 

To illustrate how Firebird exploits data-parallelism, it is helpful to trace 

I t h e execution of 5-queens using t h e p r o g r a m presented before and the query 

queen(5,[Xl,X2,X3,X4,X5]). At the first deadlock, the system has the fol-

lowing suspended constraints. All the other goals have been reduced, and all 

variables have the same domain {1,2,3,4,5}. 

. X1 ^ X2 XI ^ X2 + 1 XI ^ X2 - 1 
XI + X3 XI # X3 + 2 XI ^ X3 - 2 
IX + X4 XI ^ X4 + 3 XI ^ X4 - 3 
XI — X5 XI ^ X5 + 4 XI # X5 - 4 
X2 + X3 X2 _ X3 + 1 X2 ^ X3— 1 
X2 — X4 X2 ^ X4 + 2 X2 ^ X4 - 2 
X2 # X5 X2 ^ X5 + 3 X2 ^ X5 - 3 
X3 ^ X4 X3 — X4 + 1 X3 ^ X4 - 1 , 
X3 ^ X5 X3 # X5 + 2 X3 ^ X5 - 2 
X4 ^ X5 X4 ^ X5 + 1 X4 # X5 - 1 

Figure 4.1: Constraints remaining after first deadlock 

If we label XI and try the 5 possible values in a data-parallel fashion, we 

can evaluate the first 12 constraints with an ideal 5 times speedup on a SIMD 

machine. A second deadlock will occur. If each branch chooses to create a choice 

point on X2, there will be 3+2+2+2+3 = 12 branches (see Figure 4.2). Thus the 

next 9 constraints can be solved with 12 times speedup. X3 will also be labeled, 

giving rise to a total of 14 branches. Therefore, the remaining 9 constraints 

can be evaluated with 14 times speedup. Thousands of processor elements can 

be fully utilized easily in this way because many problems are combinatorial in 

nature. 
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Chapter 5 Data-Parallel Abstract Machine 

5.1 Basic D P A M 

5.1.1 Hardware Requirements 

Different data-parallel computers have different capabilities. Therefore, the min-

i m u m hardware requirements are defined in such a way that DPAM can be im-

plemented on most of the recent data-parallel computers. The hardware consists 

of the following components: 

1 • a processor element array, consisting of a number of identical processor ele-

ments, executing in a synchro-parallel manner, each with its local memory, 

known collectively as vector memory. In a memory-read operation, each 

processor element may access a different memory location (known as lo-

cal indirect addressing), but in a memory-write operation, all processor 

elements must access the same location1. There is no inter-processor com-

munication. Each processor element has a mask bit. A processor element 

executes instructions if and only if its mask bit is set, except that there 

are special instructions which move a bit to the mask bit uncontingently. 

2. a host computer, which is responsible for dispatching instructions to all 

processor elements. The host computer has its own store called scalar 

memory. The host computer may broadcast a data item to all processor 

elements whose mask bits are set or receive a data item from an arbitary 

processor element. The host computer must also have the ability to check 

~ i s o m e data-parallel computers have faster memory access if all processor elements access 
the same memory location (e.g. Maspar MP-1, Connection Machine CM-2 some vector su-
percomputers like Hitachi S-820). We impose this restriction because it leads to performance 
improvement on such computers. Furthermore, it is expected that more real-world machines 
can be mapped to a more restrictive abstract machine. 

- . . . . I 
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I Chapter 5 Data-Parallel Abstract Machine 

if none of the processor elements have their mask bits set, which is useful 

for conditional branching. 

The above features are directly available or can be emulated on most of the 

recent SIMD computers. Since different machines has different interprocessor 

communication topologies, DPAM does not require any form of interprocessor 

communication except moving data to and from the host computer. Likewise, 

since some machines (e.g. supercomputers) have a single, shared memory space 

for all processor elements whereas some have memory distributed over the pro-

cessor elements, we assume that the memory is distributed. Nevertheless, some 

older machines, including Cray-1, do not have local indirect addressing and 

hence do not meet our minimum hardware requirement. 

5.1.2 Procedure Calling Convention And Process Cre-

ation 

In DPAM, a procedure is defined to be an executable subroutine. An n-ary goal 

or constraint is compiled to a procedure which takes n input arguments, which 

are stored in general purpose vector registers pi to pn. The mask (Section 4.3) bit 

vector defines the set of p h y s i c a l partitions in which the procedure is applicable. 

In WAM [AK91], failure is like an exception. When a failure occurs execution 

continues directly at the next clause. This is not possible in a data-parallel 

system because the failure of a physical partition does not imply the failure of 

all physical partitions. Therefore, upon return, the procedure signifies that a 

physical partition has succeeded by setting, the mask bit and that a physical 

partition has failed by clearing the mask bit. 
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In Figure 5.1 we Illustrate how the mask bit vector is changed during execu-

tion of 3 call instructions on a 8-processor machine. Note that the mask shrinks 

monotonically. . 

procedure call input mask output mask 
c a l l p /0 1111111111011111 
c a l l q/0 11011111 01011001 
c a l l r / 0 01011001 00011000 

Figure 5.1: Example: mask bit vector 

The concurrent process scheduler, or simply scheduler, is responsible for exe-

cuting procedures. The scheduler treats all procedures as black boxes. It simply 

performs a subroutine call to the procedure after loading the input arguments. 

A procedure may call other procedures in the same manner. 

If a procedure (a compiled goal or constraint) wants to suspend, it calls a sys-

tem library subroutine suspend^rocess which saves all the argument registers 

and other status information {e.g. continuation pointer) in a process structure. 

The procedure must tell suspend—process the set of physical partitions which 

need suspension by setting the mask bit vector. Then the procedure returns 

control to the caller with the mask bit set to the set of physical partitions which 

have either succeeded or suspended. In other words, the caller cannot distinguish 

whether the callee has succeeded or suspended (the scheduler can, of course). 

The evaluation of tell constraints is left to the particular implementation. 

DPAM defines only the interface—the constraint must obey the abovementioned 

calling convention, and it must call suspend^rocess for a suspension. 

In DPAM, ask constraints never appear in any process queues. They do not 
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Figure 5.2: Memory areas and scalar registers 

ref j \ str 

a _ 2 str ’ ― ^ a / 2 

b 0 str b con 

c I 0 str c con 

a. tag-on-data b. tag-on-term 

Figure 5.3: Example: tag-on-term and tag-on-data representations of a (b ,c ) 

. . . . '.... v • i 
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o pointer to bit vector representation of the domain. 

The bit vector is accessed via a pointer so that any changes are backtrackable 

:: (this will be explained later in Section 5.2.2.2). The pointer to the bit vector 

always points to the address which would have contained the value 0 even if 0 

is outside the range of the domain. For the example in Figure 5.5, the domain 

of the variable is 0..159 and the bit vector is stored at address 120 (hex). The 

pointer to the bit vector field will be 120 (hex) because the bit representing the 

value 0 is stored at 120 (hex). In this way, there is no need to update the bit 

vector and its pointer when the minimum and maximum fields are changed. For 

instance, if the minimum is changed to 96, the pointer to bit vector field remains 

to be 120 (hex), although the locations 120-12b (hex) have become garbage. 

v v 
I ref process-id dvar 0 dvar 

process-id dvar 

0 dvar 

min ~| 
max 

1 0 - 3 1 j 
32-63 
6 4 - 9 5 1 

j 96..127 
I 128..159 I 

bit vector 

Figure 5.5: Example:. a ^-variable 
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I • 

Unlike the memory write operation the ability for each processor element 

to read a different memory location in parallel is mandatory. Consider the 

dereferencing of a vector of reference chains, for instance. 
‘‘ 

5.1.4 Registers 

The host computer has the following scalar registers in addition to a file of 

general purpose scalar registers c l to cn (see Figure 5.2 again). 

hp heap pointer 

hf heap frame pointer 
I 

hm heap pointer maximum 

hb heap pointer at last choice point I • t r trail pointer 
l | 

b current choice point 

ip instruction pointer 
cp continuation pointer (keeps return address of procedure invocation) 

Vector registers include the process count (c) and the status word (sw), in 

addition to a number of general purpose vector registers (pO to pin). 

I 

5.1.5 Process Management 

5.1.5.1 Process Structure 

A process structure must contain enough information for the reinvocation of a 

I process when the process is resumed. In DPAM, the process structure is scalar 

and resides on the host computer. The arguments are stored separately in the 

,vector argument stack. The process structure consists of the following fields. 
R i 
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o process-id 

o continuation pointer 

• number of arguments 

o pointer to the argument vectors on the argument stack 

• pointers to the next and the previous process structures 

• pointers to the next and the previous processes in a suspension queue (to 

be discussed in Section 5.2.2.1) 

To save storage, the mask of a process is indicated by its first argument 

vector. A physical partition is outside the mask of a process if it has a zero first 

argument. A pseudo-argument vector which stores the mask will be added to 

0-ary processes. 

5.1.5.2 Overview of System Queues 

The system maintains hash queues, the ready queue^ the resumption queue and 

free lists for the creation and scheduling of processes. Both the next and pre-

vious pointer fields are used in hash queues, which are doubly linked circular 

lists used to locate a process with a given process-id in a resumption opera-

tion. Alternatively, the next and previous pointers can be used as primary and 

secondary linkage pointers so that a process can be in two singly linked lists 

simultaneously. The ready queut^ the resumption queue and free lists use the 

primary linkage pointer and the labeling queue uses the secondary one. 

Each process in the ready queue is executed and then the process structure 

is placed back in one of the free lists. When a process is created, DPAM tries 

to reuse process structures in the free lists first before it allocates new space 
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on the process stack and the argument stack. When a process is resumed it is 

first placed in the resumption queue. After the ready queue is exhausted the 

processes in the resumption queue will be moved to the ready queue. 

5.1.5.3 Suspension and Resumption 

There are two possible ways of implementing suspension and resumption. 

M e t h o d 1 If there is a suspension, a new process structure will be created, 

and a process-id will be assigned to it. The new process will be placed in one 

of the hash queues. Its process-id will be stored in a suspension list node which 

becomes the head of the suspension list of the unbound variable. New suspension 

list nodes can be inserted at the head of the suspension list, by copying the old 

list head to the top of the heap and replacing the old list head by the newly 

created node (see Figure 5.7). 

When a variable is assigned, each process-id in the suspension lists is fetched. 

If a process can be found in one of the hash queues, it is removed from the hash 

queue and added to the resumption queue. Otherwise, the process has already 

been resumed by another assignment and can be ignored. 

Naturally, each processor element may have a suspension list with different 

processes. To resume them the following algorithm is devised. 

