
Theoretical Computer Science 86 (1991) 3-33
Elsevier

Semantic models for concurrent
logic languages*

F.S. de Boer and J.J.M.M. Rutten
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam,
Netherlands

J.N. Kok
Department of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht,
Netherlands

C. Palamidessi
Dipartimento di lnformatica, Universita di Pisa, Corso Italia 40, 56100 Pisa, Italy

Abstract

3

de Boer, F.S., J.J.M.M. Rutten, J.N. Kok and C. Palamidessi, Semantic models for concurrent
logic languages, Theoretical Computer Science 86 (1991) 3-33.

In this paper we develop semantic models for a class of concurrent logic languages. We give two
operational semantics based on a transition system, a declarative semantics and a denotational
semantics. One operational and the declarative semantics model the success set, that is, the set
of computed answer substitutions corresponding to all successfully terminating computations.
The other operational and the denotational semantics also model deadlock and infinite computa
tions. For the declarative and the denotational semantics we extend standard notions such as
unification in order to cope with the synchronization mechanism of the class of languages we
study. The basic mathematical structure for the declarative semantics is the complete lattice of
sets of finite streams of substitutions. In the denotational semantics, we use a complete metric
space of tree-like structures that are labelled with functions that represent the basic unification
step. We look at the relations between the different models. We relate first the two operational
semantics and next the declarative and denotational semantics with their respective operational
counterparts.

1. Introduction

We study the semantics of a general paradigm for concurrent logic programming
languages. It consists of Horn Clause Logic (HCL), to which the following program
ming mechanisms are added:
• the input-constraints, on which the mechanism of synchronization between AND

processes is based, and

* Part of this work was carried out in the context of ESPRIT 415: Parallel Architectures and Languages
for Advanced Information Processing - a VLSI-directed approach.

0304-3975/91/$03.50 © 1991-Elsevier Science Publishers B.V.

4 F.S. de Boer et al.

• the commit operator, which realizes the so-called don't care nondeterminism,
controlled by guards.

Examples of languages in this class are PARLOG [4, 5, 13], Guarded Horn Clauses
[28, 29], Concurrent Prolog [25, 26], and their so-called fiat versions. They can be
obtained by specializing the definitions of constraints and commit, and (in some
cases) by adding some extra programming primitives. Whereas the addition of
constraints and commit leads to a class of very expressive programming languages,
the price to be paid is the loss of the clean declarative (model theoretic) understand
ing of HCL (cf. [27]). Its semantics is affected in a number of respects:
• the success set is reduced by the input-constraints,
• the finite failure set is enlarged by the commit, and modified (i.e., either reduced

or enlarged) by the input-constraints,
• the infinite failure set is modified both by the commit and the input-constraints.
Although many operational models have already been investigated [22, 23, 24, 3, 6],
a satisfactory declarative one is still to be defined. In this paper we address the
problem of characterizing these success and failure sets, first in a declarative and
then in a compositional way (i.e., by giving the meaning of a composite goal in
terms of the meaning of its conjuncts).

As a running example, we take a language that could be seen as a version of
PARLOG. It contains the commit operator and has as input constraints the so-called
declaration modes of PARLOG.

First, we describe the success and failure sets of this language by a formal
operational semantics based on a transition relation (in the style of [14]; see also
[23, 6] for similar approaches). The operational meaning is given in terms of sets
of words (or streams) of substitutions, that correspond to the answers computed
during the derivation.

Next, we characterize declaratively the new success set as the least fixed-point of
an immediate consequence operator on interpretations. Here the term declarative
indicates that this semantics models computations in a bottom-up fashion. (A
model-theoretic semantics is still under investigation.) Our approach can be con-

' sidered an evolution of the one developed in [18] and [19]. The basis idea there is
to model the ability of a process to produce and to consume data structures. This
is done by introducing annotations on data structures (terms) and by extending the
Herbrand universe with variables (see also [11, 12]). However, the declarative
semantics presented in those papers is not able to fully characterize the behaviour
of concurrent logic languages. The main problem has to do with the situation of
deadlock that arises when two processes are obliged to wait for each other for
bindings. Consider, for example, the goal -p(x, y), q(x, y) and the programs

P1 ={p(a, b) - [., q(a, b) - [.},

P2 ={p(z, b) -[r(z)., r(a) -[., q(a, b) -[.},

and assume that in both cases the first argument of p and the second argument of
q are input-constrained (expressed in PARLOG by the declaration modes D 1 =

Semantic models for concurrent logic languages

{p(?, "), q(", ?)}, and D2 = {p(?, "), q(", ?), r(?)}, respectively). According to the
operational semantics, the computation of the goal cannot succeed in P1 (it results
in a deadlock), whilst in P2 it always can. Now it is the case that the approach
presented in [18] and [19] is not able to distinguish between the two situations.
Indeed, both p(a+, b +) and q(a+, b +) (p and q producing a and b) happen there
to be true in the models (and in the least fixed-point interpretation) of both the
programs. So, a full completeness result (between the declarative and the operational
semantics) could not be obtained. For a detailed discussion of this problem see also
[16].

Our solution to this problem consists of enriching the interpretations with streams
of substitutions. Due to the presence of guards, whose evaluation has to be inter
preted as an internal action, the streams of the operational semantics offer too little
structure, and we have to add some delimiters to represent critical sections. We call
these new structures sequences. This allows us to characterize declaratively (and,
therefore, compositionally) the bindings obtained at different stages in the computa
tion. In this way we obtain a full equivalence result. Another basic difference with
respect to the previous approach is to annotate the variables instead of the data
constructors. This allows us to extend the unification theory [10, 17] in order to
deal with input-constraints in a formal way. We also give an extended algorithm
for the computation of the (extended) most general unifier. Moreover, we introduce
the notion of parallel composition of substitutions, which allows us to model the
combination of the substitutions computed by and-parallel processes.

Other compositional models for the success set are presented in [22] and [20].
Both these approaches are based on streams of input/ output simple substitutions,
where simple means that the bindings are of the form x/ y or x/ f(x 1 , ••• , Xn). This
restriction introduces additional complications for modeling the full unification
mechanism. Thanks to our extended unification theory, we deal directly with (gen
eral) substitutions, and the correspondence with the operational semantics is there
fore simpler and more intuitive.

Finally we consider the problem of also characterizing in addition to the success
set, the finite failures and the infinite computations in a compositional way. It turns
out that not only the streams of the operational semantics offer too little structure,
but even the sequences introduced in the declarative semantics are not powerful
enough. In order to model the failure set, we need not only to distinguish between
external and internal computation steps, but also between different points of non
deterministic choice.

Let us illustrate how the absence of branching information causes our operational
semantics to be noncompositional. Consider the programs

P1 = {p(x) -lq(x)., p(x) - lr(x)., q(a) - .r(b) -I· s(a) - I.},

P2 = {p(x) - lq(x)., q(a) -1. q(b) - I. s(a) - I.},

with mode declarations, again taken from PARLOG, D 1 ={p(?), q(?), r(?), s(")},
and D 2 = {p(?), q(?), s(")}, respectively. Consider the goal -p(y). Operationally,

6 F.S. de Boer et al.

in both P1 and P2 it will suspend waiting for a binding on y (either a orb). However,

if we extend the goal with an atom s(y), thus yielding the goal +-p(y), s(y), then

we get different operational meanings. In P1 the goal can fail (due to the choice of

the wrong clause for p(y)), whereas in P2 it cannot.

In our approach, we encode the branching information by using trees labelled

with functions representing the basic unification steps. They are elements of a

complete metric space, satisfying a so-called reflexive domain equation [9, 2]. We

use a denotational style: for every operator in the language we define a semantic

operator corresponding to it. The denotational model is obtained as the (unique)

fixed-point of a higher-order function, a contraction, on the complete metric space

of semantic models. The relation between this denotational semantics and the

operational one is obtained via an abstraction operator that identifies some denota

tions. Although both the declarative and the denotational semantics are based on

a fixed-point construction, there are some fundamental differences: in the declarative

approach, the meaning of a program is constructed in a bottom-up fashion by means

of an immediate consequence operator. The denotational semantics is a function

from goals to tree-like structures and embodies a top-down approach.

At present, we are investigating the precise relationship between the declarative

and the denotational approach. An equivalence result for the basic case of HCL

can be found in [8].

2. The language

To describe the syntax of the language we study, we introduce the following sets:

• The set of atoms, with typical elements A, B, H, we denote by Atom.

• The set of conjunctions, with typical elements A, B, G, we denote by Conj.

• The set of goals, with typical elements +-A, +-B, +-G, we denote by Goal.

• The set of clauses, with typical element C, we denote by Clause.

• The set of programs, with typical element W, we denote by Frog.

Conjunctions are of the form: A= A 1 , ••. , An. A special element in Conj is true,

denoting the empty conjunct. With D we denote the goal <.-true. A clause is of the

form C = H .,._ G I B, where H, G and B are called the head, the guard, and the

body of the clause, respectively. The symbol I is called the commit operator. We do

not consider operators (like;) that impose any ordering on clauses. Every program

W consists of a finite set of clauses together with a so-called mode declaration,

which specifies for every predicate, which of its arguments are input and output.

They are indicated by the symbols ? and A respectively. So, for instance, the

declaration p(?, ?, ") specifies that the first two arguments of p are input and the
third one is output.

