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A b stra ct

This thesis is concerned with the development of algebraic techniques for the study of systems that com
pute over infinite sequences of data called streams. We call the mathematical representation of systems 
that take streams as input and produce streams as output stream transformers (STs) and we call the 
implementations of STs stream processing systems (SPSs). Collectively, we call the study of STs and 
SPSs stream processing.

Stream processing encompasses many classes of systems that are studied in Computer Science. For 
example, dataflow systems, signal processing systems, reactive systems and synchronous concurrent al
gorithms can all be formalized mathematically as STs. These classes of systems are broad and include 
all traditional forms of sequential and parallel hardware and many specialized models of computation 
including artificial neural networks and systolic architectures.

We identify and analyse the typically higher-order approaches to stream processing in the literature. 
From this analysis we motivate an alternative approach to the specification of SPSs as STs based on 
an essentially first-order equational representation. This technique is called Cartesian form specification. 
More specifically, while STs are properly second-order objects we show that using Cartesian forms, the 
second-order models needed to formalize STs are so weak that we may use and develop well-understood 
first-order methods from computability theory and mathematical logic to reason about their properties. 
Indeed, we show that by specifying STs equationally in Cartesian form as primitive recursive functions 
we have the basis of a new, general purpose and mathematically sound theory of stream processing that 
emphasizes the formal specification and formal verification of STs. The main topics that we address in 
the development of this theory are as follows.

We present a theoretically well-founded general purpose stream processing language ASTRAL (Algebr
aic Stream TTMnsformer Language) that supports the use of modular specification techniques for full 
second-order STs.

We show how ASTRAL specifications can be given a Cartesian form semantics using the language 
PREQ that is an equational characterization of the primitive recursive functions. In more detail, we 
show that by compiling ASTRAL specifications into an equivalent Cartesian form in PREQ we can use 
first-order equational logic with induction as a logical calculus to reason about STs. In particular, using 
this calculus we identify a syntactic class of correctness statements for which the verification of ASTRAL 
programmes is decidable relative to this calculus.

We define an effective algorithm based on term re-writing techniques to implement this calculus and 
hence to automatically verify a very broad class of STs including conventional hardware devices.

Finally, we analyse the properties of this abstract algorithm as a proof assistant and discuss various 
techniques that have been adopted to develop software tools based on this algorithm.
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Time like an ever' rolling stream. 
Bears all its sons away; 

They fly forgotten, as a dream; 
Dies at the opening day.



Chapter 1

Introduction

Most people are other people.
Their thoughts are someone else’s opinions,

their lives a mimicry, 
their passions a quotation.

Oscar Wilde
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1.1 S tream  T ransform ers

For a large variety of modern applications computing devices are often required to have a continu
ous mode of operation. However, from the perspective of ‘classical’ theoretical computer science 
the formal analysis of the computation performed by such systems is not straightforward, as 
most conventional mathematical models rely on a device’s termination to provide a meaningful 
semantics. Moreover, modern electronic devices can be of great complexity at both the hardware 
and software level, but most existing models of computation are low-level formalisms, and hence 
have limited practical applications for the specification of complex systems.

For example, consider correctness; that is, the ability of a system to perform consistently 
without errors. This is the most important property of so-called safety-critical systems such 
as flight control systems {fly-by-wire systems) and medical monitoring equipment. In general, 
correctness cannot be established by testing such systems, and hence correctness can only be 
proved formally using appropriate mathematical analysis. Despite this fact, for a number of 
reasons (see Chapter 8), at the moment theoretical computer science has had little Teal-world’ 
success in establishing correctness, and has also had some notable failures (Cullyer [1985] -  see 
Stavridou [1993] for a discussion).

The development of more appropriate approaches to model ‘non-terminating systems’ is not 
a new idea, and there is already a large diversity of techniques with many aims and objectives 
(see Chapter 3). However, even though the origins of the study of non-terminating systems 
can be traced back to at least the 1960s, with a few notable exceptions since that period this 
research has been fragmented and pre-occupied with practical rather than theoretical issues. As 
such, while there has been much interesting research and several specialized theories have been 
developed, we argue that a general theory of such systems has not emerged in the literature; that 
is, a theory that encompasses topics such as the scope and limits of stream-based computation, a 
study of the computability of stream processing primitives and constructs, and the decidability 
of the verification of a SPS relative to some abstract specification.

It is our aim in this thesis to develop the basis of a theory of stream processing that ad
dresses these and other issues. In particular, our aim is the development of an algebraic theory of 
non-terminating computation with an emphasis on formally establishing correctness. In order to 
achieve this aim we will combine two ‘new’ techniques for representing non-terminating systems: 
(1) we will specify non-terminating systems at a more abstract level than in existing research; 
and (2) we will use an essentially first-order specification technique. More specifically:

(1) our analysis of non-terminating systems is based on the idea that at the conceptual level 
they can be viewed as devices that receive infinite sequences as input and produce infinite se
quences as output. An infinite sequence, that we refer to as a stream, is essentially a list of 
elements a0, a l5 a2, . . .  taken from some data set of interest A, and can be formalized mathemat
ically as a function a : T -> A, wherein T  = N = { 0 ,1 ,2 ,...}  represents discrete time. We call 
a system that takes n streams as input and produce m streams as output for some n ,m  > I a 
stream transformer (ST) and characterize such a system as a functional

$ : [ T - >  /l]n -+[T~* /l]m.

As a general term we refer to the study of the theoretical and practical aspects of STs as stream
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processing.
(2) our study of STs is based on an alternative specification technique that we call Cartesian 

form specification. In particular, this is the reason that we refer to our work as algebraic as 
a Cartesian form stream transformer (CFST) can be represented using first-order specification 
techniques. Indeed, we believe that it is one of the fundamental strengths and differences of the 
analysis of STs that we present in this thesis that it is based on first-order methods, and hence 
our techniques are both effective (readily implementable by software) and well-understood from 
a theoretical perspective.

Our study of algebraic stream processing culminates in Theorem 18 in Chapter 7 that states 
that a large and useful class of STs, that encompass many conventional types of hardware and 
software, can be verified formally and automatically using straightforward techniques. However, 
as we will see, the proof of Theorem 18 requires several important intermediate results, one of 
the most notable of which is Theorem 7. This latter result establishes the practical applicability 
of CFSTs as a general purpose specification technique. We now introduce these ideas in more 
detail.

1.2 T h es is  O verview

The research that we present in this thesis develops both practical and theoretical techniques 
that are appropriate for the study of STs, and in particular for the formal specification and 
formal verification of STs. In the remainder of this introduction we motivate the main issues 
that will be the focus of our work, and briefly discuss the particular topics addressed in each 
chapter. A more detailed introduction can be found at the end of Chapter 3 once we have had 
the benefit of our mathematical preliminaries and a survey of the literature.

As our introduction suggests we see one of the main applications of our work as being the 
development of techniques that are appropriate for specifying and verifying safety-critical sys
tems, with a particular interest in safety-critical hardware. Furthermore, all of the techniques 
that we develop are also appropriate for the many other types of stream processing systems 
(SPSs) that can already be found in the literature: including dataflow systems, reactive systems, 
certain classes of special purpose functional and logic programming languages and synchronous 
concurrent algorithms (SCAs). Indeed, it is the class of SCAs, that themselves encompasses 
many types of computational models including: artificial neural networks, cellular automata 
and coupled-map lattice dynamical systems, that will provide the starting point of our work. 
Most specifically, because SCAs are also particularly appropriate for the formal study of hard
ware as STs. A detailed discussion of SCA theory can be found in Thompson and Tucker 
[1991].

Before we can motivate the reasons that we believe SCAs provide an appropriate starting 
point to develop a theory of stream processing in the sense defined in the previous section, there 
is a certain level of familiarity with specific mathematical concepts that the reader must have. 
In particular, like the theory of SCAs, our theory of stream processing is based on ideas from 
the theory of universal algebra. As such, we will present a brief, but sufficient introduction to 
signatures, algebras and related concepts that can be used to formalize rigorously the abstract
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notion of data types.
At this point the reader familiar with these concepts may be somewhat surprised, as uni

versal algebra has been designed to formalize first-order specification. In contrast, the informal 
description of STs that we have presented in our introduction clearly shows that STs receive 
functions as input, and hence are properly second-order objects. Despite this fact and even 
though higher-order algebraic techniques exists (see for example Meinke [1992b]) we will show 
that by adopting the method of Cartesian form specification, based on the work of B C Thomp
son and J V Tucker (see Thompson [1987]), it is wholly appropriate to apply these first-order 
techniques to the study of second-order systems. This is the reason that we refer to our methods 
as ‘essentially first-order’. We will return to this point throughout this thesis.