1. Select an arbitrary processor element G. 

2. Each processor element fetch the process-id in the head of the suspension 

list, unless the list is empty. 

3. Let the process-id as obtained from step 2 by processor element G be i. 

Resume the process with process-id i. 
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I 
, ( l o w ) 

ref 
• 1 1 • 

L I 
^ — ^ - hvar I 

I 0 Hvar j 

I hb 

I 1 hvar I 

— - H 
1. suspension list head copied to top of heap 

I 1 I r e f l I I 

I I • • • • 
^ 2 hvar I 

^ ^ H • I 
0 hvar 

H b 

^ 1 hvar 

2. old suspension list head is overwritten 

Figure 5.7: Suspension 
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4. Every processor element whose process-id in the head of suspension list is 

equal to i may proceed to the next suspension list node. 

5. Repeat steps 2-4 until the entire suspension list of parition G has been 

traversed. 

6. Select another processor element G and repeat steps 2-5 until the suspen-

sion list of every processor element has been traversed. 

See Figure 5.8 for an example of the above algorithm at work. 

Method 2 The traditional scheme using no hash queues can be used. 

Instead of a process-id, the head of each suspension node contains the pointer 

to a scalar hanger [Cra90a] residing on the host. The hanger will point to the 

process structure. When a process is resumed the hanger will be zeroed to 

prevent the process from being resumed more than once. An algorithm similar 

to that of method 1 can be used to resume a vector of suspension lists. 

The first method will be slower because of searching but it makes simpler 

memory management possible. This is because it is not necessary to write a 

separate garbage collector to clear obsolete hangers from the host's memory. 

Both schemes allow old process structures to be freed and reused. 

To resume a process, we can do either of the following. 

1. The process is resumed in all physical partitions even if the variable is 

assigned in some physical partitions only. 

2. The process is split into two. One of the processes, with the mask set to 

consist of the physical partitions in which the resumption has taken place, 

will be placed in the resumption queue. The other process, consisting of 
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P I 9 — 8 P I [ T ] 

P2 8 6 — » 3 — P 2 8 — 6 — > 3 1 

P3 8 — » 6 — » 1 P3 8 — 6 — 1 

1. select partit ion 1 2. resume process 9 

PI PI 

P2 6 3 1 P2 3 ~ ^ 1 

P3 6 — > 1 P3 

3. resume process 8 4. resume process 6 
select partit ion 2 

P I P I 

P2 P2 

P3 P3 

5. resume process 3 6. resume process 1 

Figure 5.8: Example: resumption of suspension lists 

physical partitions in which the resumption has not taken place, will be 

left in the suspension list. 

We took the first method because it is simpler and does not have the overhead 

of splitting. Oil a SIMD computer, the time to execute a process is unrelated to 

the number of active processor elements. The falsely resumed physical partitions 

will execute the process alongside with the others without any additional cost. 

If these physical partitions commit we actually save execution time. Otherwise, 
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they will just re-suspend. 

Unlike Parallel Parlog [Cra90a], we do not make any distinction between 

single-suspension and multi-suspension because 

1. The Parallel Parlog scheme improves the efficiency of single-suspension, 

but for finite domain constraints, multi-suspension is more the rule than 

the exception. All unary constraints in the form X op n, where op is 

a equality, inequality or disequality relation, can be solved immediatel}^ 

without suspension. Other constraints suspend on two or more variables 

(multi-suspend). 

2. In Parallel Parlog, the pointer to the next process structure resides in 

the process structure itself in a single-suspension. However, we have a 

vector of variables in a variable assignment, resulting in several threads 

of processes to be resumed in general. Thus the next field of the DPAM 

process structure, which is scalar, cannot be used. 

5.1.5.4 Deadlock Detection 

A labeling process is responsible for labeling a c?-variable in a nondeterministic 

derivation step. It is created and placed in the labeling queue whenever a process 

suspends on a ^-variable for the first time, unless 

1. the c?-variable is created by : : /2, or 

2. the variable is originally a /i-variable whose domain is inferred from an 

equality constraint. For example, suppose X is a /i-variable and there is 

a constraint X = Y + l,Y e {1,2}. It is sufficient to label Y only but a 

labeling process for X is never created. 
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In order to detect deadlock of individual physical partitions, a process count 

and a deadlock flag are maintained in each physical partition. The process count 

of a physical partition keeps track of the number of processes in that physical 

partition. The deadlock flag is a bit in the status word which is initially set. 

When a process is resumed in some physical partitions, the deadlock flags of 

those physical partitions are cleared. When the ready queue is exhausted, the 

physical partitions are checked for deadlock. 

1. If the process count of any physical partitions are zero, those physical 

partitions have succeeded. 

2. If there are any physical partitions which have not succeeded, and any of 

them have set deadlock flags, a deadlock has occured. A process is moved 

from the labeling queue to the ready queue. If the labeling queue is empty, 

the deadlock is irrecoverable. 

3. If the resumption queue is empty, a deadlock has occured. A process is 

moved from the labeling queue to the ready queue. If the labeling queue 

is empty, the deadlock is irrecoverable. 

4. After checking, append all processes in the resumption queue to the ready 

queue. (In other words, if a deadlock has occured, the ready queue will 

consist of a labeling process followed by other resumed processes. Other-

wise, the ready queue will consist of resumed processes only.) Set deadlock 

flag for all physical partitions again. 
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^ c a t i o n 

Following JAM [Cra90b] (an abstract machine for the parallel execution of Par-

log [CG86]) and WAM [AK91], when two unbound /i-variables, X and Y are 

unified, the one which is created later is bound to the one which is created first. 

In WAM, this age comparison reduces the chance of trailing and avoids the 

binding of a heap variable to a stack variable4. However, in JAM and DPAM, 

the age comparisiori ensures the correct operation of the X = Y ask constraint 

(where both. X and Y are unbound). X = Y will suspend only on the variable 

created later. 

If a A-variable is unified with a (^-variable, the /i-variable is bound to the 

J-variable. Therefore, if a process asks whether X = y where X is a /i-variable 

and y is a <i-variable, the process should suspend on X. 

5.1.7 Variable Table 

In JAM [Cra90b], when the truth value of a guard cannot be determined because 

of an unbound variable, that variable is stored temporarily in a variable table. 

If a commitment to another clause is made, the variable table can simply be 

ignored. If a suspension is really needed for the process, it will suspend on all 

variables in the variable table. The variable table is a fixed array. 

The same concept is adopted in DPAM. However, each entry in the variable 

table is extended to a < mask, variable pair. The DPAM instruction suspend 
4A stack variable, as mentioned in another footnote before, is a self-referential pointer in 

the environment stack, saving the space of 1 heap cell. A heap variable is a self-referential 
pointer on the heap. Since a heap variable is permanent but a stack variable is freed after 
the procedure completes its execution, a heap variable must not be allowed to be bound to a 
stack variable, 
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stores a variable in the variable table together with the current mask. The 

variable table is not a fixed array but resides on the vector PDL5. The following 

example illustrates the necessity of this. 

a ( l ,Y) _ b(Y) . 

a(X l ) : - b(X)‘ 

b (x ) . 
b (y ) . 

When a/2 is executed, some physical partitions will commit to the first 

clause (let Pi be the set of such physical partitions). The others, however, may 

potentially suspend on V and therefore Y is stored in the variable table (let the 

set of these physical partitions be P2). Next, b(Y) will be executed, with the 

mask set to I \ . Note that b /1 maintains its own variable table which must not 

have any conflicts with that of a/2. Hence the vector PDL is chosen as the place 

to store the variable table. 

5.2 D P A M with Backtracking 

Like any or-parallel logic programming system, the number of parallel branches 

explodes combinatorially in Firebird. For example, more than 2,000 proces-

sor elements are required to solve 8-queens. When the processor elements are 

exhausted, the system resorts to parallel backtracking, in which the partitions 

create choice points and backtrack in parallel. 

In general, the number of or-branches is different for each partition because 

the domain size of the domain variable used to set up the choice point varies 
5In WAM terminology [AK91], the PDL is a stack for miscellaneous purposes. Please see 

Figure 5.2 oil page 35 again. 
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from partition to partition. As a result, some partitions will finish attempting 

all the alternatives earlier than the others. 

We adopt the synchronous backtracking approach, in which the partitions 

which have finished wait until all partitions have finished before going back to 

I the last choice point. The advantage of this approach is lower trail and choice-

^ point management overhead. If the finished partitions go back to the last choice 

point immediately, a higher degree of parallelism may result but we have not 

yet implemented it to evaluate it empirically. 

All partitions will resort to backtracking if any of the partitions do not have 

enough processor elements. In this way, more parallelism can be exploited if 

there is a nondeterministics derivation step afterwards with domain sizes small 

enough so that backtracking is unnecessary. In synchronous backtracking, a 

physical partition will be idle after all its alternatives have been attempted. 

As a result, even if we exploit or-parallelism in partitions with enough proces-

sor elements, such partitions will still have to wait for those partitions using 

backtracking. 

Like WAM [AK91], a choice point is freed before the last possible value is at-

tempted (since only one choice is left, the system may ‘commit, to that choice). 

Whereas WAM has try_me_else, retry_me_else and t r u s t e e instructions to 

create, update and remove a choice point, such, instructions does not exist in 

DPAM. A choice point is created by the labeling process if needed and up-

dated/removed by the scheduler. 

We shall present trailing and the recovery of process queues in detail. Both 

of them has only one objective—to restore the machine to its original state when 

backtracking occurs. The reader is encouraged to verify herself/himself whether 
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this objective is met in our designs 

5.2.1 Choice Point 

A choice point is created when there are not enough processor elements to be 

divided among the alternatives in a nondeterministic derivation step. The scalar 

register b points to the top of the (scalar) choice point stack. A choice point 

contains the following fields: 

• process-id allocation counter at last choice point 

• ready queue at last choice point 

• labeling queue at last choice point 

• trail pointer ( t r ) at last choice point 

o hb at last choice point 

o restore queue 

o head and tail of suspension queue 

The process count, status word and processor element allocation information 

are saved on top of the heap rather than the choice point stack because they are 

vectors. They can be accessed at any time via hb. The consumed heap space 

can be reclaimed when the choice point has finished. 

5.2.2 Trailing 

The trailing scheme of WAM [AK91] is extended for use in a data-parallel con-

text. The trail stack resides in the vector memory of the processor element array. 

Each entry in the trail is composed of a <mask, address, old value triplet. The 
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scalar t r points to the top of the trail stack. The hb (heap pointer at last choice 

point), which, is scalar like hp, is used to determine whether a variable should 

be trailed. If trailing is not needed by any physical partition then no trail entry 

is created on the trail stack. Otherwise the mask field, which is set to the set of 

physical partitions which require trailing, is recorded together with the address 

and old value fields on the trail. 