An atom A in a goal is seen as an (AND-)process. Its computation proceeds by

looking for a candidate clause in W A clause is candidate if its head H input-unifies

with A (i.e., the input arguments unify) and the computation of the guard succeeds,

both without binding the (variables in the) input arguments of A If there are

Semantic models for concurrent logic languages 7

candidate clauses, then the computation of A commits to one of them (i.e., no

backtracking will take place), the output-unification is performed and A is replaced

by the body of the clause. If no clauses are candidate but there are suspended clauses

(i.e., clauses in which the input unification would succeed and bind the input

arguments), then the computation of A suspends, and will be resumed when its

(input) arguments get bound by other processes in the goal. If a guard would succeed

by binding the input-arguments (of A), then an error is generated (unsafe guard).

If none of these cases applies, then the process A and the whole goal fail. Of course,

a failure occurs also when all the processes in the goal get suspended (deadlock).

To simplify the discussion, we do not deal with the error case. More precisely,

we include this case into the suspension case. So, we consider a suspension mechan

ism similar to the one of GHC, namely: a clause suspends if either the input-unification

or the goal evaluation would instantiate the input-arguments of A.

3. Operational semantics

For the rest of the paper let W denote a fixed program. The set of variables

occurring in a conjunction A is indicated by 'V(A). We postulate a function invar

that gives for every atom A the set of variables occurring in those arguments of A

that are specified as input by the mode declaration of W Given a set of variables

V, W v denotes the program whose clauses are variants (see [17]), in which there
occur only variables not belonging to V, of the clauses of W We introduce the set
of substitutions Subst, with typical elements it, 'YE Subst. E is the empty substitution.

For Va finite set of variables, we use it1 v to denote the restriction of{} to V Further

we have the familiar notion of mgu, which is a partial function from pairs of atoms

to substitutions. We introduce the notions of input and output mgus. Consider two

atoms A= p(t 1 , ••• , U and A'= p(t;, ... , t~). Assume that the declaration-mode

of p has the symbol ? (input-mode) on the arguments i 1 , ••• ik. Then, mgui(A, A')
denotes mgu ({ { t;1 , t:J, ... { ti" t:J}). In a similar way we define mgu0 (A, A') to be
the mgu of the output arguments.

The operational semantics will be based on the following transition relation:

Definition 3.1 (Transition relation). Let _,, i:::; (Goal x Subst) x (Goal x Subst) be the

smallest relation satisfying

(1) If 3H - GIBE W,,(Al• 3mgui(A{}, H)

[<-6, mgui(A{}, H))-4(0, {J'), and {}'linvar(Ml)=E],

then (-A,{))_,, (-outunif(Aff, H{}'), B, {}{}').
(2) If 3mgu0 (Aff, H{}'),

then <-outunif(A{}, Hff'), B, {}')-<-ii, 1't'mgu0 (Aff, Hff')).

(3) If (-A,ff)-"(-A',1't')i(D,ff')

then (-A, B, 1't) _,,<-A', B, 1't') I (-B, ff')

< - B, A., tt > - (- B, A', 1J ') I (- s, ff').

8 F.S. de Boer et al.

In these transitions, {} represents the substitution that has been computed until
that moment. In (1), it is stated that we can resolve -A if we can find a (renamed)
clause in our program with a head H that can be input-unified with A; moreover,
the refutation of the guard G of that clause must terminate successfully and the
total substitution {}' must not instantiate any input variables of Air. The output
unification outunif(Ait, Hf>') should be possibly computed in parallel with the other
atoms in the goal. A conjunction, in (3), is evaluated by the parallel execution of
its conjuncts, modelled here by interleaving. In the following definition we give the
operational semantics.

Definition 3.2 (Operational semantics). We define

()2 : Goal---" M 2 , with M 2 = r!P(Subst';').

(Here Subst';' = Subst+ u Subst"' u Subst*.{8}, with typical element it1 • • • • 17". · · · ;
the symbol 8 denotes failure; f!l>(X) is the set of all the subsets of X.)

We put D';[-true] = {E}, and

01[-A]={171rlA:JJ(-A, s)~(O, 17)};

02[-A] = {(it1. · · · iTn)l'V(A) E Subst+ I
(-A, E) --i> (+-Al, '8-1)--i> · · · _..., (0, '8-n>}

U {('8-1. · · · 17n)l'VCAl .8 E Subst*.{ 8} J

<-A, s)~ ···~(A", {}n)+ 11 +-An r:'O}

u {({}1· · · •)l'ViA) E Subst"' J (-A, s) ~ (-A1 , 171)--" • • • }.

The success set for -A is given by 0 1[-A]: it contains all computed answer
substitutions corresponding to all successfully terminating computations. In addi
tion, the set 02[-A] takes into account all failing and infinite computations,
represented by elements of Subst* .{ 8} and Substw, respectively. The relation between
0 1 and 0 2 is obvious. If we set

last(X) = {-& J 3s E Subst* (s.17 EX)},

then we have: O'i =last 0 02 •

In the following sections, 0 1 and 02 will be related to a declarative and a
denotational semantics, respectively.

We did not include all deadlocking and infinite behaviours in 0 2 • In fact, we
omitted the so called local deadlock in guards. This can appear when a local
computation commits to "wrong" clauses. It is not too difficult to adapt 0 2 , but we
prefer not to do so because it obscures the equivalence proof between the denota
tional model and 02 • Moreover, on FCP the models coincide.

Semantic models for concurrent logic languages 9

4. Declarative semantics

We define the declarative (fixpoint) semantics of the language described in the
previous section. We make use of an extended notion of Herbrand base and
interpretations, enriched with variables (that are used for modelling the notion of
computed substitution [19, 11, 12]) and annotations (that are used for modelling the
synchronization mechanism of concurrent logic languages, see [18] and [19] for
similar approaches). We extend the standard notions of the unification theory [10, 17]
in a formal framework. Moreover, we introduce the notion of parallel composition,
that allows us to formalize the combination (plus consistency check) of the substitu
tions computed by subgoals run in parallel. Finally, we introduce the notion of
sequences of substitutions, that allow us to overcome the difficulties presented in [19]
concerning deadlock. (The construction is essentially the one that was used for a
declarative semantics of Guarded Horn Clauses, given in [7, 21].)

4.1. Annotated variables

In order to model the synchronization mechanism of the language we introduce
the notion of annotated variable. The annotation can occur on a variable in the goal,
and it means that such a variable is in an input-argument and therefore cannot be
bound, during the derivation step, before commitment. In other words, such a
variable can receive bindings from the execution of other atoms in the goals, but
cannot produce bindings by the execution of the atom in which it occurs (before
commitment).

We will denote the set of variables, with typical elements x, y, . .. , by Var, and
the set of the annotated variables, with typical elements x-, y-, ... , by Var-. From
a mathematical point of view, we can consider .. -,, as a bijective mapping
-= Var- Var-. The elements of Varu Var- will be represented by v, w, The
set of terms Term, with typical element t, is extended on Varu Var-. The term C

is obtained by replacing in t every variable x E Var by x-. The set of variables
occurring in the term t is denoted by 'V(t).

The notion of substitution extends naturally to the new set of variables and terms.
Namely, a substitution {J is a mapping {J: Varu Var- - Term, such that fJ(v) ;I;- v
for finitely many v only. it will be represented by the set { v/ t \ v E Var u Var- A it(v) =

t 7" v }. In order to model the difference between producing and receiving a binding
we introduce an asymmetry in the definition of the application of a substitution {J

to a term (or atom, or formula) t:

if t =xe Var,
if x-E Var- and it(x-);1;-x-,

if t = x- e Var- and it(x-) = x-,

if t = J(ti. · · ·, tn).

The new notion of application differs from the standard one in that {ve Varu
Var-\it(v);l;-v} (the set of variables mapped by {J to a different term) is now a

10 F.S. de Boer et al.

subset of { v E Var u Var-1 vii~ v} (the set of variables bound by if to a different
term). An annotated variable bound to a different term represents the ability to
receive a binding from the computation of another atom in the goal.

We factorize the set of substitutions with respect to the equivalence relation
-B- 1 = {}2 iff V v E Var u Var- [v-B- 1 = v-B-2]. From now on, a substitution if will indicate

its equivalence class.

Example 4.1. Consider the atom A= p(f(x, y), x, y). We annotate the variables in
A to obtain A-=p(f(x-,y-),x-,y-). Consider now the substitution if=

{x/g(z), y/h(w),y-/ h(a)}. We have: A-if= p(f(g(z-), h(a)), g(z-), h(a))).

The notion of composition if 1if2 , of two substitutions, if 1 and -B-2 is extended as
follows

The composition is associative and the empty substitution E is the neutral element.
We extend the notions of domain and co-domain of a substitution in order to

deal with the new notion of application:

@(-B-)={xE Varu Var-lx-B-~x},

tg({}) = U °/!(xii).
XE 0J(11)

if is called idempotent iff -B--B- = if, or, equivalently, iff <g(if) n 'll! ({}) = 0.
Given a set of sets of terms M, we define if to be a unifier for M iff

'efSEMVt1,t2 ES [t 1-B-=t2 tJ and t~ii=t2-B-J.

The ordering on substitutions is the standard one, namely: -B- 1 :s; -B-2 iff 3 -B-3 [if 1 -B-3=
iJ-2] (-B-1 is more general than iJ-2). The set of idempotent mgus (most general unifiers)
of a set of sets of terms Mis denoted by mgu(M).

In the appendix we give an extended version of the unification algorithm based
on the one presented in [1].