1.2.1 A lgeb raic  P relim in aries

In Chapter 2 we present our algebraic preliminaries. We also present the basic ideas behind 
the theory of equational specification and term re-writing that will play a central role in our 
work for the formal specification and formal verification of STs respectively. All other necessary 
preliminary definitions and further specific concepts based on the general ideas that we present 
in Chapter 2 are developed in the first chapter in which they are used.

1.2 .2  A S u rvey  o f S tream  P rocessin g

In Chapter 3 we carefully motivate the advantages that we believe our techniques have over 
existing approaches to stream processing with a detailed literature survey. In particular, later 
in Chapter 6 this literature survey will enable us to identify a clear correspondence between our 
theoretical tools and their practical applications by highlighting some of the relevant features of 
our formal specification and programming language ASTRAL.

We begin our literature survey with a brief historical perspective of the development of 
stream processing since its origins in the 1960s. This is followed by a more detailed analysis of 
each specific area of research that can be identified. Wherever possible, as we are developing a 
theory of stream processing, we are careful to separate theoretical and practical issues. More 
specifically, we are careful to distinguish between language design and implementation issues, 
and semantics and formal specification.

Most importantly we conclude Chapter 3 with a detailed discussion of SCAs and their theo
retical and practical advantages. This enables us to set a specific agenda of research for the rest 
of the thesis that is sufficient as the basis of a theory of stream processing in the sense defined 
in our introduction.

1.2 .3  P r im itiv e  R ecursion

One of the issues that is of particular importance in developing theoretical tools in this thesis 
is computability. Indeed, we base the semantics of the formal specification language ASTRAL 
that we develop in Chapter 6 on an equational formulation of the class of primitive recursive 
functions. In the same way that universal algebra precisely formalizes the concept of data, the 
explicit use of primitive recursion provides a solid mathematical foundation for our methods
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from the perspective of the class of functions that we may specify.
In Chapter 4 we present the language PR developed by B C Thompson in Thompson [1987] 

that is one method of generalizing to an abstract algebraic setting the work of S Kleene (see 
for example Cutland [1980]) that was concerned with primitive recursive computation over the 
natural numbers. We also present several computability theoretic extensions of P ll including the 
language /rPR (see Tucker and Zucker [1988]) that over an appropriate algebra provides a gen
eral model of computation equivalent to Turing machine computation on abstract structures.

PR and its extensions are functional languages that provide convenient mathematical tools 
to establish certain facts, including the realization of Cartesian form specification as a practi
cal technique. In more detail, by expressing STs in Cartesian form we will show that we may 
formally reason about their properties using first-order techniques and hence exploit several 
theoretical advantages over higher-order specification methods. However, when expressed in 
Cartesian form it is not immediately obvious that STs are compositional and thus appears to 
limit their potential as a practical specification tool. In particular, given two Cartesian form 
stream transformers (CFSTs) h and g it is not obvious that we may uniformly construct a CFST 
/  such that f  ~ h o g, and so it is not clear that we may apply modular specification tech
niques.

Chapter 4 is devoted to a detailed discussion of the problem of Cartesian composition includ
ing its rigorous formalization as a mathematical problem (Theorem 7) and to the development 
of an effective solution. Indeed, the proof of Theorem 7 is based on the correctness of a formal 
compiler C that given two /rPR schemes can construct a single /xPR scheme with the required 
semantics. For example, in the case of the /rPR schemes a h and ag representing the functions h 
and g above, the result of the compilation C(ah , a g) is a ¿¿PR scheme aj such that the semantics 
of is the function / .

1 .2 .4  P r im itiv e  R ecu rsive  E quational Sp ecification

Like a Turing machine the language PR (and its extensions) provide a useful tool for establishing 
certain theoretical facts. However, PR also shares a further similarity with a Turing machine in 
the sense that it is a very low-level specification method. To address this problem, in Chapter 5 
we develop the equational language PREQ, also based on the technique of primitive recursive 
specification, that provides a more appropriate syntax for the representation of large systems. 
In particular, it is PREQ and not PR that we use as the semantics of our specification language 
ASTRAL.

In developing PREQ, if we wish to use it as a tool for the formal verification of STs then 
we must establish that PREQ does precisely capture the class of primitive recursive functions. 
As part of our research, in Chapter 5 we prove this fact formally and in so doing also provide 
a mechanism to constructively exploit the properties of the compiler C. In more detail, in 
order to establish formally that PREQ captures the class of primitive recursive functions we use 
two further formal compilers: the compiler CPREQ that maps PR schemes into PREQ; and the 
compiler CPR that maps PREQ specification into PR.

The equivalence of PREQ with PR (that is, PREQ’s soundness and adequacy with respect 
to the class of primitive recursive functions) is stated formally in Theorem 10 wherein CPR is
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used to establish soundness, and <CPREQ is used to establish adequacy. However, in addition, 
as we wish to use the compilers CPR and <CPREQ as the basis of software tools, a large part ot 
Chapter 5 is also devoted to establishing the efficiency of our compilation techniques from the 
perspective of the number of equations that are produced by CPREQ. An important concept that 
we use in this discussion is the formulation of a normal form representation for PR schemes.

The final section of Chapter 5 is devoted to establishing one further theoretical property of 
PREQ specifications relative to their use for formal verification, but this time from the particular 
perspective of automated reasoning; that is, we establish that when PREQ specifications are 
orientated as left-to-right re-write rules they produce term re-writing systems (TRSs) that are 
complete. Indeed, the construction of a complete TRS from a PREQ specification (Theorem 11) 
forms a crucial part of the development of our automated verification techniques for STs in 
Chapter 7.

1.2.5 A S T R A L

Having completed the first part of our research agenda, in Chapter 6 we are in a position to 
begin the development of the specification language ASTRAL that is specifically tailored for the 
representation of STs.

The first part of our development of ASTRAL is concerned with the formulation of its ab
stract syntax and semantics. Specifically, rather than formulate an independent semantics for 
ASTRAL we prefer to derive the meaning of an ASTRAL specification by compiling it into a 
Cartesian form specification in PREQ. This enables ASTRAL to incorporate high-level language 
features, but also to exploit the theoretical properties that are possessed by PREQ specifica
tions. As such, it is necessary for us to design several further formal compilers. In particular, 
to allow modular specification techniques to be applied we define a generalized version of the 
Cartesian composition compiler C that we presented in Chapter 4. This new compiler is tailored 
to accommodate practical as well as theoretical concerns and we discuss its actual implementa
tion in Chapter 8.

The second part of the development of ASTRAL is concerned with practical issues relating 
to the implementation of its abstract syntax. In more detail, we develop an implementation 
of ASTRAL in a form that is suitable as a high-level, declarative programming and specifica
tion language. However, rather than do this by formally presenting a BNF, we motivate our 
implementation by the use of several small case studies. In particular, we use the numerous 
stream processing primitives and operations that we present as part of our literature survey to 
demonstrate the effectiveness of ASTRAL as a specification tool. For example, while ASTRAL 
formally derives its semantics from a primitive recursive function, and hence does not provide 
a general model of computation in the sense of a Turing machine, we show that in practice this 
is not a limiting feature from the perspective of the class of systems that we can specify.

1.2 .6  A u to m a ted  V erification

As we indicated in the first part of this introduction, one of our main research aims is the formal 
verification of a stream transformer’s correctness to provide appropriate theoretical tools for the
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verification of certain types of safety-critical systems.
In order to achieve this aim in Chapter 7 we begin with a discussion of the relationship 

between using equational logic as a formal calculus and the intended semantics of an equational 
specification; that is, we discuss the difference between loose semantics, and initial semantics 
that is typically the intended meaning of a formal specification (see Goguen [1988]). This dis
cussion motivates the definition of a formal calculus EQWIL, based on the rules of equational 
logic, but extended with induction, that is suitable for reasoning about the properties of FREQ 
specification relative to their initial semantics.