5.2.2.1 Trailing of Suspension List Updates 

Several processes may suspend on an unbound variable in between two choice 

points. As a result, the unbound variable (or the suspension list and touch list 

fields of a domain variable) may be updated several times, which may lead to 

multiple trailing. Multiple trailing refers to the problem that a memory location 

is trailed more than once in between two consecutive choice points. This is 

inefficient because only the first trail entry is sufficient for restoring the heap to 

its original state when backtracking occurs. 

We observe that when a new node is inserted at the head of a suspension 

list, the first suspension list node is copied to the top of the heap. Then it is 

overwritten by the new suspension list node (see Figure 5.7 on page 44 again). 

The link field of the new node provides a clue to the age of the variable. At 

the next time the variable is updated, trailing is required only if it points to an 

address below hb. In other words, when a variable is bound or a new suspension 

list node is added, it is the link field of the first suspension list node rather 

than the address of the suspension list node itself which is compared with hb. 

The empty node of a freshly created unbound variable has a zero process-id as 

head and hp at the time of creation as tail. Table 5.1 compares the operations 
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required by a system using time stamps and one which does not. 

operation with time stamp without time stamp 
variable creation read current time stamp 

create time stamp field 
create empty suspension list create empty suspension list 

update list read suspension list read suspension list 
resume resume 
read time stamp 
check time stamp check address 
trail time stamp 
update time stamp 
copy node to top of heap copy node to top of heap 
trail node trail node 
update node “ update node 

dereferencing unaffected unaffected 
unwind copy time stamp and node copy node only 

Table 5.1: Comparison of suspension list update with and without time stamp 

It is evident that efficiency can be improved no matter trailing is needed or 

not. In addition, we save the memory used for storing time stamps. 

This age comparision is different from the age comparison in the unification of 

two unbound /i-variables (see Section 5.1.6, page 49 again). They are compared 

as follows. 

o To determine whether to suspend on X or y in an ask constraint X = Y 

(or to determine whether X or ^ should be bound to the other in a tell 

constraint X = K), the time of creation of the variables is considered. 

Therefore, it is the reference pointers to the unbound cells which are com-

pared. 

o To avoid multiple trailing, the time of last modification is considered. 

Therefore, the link field of the first suspension list node is compared with 
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hb. 

5.2.2.2 Trailing of Domain Variables 

We do not trail the whole bit vector as in [DC93], but create a new bit vector on 

the top of the heap, modify the bit vector pointer field of the domain variable and 

trail the modification of the pointer instead. Like the trailing of a suspension 

list update, the bit vector pointer field itself is compared with hb to check if 

trailing is necessary. 

In the time-stamp approach, the time-stamp itself must be trailed as well, 

and the bit vector is copied twice (when it is trailed and when the trail is 

unwound). In our approach, however, the bit vector is copied only once. We 

saved trail space, but at the expense of heap space. In both cases the memory 

can be reclaimed upon backtracking. 

There are no pointers in the minimum and maximum fields of a variable 

which can be used to infer the age. Therefore, unlike suspension list or bit vector 

updates, time stamps are associated with the minimum and maximum fields in 

order to avoid multiple trailing. We use the value of hp at the last time the field 

is updated as the time stamp. 

When the domain of a domain variable is modified, the touch list (discussed 

in Section 5.1.3.2) will be resumed and replaced by an empty list. The process-id 

field is set to zero as usual, and the link field is set to hp at the time of modi-

fication. As a result, the information on when the touch list field of a domain 

variable is last modified is captured, regardless of whether the modification is 

an insertion at the head or a deletion of the whole list. 

i 
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5.2.2.3 Correctness Issues 

Consider the following scenario. 

1. An invalid value is removed from the domain of a domain variable. As a 

result, the processes in the touch list of the variable are resumed. After 

the resumptions the touch list field of the variable is cleared, and replaced 

by ail empty suspension list node with a zero process-id and the current 

hp as the liMc field, as an indication of the time of the lastest update. 

2. No heap space is consumed afterwards, and a choice point is created. Note 

that hp = hb. 

3. A process suspends on the touch list of the domain variable. Since the link 

field of the first node is equal to hb, the update is not trailed, leading to 

incorrect result. 

Therefore, at least one of the following conditions must be met to ensure 

correct operation of our trailing mechanism. 

1. The update is ultimate (e.g. binding a domain variable to a constant), or 

2. The update consumes heap space (e.g. inserting a node at the head of a 

suspension list (see Figure 5.7, page 44 again) or creating a new bit vector 

and updating the pointer to bit vector field of a domain variable). 

DPAM enforces condition 2 and ensures correct operation by storing partition 

allocation information, the status word and the process count on the heap (see 

Section 5.2.1 on page 52 again) when a choice point is created. 
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5.2.3 Recovering the Process Queues 

The system maintains a process-id allocation counter. When a process is created 

its process-id is set to the process-id allocation counter, and then the counter is 

incremented. The process-id provides processes with a convenient age. Processes 

can be trailed like heap terms: at each choice point the process-id allocation 

counter is saved. If a ready process has an id greater than process-id allocation 

counter at last choice point, then it is created after the choice point and can be 

discarded and returned to the free lists after being executed. Otherwise it must 

be retained. 

Apart from the linkage pointers no fields in the process structures are mod-

ified in DPAM. Therefore to recover the ready queue and the labeling queue 

upon backtracking we just record the heads of the queues in the choice point. If 

a process suspended before the last choice point is resumed and removed from 

a hash queue, it should be restored to the hash queue upon backtracking. The 

restore queue is a singly linked list in each choice point consisting of these pro-

cesses. When a process which suspended before the last choice point is resumed, 

it is added to both the resumption queue as usual and the restore queue as well. 

The restore queue uses the secondary linkage pointer. Hashing on the process-id, 

processes in the restore queue can be returned to the appropiate hash queue. 

If a process suspends after the last choice point and has not resumed, the 

process should be removed from the hash queue and freed upon backtracking. In 

each choice point there is a suspension queue which is a doubly linked circular list 

of all processes suspended after the last choice point. When a process suspended 

after the last choice point is resumed it is removed from the suspension queue. 
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Implementat ion 

6.1 The D E C m p p Massively Parallel Computer 

T t i e Firebird language is implemented on a DECmpp [Bla90], which consists 

of a front-end UNIX workstation and a back-end data-parallel unit. The data-

parallel unit in turn consists of an array control unit (ACU), a processor element 

array (PE) and an inter-processor communication network which supports both 

m e s h and arbitrary c o m m u n i c a t i o n patterns. The ACU dispatches a single in-

struction stream to the processor elements. In addition, it broadcasts data to 

the processor elements and receives the logical or-ing of data from them. A 

processor element may choose to execute or ignore an instruction based on its 

contingent bit Each processor element has its own local memory. Memory 

operations can be overlapped with computation. To achieve this the processor 

elements maintain FIFO queues to store pending memory requests. The system 

will stall if any instruction cannot proceed because it depends on the result of a 

memory instruction which has not completed. 
,1 f ' , I 
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I A scalar1 pointer may point to a scalar memory location or a vector memory 

location. In the latter case, each processor element reads from the same address 

when the pointer is dereferenced. A vector pointer always points to vector 

memory locations. Each processor element reads from (or writes to) a different 

I address. This is termed local indirect addressing. It is 2-3 times slower than a 

normal memory operation2. 

6.2 Implementat ion Overview 

In our implementation, both the ACU and PE array are responsible for pro-

g r a m execution. ACU serves as the host computer of the data-parallel abstract 

machine. The f r o n t - e n d workstation is used only for input and output. Since 

each processor element is very small and slow3, parallelism is easily counter-

balanced by the slow execution of the processor elements, Memory operations 

are particularly slow. When they cannot be avoided, we try to make use of the 

architectural feature of DECmpp and overlap them with non-memory instruc-

tions. In addition, we abandon interpretation and write a native code generator 

to convert DPAM to assembly code. Despite all such efforts, the machine is still 

too slow for our implementation to outperform a good emulator implementation 

of Prolog on programs where no or-parallelism can be exploited, such as reverse 

""" i ln the terminology of DECmpp, registers and memory in the ACU are called singular and 
those in the PE array, plural. 

2 A 3 2 , b i t indirect memory load operation on the processor element array without overiap-
pincr takes over 200 clock cycles on DECmpp 12000 Sx-100. The machine runs at 12.5Mhz. 
DECmpp 12000 Sx-200 (equivalent to MasPar MP-2) is about twice as fast on the same 

OPe3For0example a 32-bit register to register addition requires about 24 clock-cycles, and a 
32-bit multiplication requires more than 200 clock cycles on DECmpp 12000 Sx-100 (The 
machine runs at 12.5 MHz). 
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and append, 

We have f u l l y implemented backtracking, trailing, suspension/resumption of 

constraints/goals, deadlock detection and handling (i.e. labeling). We have also 

implemented decision graph compilation for the most commonly used ask con-

straints, joining of tail-recursive call, compilation of u se r constraints (any linear 

ask/tell inequality, equality and disequality constraint), DPAM code generator 

and native code generator for DECmpp. However, a number of less commonly 

used ask and tell constraints, borrowing and a g a r b a g e collector are yet to be 

implemented. 

6.3 Constraints 

Our current implementation compiles tell constraints directly to DECmpp na-

tive code. The compilation is very simple While clp(FD) [DC93] has abstract 

machine instructions to install tell constraints, it is not needed in a fully con-

current system like Firebird. Since all tell constraints are regarded as processes, 

the same call instruction can be used for both goals and constraints. 

As the result of compilation, we do not have to interpret tell constraints 

at runtime. We have employed a number of optimizations, like using a shift 

instruction for multiplying and dividing a constant which is a power of 2 (i.e. 

We shall compare and contrast the handling of equality tell constraints 

adopted by Firebird and that of CHIP [DVHS+88]. 
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6.3.1 Breaking Down Equality Constraints 

According to [VH89], A linear constraint of the form 

aiXi + •: • + anXn + c = 6 + … + bmYm 

where a i , . •): an , . . . ,6n are natural numbers and X i , . . . • • • are 

rf-variables with noil-negative domains, is broken down into two constituents. 

aiXi + …+ anXn + c = Z 

Since the two constraints are similar, we shall consider aiA^H YanXn-\rC 

Z only. We deduce that, for l<i <n, 

x . =
 z - Sj^t 

“ ‘ ai 

Since all the coefficients and variables are positive, we can deduce the new upper 

and lower bounds of Xi given the upper and lower bounds of XjJ + i. The 

division must be performed with inward rounding. The order which the A^'s 

should be handled is not stated clearly in [VH89], but from a commercially 

available CHIP system we know that each Xi is handled only once and finally 

Z is handled. Then the constraint is considered to be locally stable. 