4.2. Parallel composition of substitutions

In this section we introduce the notion of parallel composition of substitutions
and of sets of substitutions, both denoted by 0. Intuitively, the parallel composition
is meant to be the formalization of one of the basic operations performed by the
parallel execution model of logic programs. When two atoms A 1 and A2 (in the same
goal) are run in parallel, the associated computed answer substitutions {} 1 and -B-2
have to be combined afterwards in order to get the final result. This operation can
be performed in the following way: consider the set of all the pairs corresponding
to the bindings of both iJ-1 and -B-2. Then compute the most general unifier of such
a set. Note that the consistency check corresponds to a verification that such a set
is unifiable.

Semantic models for concurrent logic languages 11

Definition 4.2. In the following,::!({}) is the set of sets {{x, t}lx/tE {}}.@i. 0 2 are
sets of substitutions.

(l) 1'1181'f2=mgu(Y({}1)uY(1't2)).

(2) 61 862 = u>'i 1 c@ 1 _,~2EC~2 1'f1 8 1'f2.
We will denote the sets { 1't} 8 6 and 6 8 { {}} by 1't 8 6 and 6 8 {}, respectively.

Example 4.3. (1) Consider the program {p(f(a)) ~I., q(f(a)) ~I.}, with
declaration-mode {p(?), qC)}, and consider the goal ~p(x), q(x). We annotate the
variable x, in p(x), in order to express the input-mode constraint. We have

mgu(p(x-), p(f(a))) = { {} 1}, where 1'1 1 = {x-/f(a)}, and

mgu(q(x), q(f(a))) = { 1'12}, where 1'12 = {x/f(a)}.

Now observe that since 1'11Emgu(Y(1'11)), {}2 Emgu(Y(1'12)) and {}1 ~ {}1 we have

1'f2E 1'f1 81'f2.
(2) Consider now the same program and goal as before, but let the declaration

mode by {p(?), q(?)}. We have

mgu(p(x-), p(f(a)))= mgu(q(x-), q(f(a))) = { 1'11},

and 1'11 E 1'1 1 81'} 1, whilst 1't2E '61 81'}1.

In (1) the goal can be refuted by a suitable ordering on the execution of the atoms
(q(x) before p(x)). This corresponds to getting a substitution {} 2 , that does not bind
any annotated (i.e., input-constrained) variable. This is not the case in (2), and
indeed no refutations are possible.

4.3. Sequences of substitutions

As shown in [11, 12], the computed bindings in HCL can be declaratively modelled
by using a not ground Herbrand Base, or equivalently, a set of pairs consisting of
an atom and a substitution. However, when the input-constraints are present, it is
not sufficient to consider only a substitution. In fact, as shown in [18] and [19], a
flat representation of the computed bindings is not powerful enough to model
compositionally the results of the possible interleavings in the executions of the
atoms in a goal. We have to register the whole history of the execution of the atom,
and therefore we have to deal with sequences of substitutions. Since we model only
the success set, we need to consider only finite sequences. However, the set Subs('

used for the operational semantics is still too weak a structure. To represent the
critical sections given by the input-unification and the guard evaluation, we need to

separate a subsequence from the rest.

Definition 4.4. The finite sequences of substitutions, with typical element s, are
defined by the following (abstract) syntax

s : := -{} I [s Jv I s l .. ~ 2.

12 F.S. de Boer et al.

The role of the square brackets is to mark the beginning and the end of a critical
section. V represents a set of variables, whose annotation has to be removed when
computing the result of a sequence of substitutions. Their meaning will be clarified
by the definition of the interleaving operator and result operator. We introduce the
following notations. If S .and S' are sets of sequences, then S.S' ~r{s.s'I s ES, s' ES'}
and [S]v~r{[sJvlsES}. If s={}'.s', then {}'Os~r({}'O{}').s' and
{} 'O ([s]v.s") ~r [iT 'O {}').s']v.s". For e a set of substitutions we have
e 'O s d,~ru,')E<'J {} 'O s. The length #(s) of sis defined as follows:
• #(fJ)=l,
• #([s])=#(s),
• #(s1 .s2) = #(s1)+#(s2).
If all the elements of S have the same length, i.e. 3k: \Is ES: #(s) = k, then we
define #(S) = k.

Definition 4.5 (Interleaving operator)

(1) s1 II S2 = (si!Ls2) u (si!Ls1),

(fJ.s1)lls2= fJ.(s1 II Sz),

([sJv.s1)lls2= [s]v.(s1 II Sz).

(2) S1 II S2= U S1 II Sz.
S1ES1,S2ES2

Since the interleaving operator is associative we can omit parentheses.
The following definition introduces the notion of result 1!ll of a sequence s (or a

set of sequences S) of substitutions. Roughly, such a result is obtained by performing
the parallel composition of each element of the sequence with the next one, and
by checking, each time, that the partial result does not violate input-mode constraints.

Definition 4.6

if -&1var- = e,
otherwise.

(2) 1.!ll([s]v) = disannv(1.!ll(s)) where disannv(s) removes all the annotations of
the variables of V which occur in s.

(3) 97i(s1.Sz)=97i(1.!ll(s1) 'O s2).
(4) For Sa set of sequences we define .0'l(S)=UsEs.0'l(s).

Thus, rule (2) specifies that, after a critical section, the input-constraints are
released. Rule (1) checks that{} (to be intended as the partial result) does not map
annotated variables. Rule (3) specifies the order of evaluation of a sequence: from
left to right. Indeed, we have 1.!ll(tt1 .fJ2 • ···.it")= 1.!ll(... .0'l(1.!ll({}1) 'O fJ2) ••• 0 {}n)·

Semantic models for concurrent logic languages 13

4.4. Least fixpoint semantics

In this section we introduce the notion of interpretation, and we define a con
tinuous mapping (associated to the program) on interpretations. The least fixpoint
of this mapping will be used to define the fixpoint semantics. Such a mapping is
the extension of the immediate consequence operator for HCL [30, l].

The Herbrand base with variables associated to the program W, denoted by 913,
consists of all the possible atoms that can be obtained by applying the predicates
of W to the elements of Term. An interpretation I of W is a set of pairs of the
form (A, s>, where A is an atom in filJ and s is a sequence of substitutions on Var

and Term. (A, s) EI can be read declaratively as A is true in I under the sequence s.

We remark the similarity with temporal logic, although we do not investigate this
relation here. 5' will denote the set of all the interpretations of W

5' is a complete lattice with respect to the set-inclusion, where the empty set 0 is
the minimum element, and the set union u and the set intersection n are the sup

and inf operations, respectively.
The following definition, which will be used in the least fixpoint construction, is

introduced mainly for technical reasons.

Definition 4.7. Let s1 , ••• , sh be sequences of substitutions, and let A 1 , ••• , Ak

(h ~ k) be atoms. s1 , ••• , sh are locally independent on Ai, ... Ak in

In the following, we use the notation s to denote a sequence of sequences of

substitutions s 1 , ••• , sn- If moreover A= Ai, ... , An, then (A, s) stands for

(A 1 , s1), .•• , (An, Sn), and II (S) stands for sill··· llsn.

Definition 4.8. The mapping T: j -" .'J, associated to W, is defined as follows:

T(I) ={(A, s)[3H ~ G[BE WnA 1,

3s', s" locally independent on G, B, A,

(a, s'), (.8, s") EI:

s E [mgu;(A -, H).(II (s'))] v.mgu0(A, H).(ll(s"))}.

In this definition V stands for 'V(A-, H, s'). A possible sequence for A results

from the critical section containing the mgu; with the head of a clause, and a
sequence resulting from the guard. The input variables in A are annotated. The

whole is followed by the mgu0 and a sequence resulting from the body.

14 F.S. de Boer et al.

The following proposition is an immediate extension of the corresponding classical

result.

Proposition 4.9. T is continuous. Thus its least fixpoint lfp(T) exists, and lfp(T) =

Un,.0 T"(0) holds.

We define the least fixpoint semantics associated to Was the set f!f(W) = lfp(T).

4.5. Equivalence results

In this subsection we prove the equivalence between the declarative semantics
and the operational semantics. The equivalence is restricted to the success case,
namely, to the substitutions computed by a refutation. We will show that

O\(+-A)

= { iJ l3s locally independent on A: (A, s) E f!f(W) and{} EPA, (//(S)1v<AJ}.

The following proposition can easily be proved for the unification algorithm given
in Definition 8.1.

Proposition 4.10. Let M 1 , M2 , M3 be sets of terms. Let -&1 E mgu(M1) and {}2 E

mgu(M2). Then

(1) mgu(M1uM2)=1>1 mgu(M2 rt1) = {}2 mgu(M1rt2),

(2) mgu(M1 u M2 u M3) = rt1 mgu(M2 -&-;-u M3 -&1).

Lemma 4.11. Let A, H be atoms. Letµ be an idempotent positive substitution, i.e.,
binding only non-annotated variables, with no variables in common with H. Then

µ mgu;((Aµ)-, H) = µ ~ mgu;(A-, H).

Proof. It is a particular case of Proposition 4.10(2). D

Lemma 4.12. Letµ be a positive substitution. Let -&1 , ••• , rtn be idempotent substitu
tions. We have:

then

Proof. Immediate. D

Semantic models for concurrent logic languages 15

Lemma 4.13. Let W be a program. Let A be a sequence of goals, and let p be a positive

renaming such that Ap is a variant of A. Then

3s locally independent on A: (A, s) E T~(0)

3s' locally independent on Ap: (Ap, S') E T~(0) and

1!lt, (p.Int(s))1v(Alu~(p) = pr:!lt, (lnt(S'))1vcA:Ju!2il(p) and

#(Int(s)) = #(Int(S')).