Using EQWIL as a formal deduction system we show that by defining two functions (VER 
and EVER), both based on term re-writing techniques, we can draw on our previous results 
(in particular Theorem 11) to show that it is possible to fully automate deductions about the 
correctness of STs using TRSs created from PREQ specifications.

More specifically, we show that it is possible to reduce deductions about the initial truth 
of Cartesian form (weak second-order) equational correctness statements in weak second-order 
systems of equations to deductions about the initial truth of first-order equations in strictly 
first-order systems of equations. Furthermore, by identifying certain syntactic classes of cor
rectness statement we show that by specifying STs as ASTRAL programmes a very broad class 
of hardware devices can be proved formally correct using completely automated software tools. 
Indeed, continuing our use of constructive techniques we do this by using EVER to define a 
further function A V  that given two ASTRAL programmes can automatically decide if they can 
be proved equivalent using the calculus EQWIL. The formal statement of AV’s properties is 
given by Theorem 19 that is accompanied by a explanation of our theoretical results particular 
practical implications. Moreover, Theorem 19 has important applications to the verification 
of SCAs, including one useful result that shows that deciding the equivalence of two cellular 
automata using the calculus EQWIL is decidable.

1 .2 .7  Im p lem en tin g  a P ro o f Tool for STs: a C ase S tu d y

To complete the demonstration of the the practical applications of our work, we conclude our 
research with a discussion of the implementation of software tools based on some of the abstract 
functions that we have defined. We do this with the use of a small case study: the RS-Flip-Flop 
that is a commonly occurring hardware device.

The software that we have developed has concentrated on the implementation of two specific 
functions: the generalized version of the compiler C and the function EVER, that are sufficient 
to demonstrate the effectiveness of a full implementation of the function AV.

We present the high-level algorithms on which our implementations are based and demon
strate both the practical and theoretical benefits that these algorithms provide. Specifically, 
from the perspective of efficiency we show that it is possible to identify the first point at which 
an automated verification can be aborted. Also, from a theoretical perspective we show that 
without modifying the underlying formal calculus EQWIL on which our implementation is based, 
it is possible to deduce existential as well as universal quantification on certain variables. This 
has useful applications for the verification of hardware devices as it is often appropriate to prove 
a device is correct relative to some specific initial configuration of the devices memory.

7



Finally, we discuss the steps necessary to implement a full implementation of AV and present 
some techniques that would be sufficient to increase the performance of our prototype tools to 
make them suitable to verify complex hardware devices such as modern microprocessors.
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C h ap ter 2

Algebraic Prelim inaries

How many things I  have no need of!

Socrates
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2.1 O verv iew

The mathematical framework that we will work within in this thesis is based on the theory of 
abstract data types and more generally the theory of universal algebra. As such this chapter is 
structured as follows:

In Section 2.2 we have some general preliminaries concerning our basic notation for defining 
sets and functions.

In Section 2.3 we present an introduction to the fundamental algebraic concepts that will be 
used throughout this thesis.

This is followed in Section 2.4 by some further algebraic preliminaries concerned specifically 
with stream processing. In particular, we present a concise notation to classify the various types 
of stream processing systems that we will encounter in Chapter 3.

We conclude this chapter in Section 2.5 with a discussion of the work of Kahn [1974] that 
has been used widely to provide a semantics for stream processing systems. An understanding 
of Kahn’s method is useful as it clarifies some of the points that we raise in our literature survey 
that follows in the next chapter. However, this section is not essential and can be omitted on a 
first reading by the reader who is not familiar with the necessary concepts from domain theory 
(see for example Stoltenberg-Hansen et al. [1994]).

2.2  G en era l P relim in aries

We now define some general mathematical preliminaries that we will use throughout this thesis.

2.2.1 S et N o ta tio n

As is standard we use p(x) to denote the power set of x, and the operators 1J, — , and f) to denote 
set-theoretic union, difference and intersection respectively. We denote the size (cardinality) of 
a set x by |x|.

2.2 .2  F unctions

We denote the domain and range of a function /  by dom (/) and ran( /)  respectively.
We represent the fact that a function /  is partial by writing /  : A B  for some data sets 

A and B. When /  is a partial function we denote the fact that f  is defined on some element 
x € dom (/) by f ( x ) [  and the fact that /  is undefined on some element x £ dom (/) by f ( x ) \ .  
Furthermore, when the value x € dom (/) is either understood or unimportant we will simply 
write f  { and f ' \  respectively. We also use the symbols ‘|_’ and ‘f ’ on their own to mean ‘defined’ 
and ‘undefined’ respectively. Continuing the use of this notation we define

dom (/) |=  \J  f{x )  | .
x g d o m  ( / )

Of course in general the properties f (x )  f and f(x )  \ for some /  and for some x € dom (/) 
are undecidable. Therefore, if we do make use of a partial function as part of a definition we will
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always ensure that it is possible to decide whether for each x G dom (/) if J(x) f,. To this end we 
often find it useful to use the set maplet notation to define a (partial) function. For example, if

/  : N N

is defined by

then we write

(Vn G N) f(n )  =

5 if n — 2,
6 if n = 3,

-
7 if n = 4, and 
[ otherwise

/  — {2 5, 3 i—> 6,4 f- 7}.

Continuing the visualization of functions as sets of ‘maplet pairs’, for two functions f ,g  : 
A B  for some data sets A and B  we write:

/ f >  = 0

to mean that

and

(Va G A) ( / ( a ) l= >  $(a) T) A (# (a ) |= >  /(a )  |) ; 

1 2 9

to mean that
(Va e A) (g(a)i=> f(a )[  /\(f(a) = g(a))).

Furthermore, if f f ] g  = 0  then we write h — f \ J g  to denote the function h : A B  defmed by

(Va G A) h(a) = <
/(« )
i?(a )

|  otherwise.

A /(a ) 
if <7(a) and

Finally, we write h = / [ { « ! , . . . ,  n*}] for some n,- G A for i = 1 , . . . ,  k to mean the function 
h : A B defined by

(Va G A) h(a) =
f(a)  if a = n,- for some i G { 1 ,..., fc} and /(a )  j 
|  otherwise

and hence h is the restriction of f  to the domain {n1?.
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2.3  A lgeb ra ic  P relim in aries

For the purposes of the first chapters of this thesis of a few basic concepts from the theory 
of universal algebra are sufficient: sort sets, signatures, algebras, reducts, standard algebras, 
terms and term evaluation. As such, the reader familiar with these ideas can move directly to 
Section 2.4 on Page 19.

The reader requiring a more detailed introduction to the theory of universal algebra can 
consult Goguen et al. [1978], Ehrig and Mahr [1985], Meseguer and Goguen [1985], Goguen 
[1990], and most specifically for a presentation using the notation of this thesis Mcinke and 
Tucker [1992].

2.3 .1  Sorts

A sort set is a finite set S  = {s1? s2, . . . ,  s„} wherein each s{ G S for i — 1 , . . . ,  n £ N is called 
either a sort name or a sort symbol, with the intention that it will be used to name a carrier 
over which we may perform some computation (see Section 2.3.3). In particular, we say S is 
standard if it contains the sort symbols n and b with the intention that these symbols name the 
natural numbers and the Booleans respectively (see Sections 2.3.4 and 2.3.5).

We write w £ S* to indicate that u; is a member of the set of all strings (also called words) 
over S including the empty sequence A. We also define S + = S* -  {A} to be the set of non-empty 
words and S n for each n £ N to be the set of all words of length n.

We denote the length of a word w by \w\. Thus, if w — A then |w| = 0 and if w £ S n then 
|kj] = n.

Finally, we denote the ith sort of w by in,; that is, w = uq ■ ■ ■ u;|tu| for each w £ S*.

2 .3 .2  S ign atures

An S-sorted signature S is an S* X ¿-indexed family

£  =<  | w £ S'*, s £ S >

of disjoint sets. The signature is finite when SWi, is finite and non-empty for finitely many 
(w, s) G S* X S.

Each set Ea,j , with typical member ‘c’, is called the set of constant symbols of sort s, and 
each set T,W)S for any w £ S +, with typical member V ,  is called the set of operator symbols of 
type w -* s. In particular, we sometimes write a : w —► s to indicate a is a member of S„,,.