The reason why it works most of the time is as follows. 

1. Z is handled after X“ 1 < i < n, using the most updated upper and lower 

bounds of Xi. 

2. As a result, any change in X“ I <i<n will cause a change in Z • 

61 



Chapter 6 Implementation 

3. Any change induced by axXx + •< • + anXn + c = Z to Z causes b^ + 

• 4. bmYm = Z to be re-evaluated. Evaluating hYi H + bmYm = Z m 

turn causes Z to be changed, reinvoking aiXi H h anXn + c = Z. The 

two constraints are evaluated in a coroutine-like manner. 

In general, this method does not give the smallest interval for all X“ A 

I counterexample is 5Xi = 3R + , ^ = 4, VI, % € [0,6]. The constraint is 

broken down to = Z and 3Fi + 2Y2 = Z. Z is found to be 20. Yi is found to 

be [3,6]. Next, V2 is found to be [1,5]. However, if we handle Yx again, it can be 

further reduced to [4,6]. From a commercially available CHIP system, we obtain 

Yi € [3,6]. The inconsistency is not discovered until Yi is labeled. However, if 

we repeat the constraint again [i.e. stating the same constraint twice in the 

query), we obtain Yi € [4,6]. 

6.3.2 Processing the Constraint 4As Is, 

In Firebird, a linear constraint 

aiXi + ‘.. + anXn + c == 0 

is processed 'as is', without any decomposition. Furthermore, a u . . . ,a n and 

•.., Xn are not required to be non-negative. For each Xiy the following 

formula is used to deduce the upper/lower bounds of Xi given the upper/lower 

bounds of each Xj, j ^ i. 
‘ c — a j X j 
Xi = — 

di 
The X , s are processed in turn repeatedly until all of their upper and lower 

bounds become stable. Compared to CHIP, the pruning of invalid values is 

more complete. 
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6.4 The Wide-Tag Architecture 

One of the main problems we encounter in our implementation is that only 64K 

bytes of memory is available for each processor element. To save memory, the 

wide-tag memory architecture is used. For 32-bit heap cells, only 14 bits are 

required to address the memory/ These 14 bits are used to store the address of 

the first argument of a compound term and the remaining bits can be used to 

store the principalfunctor and arity. Figure 6.1 shows the heap cell format used 

in our DECmpp implementation. As a corollary, the differentiation between 

structure, list and constant becomes obsolete. A reference pointer becomes a 

compound term with functor and arity fields zeroed (Figure 6.2a), a constant is 

represented by a term with zero arity and no first argument pointer (Figure 6.2b) 

and a list becomes . /2 (Figure 6.2c). A compound term is shown in Figure 6.2d. 

Unlike WAM, ail unbound variable is not a self-referential pointer but a reference 

pointer pointing to an unbound variable cell (see Figure 6.3), in which the head 

and the tail of a suspension list node are packed. Stack variables4 are not possible 

and every variable must occupy at least a single heap cell. 
4In WAM, a permanent variable which appears only in the body of a clause is stored as a 

single cell on the environment stack, consuming no heap space. This is called a stack variable. 

reference 0 s pointer (14 bits) OF" 
structure functor (11 bits) arity (5 bits) pointer (14 bits) 00 
h-variable head (16 bits) tail (14 bits) “ 01 

integer value (30 bits) 10 
d-variable head (16 bits) | tail (14 bits) 11 

Figure 6.1: Heap cell format 
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0 00
 r ~ ^ ~ ~ r - r—] 

. . • a 0 0 00 
to next cell m L__J J 
reference chain 

a. reference pointer b. atom 

f n 1 00 

. 2 I 00 ~ a r g 1 

p ar6 2 

^ head _ — — . 

tail : 

arg n 

c l s t d. compound term 

Figure 6.2: Examples: reference pointer, atom, list and compound term 

0 r e f 

ref 1 j 0 j j |hvar 

unbound variable in W A M unbound variable in DPAM 
(with empty suspension list) 

Figure 6.3: Unbound variable representations of WAM and DPAM 

6.5 Register Window 

The ACU has 32 32-bit scalar registers (called CReg), and each processor element 

has 40 32-bit vector registers (called PReg). A vector register is addressable by 

a scalar register plus an offset. Register windows are used to pass call arguments 

and store local variables, as follows. A scalar register is used as the register 
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pointer (rp). A procedure must not access any register whose number is lower 

than rp. The caller sets rp before calling another procedure and registers below 

rp are safe and wilfe remain the same upon return. The caller has a register 

frame pointer \rf) to keep track of its own rp. The relationship between r p 

and r f is analogous to that between the stack pointer and the frame pointer 

in i m p e r a t i v e languages (see Figure 6.4). Consequently an environment stack 

frame is not necessary under most circumstances.5 

'" arguments of p arguments of p 

local variables of p local variables of p 

rp—~ r f > 
arguments of q arguments of q 

local variables, of q 

p sets rp and calls q q saves rf and sets rf to rp 

Figure 6.4: Register windows 

6.6 Dereferencing 

The dereferencing operation often introduces pipeline stalls in implementations6. 

The problem is worse on DECmpp since local indirect addressing is particularly 

5in order to support register windows, we do not use the MasPar Application Language 
(MPL) [Chr90] to implement our system libraries but assembly language is used instead. 

6Pipelining is very popular in modern microprocessor design. Memory operations fre-
quently use different pipeline stages from other operations, resulting in empty (hence under-
utilized) pipeline stages. This is termed a pipeline stall. If one examines the disassembly 
of the dereferencing operation, she/he may find (depending on the particular compiler and 
architecture) that the data obtained from a memory fetch instruction is immediately used in 
the next instruction, leading to pipeline stalls. 
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slow. Therefore, we implemented a low-level operation called deref -double 

which performs the dereferencing of two terms simultaneously. While one thread 

is performing a memory load, the other is checking the tag. This operation is 

up to 30% faster than two separate dereferencing operations for two reference 

chains of equal length. The operation is used in many system library predicates 

(e.g. i n / 2 , i s / 2 , =/2). 

6.7 Output 

Displaying all the solutions on the front-end workstation of a massively parallel 

computer turns out to be the bottleneck of the system. To partially alleviate 

this, a parallel reduction algorithm has been implemented both to compress the 

solutions before they are transferred from the back-end to the front-end and to 

facilitate output. The idea is based on sequential backtracking. 

6.7.1 Collecting the Solutions 

The solutions from the data-parallel back-end are collected and stored in a scalar 

output buffer. If there is only one solution, the solution (which is a term, and 

hence a tree) is traversed in a depth-first, left-to-right manner and each visited 

node is copied to the output buffer. The result will be a prefix representation 

of the solution tree. 

Consider the case with, more than one solution. The tree is traversed as 

usual if the visited node is the same in all physical partitions. Otherwise, a 

choice point is created, a mark is written on the output buffer and ail arbitrary 

alternative is taken. The mask is set to the set of physical partitions which take 
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the chosen alternative. Other alternatives will be taken upon backtracking. For 

example, if there are 5 partitions, 

a( l x ) . 
a ( l , y ) . 
a ( l , z ) . 
a(2 x ) . 
a (2 ,y ) . 

We start at the root and write an a/2 to the output buffer. Next the first 

argument is traversed and there are 2 alternatives. A mark is written on the 

output buffer and the alternative with 1 as the first argument is taken. The 

partitions with 2 as the first argument will stay idle until backtracking. At this 

point the output buffer will be 

a /2 mark 1 

The second argument is traversed and an additional choice point is created, 

a /2 mark 1 mark x/0 

Upon backtracking, the other alternatives (either y/0 or z/0) are taken. 

Suppose y/0 is taken. A mark is written on the output buffer, followed by y/0. 

a /2 mark 1 mark x/0 mark y/0 

Execution continues and the final output buffer is 

a /2 mark 1 mark x/0 mark y/0 z/0 2 mark x/0 y/0 

A combined environment/choice point stack, similar to that of WAM [AK91], 

is employed to maintain the choice points and traverse the tree. The stack has 

both scalar and vector components. The specific implementation details are out 

of the scope of this thesis. If the solution contains unbound domain variables, 

they are labeled on the fly. 
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6.7.2 Decoding the solution 

To display the solutions on the front-end workstation, another combined envi-

ronment/choice point stack a text buffer is maintained. The pointer to the 

top of the text buffer, called text pointer is saved in each choice point so that the 

first part of the text buffer can be reused. Using the example in the last section 

(Section 6.7.1), after a/2 is processed the following is written on the text buffer: 

r . a( 

Since a mark follows, a choice point is created and the text pointer is saved. 

Execution continues and another mark is encountered. 

As a result, another choice point is created. Finally, the first solution is 

formed and displayed. 

a ( l x ) . 

Backtracking is needed and the text pointer is restored. 

a ( l , 

The word y/0 in the output buffer is processed. 

a ( l , y ) . 

In a similar manner the other solutions are displayed. Our algorithm can 

also handle operators and lists, but once again, such implementation details are 

out of the scope of this thesis. 
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Performance 

The aim of this chapter is to evaluate the performance of our data-parallel 

implementation and to analyze the effects of a number of design decisions. 

The reader may find the following performance results unsatisfactory. While 

one would expect a linear speed up of 8,192 on 8,192-processor elements, we 

attain a maximum speedup of only 121 on the 9-queens problem. The speedup 

drops to 20.3 when the p e r f o r m a n c e of a 8,192-processor DECmpp is compared 

to CHIP on DECstation 3100, and the speedup figure will look even less impres-

sive when compared to say a sequential implementation on DEC Alpha AXP. 

However, the reader is reminded that: 

1. Firebird is not optimized for linear speedup but for extremely high degrees 

of parallelism. 

2. We use a machine with 8,192 tiny, slow 4-bit engines using the accumulator 

architecture. 16 such tiny processor elements form a cluster and share a 

single 8-bit memory port. Our implementation platform is inherently slow. 

Therefore, poor performance is not necessarily an indication of poor design. 
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We axe also unable to test v e r y large problems due to the limited amount of 

local memory available on each processor element (64K bytes). Again this is not 

a r e s t r i c t i o n imposed by Firebird or DPAM. Although there is always room for 

improvement in Firebird, the reader is requested to distinguish the limitations 

of a particular implementation platform from the limitations of our data-parallel 

execution model. 