Proof. Let A= A 1 , ••• , An, and s= s1 , ••• , s". For each i = 1, ... , n, lets;= {};.s7

and let H; be the head of the clause used to obtain (Ai> s;) E T~(0). Then, define

s; = t7; .s;", where t7; E mgu;(A;p-, H;), and s;" is the renamed version of s7 (in order

to meet the requirement of local independence). Then we have

(A 1p, s;), ... , (A,,p, s;,) E T~(0). Moreover by Lemmas 4.11 and 4.12 we have, for

each s E (sill · · · II s")'

(1)

for an appropriate s'E(s\11 ···!Is~). Analogously, for each s'E(s;ll ···!Is~), there

exists an appropriate s E (s 1 II · · · !Is,,) such that equality (1) holds. D

Lemma 4.14. Let W be a program. Let A be a sequence of atoms, and let µ, be a

positive substitution. Then

3s locally independent on A: (A, s) E T~(0)

<:::>

3s' locally independent on Aµ: (A,u, s')E T~(0) and

r:!lt,(µ.Int(S))1nAiuoiJlµI = µr:!lt,(Jnt(s'))1,viA:Jv'21(µJ and

#(Int(.'i)) = #(Int(.f)).

Proof. (:=:;>): Let µ, be a positive substitution, and let p be a renaming on '7/J (µ) such

that (A)pµp- 1 =A. Define s' = s;, ... , s~ as in Lemma 4.13, apart from the first

element of each s; that is chosen in mgu;(A;µ -, H;). Then we have

(1) s' is locally independent on Aµ.

(2) (Aµ, s') E T~(0).

(3) (µr:!lt,(Jnt(S')))1nAlu'-"lµI

(by Lemmas 4.11 and 4.12)

= (1!1t,(lnt(µs')))1HAlu'.2'(µ.l
(since only the t7;'s E mgu;(A;µ , H;)

have variables in common with µ)

16
F.S. de Boer et al.

mgu0(A;µ-, H;)ll · · · llJnt(s'")))1r<Alu"1(µ)

= (9ll (· · · II(µ. mgu;(A;µ - , H;)) 11

mgu0(A;µ -, H;) II · · · II Jnt(s"')))i'VcAJu0J(µ)
(since the s7''s have no variables in common with p)

= (9ll (· · · ll((pp- 1 µ) <> mgu;(A;p - , H;)) II

mgu0(A;p-, H;)ll · · · llint(ps111)))1rcAJu'1l(µJ
(by Lemmas 4.11 and 4.12)

= (p(9ll(· · · ll((p-1µ) <> mgu;(A;p-, H;))ll

mguo(A;p-, H;)ll · · · llint(S111))))1r<A)v0J(µl
(by lemma 4.13)

= (9ll(· · · II (p.(p- 1 µ).mgu;(A;p - , H;)) II

mgu0(A;p-, H;) \\ · · · II Int(s"))))1'V(A)u0J(µ)

(since P-1µ. = P-1 <> µ)
=(9ll(· · · ll(p.p- 1.µ.mgu;(A;p-, H;))ll

mgu0(A;p-, HJll · · · llJnt(s"))))1'VCA)v0J(µ)

=(9ll(· · · ll(µ..mgu;(A;p-, H;))llmgu0(A;p-, H;)ll

· · · llJnt(s"))))1r<AJv0J(µl
= (97l(µ.(Jnt(s1))))1'V<AJu0J(µl.

(~):Analogously. D

We now prove the equivalence of the fix point semantics we have defined and the

operational semantics. We introduce the following notation.

Definition 4.15 (Transition relation, k steps)

(1) If 3H+-GiBEWf1cAh3mgu;(A&,H)
[(+-G, mgu;(A&, H)) ~k (0, {}'), and -&'linvar(Aff) = E],

then(+-A, i!)~k+i (+-outunif(A{}, H{}'), B, itf)').

(2) If 3mgu0(Ait, H&'),

then(+-outunif(A&, Hi!'), B, {}')~ 1 (+-B, if' mgu0(A{}, HfJ')).

(3) If (+-A, &>~k<+-A', tt'>l<D, {}')

then(+-A, B, tt>~k (+-A', B, -&')i(+-B, fJ')

and(+-B, A,{}) ~k (+-B, A', {}')I (+-B, tt').

(4) If (+-A,&> .,._k, \+-A', tt')
and(+-A', tt') ~/<i (+-A",{}").
then(+-A, tt)~k,+k2(+-A", {}").

Semantic models for concurrent logic languages 17

The relation _,.k represents k applications of the resolution step. It is easy to see

that

<-A, 11)_,.+ <-A', 111>

if and only if

3k[(-A, 11) _,.k <-A', ?J')]

where __,. + is the transitive closure of the relation __,. introduced earlier.

Theorem 4.16 (Soundness). Let Wbeaprogram, and let A be a sequence of atoms. Then

0\ (-A) s;; { 11 I 3 s locally independent on A:

(A, s) E SI'(W) and 11 E 0'l (II (S))1vcA:J}·

Proof. By induction on the number of steps k
(k = 1): Assume <-A, E) _,.i (0, it). Then A is composed by only one atom, say

A. In this case there exists in WnAl a clause of the form H -1. such that 11 E

mgu;(A, H) and 1'11vcA 1=E. Then (A, <T)E T\v(0) holds, for each uE mgu;(A-, H).

Since 11ivcAJ = E, there exists <TE mgu;(A-, H) such that <T does not map variables

in A, i.e., u is positive. Therefore 0'l (<T)i'V<Al = { E}.
(k > 1): Assume <-A, s) _,.k, (A', <T,u) __,. k, (O, <Tµ,11') and ?J = (u,u11')1rcA:J. Let A;

be the atom in A selected for the first derivation step. Then, there exists a clause

H - 61 jj in WvcA:J such that:
• <TE mgu;(A;, H),

• <-6, u) ~k, (0, <Tµ),

• k = k1 +k2 +1 (and therefore k1 , k2(k),

• A'=A1 , ••• , A;-1, B, A;+1, ... , An.
By the induction hypothesis, there exists s' such that

(Gu, s') E lfp(T w), and

µ, E (0'l(Jnt(s')))11·ca") = (fn(Jnt(s')))1vcccr)·

Then, by Lemma 4.14(2), we have that there exists s; such that

(G,s;)Eljp(Tw), and

(u,u)l@(cr) E (fn(<T.(/nt(S;))))1@(a)·

Moreover, by the induction hypothesis, there exists s" such that

(A' uµ, s") E lfp(T w), and

.,J' E (fn (Jnt(s")))1·v(A'<rµ. l = (g't (/nt(S")))l'V(A'aµ.) ·

By Lemma 4.14(2), there exists s~ such that

(A' <T,u, s~) E lfp(T w), and

(gz ((<T,U).(Int(sI))))10)(erµ.) = (<Tµ0l (Int(S")))1@(crµ.).

(2)

(3)

(4)

18 F.S. de Boer et al.

Note that (A', s{) E lfp (T w) implies the existence of a sequence of sequences of
substitutions s"' such that (ii, s"') E (fp(T w). By definition of T w, for each s; such that

s; E [u.lnt(s;)]. Int(S"'), (5)

we have

(A;, S;) E /fp(T w).

For the other atoms Aj (j rf. i), by equation (4), we have that there exists sj such
that(A;,s)E/fp(Tw). Let i'=s1 , ••. ,s;- 1 ,s;+ 1 , ••• ,sn-Wehave

Int(Sr) = Int(S"', r).

Therefore

{} = (o-µit')1vc.4J E (u,uS1l(Jnt(s")))1,v<AJ (by (3))

= (@r,((uµ,).(Int(.sn)))1v<Xl (by (4))

::::; (gJt,((@r,(u.Jnt(s;))).(Jnt(sD)))1,v<Xl (by (2))

= (@r, ([u.Jnt(s;)].(lnt(Sn}))j'Y(A)

= (S1l (Int(s 1 , ••• , S;, ... ; Sn)))j'l-"(Al. (by (5) and (6)) D

(6)

The following theorem states the completeness of the operational semantics with
respect to the fixpoint semantics.

Theorem 4.17 (Completeness). Let W be a program and let A be a sequence of atoms.
Then

{it I 3s locally independent on A: (A, s) E .9i'(W) and it E S1l (11 (s))IVIAJ}

::::; V'1C ~A:).

Proof. Lets= s1 , ••. , sn. We prove the theorem by induction on the length #(s) of
s (where #(S)=#(s 1)+· · ·+#(sn)).

(#(s) = 1): In this case, A contains only one atom, say A, and s contains only
one substitution, say {}', and it= S1l (it'))ir<AJ = 1'l(rcA:i. Then, there exists a clause
of the form H ~I E Wt'l(AJ and {}' E mgu;(A-, H) holds. Then, since '!R ({}') -cf- 0, we
have t'!f.vcAJ =E. Therefore

<~A, E)~ 1 (0, {}').

(#(S) > 1): Lets E Int(S) such that {} E (S1l (s))1,vc.4i. We have two cases, depending
on the first element of s being a critical section or not.

Semantic models for concurrent logic languages 19

(1) Consider the case that there exist a, s' such that s = a.s' or s = [a].s'. Assume

that a is associate to si, i.e., si = a.s;. Then, there exists a clause with empty guard,

H ,.__ IB E WHA,J, such that a E mgu;(A~, H). Moreover, since 97l (s) ¥- 0, we have

a1·v(A, l =E. Therefore

(.._A, E) ~ 1 (-(A 1 , ... , Ai_ 1 , B, Ai+,, ... , A 11), a)

and

3 f: (B,f) E lfp(T w).