An ¿'-sorted signature E is standard if S  is standard and the usual constants and operator 
symbols associated with the carriers n and b (see Sections 2.3.4 and 2.3.5) occur in E. Finally, 
a signature E is non-void if for each s £ S  we have |S A)J| > 1. Indeed, for technical reasons (see 
for example MacQueen and Sanella [1985]) in this thesis we always assume that every signature 
without stream sorts is non-void. However, we do allow stream signatures (weak second-order 
signatures) to be void, but only in their stream sorts (see Definition 2.4.2).

12



2.3 .3  A lgebras

Let E be an ¿'-sorted signature. An S-sorted E-algebra A (also called a E-structure) consists of 
an ¿-indexed family

A —<i A , | s (E S >

of sets, where each set A, is called the carrier of sort s (also called the domain of sort s), and 
a 5* X ¿'-indexed family

S '1 = < E'l, I w e s m, s e s >

defined such that
(1) for each s £ S and each c £ SAl3 there exists a constant cA € A,, and
(2) for each w € ¿ +, for each s € ¿  and for each a £ EWi, there exists a mapping aA : Aw —*•
A, e EA s, wherein Aw denotes the Cartesian product AWi x AW2 x • • • x A„, .

We define An for each n £ N to be the set of all Cartesian products of length n made from 
the carriers of A and use A+ to denote (Jn>i d n.

For notational convenience we sometimes informally and ambiguously denote an algebra with 
n constants and m operations by A = (A; cl5. . . ,  cn; ay ,. . . ,  <rm). Finally, we write Alg(E) for 
the class of all E-algebras, and if a property holds for each algebra A £ Alg{E) then we say it 
is uniform in A.

2 .3 .4  N atu ra l N u m b ers

Although we have already used the symbol N informally, we now give a more formal algebraic 
definition.

We use the distinguished sort symbol n to name the set N = { 0 ,1 ,2 ,...}  of natural numbers. 
We also ambiguously use N to denote the single-sorted algebra of natural numbers defined by 
N = (N; 0; succ) wherein ‘0’ (zero) and ‘succ’ (successor) have their usual interpretations. For 
historical reasons we will also use T  to denote the natural numbers when they are being used to 
measure time (see Section 2.4). Finally, we use N+ to denote N -  {0}.

2.3 .5  B oo lean s

We use the distinguished sort symbol b to name the set B = { t t j f}  of Boolean truth val
ues. We also ambiguously use B to denote the single-sorted algebra of Booleans defined by 
B = (B; tt,ff-,not,and,or), wherein ‘if’ (true), lf f  (false), ‘not’, ‘and’ and ‘or’ have their usual 
interpretations.

2 .3 .6  R ed u cts

Given a E-algebra A, we can form a new algebra B from A by ‘forgetting’ some of A’s opera
tions.

Formally, let A be an ¿-sorted E-algebra and let ft be an ¿'-sorted signature with S' C S 
and ft C S; that is, let f t^ , C E ^ , for each w £ (S')+ and for each s £ S'. We define the 
Q-reduct of A to be the ¿'-sorted ft-algebra B  whose carriers are a sub-set of the carriers of
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A and each of whose operations a u is defined by aB = crA. In symbols, we write D = A|n to 
indicate that B  is a reduct of A.

2 .3 .7  S tandard  A lgebras

For any 5-sorted E algebra A we define A to be standard if both of the algebras N and B are 
reducts of A.

Standard algebras play a central role in this thesis in the sense that for our purposes, in 
general, a standard algebra containing only the natural numbers and the Booleans is the smallest 
algebra over which we wish to ‘compute’.

2.3 .8  V ariables

Let S be any sort set. We define an 5-indexed family of variable symbols by

X  = < X , \ s e  S >

wherein X ,  for each s G S  is either a finite (possible empty) or countable infinite collection of 
variable symbols of sort s.

2 .3 .9  T erm s

Let E be any 5-sorted signature and let X  be an 5-indexed family of variable symbols such that
£ and X  are pairwise disjoint; that is, such that for each w G S* and for each s,s' G S  we have
T,w 3 fl X s> = 0  so that there is no confusion between symbols.

For each s G S  we define T(E, X )3 the set of terms of sort s uniformly in s <E S by induction 
on the structural complexity of a term t as follows:
Basis Cases

(1) If t = c for some c G Ey, for some s 6 S then t G T(E, X )3.

(2) If t = x for some x G X s for some s G S then x € T ( S ,X ) 3.

Induction

(3) If t = o (t l , . . . ,  tn) for some a e E«,,,, for some w = sx --- sn G S +, for some s G S and for 
some tj G T(S, A )Jt for i = 1 ,.. , ,n  then t G T (E ,X )i .

We denote the ¿¡"-indexed family of terms T(E, X)  defined by

T(E, X)  = < T( E, X) ,  | s e S > .

If a term t G T (E ,X )3 for some s G S is defined without the use of variable symbols; that 
is, if t is defined without the use of Case (2) of the inductive definition above then we say that 
t is either a closed term or a ground term. In particular, we write t G T(E), to indicate that t 
is a closed term and gather together all closed terms into an 5-indexed family in the same way 
as above:

r (E )  =<  T(E)3 I 5 G 5 > .



If t is not a closed term then we say that it is an open term indicating that it contains at 
least one variable symbol.

For two terms t and t' we say that t is a sub-term of t' denoted i C f  if either t, = t! or t 
occurs as part of t ' . For example, if t = add(x,y) and t! — mult(add(x,y), z) then x C t C t.' 
and z C t ' , but z ( f t .

In the sequel we will find it necessary to replace sub-terms of a term r  with other terms. For 
example, given the terms t and t' as defined above we might wish to replace the variable ^ with 
the term t to derive the term mult(add(x,y),add(x,y)). In order to denote such a replacement 
we will use the following notation: given terms r, p and p we will write

T[7l/p]

to indicate the term r  with all sub-terms p replaced by p. Thus, P[z/t\ with t and t' as defined 
above is mult(add(x, y), add(x, y)). If 77 is not a sub-term of r  then we define r[p/p] to be simply 
t itself.

Finally, in Chapter 7 we will also find it useful to extended this notation by replacing a set of 
sub-terms of a term relative to some indexing in the following way: for some term r  and terms 
rji and pi for i = 1 , . . . ,  n 6 N+ we will write

Th/p i]iZni

to mean
Pl])[m/P2}) ■ • ')[Vn/Pn])

wherein the bracketing is simply for clarity to indicate the order in which we assume the replace
ments take place as this may be significant in the case that either pj C Pk for some j , k  £ { 1 ,... n} 
such that j  < k, or rjj C pk for some j, k £ {1 ,.. . 7 1 }  such that j  > k.

2 .3 .10  Term  E valuation

Given an algebra /I and a function p : X  —* A a term evaluation map is an ¿'-indexed family of 
functions

V" = < V f : T (H ,X ) ,  -  A, | s £ S >

that interprets every term as an element in the carriers of A. In particular, a term evaluation 
map Vf : T ( £ ,X ) ,  ->■ A, (ambiguously denoted V n) is defined uniformly in s £ S by induction 
on the structural complexity of a term t as follows:
Basis Cases

(1) If t = c, for some c £ and for some s £ S  then

V v(t) = cA.

(2) If t — x, for some x £ X ,  and for some s £ S then

V ”(t) = p(t).
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Induction

(3) If t — ex ( £ ! , . . . ,  £„), for some a G T,WiS, for some w — Si • • • sn G S +, for some s G S and for 
some U 6 T(E, Àr)3, for i = 1 , . . . ,  n then

V \ t )  = oA(V”(tl ) , . . . , V ' ( t n)).

Term evaluation maps will play a significant role in the formulation of a denotational semantics 
for the specification language PREQ in Chapter 5.

2 .3 .11 E q u a tio n s

Using terms we are now able to formally define the concept of an equation and systems of 
equations.

Let £  be any 5-sorted signature and let X  be an 5-indexed family of variable symbols such 
that E and X  are pairwise disjoint. We define EQ (E,X )S the set of equations of sort s such 
that e G E Q (£ ,X )3 if, and only if e is an expression of the form

t = £'

for some t, t' G T (S ,X )s. Similarly to terms, we also gather together equations into an ¿-indexed 
family E Q (£ ,X ) defined by

EQ(£, X) = < EQ(E, X )3 | 5 G 5 >

and draw a distinction between closed and open equations; that is, if e — (t = V) for some 
t, t' G T (E), then e is a closed equation denoted e G EQ(E)3. Otherwise, if e — (t — t') for some 
t , t '  € T (E ,X )3 such that either t $ T(E), or t' £ T (E)S then e is an open equation. Again, we 
gather together closed equations into an ¿’-indexed family

EQ(E) = < EQ(E)3 | s G S’ > .