In all of the following benchmarks, tu t2, etc are execution times for all 

solutions in seconds, #proc is the number of processor elements, DL the number 

of deadlocks, BT the number of backtrackings and P the number of partitions. 

p m a y change in the course of execution, but it can never exceed the number of 

processor elements. Only the value of P taken at the end of execution is given. A 

dash indicates that a benchmark is not available because memory is not enough 

for its execution. Since many parameters are studied, only one parameter is 

varied in each benchmark. The other parameters are listed below each table. 

The benchmark set is shown in Table 7.1. 

s e n d S E N D + M O R E = M O N E Y 

eqlO 10 simultaneous linear equations over 7 variables 
eq20 20 simultaneous linear equations over 7 variables 
q u e e n n-queens problem 
magic magic series problem 
magich magic series problem with redundant constraint Sj = n. 

Table 7.1: Benchmark set 
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7.1 Uniprocessor Performance 

We measure the performance of our implementation on a DECmpp 12000 Sx-

100 m a s s i v e l y parallel computer, but using only one of the processor elements. 

The result is compared with CHIP version 3.2 on a DECstation 3100. The 

CHIP benchmark is obtained using generalized forward checking but no first fail 

heuristics. The Firebird system is modified to apply nondeterministic derivation 

(i.e. labeling) to_.tlie domain variables in the order they are created. These 

ensure that the order of labeling of CHIP is the same as Firebird. The time 

used to find all solutions in seconds, neglecting any time used for input/output, 

is given in Table 7.2. 

Except for the magic series problem, the results indicate that our implemen-

tation has very poor performance compared to CHIP. The magic series problem 

has good performance because Firebird is a concurrent language which allows a 

different formulation of the problem (see Section 2.5.1.3). 

We attribute this to the deficiency of our implementation platform. We pro-

file our execution and find that an average machine instruction requires about 

10 machine cycles to execute on our 12.5 MHz DECmpp 12000 Sx-100. In gen-

eral, most sequential instructions require only 1 machine cycle to execute, while 

some parallel instructions take several hundred cycles. Table 7.3 lists the aver-

age execution time, in machine cycles, of a number of machine instructions. The 

operands of the instructions are registers. Each machine instruction in DECmpp 

has only 2 operands. Sometimes two 2-operand instructions are required to do 

the same task as a single 3-operand instruction typical of modern RISC archi-

tectures. Furthermore, we found that some other instruction sequences can be 
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I I - j Firebird CHIP 
benchmark tx PL BT h h/U 

I send :Q28 2 3 .007 .25 
e q l O 4.720 21 163 .660 .14 

I e q 2 0 5.153 ~ 1 1 5 .848~ .16 

q u e e n ( 4 ) ~ 0 2 8 3 5 .007 .25 

queen (6) .239 27 39 .047 .20 

q u e e n ( 8 ) 3.172 265 415 .512 .16 

q u e ^ n ( l O ) _ 6 o j o 2 ] ^ 2 2 9 6665 8.547 .14 

queen (12) - - __- 211.948 ^ 
m a g i c ( 3 ) .110 2_ 7 .051 .46 

m a g i c ( 6 ) 2.128 5 31 6 . 3 7 8 ^ _ 3 00_ 

m a g i c ( 8 ) 8.634 7 ^ J ^ ^ ^ J A ^ 

m a g i c h ( 3 ) .127 6 .058 .46 

m a g i c h ( 6 ) “ 1.112 4 _ _ 

m a g i c h Q ) I 4.747 7 41 140.886 29.68 

Test conditions: #proc=l, eager bit vector creation, eager nondeterministic 
derivation, no solitary memory access, no priority scheduling. 

Table 7.2: Benchmark: uniprocessor performance 

Parallel instructions Sequential instructions 

mov32 I 18.9 11 add32 24_cmov32 1.0 
l d 3 2 • ~ 79.0 mul32 , 244.6 cld32 5.2 

Id32 (indirect) 224^ div32 422.9 cst32 6.3 
l d s o l 3 2 1 8 . 6 mod32 469.3 cadd32 1.0 
ldso!32 (indirect) 43.5 | shll32 63.9 || cjmp 3.2 

Table 7.3: Execution time of machine instructions (in machine cycles) 
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replaced by a single instruction on a RISC computer1. For these reasons, we es-

timate that a single processor of our implementation platform is about 50 times 

slower than an average workstation. The same result has been observed in the 

implementation of SIMD MultiLog [Smi93]. 

One could always enhance the speed of individual processor elements to get 

around this problem. We tested an earlier version of Firebird on a newer model, 

MasPar MP-2, which was binary compatible with the DECmpp 12000 Sx-100 we 

are currently using, and found that it was about 2 times faster on the n-queens 

problem.2 See [TL93] for the benchmark. 

T.2 Solitary M o d e 

On our implementation platform, DECmpp, 16 processor elements form a cluster 

and share a single 8-bit memory port. We would prefer each processor element 

to have its own 32-bit memory port, giving 64 times of memory bandwidth, in 

order to be competitive with a workstation. Although we used the overlapping 

feature so that memory access can be performed in parallel with other machine 

instructions whenever possible, a concurrent constraint programming system 

is so memory intensive that performance is completely dominated by memory 

access time. 

We introduced a solitary mode to alleviate this memory bottleneck. Only 

ipor example a conditional branch. One instruction is used to move each processor's flag 
to the contingent bit. The next instruction obtains the global or-ing of all contingent bits and 
stores the result in the carry flag of the array control unit. The last instruction is the actual 
branch. 

2The manufacturer claimed a speedup of up to 4.5, without any modifications to the pro-
gram. The exact reason why we obtained only a speedup of 2 was unknown, but we suspected 
that this was because memory throughput was made only 2 times faster, and our system was 
very memory intensive. 
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1 processor element in each cluster is used, so that the processor element has 

exclusive access to the memory port. Each Id (load) and s t (store) instruction 

is replaced by the corresponding solitary equivalent ( ldsol and s t so l ) . The 

performance of 512 processor elements in solitary mode is compared with 8,192 

processor elements in normal mode. See Table 7.4. 

solitary (#pn?c=512 normal (#proc=8,192) 
benchmark h PL] P BT t2 PL \ P BT hjh 
send .014 _ _ _ _ 0 L 3 6 

" ^ 1 0 .701 6 76 28 6 _ 7 6 _ _ _ 9 .48 
eq20 J I ^ L _ L I ^ - J L - — 3 1 4 0 " _ 0 . 6 9 

queen(4) _ L _ . 0 1 4 2 — 0 L 5 6 

queen(6) _ .028 _ _ I L _ 0 L 5 Q 

qneen(8) “ .157 ~TT"T82 4 " ~ 1 0 1 548 _ _ 0 .64 
queen(lO) 3.957 191 1.400 27 2399 _ 1 7 .35 
queen (12) H H Z Z Z Z : 9 2 1 8 3 9 7 1 4 1 6 5 1 1 9 1 _ _ : 
magic(3) .051 2 _ _ 1 1 _ _ _ 2 11 _ _ 0 1-45 

magic(6) 2 3 8 _ _ 0 L 5 4 

magicQ) _ 2 8 3 _ 0 r . 4 9 

magich(3) _ _ _ _ _ 0 1.43 
magich(6) _ 0 L 4 6 

magich(9) 2 4 5 _ _ 0 L 4 5 

magich(12) 1.787 2 78 2.544 2 78 0 L42 

Test conditions: eager bit vector creation, eager nondeterministic derivation, no 
priority scheduling. 

Table 7.4: Benchmark: solitary mode performance 

From Table 7.3, a solitary memory instruction is 4-5 times faster. By im-

proving the speed of memory access alone a speedup of 1.5 is attained (despite 
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some memory instructions are executed in background). The advantage of soli-

tary mode is lost when 512 processor elements are not enough and backtracking 

is required, as in eqlO, eq20 v queen(8) and queen(10) . 

7.3 Bi t Vectors of Domain Variables 

The domain of a domain variable is represented by a bit vector. Many newer 

finite domain coiistraiiit programming systems, like clp(FD) [DC93] and cc(FD) 

[VHSD93], does not have bit vectors for continuous domains. A bit vector is 

created on demand only when the domain is broken into two parts because one 

of the invalid values is removed. For example, if X € {1 . . . 5}, X ^ 1, then 

x e {2. . 5} and a bit vector is unnecessary. However, if X G {1 . . . 5} ,X + 3, 

then X e {1,2,4,5} and a bit vector representing the domain is created. We 

test the effect of this optimization in a data-parallel context. 

The optimization leads to a slight reduction of both heap consumption and 

execution time, except for the n-queens problem, where both execution time 

and memory consumption are made worse. We find that several bit vectors may 

be created for a single domain variable. For example, suppose X G { 1 . . . 5 } 

and X + y , where Y is 1 in partition 1, 3 in partition 2 and 5 in partition 

3. As a result, a bit vector is created for the X in partition 2 only. If there is 

another constraint X ^ Z, where Z-is 3 in partition 1, 4 in partition 2 and 5 

in partition 3, a bit vector will be created for partition 1. Two bit vectors have 

been created, leading to slower execution. Under the heap frame scheme both 

bit vectors consume heap memory. 
We devise an eager creation scheme to get around this problem. Note that 
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a bit vector can be created only when a disequality constraint is encountered. 

In processing a disequality constraint, if any of the physical partitions needs a 

bit vector, bit vectors will be created for all physical partitions. Lazy creation 

refers to the scheme in which bit vectors are created only for partitions in need. 

The 3 schemes are compared in Table 7.5. The heap and trail usages are given 

in bytes. 

The eager creation scheme is slightly better than the unoptimized version on 

average, and is preferred because sometimes very large continuous domains may 

appear in users' programs. The eager bit vector creation scheme has been used 

to obtain the performance results in previous sections. 

eager creation lazy creation unoptimized 
benchmark _ h \ heap trail h heap trail t3 heap trail 

.019 460~ 0 .019" 460 _ _ 0 -019 472 _ _ 0 _ 

.345 1756 162 

__.519 "l63~6 0 _ ^ _ j g 3 6 _ Z Z L . 5 2 8 3 6 6 4 _ L 
queen(4) H T 440 0 .014 452 0 .013 444 _ 0 _ 
q U een(6) . 0 4 2 _ _ _ 9 6 ^ ] _ ^ _ 0 4 2 _ ] _ 9 9 6 _ _ 0 .042 968 _ 0 _ 
queen(8) " _ 1 ^ _ _ J 6 5 6 _ _ 0 ' 1 Q 1 1 6 6 0 _ 
queenClO) " T i o T 3208 J ^ ^ J ^ J I l ^ L 780 L 3 9 7 3 2 1 2 7 8 0 

q ” T ^ 92.177 5484 1764 92.062 5408 1764 

magic(3) ^ T 2044 “ _ _ ^ _ £ 7 4 _ _ 2 0 4 4 _ 0 .077 2252 _ 0 _ 
m a g i c ( 6 ) J ^ L I ^ L J - ' 7 9 1 1 3 5 1 2 _ _ 0 , 8 2 2 1 4 1 0 0 _ 
m a g i c (9 )"""" 2.909 41476— 0 2.9oT 41480 _ _ 0 3.006 42644 _ 0 _ 

m a g i c h ( 3 ) " " ” ^ 8 6 “ " " “ 0 .090 2512 _ _ ^ 

m agich(6) , 4 1 1 9 2 7 6 _ 0 "4 2 9 9 8 0 0 0 

magich(9) _ 0 1-260 25368 _ 0 _ 
"magich(12) 2.544 47596 0 2.543 47596 0 2.644 49432 0 

Test conditions: #pn?c==8,192, eager nondeterministic derivation, no solitary 
memory access, no priority scheduling. 