By Lemma 4.14(1), there exist s', s", s", such that

• (A 1a, s;>, ... , (A;_ 1a, s;_,), (A;+ 1a, s;+ 1), ••. , (Ana, s;,), (Ba, s") E lfp(T w),

• s"E Int(s;, ... , s;_ 1 , s;+,, . .. , s~, s"),
• (0'l(a.s'))1nA:1v'1'(al = (o-iJt(s"))111A1v'1'ia)·
(Note that s' E Int(s 1 , ..• , si- 1 , S;+ 1 , ••• , Sn, f).)

(2) Consider now the case that there exists', s" such that s = [s'].s". Assume that

s' is associate to S;, i.e. s; = [s'].s;. Then there exists a clause H ,.__ G I iJ E WrrA,)

such that

• aEmgu;(A~,H),

• 3f:(G,f)Eljp(Tw),

• s' E a.Int(f).

From Lemma 4.14(1) it follows that there exists f' such that

•(Ga, f')E lfp(Tw), and

• (a97l(Int(f')))1011ai = (0'l(o-.Jnt(f)))1u1a>·
By the induction hypothesis we have for each r' E Int(f'),

(-G, a-)~k (D, en)

(for an appropriate k) where 7lrn"i"'JE (97l(r'))1·vica)· Moreover, since

(97l (s'))1nG<r1 <,; (iYt ([a. lnt(f)])) IV< err 1 = (0'.97l (/ nt(f')))1'1'(a"

and 97l (s') 11 10,,1 ¥- 0, we have that er and r do not instantiate variables of A;. Therefore

(.._}i, E) ~k+l (-(Ai, ... , A;_ 1 , A; ,. 1 , ... , An, B), ar).

The rest follows as in case (1). D

Example 4.18. (1) Consider the program {p(y) ,._ q(y)I., q(a) -I.}, with

declaration-mode {p(?), qC)}, and consider the goal -p(x). The possible s's such

that
(p(x),s)Eljp(T), are those of the form s=[{y/x-}.{y/a}Jix·}· We have

97l(s)=disann{x-}(~({y/x }~{y/a}))

= disann{x }(~({ {x-/ a, y /a}}))= 0,

and indeed no refutations are possible.

20 F.S. de Boer et al.

(2) Consider now the program {p(y) - lq(y)., q(a) - I.}, with the same
declaration mode. The possible s's are of the form s=[{y/x-Hx-dY/a}. We have

9ll(s) = 9ll(disann{x-i(15'({y/x-})) ~ {y/ a})

= 9ll ({y Ix} ~ {y I a}) = { { x I a, y I a}},

and we notice that indeed there exists a refutation for -p(x) giving the answer {x/ a}.

Now we consider again the example showed in the introduction (deadlock situ
ation), which illustrates the necessity to use streams-like structures.

Example 4.19. (1) Consider the program {p(a,b)-l.,q(a,b)-1.}, with
declaration-mode {p(?, A), q(, ?)}, and consider the goal -p(x, y), q(x, y). We have

(p (x, y), s1>. (q(x, y), Sz) E lfp(T),

for s 1 = [{x-/ a}]{x-l .{y / b} and s2 = [{y- / b}]{y-i .{x/ a}. For all the possible inter leav
ings s E s1 II s2 , we get 9ll (s) = 0. Indeed, no refutations are possible (deadlock).

(2) Consider now the program {p(z, b) - ir(z)., r(a) -I., q(a, b) +-I.}, with the
same declaration-mode for p and q, and with r(?). We have

(p(x, y), s1), (q(x, y), s2 > E lfp(T),

for s 1 =[{z/x-}]{x-j-{y/b}.[{z-/aHz-l and s2 =[{y-/b}]{y-l·{x/a}. We have

s =[{z/x-H,-)"{y/b}.[{y-/ b}]{y-l·{x/ a}.[{z-/ a}]vlE s1 I/ s2 and

{x/ a, y/ b, z/ a} E i?i't(s).

Indeed, there exists a refutation of the goal +-p(x, y), q(x, y) giving the answer
{x/a,y/b}.

S. Denotational semantics

The semantic universe M2 of the operational semantics offers too little structure
to define a compositional semantics. One of the reasons is that it is too coarse to
distinguish between different kinds of deadlock. A standard solution stemming from
the semantic studies of imperative languages is to use tree-like structures. Following
[9], we introduce a so-called reflexive domain, which is a complete metric space
obtained as the (unique) solution of a reflexive domain equation. (We omit the
proof of its existence; in [9] and [2], it is solved in general domain equations in a
metric setting.)

Definition S.1. The set (p, q E) P is given as the unique complete metric space
satisfying

Semantic models fi!r concurrent logic languages 21

where = means "is isometric to" and PPc(I' x P) denotes the set of all closed subsets

of I' x P Further I' is given by (a E) I'= Vu V[l with

(j E) V = Subst-'> Subst8 , Vl l = {[f]:J E V}.

Here Subst8 = Subst u {8} and 8 is a special element denoting deadlock.

Elements of P are called processes. A process p can either be p0 , which stands

for termination, or a closed set {(a;, p;): i E I}, for some index set I. In that case, p

has the choice among the steps (a;, p;). Each step consists of some action a;, which

is a state transformation, and a resumption p; of this action, that is, the remaining

actions to be taken after this action.

The main difference between P and M", as was already observed above, is the

fact that P contains tree-like structures whereas M 2 is a set of (subsets of) streams.

In addition, there are two other important differences. First, we use state transforming

functions rather that states (substitutions). This functionality is mandatory if we

want to define a compositional semantics. Secondly, internal steps are visible in P,

which is not the case in the operational semantics. For this purpose we distinguish

between two kinds of actions: an element f E V represents an internal computation

step, which corresponds to a step in the evaluation of a guard. An action [f] E y[1

indicates an external step or to be more precise, the end of an internal computation.

(This implies that external steps are modelled as internal computations of length

1.) A typical example of a process is

P = {U1, {([fz], {([f3), Po>l>,

lf4, HUs], Po, ([f6], Po)})})}.

We shall use the following semantic operators.

Definition 5.2. We define ;, II : P x P ___,, P and int: P ___,, P:

(1) Po;q = q,

p;q ={(a, p';q) I (a, p') E p }.;q ={(a, p';q) !(a, p') E p }.

(2) Poll q = q llPo = q,

Pllq = pll_qu qll_p,

pll_ q ={(a, p')IL q I (a, p') E p},

(f, p')ll_q =(f, p'll_ q), ([f], p')ll_q = ([f], p'llq).

(3) int(po) =Po,

int(p) = { (f, int(p')) I ((f, p') E p v ([f], p') E p) 11 p' ¥- p0}

u { ([f], Po) I (f, Po) E P v ([f], Po) E p}.

22 F.S. de Boer et al.

These definitions are recursive and can be given in a formally correct way by
defining every operator as the unique fixed point of a suitably defined contraction.

The definition of; is straightforward. The parallel merge operator 11 models the
parallel execution of two processes by the interleaving of their respective steps. In
determining all possible interleavings, the notions of internal and external steps are
crucial; inside an internal computation, no interleaving with other processes is
allowed. Only after the last internal step, indicated by the brackets [], do we have
an interleaving point. This explains the definitions of the (auxiliary) operator for
the left merge, which is like the ordinary merge but which always starts with a step
from the left process. If this step is internal (but not the last step of the internal
computation) then we have to continue with a next step of this left process:
<J. p') il_ q = (f, Pl q). If, on the other hand, an interleaving point is reached then
we switch back to the ordinary merge again: ([fl, p')ll. q = <[f], p' 11 q).

The operator int makes a computation internal by removing all internal interleav
ing points. This implies that in the parallel composition int(p) II q (for two arbitrary
processes p and q) none of the paths in p will be interleaved with any step of q.

Now we are already for the definition of the denotational semantics. Let W be
a fixed program.

Definition 5.3. We define '2l!: g}l(Var)--> Goal-> Pas follows:

(1) '2/J[X][D] =Po.

(2) f0[X][-A] = U {int({(f;(A, H, X), f0[X u invar(A)][-G])});

('2/J[X][outunif(A, H), B]): H-G/B E W}

with

};(A, H, X)

=A{}.{~ mgu;(AiJ, H) if mgu;(Ait, H)J and mgu;(A{}, H)ix&uinvar(A,~I = E,

u otherwise.

(Here XiJ=U{var(iJ(x)): xEX}.)
(3) f0[X][-outunif(A, H)] = { (f0(A, H, X), p0)}

with

fo(A, H, X) =A{}. { {} mguo(AiJ, H) if mgu0 (Ait, H)t
o otherwise.

(4) f0[X][-A,B]=f0[X][-A] llffi[X][-.8].
(Here the notation t is used to express the non-existence of the most general unifier.)

(Note that the definition of rzJJ is recursive; like the semantic operators, it can be
given as the fixed point of a contraction.) The first argument X of 0) indicates the
s~t of variables that are not to be bound during the computation of the goal at hand
(1.e., the second argument of rzJJ). It is used in the definitions off; and f 0 . In clause

Semantic models for concurrent logic languages 23

(2), X is changed into Xu invar(A), because a new guard computation is entered
there. The set of variables X that are not allowed to be bound (stemming from the

computation sofar) is extended with the set invar(A) of the input variables occurring
in A, because in the computation of the guard G these should not get bound. After

the computation of G, the variables that are not to be bound are put to X again,
thus indicating that the input variables of A may be bound again. In clause (2) we
further have that the computation of the unification and the guard is made internal
by an application of the function int, since it should not be interleaved with other
(guard) computations that may run in parallel.