Extending the use of our term replacement notation defined above, in the sequel for some 
equation e = (f = £') and for some terms r  and r ' we will write e[r/r '] to mean the equation 
t[r /T'] = t'\r! r'].

For the purposes of this thesis we define a system of equations E — {ei, e2, . . . ,  e„} to be 
a finite set such that e,- G E Q (£ ,X ) for i = 1 , . . . , n  G N+ and write E  C EQ (E,X ). For 
example, if E is some standard signature and X  3 {a:} wherein x is of sort b then the system 
of equations E % C EQ(S, A') defining the standard operations of the Boolean algebra is defined 
by: = {not{tt) = ff,not(ff) = tt,and(tt,x) = x,and(x,tt) -  x,and(xJJ) = ff,and(ff,x) =
f f ,o r ( t fx )  — tt,or(x,tt) = tt,or(ff,x) = x,or(x,ff)  = x}.
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The concepts of term re-writing and term re-writing systems (TRSs) will play a fundamental 
role in Chapter 7 and 8 wherein we automate the process of making formal deductions about 
the correctness of SPSs relative to a specification. However, while term re-writing is based on 
straightforward ideas it is a complex area of research with many subtleties. Therefore in this 
section we present an informal overview of the key ideas underlying the subject that will be 
sufficient to understand the theorems presented in Chapter 7. The reader that does not find 
this brief and informal account sufficient is directed to Dershowitz and Jouannaud [1990] and 
Klint [1993] for more detailed introductions.

Essentially, a TRS is a system of equations E C EQ(E,AT) wherein each e = (£ = t') G E 
is orientated into what is referred to as a re-write rule, denoted t £', indicating that for the 
purpose of deduction we will only use an equality in one direction. However, we may include 
either of the re-write rules t £' and £' t or both in a TRS if we wish. In particular, we 
write T R S(£ ,X )j to denote the set of all sets R  constructed from each set E  C EQ(E,A'), in 
this way; that is, R  C T R S (£ ,X )a if, and only if there exists a corresponding E C EQ (£,A ')J 
such that for each e = (t = £') G E  we have either t h-> t1 G R, or i' t G R, or £ i—>■ £' G R, 
and £' i-> £ G R. We also gather each T R S(£ ,A ), for each s G S into an S'-indexed family 
TR S(£ ,X ).

The motivation for working with a TRS rather than a system of equations is that it provides 
a mechanism by which we may automate equational deduction. In more detail, BirkhofPs 
Soundness and Completeness Theorem (see for example Meinke and Tucker [1992]) shows (1) 
that any equation that can be proved using equational logic is valid -  soundness; and (2) that 
any equation that is valid can be proved by equational logic -  completeness (see Chapter 7). 
This result is very useful from the perspective of formal verification as it shows, in a precise 
mathematical sense, that for reasoning about equations the formal deduction system provided 
by equational logic is ideal. However, from the particular perspective of automated verification 
it is not straightforward to implement equational logic directly to provide the basis of verification 
tools, and so this has stimulated research into term re-writing.

More specifically, it is the combination of Birkhoff’s Theorem with a further fundamental 
result -  the Correspondence Theorem (see for example Klop [1992]) -  that has stimulated term 
re-writing research. In particular, the Correspondence Theorem shows that if we form a TRS 
from a system of equations E  by orienting each equation as both a left-to-right and right-to-left 
re-write rule then the set of equations that were dcducible from E  using equational logic is 
precisely the set of equations that is deducible from R  using term re-writing. Therefore, term 
re-writing is equivalent in its proof theoretic strength to equational logic, and in addition from 
the perspective of implementation is more straightforward.

Given a term t and a TRS R  containing a rule r = (rp-+ p), term re-writing is based on the 
principle of re-writing t to some equivalent r  using r (written either £ —>r r  or just t —>R r  if the 
rule used from R  is either understood or unimportant) relative to some appropriate substitution. 
For example, if t is the term and(tt, ff), R  is defined by orienting each equation in E® (as defined 
above) into a left-to-right re-write rule, and the rule r taken from R  is and(tt,x) >-> x then 
t A f f  with the substitution x = ff. Thus informally, a substitution is nothing more than an

2 .3 .12  T erm  R e-W ritin g  S ystem s
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instantiation of the variables in T] that makes rj syntactically identical to a (part of) term /., and 
the result of re-writing with this substitution is t (with that part) replaced with p under the 
same substitution of variables.

It is clear how given a TRS R C TRS(E, X )  the process of automatically re-writing a term 
can be readily implemented. In particular, we can decide if an equation e = (l = t') £ EQ (E,X ) 
is valid by repeatedly re-writing t and f  with rules from R (written t t and r ' —̂ *R r ')  
and testing to see if r  = r '. However, this technique now raises several points. First, recall 
that in general to make an equivalent TRS R  from a system of equations E  the Correspondence 
Theorem required that we had to add a re-write rule to R made by orienting each e £ E as both 
a left-to-right and right-to-left re-write rule. Specifically, in general a TRS R. may either have 
two rules of the form rq — (p p) and r 2 = (/m-+ t]) or two rules of the form r( — ( f  h-+ p’) 
and r'2 — (r/ t-» p") and so it not clear that: (1) re-writing a term is a terminating procedure; 
and (2) re-writing a term has a unique result. We will show that it is straightforward to deduce 
that a TRS created from a PREQ specification has precisely these two properties and hence is 
ideal for automated reasoning.

The basic term re-writing concepts that we have discussed are made precise in the following 
definitions, that also include some further terminology we will use in the sequel.

Let R  C TR S(E,X ) be any TRS and let t £ T (E ,X ) be any term.

Definition 1. The term t is a normal form under R  if there is no rule r £ R such that t —»> r; 
that is, if it is not a reducible expression (redex) under R.

Definition 2. R  is weakly terminating (also called iceakly normalizing) if for each term t there 
exists a normal form u such that t ->-+R y.

Definition 3. R  is strongly terminating (also called strongly normalizing) if for each term t the 
rules of R  cannot be used to re-write t an infinite number of times.

Definition 4. R  is confluent (also called Church-Rosser) if for each term t if t —*->R r  and 
t — r ' for some terms r, r' then r  p and r ' — p for some term p.

Definition 5. R  is complete if R is both strongly terminating and confluent.

Definition 6. R  is left-linear if for each rule r = (p p) £ R each variable x £ X  occurs at 
most once in p.

Definition 7. R  is overlapping if there exist two rules r = (p >->■ p ),r ' = ( r j 1 h-+ p') £ R 
(including the case where r = r') such that there exist ground-term substitutions ? and f  that 
make c(p) a proper sub-term of f(g ') ,  and the outermost function symbol of qfq) occurs as part 
of rj' .

Definition 8. R  is orthogonal if it is left-linear and non-overlapping.
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2.4  S trea m s, S tream  T ransform ers and S tream  P ro cessin g

We now formalize algebraically the three most fundamental concepts in the context of our 
research: streams, stream algebras and stream transformers. This also enables us to give a 
rigorous definition to the ideas of stream processing systems and stream processing. In particular, 
we classify the types of stream processing systems that can be found in the literature to allow 
us to use a concise notation in our literature survey in Chapter 3.

2.4.1 C locks

A clock is any algebra isomorphic to the natural numbers; that is, any algebra that is identical up 
to a re-naming of constants and operations in the underlying signature. We will denote a clock 
by T  = (T; 0; succ) and use the distinguished sort symbol t to name the set T  = {0 ,1 ,2 ,...} . 
As such, because N and T  are essentially the same algebra in the sequel we will sometimes use 
N and T  interchangeably and similarly n and t.

2 .4 .2  S tream s and Stream  A lgebras

Let A be any standard ¿'-sorted E-algebra. For each s e S we denote a stream of sort s by

\T -  ¿ I -

A typical member a G [T —> A]3 is a function a : T  -> A, such that for each t G T  the fth 
element of a is written a(t). We will denote the set of all streams over algebra A by [T -> A]; 
that is,

[T->A} = { { T ^ A ] s \ s e S } .