Table 7.5: Benchmark: on demand creation of bit vectors 
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7.4 H e a p Consumpt ion of the Heap Frame 

Scheme 

The heap frame scheme (Section 5.1.3.3, page 38) is aimed at improving memory 

access time when building heap terms. However, it has the drawback that some-

times heap fragmentation occurs. Let F i be the heap consumption (in bytes) 

when the heap frame scheme is used, and H2 be the heap consumption when 

the heap frame scheme is not used. We define percentage fragmentation as 

r H i “ H i x ioo% 

Our results indicate that fragmentation occurs only in the magic series problem 

(Table 7.6). For all the other programs in our benchmark set, fragmentation is 

zero. 

magic magich 
3 I 6 1 ~ 3 1 6 1 9 12" 

frag (%) ~ 9 6 5.98 7.69 1.03 1.21 5.27 6.19 

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic 
derivation, no solitary memory access, no priority scheduling. 

Table 7.6: Benchmark: heap fragmentation 

From Table 7.3 (page 72), we find that a direct addressing 32-bit load instruc-

tion (ld32) is 2.8 times faster than its local indirect addressing counterpart. We 

have also shown in Section 7.2 (page 73) that memory access time has a great 

impact on system performance. Therefore, we believe that the slight memory 

overhead of the heap frame scheme is acceptable. 
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7.5 Eager Nondeterminis t ic Derivation vs 

Lazy Nondeterminist ic Derivation 

As discussed in Section 4.4, it is not necessary or even desirable to wait for a 

deadlock before a nondeterministic derivation step is applied. With eager nonde-

terministic derivation, a labeling process is moved to the ready queue whenever 

“ lazy nondet. derivation eager nondet. derivation 

benchmark h PL \ P\ BT t2 \ PL \ P BT h/U 
send 0 . 0 1 9 2 4 0 L Q Q 

^ ^ .537 4 164 0 .334 _ 4 181 _ 8 .62 

e q 20 _ .791 _ _ 3 1 4 0 _ 0 , 6 6 

queen (4) ~ _ _ Q - — ^ l l Z E _ _ 6 0 ‘ 8 8 

qneen(6) 1 — 0 ‘ 0 4 2 4 4 0 _ ° ‘ 7 8 

queen (8) " ~ 2 Q T ~ 7 " 416 0 .101 7 548 _ 0 .50 
" ^ n ( 1 0 ) L 4 Q Q 2 7 2 3 9 9 1 7 ‘ 4 0 

queen (12) j g g ^ 971 4165 1191 .44 
magic ~ ~ ^ ^ T ^ T _ _ _ 0 .90 

magic (6) _ 0 7 9 1 2 38 0 ‘97 

magicO) Z j ^ I L - ^ - — ^ - ° 2-9°9 2 83 ° -86 
magich(3) ~ ‘ 0 8 6 2 L _ 0 L Q Q 

magich(6) ^25 ^ ^ ^ _ 0 . 2 2 1 _ 0 ‘ 9 7 

magichQ) _ 0 L 2 1 0 2 45 _ 0 '94 

magich(12) 2.721 | 2 | 74 Q 2.544 | 2 | 78 0 | .93 

Test conditions: #^roc=8,192, eager bit vector creation, no solitary memory 
access, no priority scheduling. 

Table 7.7: Benchmark: lazy nondeterministic derivation vs eager nondetermin-
istic derivation 
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deadlock of any physical partition is detected. Lazy nondeterministic deriva-

tion refers to the control strategy in which a labeling process is moved to the 

ready queue only after the deadlock of all physical partitions is detected. Eager 

nondeterministic derivation is chosen over lazy nondeterministic derivation for 

DPAM and we justify this choice using empirical results (Table 7.7). 

From the results, we find that lazy/eager nondeterministic derivation is ba-

sically an execution time/degree of parallelism tradeoff. Eager nondeterministic 

derivation c r e a t e s partitions more aggressively. As a result more parallelism can 

be exploited, leading to better performance. It is worth noting that although 

lazy nondeterministic derivation reduces the number of backtrackings, it does 

not lead to any performance gain. 

T.6 Priority Scheduling 

One of the ways to increase the degree of parallelism is to schedule those pro-

cesses resumed by a labeling process ahead of all the others. We have imple-

mented a prototype of this priority scheduling scheme on top of our system and 

its effect on performance is measured (Table 7.8). 

Priority scheduling is faster on average, with best performance on the n-

queens problem. A possible explanation is that priority scheduling is more suit-

able when disequality constraints are predominant. 
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” ~ I ~ priority scheduling _ w/o priority scheduling 

benchmark ~ h | DL h PL \ P | BT t2/h 
send ~ r _ _ 0 .019 2 _ _ 4 0 1.00 

.299 T" 226 5"" .334 _ 4 181 8 1.12 

.429 ~ T 138 0 ~ .519 3 140 _ 0 1.21 
queen (4) .013 2 6~ 0 ^ O l l I X _ ^ _ 0 L Q 8 

queen(6) — .034 4 _ 0 L 2 4 

qneen(8) ~ 0 7 5 _ t l l l ^ L 7 5 4 8 _ _ 0 L 3 5 

queen(lO) 2 7 2 3 9 9 1 7 L 6 9 

queen(12) 17.264 952 J ^ J ^ J ^ K 9 7 1 4 1 6 5 1 1 9 1 L 6 1 

magic (3) ^ 7 6 2 s" 0 _ _ 0 
magic (6) H j ^ I Z Z K 0 7 9 1 2 _ _ 3 8 0 L 1 3 

magic (9) _ _ 0 2.909 2 83 _ 0 .91 

magich(3) Z ^ Z X I l L 0 ' 0 8 6 2 _ L L ' 9 6 

magich(6) _ 0 ' 4 1 1 2 2 1 ° _ _ ^ 
magich(9) ^ E I Z Z j L 0 L 2 1 Q 2 — _ _ _ ' 9 2 

^ T c h ( 1 2 ) 2.729 I 2 I 78 I 0 2.544 2 | 78 | 0 | .93 

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic 
derivation, no solitary memory access. 

Table 7.8: Benchmark: priority scheduling 

7.T Execut ion Profile 

We measure the time spent in nondeterministic derivation (ND), constraint solv-

ing (C), backtracking (BT) and the execution time up to the first deadlock 

(FDL). The backtracking time includes the time to update the choice point, 

unwind the trail and restore the process queues. The percentage time is shown 

in Table 7.9. 
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I benchmark FPL 1 C \ ND \ BT 
send 75.0 78.0 2.5 _ 0 _ 
eqlO 7.0 95.8 _ . 7 1.9 
eq20 16.2 98.1 _ _ 0 _ 
queen (4) “ 52.3 59.7 “ .06 _ 0 _ 

[' queen(6) 35.8 72.7~ .06 _ 0 _ 
queen(8) 25.8 80.6 .05 _ 0 _ 
queen (10) 2.9 91.3 3.4 2.7 
queen (12) .08 90.9 2.8 3.7 
magic ( 3 ) 4 0 . 6 57.1 .9 _ 0 _ 
magic (6) 11.0 63.2 .1 _ 0 _ 
magic(9)"""" 6.0 60.4 .04 _ 0 _ 
magich(3) 36.5 61.2 .9 _ 0 _ 
magich (6) 19.7 66.6 .3 _ 0 _ 
magich (9) 14.5 68.3 ,1 _ 0 _ 
magich(12) 1.3 68.5 .06 | 0 

Test conditions: #proc=8,192, eager bit vector creation, eager nondeterministic 
derivation, no solitary memory access, no priority scheduling. 

Table 7.9: Benchmark: execution profile (in %) 

It is evident that constraint solving dominates execution time for large prob-

lems. This implies that compiler optimization may not be as useful as an efficient 

constraint solver. The magic series problem uses less time to solve constraints 

than other programs because a fair amount of time is spent in the bool /3 pred-

icate (refer to Section 2.5.1.3, page 13). Nondeterministic derivation and back-

tracking overhead is almost negligible. 
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7.8 Effect of t h e N u m b e r of Processor Ele-

ments on Performance 

Figure 7.1 shows the execution time of n-queens, for A <n < 12, with 1 to 

8,192 processor elements. We use priority scheduling because it is particularly 

suitable for the n-queens problem. 

time(sec) 
loo 10 a I I ^ ^ ^ 

- —^ • e ^ e e e €> 
:Q 4 ^ ^ ——I——I——i——I——I——I 1 ^ 

°- 0 1
 x " " " 5 ^ 8 16 32 64 128 256 512 1024 2048 4096 8192 

•proc 

Test conditions: eager bit vector creation, eager nondeterministic derivation, 
no solitary memory access, priority scheduling. 

Figure 7.1: Benchmark: run time of n-queens program 

We do not have enough memory (each processor element has only 64K bytes) 

to run 13-queens. Some data points are missing from the above graph for the 

same reason. A lot of memory is consumed if backtracking is used because 

process structures created before the last choice point cannot be freed until 
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backtracking occurs. 

Figure 7.2 shows the speed up with respect to the execution time using 1 

processor element as the number of processor elements is varied, 

speedup 

100— 7 

— 8 

J “ 
1 1 1 1 1 5 

- ^ — — e — — e ~ ^ ― ^ e e °4 

1 1 2 " " “ 4 8 1 6 32 64 128 256 512 1024 2048 4096 8192 
proc 

Test conditions: eager bit vector creation, eager nondeterministic derivation, 
no solitary memory access, priority scheduling. 

Figure 7.2: Benchmark: speedup of N-Queens Program 

The speed up value continues to increase until there are too many processor 

elements to be utilized. Otherwise, the speed up value is fairly independent 

on problem size and fairly constant for a given number of processor elements. 