6. Correctness of ~ with respect to l1J 2

We shall relate 0 2 and <2JJ via a function yield: P ~ Subst ~ M 2 • For technical
convenience we shall slightly adapt the definition of 0 2 by allowing the computation
of a goal to start with an arbitrary substitution, not necessarily the empty one.
Moreover we shall define this adapted version of 0 2 as the fixed point of a contraction

c/>, which will allow for an easy equivalence proof. First we turn M 2 into a complete
metric space.

Definition 6.1. We define M2 = g},.(Substc;/), where qi,. denotes the set of all closed
subsets. The set M 2 is a complete metric space if we supply it with the Hausdorff
metric induced by the usual metric on Subst'~.

Now we can define a contraction

by

if this set is non-empty, and by

c/>(F)[~ATI(if)= {8}

otherwise. Note that the complete metric on M2 induces a complete metric on
Goal~ Subst ~ M2 in the usual way. Next we use Banach's Theorem, which says
that a contraction on a complete metric space has a unique fixed point. So we put

l!J2 =fixed-point(c/>).

The function yield is defined as follows.

Definition 6.2. Let the function yield: P ~ Subst ~ Mc. be given by

yield(p0)(if)= {e} (the empty sequence),

yield(p)(if)= LJ { iJ'.yield(pn)(if'): U1, Pi) E P /\ · · · /\ (f,, .1, p,, 1)E Pn 2
Ii

11 ([f,,], p,,)E P11-111 (f,, 0 • • • 0 f1)(if)= if'}.

24 F.S. de Boer et al.

(The attentive reader might observe that the function yield is not well defined,
because in general yield (p) (it) is not closed. He is right. Happily, however, we are
saved by the observation that the restriction of yield to the set {p: 3A, X(p =

0J[X][-Ail)} always delivers closed sets. This turns out to be everything we need.
We leave the details to the above-mentioned reader.)

In the above definition the operation U 8 is used. It is defined by

ux={UX\{8} ifUX\{8}~0.
8 {8} otherwise.

The function yield performs four abstractions at the same time. First, it turns a
process (a tree-like structure) into a set of streams. Second, it computes for every
initial state it and state transformation f the next state by applying f to {}. This
result is then passed through to the next state transformation in the process. Third,
yield performs the function composition of all functions occurring in a sequence
f 1 , ••• , f,, that is induced by a finite path in p like

Such a sequence represents an internal computation, the end of which is indicated
by [fn]. Finally, the function yield removes all infinite internal computations.

Now we are ready to prove the equivalence of the denotational semantics 0J and
the operational semantics 02 • In the theorem below we shall allow ourselves the
following abuse of language by writing yield 0 iJlJ for

Ait. A -A. yield (0J[0][-A])(if).

Theorem 6.3. f!J2 =yield 0 0J.

Proof. We show that for all it, if', A, A',

<-A, it>~ <-A', if'>

~ yield (.@[0][-A])({}) 2 it' ·yield (0J[0][-A'])(-&').

From this it follows that

<P(yield 0 0J)[-A](it)= yield (0J[0][-A]) ({})

since

<P(yield 0 0J)[-A:n (1t)

(1)

(2)

= U {it'· yield (0J[0][-A'])(fJ'): <-A, ~I~ (-A', 'l'r'/} (definition <P)
8

s;; yield(0J[0][-A])('l'r) by (1)

and

yield (0J[0][+--A])(it)

s;; U {it'· yield (0J[0][-A'])(it'): <-A:, ir/ ~(+-A', it'!}.
8

Semantic models for concurrent logic languages 25

The latter inclusion holds by (1) and the fact that

-&'·yield(p)(-&')s;yield(g})[0Il[+-Ail)(ii) ~ 3+-A':p=0.l[0Il[+-A'], (3)

which is straightforward from the definitions of 0J and yield. Now the theorem
follows from (2) since it states that apart from 02 also yield o 0) is a fixed point of
<P. Both fixed points have to be equal by Banach's Theorem.

So let us prove (1). We distinguish between four cases.
Case 1: 0, trivial.
Case 2: +-A By definition of -i. we have (+-A, ii)-i. (+-A, ii') if and only if

there exist H +- Gl.B and J such that

(4)

and
Jlinvar(A) =EA ii'= iiJ A +-A= +-outunif(A, H), B.

We use induction on the depth of proof trees of transitions and observe that every
transition in the sequence ..!!.+ in (4) has a degree that is strictly less that that of
(+-A, ii)_, (+-A, ii'). It follows from the induction hypothesis applied to every one
of these transitions in..!!.+ that there exist n ;;;-; 0 and substitutions ii1 , ••• , {}n such that

-&1 • ... • iin · J · yield(gjJ[0][D])(J) s; yield(g})[0Il[+-G])(mgu;(A{}, H))

or, since yield(0)[0][D])(mguj(A{}, H)) = {e},

-&1 • ••• • {}n · JEyield(gjJ[0][+-G])(mgu;(Aii, H)).

Now we have

-&1 • ••• ·ii"· JEyield(0)[0][+-Gil)(mgui(Aii, H))

<:::> J E yield(int(g})[0][+-G]))(mgu;(A-&, H))

(definitions yield and int)

<:::> J E yield(int(gj)[invar(A)][+-G]))(mgu;(Aii, H))

(using that Jlinvar(Al=e)

<:::> J E yield(int(gj)[invar(A)][+-Gil))(ii mgu;(A-&, H))

<:::> ii' E yield (int({(/;(A, H, 0), 91J[invar(A)][+-G])}))(ii).

(definitions yield,f;(A, H, 0); recall that ii'= iiJ)

From the definition of 9iJ we have

yield (g}J[0][+-A])(ii)

= yield(int({(f;(A, H, 0), 0)[invar(A)][+-G])});

0)[0][+-outunif(A,H),B]: H+-0\BE W})(ii)

= U {ii'· yield(0)[0][+-outunif(A, H), B])(ii'):

ii' E yield (int({ (f;(A, H, 0), 0.l[invar(A)][+-G]}}))(ii),

H +-GIBE W}.

26 F.S. de Boer et al.

(For the latter equality we use the fact that

yield (int(p); q)({}) = U {it' ·yield(q)({}'): i'J' E yield (int(p))(i'J)}
a

for all p, q and {}, which is straightforward from the definitions of yield and int.)
Using this characterization of yield ('.li![0][-A])({})we can conclude that (5) above
is equivalent with

{}' · yield (92![0][-outunif(A, H), B])(i'J') <;:yield (92![0][-A TI)(i'J).

Summarizing we have

(-A, i'J)-> ((-<-outunif(A, H), B), i'J')

{}' · yield (ffi[0][-outun(f(A, H), B])({}')<;:yield (92![0][-A])(i'J),

which is what we wanted to show.
Case 3: +-outunif(A, H), trivial.
Case 4: -A, B. We have (+-A, ii,{})--+ (-A", i'J') if and only if

(+-A, i'J)-> (+-A', i'J'), -A"=-A',ii
or

-A"= -X, B'.
We consider only the first case, the second being almost identical. By induction,
again to the depth of the proof tree for this transition, we have

(-A,i'J)->(_,A',<'>') ~ yield(92l[0][-A])(il)

~yield (fi1)[0][-A'])(il').

From the definition of '.liJ and yield it follows that

yield ('.li![0][+-A, B])(il) =yield ('.li![0][-A] // '.li![0][-B])(il)

2 yield (ffi[0][-A] 1L '.li![0][-.8])(il)

= U { il' ·yield ('.li![0][-A'] 11 '.li![O][-B])(il):
0

(6)

{}' · yield ('.li![0][..-A']) (<'>')<;:yield ('.liJ[0][-A])({})}

= U U>' · yield ('.li![0][+-A', ii])(il):
15

{}' · yield ('.liJ[0][<--A'])({}')<;: yield ('.li![0][-A])({})}.

(The last but one equality follows from (3) and the observation that

yield(pll q)({}) = U { {}' · yield(p' II q)({}'): {}' · yield(p')({}')<;:yield (p)({})}
a

for all p, q and il.) Thus we see that (6) is equivalent with

<'>-' ·yield (0J[0][-A:', B])(<'>') s;: yield ('.li![0][-A:, B])(il).

This concludes the proof of Case 4. D

Semantic models for concurrent logic languages 27

7. Conclusions and future work

We have defined a declarative semantics that fully models (i.e., it is equivalent to)
the Success Set of a set of concurrent logic programming languages with input
constraints and commit operator. Then, we have defined a denotational semantics,
correct with respect to the operational one, that (compositionally) also models the
finite failures and the infinite computations. Since we have abstracted from the
particulars of any specific language, our semantic descriptions apply to various
instances of concurrent logic languages, such as PARLOG, Guarded Horn Clauses
and Concurrent Prolog.

If we compare the denotational semantics given here to the ones given in [6, 7]
for Concurrent Prolog and Guarded Horn Clauses, respectively, we observe that it
is more abstract, that is, makes less distinctions. Moreover, it is in some sense closer
to the declarative model (than in the case of [7]), because the restrictions imposed
on unifications by the input constraints for a program are treated in the same way
in both the denotational and the declarative model.