In addition, we denote an arbitrary Cartesian product of stream carriers of length n G W from 
A by [T —* A]n. When we wish to be specific about the type of each member of a Cartesian 
product of stream carriers we will write [T —»• A]u for some u — s t - ■ ■ sn G S + to denote

[T-> A]tl x •■•x [ T - A ] ,„ .

We define S_ = S U {s|s G 5} with the intention that s names the set [T —» A]s.
We define the 5-sorted signature

s = <  s ^ 3|w e s \ s e s >

wherein for each w G Sf and for each 5 G S

^  _  i U {eval,} if in — t s;
1EWiJ otherwise.

We define A to be the 5-sorted E-algebra wherein for each s G S, Aj = /l3, 4^ = [T —> /1]3 
and evalf- : T  X [T —>• A], —> A, is defined by

(Vi G T) (Va G [T A],) evalff t, a) = a(t).
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2.4 .3  C artesian  P ro d u cts  in Stream  A lgebras

Often when working with stream algebras we will assume that the elements of a Cartesian 
product a = (ax, . . .  ,an) for some n £ N can be taken from both stream and non-stream 
carriers. To avoid any confusion in later sections we now clarify the use of our notation when 
working with vectors in stream algebras.

For any standard algebra A the algebra A comprises sets of ‘ordinary’ data A, = As and 
sets of stream data A, = [T —» A]s for each s £ S. Furthermore, we will see Cartesian products 
of data sets over A occurring in three ways. First, for w £ S'  the Cartesian product A“ is just 
Aw by the definition of A; that is, Aw is a product of ordinary data sets only. Secondly, again 
for w £ S *, we define

[T->A]“ = [T -*A ]Wlx - - - x [ T ^ A ] WM

representing a product of stream data sets only. We also use A— to denote [T —> A]'". Finally, 
we will see mixtures of ordinary and stream data sets in a Cartesian product such as A“ for 
w £ S_+. For example, if w = sx s2 s3 £ S_’ then

A w = Atl x [T —► A],a x AJ3.

2 .4 .4  S tream  T ransform ers

Let A be any ¿'-sorted algebra. If

F : [T ->■ Aju x A" -► [T ->• A]” x Ay

is some function for some u, v,x,  y £ S * such that |u| + |?;| > 1 then we say that F is a stream 
transformer. In particular, initially we will be interested in stream transformers of the form

F  : [T -> A]“ A]v;

for some u, v £ S + that is, stream transformers with no non-stream input and no non-stream 
output. However, in Chapter 4 we will make our theoretical tools sufficiently general to model 
the extended forms of STs that we will encounter.

2.4 .5  S tream  P rocessin g

For the purposes of our work we define stream processing to be the study of stream transformers. 
Given that much stream related research is concerned with distributed processing we feel that 
this definition is appropriate as it encompasses both the theoretical and practical aspects of 
the field; that is, the theoretical study of STs as abstract functions and also of their (network) 
implementations. The distinction between abstract STs and their network implementations is 
made precise in the following section.
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As we have already outlined, within computer science STs are typically implemented and studied 
as systems composed of a collection of separate, but communicating processes that receive stream 
data as input and produce stream data as output. In order to emphasize the distinction between 
STs in abstract and their implementations we will refer to networks comprised of a collection of 
separate processing elements as stream processing systems (SPSs).

A typical SPS with n input streams (sources), m output streams (sinks), and k processing 
elements (usually called filters) is a distributed processing system 6 with functionality

0 : (T A]u -> (T -  4]”

for some u,v £ S + for some 5-sorted algebra A. SPSs are naturally visualized using a directed 
graph as shown in Figure 2.1 -  the reason for the particular annotation on this SPS is made 
clear in Section 2.5.

2.4 .6  S tream  P rocessin g  S ystem s

x 8

Figure 2.1: A Stream Processing System
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2 .4 .7  C lassify ing  SP Ss

Because so much of the stream processing research in the literature is concerned with SPSs it is 
useful to be able to identify the different types of SPSs concisely. In particular, we will classify 
SPSs by the following three main characteristics:

(1) Either s y n c h r o n o u s  or a s y n c h r o n o u s  filters.

(2) Either d e t e r m i n i s t i c  or n o n - d e t e r m i n i s t i c  filters.

(3) Either u n i - d i r e c t i o n a l  or b i - d i r e c t i o n a l  channels.

Furthermore, we will use the following shorthand notation to denote SPSs that are designed to 
model networks with specific combinations of these properties: e^u-SPS, wherein c £ {S', A}, 
6 £ { D ,  N } ,  and v  £ { U , B } .  For example, using this classification a synchronous, deterministic 
SPS with unidirectional channels is denoted SDU-SPS, and an asynchronous, noil-deterministic 
SPS with bidirectional channels is denoted ANB-SPS.

2.5  K a h n ’s W ork

2.5.1 D om ain  T h eory

To understand the traditional approach to formalizing the semantics of SPSs the reader will 
need to be familiar with the following basic concepts from the theory of d o m a i n s :  c o m p l e t e  

p a r t i a l  o r d e r s  (CPOs), m o n o t o n i c i t y ,  c o n t i n u i t y  and l e a s t  f i x e d  p o i n t s .  In particular, the primary 
theoretical result from domain theory of interest is this section is the following theorem:

Theorem  1. K leen e’s First  Recursion Theorem. L e t  A  a n d  B  b e  a n y  C P O s .  I f  t h e  

f u n c t i o n a l

F  : (A B )  -* (A B) 

i s  m o n o t o n e  t h e n  F  h a s  a  l e a s t  f i x e d  p o i n t .

For the reader not conversant with these ideas an introduction to domain theory can be 
found in Stoy [1977], Scott [1982], Plotkin [1983], and Stoltenberg-Hansen e t  a l .  [1994],

2.5 .2  K a h n ’s W ork and th e  F irst R ecu rsion  T heorem

In 1974 G Kahn published what has become an influential paper in the stream processing liter
ature (see Kahn [1974]), wherein he introduced a simple parallel language for representing SPSs 
in an ALGOL like style. In particular, it is the generality of the method Kahn introduced to 
provide a semantics for this language that has enabled his techniques to be used as a language 
independent denotational semantic model for both SDU-SPSs and some ADU-SPSs (see Sec
tion 3.3.3). Indeed, K a h n ’ s  m e t h o d  has been widely adopted by researchers as a semantic model
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for many types of SPSs.
In this section we discuss Kahn’s method in some detail in order that we may clarify certain 

points in later sections when we compare and contrasts existing techniques with Cartesian form 
specification. Therefore, as we indicated previously, this section can be omitted on a first read
ing.

K a h n ’s M otivation . The language that Kahn described in Kahn [1974] was designed to 
represent fixed, idealized, asynchronous networks of processes communicating by what Kahn 
called ‘FIFO queues’. Kahn invited the reader to visualize such networks as a set of generalized 
Turing machines (see for example Ilopcroft and Ullman [1979]) each with its own work tape, 
and connected via one-way ‘communication tapes’.

Kahn’s interest in such a language was not motivated by the development of a user-friendly 
programming methodology for describing ADU-SPSs. Rather, Kahn was interested in how to 
prove formally properties of programmes written in such a language. In particular, properties 
of the networks that this language could describe including computational properties such as 
termination and non-termination.

A S yn tax  for K ahn  SPSs. Before it was possible to formalize the semantics of Kahn’s 
language he needed to formalize both the syntax and the semantics of the abstract networks he 
wished to describe, and indeed it is this element of Kahn’s work that has been widely adopted 
by other researchers.

Specifically, Kahn formalised a SPS as a directed graph using the following basic assump
tions: (1) arcs are divided into two sets: input and output arcs that are not allowed to either 
branch or merge (see Section 3.10); and (2) the ith output arc comes from the ith node. How
ever, for the purposes of our explanation of Kahn’s work we will adopt a slightly more general 
framework, although for ease of exposition we will still assume that nodes only have one output 
arc. In particular, following the style of Kahn, if a node A; representing a ‘process’ P, has n > 1 
outputs then we will assume that A,- = (A (,. . . ,  N'n) wherein Aj for j  = 1 , . . . ,  n is a sub-node 
occupying the same position as A ’.