Speed up is scalable but sublinear. For instance, the speed up of 7-queens 

levels at about 15, but 512 processor elements are required to obtain this speed 

up. The reason for this is that the processor elements are divided evenly in 
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a nondeterministic derivation step, which may not be the optimal processor 

allocation strategy. Furthermore, a p r o c e s s o r element will be remain idle after 

failure until the system backtracks. 

We obtain a maximum speed up of 121 for 9-queens. We have only analyzed 

the performance of n-queens in detail, and the reader is reminded that not all 

other programs exhibit the same behaviour as n-queens. 

7.9 Change of the Degree of Parallelism Dur-

ing Execut ion 

We are interested in the change of the degree of parallelism during execution. 

We count the number of active partitions when each constraint is executed and 

plot the graph in Figure 7.3. We do not include anything before the first 

nondeterministic derivation step, with the understanding that 

1. there can only be a single active partition, and 

2. execution time before the first nondeterministic derivation is only a small 

portion of the total execution time. 

Furthermore, since we have found out that priority scheduling can improve the 

performance of the system, we use it when obtaining the plot. Other parameters 

remain unchanged. 

From the plot we can identify the nondeterministic derivation steps as sudden 

leaps in the degree of parallelism. A peak of 510 is attained. After that, the 

degree of parallelism drops because of the failure of some partitions. We are 

actually approaching the theoretical limit of or-parallelism. Using or-parallelism 

- 84 



Chapter 7 Performance 

degree of parallelism 

500 ^ I 

450 V 
400 - \ 

350 : fx \ 

K V 
300- … \ 

250 : \ 

\ 
200 - \ 

V 
150 J \ 

100 

50 I k 
o "1 I I 1 I r 1 1 1 1 

20 40 60 80 
constraint 

Test conditions: #proc=8,192, eager bit vector creation, eager . 
n o n d e t e r m i n i s t i c derivation, no solitary memory access, priority scheduling. 

Figure 7.3: Execution trace of 8-queens, #proc=^192 
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I alone the peak of 510 can never be exceeded, although the more flexible MIMD 

architecture may be able to exploit higher degrees of parallelism after that peak. 

We conclude that the inherent limitation of or-parallelism will show up in 

any massively parallel implementation. Degree of parallelism rises slowly at the 

beginning, making full utilization of processor elements impossible. After the 

peak is reached, some or-branches fail, again limiting the degree of parallelism 

and hence processor element utilization. 

Next, we show that when the number of processor elements is very small 

when compared to the number of or-branches, reasonably high processor element 

utilization can be maintained. For the 8-queens problem, 64 processor elements 

is just enough for the first two nondeterministic derivation steps. The plot is 

shown in Figure 7.4. 
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degree of parallelism 

n n 

n i n 
30- I ^ I 

IMIiifc 
0 1 i , I I I . I • • I ' ' ‘ ' I ' ' ' M ' ' ' M ' ' ' ' M ' ' ' I ' ' ' M ' ' ' ' I ' ' 

100 200 300 400 500 600 700 800 900 
constraint 

Test conditions: #proc==Q4, eager bit vector creation, eager nondeterministic 
derivation, no solitary memory access, priority scheduling. 

Figure 7.4: Execution trace of 8-queens, #proc=64 
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Related Work 

Firebird can be regarded as flat GHC [Ued85] extended with finite domain con-

straint handling capabilities. The finite domain constraints used in Firebird 

originates from CHIP [VH89]. The semantics of Firebird is based on that of 

the algorithmic programming language ALPS [Mah87]. The concepts of ALPS 

can be applied to a large class of programs which arise in practice. However, 

it is not applicable to certain domains, including the finite domain, where the 

notion of nondeterminism is inherent. Nondeterministic derivation in Firebird 

is inspired by the Andorra Model [War90], but the operational semantics are 

fundamentally different. 

In the early stage, we built a prototype implementation of a concurrent con-

straint logic programming language called FD-Parlog [LTC93], which is similar 

to Firebird but is based on Parlog [CG86]. 

Although DPAM does not look like WAM [AK91], many concepts like choice 

point and trailing are borrowed from WAM. The concurrent process scheduler 
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f is based on JAM [Cra90b] (the abstract machine of Parallel Parlog). The im-

plementation of Firebird is also influenced by BinProlog [Tar92a, Tar92b]. For 

instance, the wide-tag memory architecture is a reminiscence of the tag on data 

representation. Both schemes make the differentiation between lists, structures 

and atoms unnecessary. They are also more suitable for decision graph compi-

lation [KS90] than WAM [AK91]. 

We are unaware of any parallel execution schemes for concurrent constraint 

programming or constraint logic programming languages on massively paral-

lel SIMD computers. However, there have been a number of implementation 

schemes of logic programming languages on SIMD computers. [KB87, NT88a, 

NT88b, IIK90, BM92, BP92, Smi93]. 

8.1 Vectorization of Prolog 

[KKS88] is probably the first or-parallel logic programming system on SIMD 

computers. The n-queens program is manually vectorized and executed on a 

Cray-type vector supercomputer, exploiting or-parallelism. Automatic vector-

ization is difficult. We address this problem by starting with a finite domain 

constraint language, where the vectorization is inherent in the nondeterministic 

derivation step (i.e. the labeling operation). Unlike supercomputers, the mem-

ory of DECmpp is distributed but we introduce a processor element allocation 

strategy which eliminates the need for interprocessor communication. [KS89] is 

the parallel backtracking scheme of [KKS88], but it has not been implemented. 

- 89 



Chapter 8 Related Work 

8.2 Parallel Clause Matching 

DAP Prolog [KB87] is an implementation of Prolog on DAP {Distributed Array 

Processor), a SIMD machine with 1,024 processing elements, each having a local 

memory with a mesh-style interconnection network. When a clause head is 

matched against several clauses in the program, the unifications may be done 

in parallel. No execution time figures are given. Because the unifications are 

syndironized to begin simultaneously, sometimes large 'holes' may result and 

severely limit the utilization of processor elements when all the other unifications 

have finished, waiting for a very long one. Unfortunately, Firebird is susceptible 

to a similar problem. 

Firebird executes different possible values in a domain in parallel. In parallel 

clause matching, the program is distributed over the processor elements, and a. 

goal is matched against each clause in parallel. This precludes the possibility of 

compilation. In Firebird, programs are compiled to DPAM code before being 

interpreted or further translated to native code. 

8.3 Parallel Interpreter 

Theoretically, it is possible to emulate a MIMD machine using a SIMD ma-

chine. [NTSSa] took this approach to implement Fleng, a simplified version of 

flat GHC, on the Hitachi S-820 supercomputer. They used vector instructions 

to execute 256 processes in parallel. The operations are not synchronized. In-

stead, non-real-time operations are divided into small, real time steps. In their 

implementation, there is a queue for each kind of operation. A single step yields 

two queues, one for those processes which have not finished to be fed back for 
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the same operation again, and the other for those finished processes to proceed 

to the next operation. Consequently, high processor element utilization, high 

parallelism and near-linear speedup can be achieved. The inference engine can 

attain 1.1 MLIPS. 

They have also implemented their system on a Connection Machine [NT88b], 

attaining a peak performance of about 108 KLIPS on a simulator. An alternate 

version based on /iWAM, a simplified version of WAM achieved a maximum of 

about 392 KLIPB on a simulator. Their low performance can be attributed to 

both the overhead of interpretation and the extremely slow execution of each 

individual processor element on the Connection Machine (65,536 single-bit pro-

cessor elements at a slow clock rate). 

8.4 Bounded Quantifications 

‘ Barklund and Millroth [BM92] transformed recursive programs to iterative pro-

grams for parallel execution. Their sequential version attained a speedup of 15, 

but the implementation on Connection Machine model 200 with 4,096 processor 

elements is only about 2 times faster than the sequential version (i.e. the total 

speed up is about 30) [ABB92], Again, it can be attributed to the slowness of 

each individual processor element on the Connection Machine. 

8.5 SIMD MultiLog 

SIMD MultiLog [Smi93] is another or-parallel system implemented on MasPar 

MP-1. A new disj operator is introduced. All solutions to goal G are collected 
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when disj G is used. The solutions form a disjunctive set of environments and 

goals appearing after G can be executed in these environments in parallel. 

[KKS88], SIMD MultiLog and Firebird all execute goals over a disjunctive 

set of environments, exploiting or-parallelism. [KKS88] relies on a vectorizing 

compiler, MultiLog uses solution aggregation and in Firebird the environments 

fall out of the labeling operation on domain variables naturally. 

Like our approach, MultiLog has the advantage that traditional compilation 

techniques are applicable. Furthermore, engine variables which reside on the 

host computer is distinguished manually from multi variables which reside on the 

processor elements. This leads to higher time and space efficiency. Automatic 

compilation of the e n g i n e / m u l t i distinction is expected to be possible, and we 

are looking forward to incorporate this feature to future versions of Firebird. 

However, SIMD MultiLog has the overhead of environment copying which, is 

not necessary in Firebird. [Smi93] points out that environment copying is a 

bottleneck of SIMD MultiLog. Another drawback of SIMD MultiLog is that 

processor element utilization is limited when backtracking is used. Backtracking 

is not dynamically invoked but must be tuned by the user before execution. 

The maximum s p e e d u p attained with a 8,192-processor machine over a single 

processor element of the same machine is used is 1872.7 on the 20 bits palin-

drome problem with naive reverse. However, 11 queens (Bratko)1 attains only 

a speedup of 2.5 and an execution time of 18.7 seconds. 

""“iThis benchmark is taken from Prolog Programming for Artificial Intelligence by I. Bratko 
[Bra90] 
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Conclusion 

We have proposed a new concurrent constraint logic programming language 

called Firebird and its execution model on data-parallel computers. Firebird 

, supports both concurrency and data-parallelism. Concurrency arises from the 

stream and-parallelism of ordinary committed-choice logic programming lan-

guages and can be exploited on shared-memory architectures. In a nondeter-

ministic derivation step, one of the domain variables is selected and labeled, and 

each possible value in its domain is attempted in an or-parallel fashion. Data-

parallelism is exploited in the resulting or-parallel execution. The Data-Parallel 

Abstract Machine is designed to implement this model. A subset of Firebird 

has been implemented on a DECmpp massively parallel computer and we have 

given some performance results. 
We shall investigate the limitations of Firebird and suggest possible future 

work. 
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9.1 Limitations 

9.1.1 Data-Parallel Firebird is Specialized 

Just like a vectorizing Fortran compiler is targeted towards numerical prob-

lems, the data-parallel execution model of Firebird is aimed towards constraint 

satisfaction problems. In our data-parallel model, only or-parallelism is possi-

ble. For this reason, no flat GHC program without constraints can yield any 

speed up. Furthermore, although clause-based or-parallelism can be emulated by 

domain-variable-based or-parallelism, it's not efficient in a data-parallel setting. 