Still, the denotational model is not fully abstract and the construction of such a
model remains a topic for further research. Another question still to be investigated
is the relation between the denotational and the declarative semantics. Here both
models are related via their corresponding operational semantics, but it would be
interesting to formalize their relationship more directly. In [8], a direct equivalence
is established for HCL.

8. Appendix: the extended unification algorithm

We give an extended version of the unification algorithm based on the one
presented in [l], that works on finite sets of pairs. Given a finite set of finite sets
of terms M, consider the (finite) set of pairs.

Mpairs = U {(t, u)i t, u ES}.
ScM

We define the unifiers of a set {(t 1,u 1), ... ,(tn,un)} as the ones of
{{t1 , u1}, ••• , {tn, un}}· Of course, M and Mpairs are equivalent (i.e., they have the
same unifiers). A set of pairs is called solved if it is of the form

{(vi, t1), ... , (vn, tn)}

where all the v;'s are distinct elements of Varu Var-, v;e 'V(ti. ... , tn), and, if
V; E Var and f; ,& vi, then vie 'V(v1 , ••• , Vn, t 1 , ••• , tn)- For P solved, define YP =
{vi/ti, ... , Vn/tn}, and Op= ''IP'YP·

The following algorithm transforms a set of pairs into an equivalent one which
is solved, or halts with failure if the set has no unifiers.

Definition 8.1 (Extended unification algorithm). Let P, P' be sets of pairs. Define
P=f;> P' if P' is obtained from P by choosing in P a pair of the form below and by

28 F.S. de Boer et al.

performing the corresponding action

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(v, v)

(t, v)

(x, t)

where v E Var u Var-

where v E Var u Var-,
t~ Varu Var-

where xE Var, x'f" t, x-7"' t, x or x

occurs in other pairs, or
x E 'Y(t) or x- E: 'V(t)

where x E Var, and x occurs in other
pairs

replace by the pairs

<t1, u1>. ... , Un, Un)

halt with failure

delete the pair

replace by the pair (v, t)

if x E 'Y(t) or x- E 'Y(t)
then halt with failure,
otherwise apply the
substitution {x/ t} to all the
other pairs,

apply the substitution
{x/ x-} to all the other
pairs,

where x- E Var-, x- ?"' t and x- occurs if x- E "ff(t) then halt with
in other pairs, or x- E "ff(t) failure, otherwise apply

the substitution {x-; t} to
all the other pairs.

We will write P~ fail if a failure is detected (steps 2, 5 or 7).
Let ==;.* be the reflexive-transitive closure of the relation ==;., and let P.wt be the

set Pvo1 ={P'\symm(P)~* P', and P' is solved}, where

symrn({ U1' U1), ... ' Un, Un)})= {(t], u1>. .. . 'Un, un)}

u {(t;, u;), ... , (t~, u~)}.

The set of substitutions determined by the algorithm is

.1 (P) ={Op• IP' E Ps0 1}.

The following proposition shows that the set of the idempotent most general
unifiers of M is finite and can be computed in finite time by the extended unification
algorithm.

Proposition 8.2. Let P be a.finite set of pairs, and M be a.finite set of finite sets of terms.
(1) (finiteness) The relation ~ is finitely branching and noetherian (i.e.,

terminating).
(2) (solved form) If P is in normal form (i.e., if there exist no P' such that P~ P'),

then P is in solved form.
(3) (soundness) Ll(P) ~ mgu(P).

Semantic models for concurrent logic languages

(4) (completeness) mgu(M) <:,;;; Ll.(Mpairs).

(5) P -===;.* fail if! P is not unifiable.

29

Proof. (1) (finiteness) By definition, :::;. is finitely branching ift for each P there is

only a finite number of P' such that P =='? P'. At each step, the number of choices

in the algorithm is bound by the number of pairs in the current set. Therefore, in

order to show that the :::;. is finitely branching upon the elements of { P' IP:::;.* P'}
(for P finite) it is sufficient to prove that each P' derived from P has a finite number

of pairs. This follows from the fact that:::;. preserves finiteness; in fact only step (1)

can increase the number of pairs, and it can add, each time, only a finite number

of them.

By definition,:::;. is noetherian ift there are no infinite sequences P1 =='? P2=='?· • • Pn:::;.

· · · . In order to show that :::;. is noetherian on the sets derived from a finite set P,

it is sufficient to note that:
• For each variable in the original set P, steps (5), (6) and (7) can be performed

at most once. Therefore they can be performed only a finite number of times.

• Steps (1) and (4) strictly diminish the number of occurrences of function symbols

at the left hand side of the equations. Therefore (when steps (5), (6) and (7)

cannot be performed anymore) they can be performed only finitely many times.

• In absence of step (1), step (3) can be applied only a finite number of times.

• Step (2) can be performed only once.
(2) (solved form) The unapplicability of steps (1), (2) and (4) ensures that

condition (1) is satisfied. Since steps (5), (6) and (7) are not performable, conditions

(2) and (3) hold. Finally, also condition (4) is implied by the unapplicability of

step (5).
(3) (soundness) In order to prove the soundness of the algorithm we need the

following lemma.

Lemma 8.3. Let P be a set of pairs. Let P' E Pwr· Then Op· E mgu(P').

Proof. Let P' = {(v 1 , t1), ••• , (vn, tn)} E P,01 • Then, for any v E Varu Var-, we have

three cases:

(a) v=v;, for a given i (l~i~n). In this case, vop·=vyp"}'p·=t;yP'=(since P'

is in solved form)= f;.

(b) v = v;, for a given i (1 ~ i ~ n). In this case VOp· = V'}'p·'}'p· = t; YP"

(c) v ¥- V;, v ¥- v;, for all i = 1, ... , n. In this case VOp· = vyp·Yp· = vyp· = v.

(idempotency) We have to show that for any vE Varu Var-, vop·Op·= vop·.

(a) If v = v1, for a given i (1 ~ i ~ n), then VOp•Op· = t;Op• = V'}'p•Yp· =(since P' is

in solved form) = t1 = VOp•.

(b) If v=v;, for a given i (l~i~n), then vop·Op·=t;yp·Yp·=(since P' is in

solved form)= t; 'YP' = vop·.
(c) Ifv¥-v1,v¥-v;,foralli=l, ... ,n,thenvop•Op·=vop·(=v).

(unifier) For each i = 1, ... , n, we have V;Op· = t; = (since P' is in solved form)= t1op·.

Moreover, v; Op•= t; '}'p· =(since P' is in solved form)= (j '}'p·'}'p· = t; op ..

30 F.S. de Boer et al.

(most general) Let O" be a unifier of P'. We show that 8p·<J=O".

(a) If v = V;, for a given i (1 o;;: i o;;: n), then v8p·O" = t;u =(since a is a unifier of
P') = V;O" = VO'.

(b) If v= v;, for a given i (I o;;: jo;;: n), then v8p·u= t;yp·O'=(since u is a unifier
of P') = t; u =(since IJ' is a unifier of P') = v; u =vu.

(c) If v ¥ V;, v # v;, for all i = 1, ... , n, then v8p·U =VO'. D

We now prove the soundness of the algorithm. If P' is solved then by Lemma
8.3, op' is an idempotent mgu of P'. Therefore, it is sufficient to show that if P ~* P'
then P and P' are equivalent (i.e., they have the same unifiers). First observe that
the equivalence is stepwise preserved by the relation ~- In fact, steps (1)-(4) (6)
and (7) clearly do not affect the set of unifiers. Then assume

P={(t1,u1), ••• ,(t,,,un)} ~ P'={(t;,u;), ... ,(t~,u~)}

via step (5). Let (t;, u;) be the selected pair in P. Then, I;= x E Var and tj = t;{x/ u;},
uj = uj{x/ u;} for j = 1, ... , i -1, i + 1, ... , n. If{} is a unifier of P, then x{} = u;il and
x- 1'> = u; 1'>. Therefore {x/ u }1'> = iJ. Thus we have tjtt = (tj{x/ u;}) .,'} = tj({x/ u;}tt) =
t/f = (since tt is a unifier of P) = uj{} = (uj{x/ u;}) 1t = uj({x/ u;}tf) = ujtt, i.e., {} is a
solution of P'. Analogously, if .,'} is a solution of P', then {} is a solution of P.

(4) (completeness) In order to prove the completeness of the algorithm we need
the following lemmas.

Lemma 8.4. Let M be a set of sets of terms. If{} is an idempotent most general unifier
of M, then {} is relevant (see [1]). Namely, {} involves only the variables occurring in

M, and their annotated versions, i.e.,

Proof. By Proposition 8.2(1), (2) and (3), if M is unifiable, then there exists a set
of pairs P such that:
• symm(Mpairs) ~* P,
• P is in solved form,
• op E mgu(M).

By definition, it follows immediately that op is relevant. Since {} is a most general
unifier of M, there exists µ, such that ttµ, =Op. Then, we have: ff8p ={}{}µ.=(since
.,'} is idempotent)={}µ,= 8p. It is easy to see that

hold. Moreover, since op is relevant, we have

Therefore

~(tt))s'Y(M)u'Y(M)- and <e(tt)r:;"f!'(M)u'Y(M)-,

i.e., {} is relevant. D

Semantic models for concurrent logic languages 31

Lemma 8.5. If{} - {}' (i.e. {} ~ {}' and {}' ~ {}), then there exists a renaming p such

that {}' = fip and {} = {}' p - 1•

Proof. It is an immediate extension of a lemma stated in [15]. See also [10] for an

easy proof. D

Lemma 8.6. If{} E mgu(M), then

mgu(M) = {{}'I{}' is idempotent and 3p renaming: {}' = fip }.