A Sem antics for K ahn  SPSs. Kahn observed that the (possibly infinite) sequences of 
data from some data type D passing along the arcs of SPSs (referred to as either queues or 
histories), could be formalized mathematically as the set

Du = [T -> D] ( J  Dn-
ngN

that is, the union of all infinite and finite sequences. (This is the generalized notion of streams 
that we refer to in the sequel.) Moreover, Kahn also noticed that by associating the usual partial 
ordering with Dw that D“ is a CPO. More specifically, Kahn observed that it is possible to view 
a network A with n $ N  input arcs and m  6 N output arcs as computing a functional

F n : (Du)n (Du)m.

23



In addition, with the assumption that each node in cur graph representing a processes computes 
a continuous function the functional F is itself continuous and hence it is possible to apply the 
First Recursion Theorem to show that the least fixed point of the functional F N is the required 
semantics of the network N .

In fact Kahn showed that this technique can also be applied to formalize the semantics of 
the language that he introduced for describing SPSs. He achieved this as follows.

Kahn SPSs as System s o f Equations. Let P be a programme over some continuous 
¿'-sorted algebra A implicitly describing some ADU-SPS N . Furthermore, let the network N 
consist of P  = (P y , . . . ,P k) processing elements, I  = ( Iy , . . . , I , )  inputs arcs of sort sj 6 S for 
j  — 1 and O — (Oy,.. . ,O k) other arcs of sort s f  £ S  (either output or internal) for 
j '  — 1 , . . . ,  k for some k,l  € N+; wherein associated with each Pt- for 1 = 1 , . . . ,  k we have:

(1) A function
f t  : A?., x • • • x A“ -> A“

for some s, £ S and for some si p £ S for p = 1 , . . . ,  n* £ N+ and

(2) Three architecture indicators:

ft  = (,rì[^-- ,Vnx) e { l,...,m az(L ’,/)}n‘,

and
X ■ {1, — , A:} -*

defined such that for q — 1 , . . . ,  rq £ N+

{I if the qth input to process i is from an input arc, and
0  if the qth input to process i is from an internal arc;

; I v if the çth input to process i is from Iv for some v £ {1, . . and
q 1 w if the çth input to process i is from 0 W for some w £ { 1 ,.. . ,  A:} ;

and for each n £ { 1 ,.. . ,  k}

x{n ) — tn <=> Pm’s output is arc On.

Finally, let a = (ay, . . . ,  a/) £ (A5i 5|i)" be the input to programme P.

Constructing Equations to Formalize P. Kahn’s method is now to construct a system 
of equations E P(H U F, X P) wherein F = { / i , . . . ,  f k) such that (by, . .. ,bm) is a solution to the
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system of equations £ p (S U F ,X f)  if an only if FN{al, . . ., nt) = (by,. . ., brn). To achieve this 
he defined EP(E U F , I P) as follows:

£ p ( S U F ,I P) =  {
x{ = Hy,

x f  =  a h

x °  =  f x l l ) ( Y l i l , . . . , Y l < n i ) ,

^  =  f x ( k ) { Y k i U . . . , Y l i n k )  }

wherein for i = 1,. . . ,  k and for j  = 1 , . . . ,  n,-

Y- • = 2>rJ 1J x rj

wherein
x(0r  = r p  *

and

-C3 il .cs

E xam ple 1. Following the example given in Kahn [1974], from the program describing the SPS 
shown in Figure 2.1 we derive the following:

P = (PU ...,P7) = (P/, Pi Pi Pi Pi Pi Pi,

I  = (h),
0 = (0U 0 2), 

f t  = /  : A x A -> A, 

f t  — ffl : A —r A, 

f t  = g 2 - A -> A, 

f t  = hx : A x A —> A, 

f t  = h2 : A x A -+ A, 

f t  = h  : A -* A, 

f t  = k , : A - >  A,

r 1 = ( 1 , 1 )  = (1,0),

V1 = (vl,vl)  = (1,2),

r 2 = ( r 2) = r 3 = (r?) = (J),

r  = (vl )  = v3 = (???) = (1),
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r 4 = (r i \ r 2) = T5 = (Tf,r!) = ( 0 ,0 ) ,

*/4 = (^iV/4) = r/5 = (vli'll) = (;̂ 5).

r 6 = (rf) = r 7 = ( r 7) = (/), 

rf = (77®) = r/7 = (r/[) = (1),

and

and

X = {1 t-> 1,2 1-» 4, 3 i-T 3,4 H-> 2, 5 »-*■ 7, 6 6, 7 1—* 5};

£ p ( s u  M , I p ) = {
= Zt,

x ? = f ( x { i x ?)>
x° = h j x ^  ,x°),
x 3 =  <72(2: )̂)

2:? =  <7 i(  X ?),

2:° =  ¿2(2:4 ),

*6 =  ¿1(2:?),
x ?  =  ¿2(2:?, 2:^) }.

As Kahn now observed it is a well-known mathematical result (Kahn cited Milner [1973], but a 
more recent reference is Stoltenberg-Hansen et al. [1994]) that such a system of equations over 
CPOs admits a unique minimal solution; that is, a least fixed point, and in particular this least 
fixed point is the value

F N(al , . . . , a l) = (bl , . . . , b k)

that we require. (For a proof of this fact Kahn directed the reader to Cadiou [1972].)
Furthermore, Kahn observed that by adopting a fixed-point semantic approach that Scott’s 

Induction Rule (Kahn cited Manna et al. [1973]) and several techniques for proving properties 
of recursive programs found in Vuillemin [1973] are now available including structural induction 
and recursion induction.

Conclusion. While we admire Kahn’s work we have several specific objections to the methods 
he developed from the perspective of the development of software tools and from the perspective 
of the automated verification of SPSs. We return to these points in Section 3.10.
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Chapter 3

A Survey o f Stream Processing

Comparisons are odourous.

Shakespear
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3.1 In tro d u ctio n

The origins of stream processing research can be traced back at least as far as the early 1960s, 
although not always in a form that is immediately recognizable as such today. Since that time 
individual research has typically been applications driven and has concentrated on developing 
specialized stream processing systems rather than developing a theory concerned with the gen
eral issues arising out of stream-based computation. For example, dataflow is considered to be 
a canonical example of stream processing research, but dataflow is predominately concerned 
with the development of parallel processing techniques. In particular, this is highlighted by the 
fact that dataflow is often considered to be a specialized implementation method for functional 
programming rather than a separate area of research. Indeed, in general we believe it is fair to 
observe that with a few exceptions stream processing systems have essentially been used as a 
convenient tool in research that has been concerned with other issues. Consequently, a coherent 
theory of stream processing based on the study of abstract stream transformers has not emerged 
in the literature.

In light of the rather eclectic nature of stream processing research, especially from the per
spective of semantics, we believe it is particularly important to examine the existing stream 
processing literature in some detail. Therefore, before we present an overview of the main topics 
that we will address in this thesis we will use a literature survey to motivate the theoretical and 
practical issues that we wish to address.

In Section 3.2 we begin our analysis of the literature with a brief historical perspective of 
the development of stream processing from the early 1960s to the present day.

The three sections following this overview are devoted to a more detailed analysis of some 
of the individual approaches to stream processing: dataflow (Section 3.3); specialized functional 
and logic programming (Section 3.4); and reactive systems and signal processing (Section 3.5). 
In each case we discuss the basic motivations and ideas underlying each paradigm. However, 
for convenience in order to clarify certain issues relating to computability theory and language 
design we have deferred the topic of stream processing primitives and languages arising in this 
research until Sections 3.7 and 3.8. The first part of our literature survey is concluded in Sec
tion 3.6 where we mention briefly some topics related to stream processing.

For emphasis, in Section 3.9 we discuss a topic of particular interest in this thesis: the use of 
streams in the design and verification of hardware. This leads into our discussion in Section 3.10 
that gives a detailed summary of the research presented in this thesis and how it relates to the 
existing stream processing research that we have discussed. In particular, we motivate what we 
believe are the the advantages of the use of algebraic techniques in stream processing including 
an overview of SCA theory that is the starting point for much of our own research.

3.2  A  B r ie f  H isto ry  o f  S tream  P ro cessin g

In this section we present a brief historical perspective of the development of stream processing 
over the last four decades. Of course given our general definition of stream processing it is 
impractical to survey every paper that is in some way related to the use of streams as either a 
theoretical or practical tool. Therefore, we mention only either well-known research or research
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that we believe is representative of a particular topic within stream processing, and that provides 
a useful starting point for any further reading the reader may wish to undertake. Research topics 
that we believe are most important are analysed in more depth in the following sections.