Consider the following example. 

p(X) X = 0 I a , b . 
p(X) X 1 I c , d . 
p(X) X = 2 I e , f . 

, The processes a to f cannot be executed in parallel under our data-parallel 

execution model. Furthermore, the processor elements cannot be fully utilized— 

only some of the processor elements execute each clause. A compiler utilizing a 

join algorithm is effective only when two or more clauses have the same procedure 

in the body. We can get around this problem if we build an interpreter which 

executes the instructions of a, c and e simultaneously, effectively emulating a 

MIMD machine using a SIMD macLine. We shall have to store a copy of the 

program in each processor and interpretation introduces significant overhead, 

even for programs which do not have this problem. Refer to [NT88b] for an 

and-parallel concurrent logic programming system taking this approach. 
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9.1.2 Limitations of the Implementation Scheme 

Firebird successfully avoided all inter-processor communication with a processor 

allocation strategy which allocates equal number of processor elements to each 

possible alternative. However, this heuristic is much a matter of guesswork. The 

exact number of processor elements needed by each alternative cannot be found 

except by actual execution. Parallelism is limited because of the inaccuracy of 

this guessing especially when the number of processor elements is large. On 

the other hand, a failed partition will stay idle until backtracking occurs. This 

again limits the degree of parallelism. Another factor limiting performance is 

the inherent limitation of or-parallelism—the initial parallelism is small when 

compared to and-parallelism. For instance, no parallelism can be exploited while 

the constraints are being generated by the n-queens program. A small degree 

‘ of parallelism is possible after the first nondeterministic derivation, and it takes 

some time to reach the maximum degree of parallelism. We have shown the 

effect of these factors by execution traces in Section 7.9 (page 84). 

9.2 Future Work 

9.2.1 Extending Firebird 
In addition to the indeterministic and nondeterministic derivation steps, we 
could incorporate a propagation step [LPW92] into Firebird. Consider the fol-
lowing example. 

p(X) X >= 3, X =< 4 I true. 
p(X) X >= 2 X =< 3 I true. 
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Computation fail unless X >= 2 " and X =< 4. Therefore, 

X >= 2 , X =< 4 is told to the store. 

Definition 9.1 Let Gu …,Gn be the ask constraints of each clause of a predi-

cate. In a propagation step a constraint C, which satisfies the following condi-

tion, is told to the store. 

i=i 

Intuitively, the disjunction of ask constraints of each (satisfiable) clause, or 

some sound approximation thereof, is told to the store. This extension general-

izes the following. 

ALPS According to the commit law of ALPS [Mah87], a clause can be com-

mitted to if and only if it is validated or it is the only satisfiable clause. 

“ Firebird covers only the first part of the commit law—it will only commit 

‘ to a validated clause. However, if there is only one satisfiable clause, the 

propagation rule may tell a constraint C which is the disjunction of the 

ask constraints of the only satisfiable clause, and as a result the clause is 

immediately validated and committed to. 

Domain Independent Propagation The extension provides a convenient 

syntactic construct for user-controlled generalized constraint propagation 

[LPW92]. 

Disjunctive constraints in cc(FD) Users may define disjunctive constraints 
[VHSD93] using a set of clauses with different ask constraints and a t r u e 
body. For example, the following predicate quoted from the perfect square 
problem in [VHSD93] 
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nooverlap(XI,Y1,S1,X2,Y2,S2):-
XI + SI <= X2 \/ 
X2 + S2 <= XI \/ 
YI + SI <= Y2 \/ 
Y2 + S2 <= YI. 

can be expressed as 

n o o v e r l a p ( X l , Y l , S l , X 2 , Y 2 , S 2 ) - XI + SI <= X2 I true, 
nooverlap(XI,YI,SI,X2,Y2,S2) X2 + S2 <= XI I true, 
n o o v e r l a p ( X I , Y I , S I , X 2 , Y 2 , S 2 ) : - YI + S I <= Y2 t r u e . 

n o o v e r l a p ( X l , Y l , S l , X 2 , Y 2 , S 2 ) - Y2 + S2 <= YI I t r u e . 

LAIR Users may define looking ahead constraints [VH89] using head matching 
and ask constraints. For example, in Firebird extended with the propaga-

‘ tion step, we may define the logical or function as 

or(0,X,X). 
or(X,0,X). 
o r ( l l l ) . 

Suppose X 6 0, l , 0,1, Z = 0, we can deduce X 0, Y 0 using the 

propagation rule. However, the propagation rule cannot subsume LAIR. 

This is because Firebird is a flat language and therefore only flat guards 

can be used for disjunction. 

Suppose there are m constraints, c u . . . , c m . x u . . . , x n are the variables 

appearing in cx , . . . cm. Let D{ be the reduced domain of variable if only q 

is added to the store {Sj = 8 f\ Cj). If the disjunction of the m constraints is 
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told to the store, the following definition by [VHSD93] is the most reasonable 

approximation of consistency. 

Definition 9.2 The generalization of a set of constraint stores 5U... ,Sm is the 

constraint store 
m m 

€ |J ….A:RN € 1J DJ
n 

j=i j=1 

We must repeatedly perform the disjunction until 

1 • one of the constraints is entailed by the store, resulting in commitment, or 

2. all the constraints have failed. . 

T h e o r e m 9.1 If a variable is missing from one of the satisfiable constraints 

Ck) then the domain of Xi cannot be reduced after the disjunction. 

Proof If is missing from ck, then the original domain Di will be 
m 

Di = D^c[jDi 
j=i 

Since the original domain is a subset of the new domain, it cannot possibly be 

reduced. 
Therefore, we make the following observations. 

1. If a variable appear in only a subset of the satisfiable disjuncts, we can 

save execution time by not attempting any pruning of invalid values from 

that variable. 

2. We should discard a disjunct as soon as it becomes invalidated. This 

makes the optimization in point 1 impossible because in general we cannot 

detect invalidation without reducing the domain of all the variables in a 

constraint. 
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Point 2 is not stated in [VHSD93], possibly because of efficiency reasons. 

9.2.2 Improvements Specific to DECmpp 

On our implementation platform, each processor in the back-end is much slower 

I than the sequential host. Performance wil l be improved if sequential parts of the 

execution can be separated out and performed at the front-end. We propose to 

optimize the execution before the first nondeterministic derivation step. At the 

implementation level, we may move low-level operations such as dereferencing 

and unification to the front-end. An experiment showed that the dereferencing 

operation was up to 7 times faster when moved to the front-end because local 

j indirect addressing could be avoided and only the memory of a single processor 

element was accessed1. 
To attain higher performance, the compiler may generate two versions for 

each predicate, one sequential and the other parallel. The former is used before 

the first nondeterministic derivation step. At the first nondeterministic deriva-

tion step, the heap of the front-end is copied to the processor elements using a 

garbage collection algorithm. To reduce the overhead of copying, domain vari-

ables are always created on the processor elements. In this way, no copying is 

necessary for programs in which all constraints are generated before any of them 

are solved. 
In addition to these two approaches, we are designing compiler directives to 

control the execution. For example, the sequent ia l directive suppresses the 

generation of parallel code for a procedure. However, only the code size is made 

i T h i s is because on DECmpp, processor elements are grouped into clusters of 16 processor 
elements which s h a r e a single memory port. There is a load solitary instruction which is 
optimized for the case when at most one processor element is active m each cluster. 
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smaller but the execution speed is not improved. 

9.2.3 Labeling 

Since the size of the domains may be different in each partition, traditional 

heuristics such as the first-fail principle no longer w o r k s . Currently, our imple-

mentation is based on generalized forward checking. We are looking for new 

control strategies which do not depend on the domain size to make decisions. 

Apart from the heuristic discussed in section 4.4.1, we can choose the most re-

cently changed domain variable to set up a choice point, etc. A performance 

study is needed to be carried out to evaluate such possibilities. 

Firebird offers only rudimentary user control over the l a b e l i n g operation. 

The user cannot control any other thing than whether a domain variable should 

‘ be labeled. We did not followed CHIP [DVHS+88] because the introduction 

of the labeling predicate indomain/1 into a concurrent language without any 

top-down, left-to-right execution order will not give the user any more control 

ove r the labeling operation than the n o n d e t e r m i n i s t i c derivation of the Firebird 

computation model. The indomain/1 predicates will not follow any top-down, 

left-to-right execution order either. It is irrelevant to order the indomain/1 

predicates in a program. [GY92] does not have this problem because in Andorra, 

the top-down, left-to-right execution order is preserved for nondeterminate g o a l s . . 

In any case, the best solution is a mechanism for user-defined deadlock handlers, 

like that of Pandora [Bag91]. System predicates giving information on domain 

size, maximum, minimum and range can be provided to be called by the user-

defined deadlock handler. 
On the other hand, we may use a plain forward checking strategy, which is 
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automatic and does not require any user intervention. The system avoids any 

suspension by labeling the variable which would cause a constraint or goal to 

suspend on the fly. 

Modifying the labeling operation itself is also a possible direction of future 

work. For instance, we ma.y just divide the domain of the labeled variable into 

two or more equal parts. We may also divide the domain into continuous chunks 

(e.g. If the domain is {1,2,3,7,8,9,10,11} we may divide it into {1,2,3}, {7,8,9} 

and {10,11}). lil the finite domain part of CLP(BNR) [B094], a disequality con-

straint causes a continuous interval to be split into two intervals. It. is expected 

that this can be implemented on a data-parallel machine as follows. Every dise-

quality constraint causes a labeling operation so that the two resulting intervals 

can be processed in parallel. 

9.2.4 Parallel Domain Consistency 

By reasoning on variation intervals the minimum and the maximum possible val-

ues of a domain variable can be found. Values outside this range are eliminated 

and this is called interval consistency. However, it is not guaranteed to rule out 

all invalid values. Using the domain consistency technique, each combination 

of possible values of the domain variables is attempted. This is more effective 

in eliminating invalid values but consumes more execution time. Unlike cc(FD) 

[VHSD93] in which the programmer has to specify whether interval consistency 

or domain consistency is to be used, a Firebird implementation may choose be-

tween the two (or some intermediaries) depending on processor elements avail-

ability. If there are enough processor elements, each partition will check domain 

.consistency in parallel, resulting in another kind of data-parallelism which can 
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