Proof. If fi, {}' E mgu(M), then {} ~ {}' and fi' ~ fi, i.e., {}- fJ-'. By Lemma 8.5, we

have fi' = fJ-p for an appropriate renaming p. On the other side, if fi' = {}p, and

{)-E mgu(M), then{)-' is a unifier of M. Moreover, for any other cr that unifies M,

since {)-~a, we have 3p: {)-7=u. Thus {)-'p- 1T={}T=cr, i.e., {)-'~cr. 0

We now prove the completeness of the algorithm. By Lemma 8.6, if if, {}' E

mgu(M), then {}' = {}p for an appropriate p. By Lemma 8.4, p does not introduce

new variables. Then, we can decompose {}, {)-' into two parts:

such that

p =if, u fi; and fii = fi 2fi;.

Now observe that Mpairs is symmetric, i.e., (t, u) E Mpairs iff (u, t) E Mpairs· Moreover

it is easy to see that if symm(Mpairs)~*P and (t 1 ,u 1), ••• ,(tn,un)EP, then

syrnm(MpairJ ~* P' =PU { (u 1 , t1), ••• , (un, tn)}. Now let

P, = { (t, u) It/ u E fi,} = { (v,' w,). ... ' (Vn, Wn)},

P1 = {(t, u) It/ u E f>i},

P; ={(t, u)lt/uE 1.'T;}={(w 1 , v1), ••• ,(w,,, vn)},

Pi={(t, u)lt/uE 1.'Ti},

and assume

Then

symm(Mpairs) ~* {(v,, w,), ... '(vn, Wn)}

u {(w1, v 1), ••• , (w,,, Vn)}u P2 ,

and since {(v 1 , w1), ••• , (vn, w,,)}{ w,/ Vi. ... , w,,/ vn} = {(v1 , v1), ••• , (Vn, v,,)}, which

is eliminated by step (3), we have

syrnm (Mpairs) ~* { (w,' V1), ... , (w,,, Vn)} u P1{ wif Vi, ... ' Wn/ Vn}

= {(w1 , v1), ••. , (wn, v,,)} u P;.

32 F.S. de Boer et al.

(5) (soundness and completeness of failure) We want to show that the algorithm

fails iff the initial set P is not unifiable.
if part: By part (1) and (2) of this proposition, either P~* P', where P' is in

solved form, or P~* fail. By part (3), the first case implies that P is unifiable,

therefore P ~fail.
only-if part: Assume P ~*fail. Let P' be the set of pairs such that P ~* P' and

P' ~fail. Then, one of steps (2), (5) (first case), or (7) (first case) applies to P', i.e.,

• (f(ti, ... , t")' g(ui. ... , u")), where j;C g, or
• (x, t), where xe Var, x 7" t, x- ;C t and (x E 'V(t) or x- E 'Y(t)), or
• (x-, t), where x-E Var-, x- ;C t and x- E 'V(t).

In all cases, P' is clearly not unifiable. Since ~ preserves the equivalence (see the
proof of part (3) of this proposition), P' is equivalent to P. Therefore, P is also not

unifiable. D

References

[1] K.R. Apt, Introduction to logic programming (revised and extended version, Technical Report
CS-R8826, Centre for Mathematics and Computer Science, Amsterdam, 1988; also in: J. Van
Leeuwen, ed., Handbook of Theoretical Computer Science Vol. B (Elsevier, Amsterdam, 1990)
493-574.

[2] P. America and J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete
metric spaces, J. Comput. System Sci. 39(3) (1989) 343-375.

[3] L. Beckman, Towards a formal semantics for concurrent logic programming languages, in: E.
Shapiro, ed. Proc. Jrd Internal. Conf on Logic Programming, 225 (Springer, Berlin, 1986) 335-349.

[4] K.L. Clark and S. Gregory, Notes on the implementation of parlog, J. Logic Programming 2(1)
(1985) 17-42.

[5] K.L. Clark and S. Gregory, Parlog: parallel programming in logic, ACM TOPLAS 8(1) (1986) 1-49.
[6] J.W. de Bakker and J.N. Kok, Uniform abstraction, atomicity and contractions in the comparative

semantics of concurrent prolog, in: Proc. 5th Generation Computer Systems, Extended Abstract.
(Ohmsha Ltd, Tokyo, Japan, 1988) 347-355; full version in CWI report CS-8834; Theoret. Comput.
Sci., to appear.

[7] F.S. de Boer,J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, Control flow versus logic: a denotational
and a declarative model for guarded horn clauses, in: A. Kreczmar and G. Mirkowska, eds., Proc.
Mathematical Foundations of Computer Science (MFCS 89), 379 (Springer, Berlin, 1989) 165-177.

[8] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten, From failure to success: comparing
a denotational and a declarative semantics for horn clause logic, in: Proc. lnternat. BCS-FACS
Workshop on Semantics for Concurrency, Leicester (1990), to appear in Theoret. Comput. Sci.

[9] J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, Inform.
and Control 54 (1982) 70-120.

[10] E. Eder, Properties of substitutions and unifications, 1. Symbolic Comput. 1 {1985) 31-46.
[11] M. Falaschi, G. Levi, M. Martelli and C. Palamidessi, A new declarative semantics for logic

languages, in: K.A. Bowen and R.A. Kowalski, eds., Proc. 5th Conf and Symp. on Logic Programming,
Seattle (MIT Press, Cambridge, MA, 1988) 993-1005.

[12] M. Falaschi, G. Levi, M. Martelli and C. Palamidessi, Declarative modeling of the operational
behaviour of logic languages, Theoret. Comput. Sci. 69(3) (1989) 289-318.

[13] S. Gregory, Parallel Logic Programming in PARLOG, International Series in Logic Programming
(Addison-Wesley, Reading, MA, 1987).

[14] M. Hennesy and G.D. Plotkin, Full abstraction for a simple parallel programming language, in: J.
Becvar, ed., Proc. 8th Internal. Symp. on Mathematical Foundations on Computer Science, Lecture
Notes in Computer Science 74 (Springer, Berlin, 1979) 108-120.

Semantic models for concurrent logic languages 33

[15] G. Huet, Resolution d'Equations dans des Langages d'Order I, 2, ... , w, PhD thesis, Univ. Paris
VII, 1976.

[16] G. Levi, Models, unfolding rules and fixed point semantics, in: K.A. Bowen and R.A. Kowalski,

ed., Proc. 5th Conf and Symp. on Logic Programming, Seattle (MIT Press, Cambridge, MA, 1988)
1649-1665.

[17] J.-L. Lassez, M.J. Maher and K. Marriot, Unification revisited, in: J. Minker, ed. Foundations of

Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, 1988).

[18] G. Levi and C. Palamidessi, The declarative semantics of logical read-only variables, in: Proc. IEEE

Symp. on Logic Programming, Boston (IEEE Computer Society Press, 1985) 128-137.
[19] G. Levi and C. Palamidessi, An approach to the declarative semantics of synchronization in logic

languages, in: J.-L. Lassez, ed., Proc. 4th Internal. Conf on Logic Programming, Melbourne (MIT

Press, Cambridge, MA, 1987) 877-893.
[20] M. Murakami, A declarative semantics of parallel logic programs with perpetual processes, in:

Proc. 5th Generation Computer Systems, (Ohmsha Ltd, Tokyo, Japan, 1988) 374-381.

[21] C. Palamidessi, A fixpoint semantics for guarded horn clauses, Technical Report CS-R8833, Centre

for Mathematics and Computer Science, Amsterdam, 1988.
[22] Y.A. Saraswat, Partial correctness semantics for cp(i, I.&), in: Proc. Conf on Foundations of

Software Computing and Theoretical Computer Science, 206 (Springer, Berlin, 1985) 347-368.
[13] Y.A. Saraswat, The concurrent logic programming language cp: definition and operational semantics,

In: Conj Record of the 14th Ann. ACM Symp. on Principles of Programming Languages (ACM,

New York, 1987) 49-63.
[24] Y.A. Saraswat, GHC: operational semantics, problems and relationship with cp(LI), in: IEEE

Internal. Symp. on logic programming, San Francisco (IEEE, New York, 1987) 347-358.

[25] E.Y. Shapiro, A subset of concurrent prolog and its interpreter, Technical Report TR-003, !COT,

1983.
[26] E.Y. Shapiro, Concurrent Prolog: Collected Papers, Yols. I, 2 (MIT Press, Cambridge, MA, 1988).

[27] A. Takeuchi and K. Furukawa, Parallel logic programming languages, in: E. Shapiro, ed., Proc.

Jrd Internal. Conf on Logic Programming, 225 (Springer, Berlin, 1986).

[28] K. Ueda, Guarded horn clauses, Technical Report TR-103, !COT, Tokyo, 1985; revised in 1986; a

revised version is in: E. Wada, ed., Proc. Logic Programming '85, Lecture Notes in Computer Science

221 (Springer, Berlin, 1986) 335-349; also in: E.Y. Shapiro, ed., Concurrent Prolog: Collected Papers

(MIT Press, Cambridge, MA, 1988) Chap. 4.
[29] K. Ueda, Guarded horn clauses, a parallel logic programming language with the concept of a guard,

in: M. Nivat and K. Fuchi, eds., Programming of Future Generation Computers (North-Holland,

Amsterdam, 1988) 441-456.
[30] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language,

J. ACM 23(4) (1976) 733-742.