3 .2 .1  T h e 1960s

Within computer science the term stream has been attributed to P J Laiulin (see Burge [1975]) 
formulated during his work on the correspondence between ALGOL (JO and the A-calculus (see 
Landin [1965a] and Landin [1965b]).

The first type of SPSs that can be identified within the literature are dataflow systems that 
have certainly existed, although not always under the name ‘dataflow’, as early as the late 
1960s (see for example Mcllroy [1968] and Adams [1969]). The term dataflow originates from 
the term data flow analysis (see Ackerman [1979]) used to evaluate potential concurrency in 
computations.

3 .2 .2  T h e 1970s

The first dataflow language, and probably still the most famous, is LUCID (see Wadge and 
Ashcroft [1985]) that was conceived in 1974. LUCID is based in part on the language POP-2 
(see Burstall el al. [1971]), that allowed a limited use of streams. Other relevant dataflow 
references from the 1970s are Adams [1970], Kosiniski [1973], Dennis [1974], Weng [1975] and 
Arvind et al. [1979]).

As discussed in Section 2.5 in 1974 G Kahn published his well-known work outlining a sim
ple parallel programming language designed for representing SPSs using a fixed-point semantics. 
The use of a fixed-point semantics for SPSs in the style of Kahn’s work is common in the liter
ature, and for this reason SPSs are sometimes referred to as Kahn networks.

In 1975 W Burge (see Burge [1975]) discussed the use of streams as a method for structured 
programming and introduced a set of functional stream primitives for this purpose.

In 1976 P Henderson and J H Morris (see Henderson and Morris [1976]) and D P Friedman 
and D S Wise (see Friedman and Wise [1976]) published their work on lazy evaluation techniques 
that are useful for computing with infinite data types of which streams are an example.

In 1977 G Kahn made another contribution to the field with his joint paper with D Mac- 
Queen (see Kahn and MacQueen [1977]) wherein they introduced a language designed to model 
distributed process interaction using ideas from Kahn [1974],

3 .2 .3  T h e  1980s

Dataflow continued to be an area of widespread research during the 1980s and several additional 
semantic models for dataflow were introduced, for example, Faustini [1982], Bergstra and Klop 
[1983], Staples and Nguyen [1985], Stefanescu [1987a], Stefanescu [1987b], Kok [1987a] and 
Jonsson [1988].

Logic programming languages also began to be used to model SPSs. A modification of 
PROLOG used to model what have become termed perpetual processes (see Lloyd [1984]) within 
logic programming was introduced in Bellia et al. [1982],
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Functional programming languages were also used widely to model SPSs. Notable in this 
area is the work of M Broy and his use of functional languages to study stream based distributed 
processing (see for example Broy [1983], Broy [1986], Broy [1987a], and Broy [1987b]).

In 1985 the first paper on the subject of s y n c h r o n o u s  c o n c u r r e n t  a l g o r i t h m s  (SCAs) was 
released. Conceived by B C Thompson and J V Tucker, SCAs have been the stimulation for 
much of our own work into stream processing (see Section 3.10 where we give a full list of 
references on the subject of SCAs).

The year 1985 also saw the publication of a paper by D Harel and A Pneuli (see Harel 
and Pnueli [1985]) on the subject of r e a c t i v e  s y s t e m s .  Reactive systems, together with s i g n a l  

p r o c e s s i n g  n e t w o r k s  and s y n c h r o n o u s  d a t a f l o w  n e t w o r k s  -  that can be considered as special cases 
of reactive systems -  have been the stimulation for a large body of stream processing research 
(see for example Guatier e t  a l .  [1987], Caspi e t  a l .  [1987] and Berry e t  a l .  [1988]).

During the 1980s streams and STs have also been used extensively for hardware description, 
for example, Sheeran [1983], Sheeran [1986], Kloos [1987a], Kloos [1987b], Harman and Tucker 
[1988c] and Harman [1989] (also see Section 3.9).

3 .2 .4  T h e 1990s

As with the 1980s semantic models for dataflow are still being developed, for example, Kearney 
and Staples [1991], Bartha [1992a], Bartha [1992b], France [1992], and Lee and Tan [1992], 
although the work in Bartha [1992a], Bartha [1992b] is concerned with f l o w c h a r t  s c h e m e s  (see 
Leiserson and Saxe [1983]) that has applications to the study of dataflow schemes. A useful 
overview of the concept of dataflow with an extensive bibliography can be found in Sharp 
[1991].

SCAs continue to be an intensive area of research (again see Section 3.10 for references) as 
does research into reactive systems (see for example Beveniste and Berry [1991], Halbwachs e t  

a l .  [1991], Guernic e t  a l .  [1991], Ratel e t  a l .  [1991] and Halbwachs e t  a l .  [1992]).
The 1990s have also produced a body of work concerned with the theoretical foundations of 

stream processing. In 1992 J V Tucker and J I Zucker (see Tucker and Zucker [1992]) released the 
first in a series of generalizations of computability theoretic results from the natural numbers 
to algebras with streams. This work is continued in Tucker and Zucker [1994]. In addition, 
Stephens and Thompson [1992] presented a theoretical study of the compositional properties of 
STs in C a r t e s i a n  f o r m  (Chapter 4).

The theoretical work of K Meinke has applications to the specification, verification and 
parameterization of STs (see Meinke [1990], Meinke [1991a], Meinke [1991b], Meinke [1992a], 
Meinke [1992b]) as does the work of K Meinke with L J Steggles and B M Hearn (see Meinke 
and Steggles [1992] and Hearn and Meinke [1993] respectively).

Finally, M Broy continues his functional study of distributed processing over streams (see 
for example Broy [1990], Broy and Dendorfer [1992], and in particular Broy e t  a l .  [1993]).
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3.3  D a ta flo w

As dataflow networks were the first type of SPSs to appear in the literature we begin our more 
detailed survey with an examination of the research aims of dataflow’ and an analysis of the 
semantic models and implementation techniques that have been developed. An more detailed 
introduction to the concept of dataflow can be found in Sharp [1991].

3 .3 .1  O rigins

As we have mentioned dataflow research began as far back as the 1960s and continues to be an 
area of widespread research. One of tlve continuing aims of the dataflow approach has been to 
avoid the so-called ‘von Neumann bottleneck’ (see Backus [1978] and Backus [1981]) and exploit 
the parallelism offered by VLSI technology. As part of this research many experiments with 
specialized architectures have been undertaken (the interested reader can consult the bibliogra
phy of Sharp [1991] for a list of references).

We note in passing at this point that it has been observed that the link between J von 
Neumann and sequential computing methods is historically inaccurate, as he was one of the 
early advocates of parallel computing methodologies (Kiliminster [1993]). However, we use this 
phrase as it can be found in the dataflow literature.

3 .3 .2  D ataflow  N etw ork s

A classical dataflow network is an ADU-SPS, although dataflow computation based on ANU- 
SPSs has also been studied, and more recently dataflow computation based on SDU-SPSs has 
been of particular interest. The filters within a dataflow network (sometimes referred to as 
coroutines -  see Mcllroy [1968]- and also agents) compute over streams; that is, [T —► A] 
wherein A is usually restricted to int, bool, real and lists of these types.

3 .3 .3  D ataflow  C o m p u ta tio n  and Sem an tics

The dataflow model of computation can be divided into two basic forms: data driven wherein 
filters compute depending upon the availability of data at their inputs; and demand driven 
wherein filters request data on the input lines when they wish to compute.

Both of these approaches to dataflow computation can be formalized denotationally in the 
style of Kahn. Indeed, as we have discussed (see Section 2.5) a domain-theoretic semantics is 
common for dataflow languages. However, as discussed in Kok [1987b] Kahn’s method is not suf
ficient for some more general classes of dataflow network, for example noil-deterministic models 
of dataflow computation. Furthermore, ‘straightforward’extensions to the Kahn semantic model 
to cope with non-determinism can fail to be compositional (see Brock and Ackerman [1981] and 
also Rabinovich [1993]). Consequently for this and other reasons many other semantic models 
have been formulated for dataflow. For example, some recent references include Faustini [1982], 
Bergstra and Klop [1983], Staples and Nguyen [1985], Kok [1987a], Kearney and Staples [1991], 
Lee and Tan [1992], and France [1992].

Despite the many semantic models for dataflow none seems to have been widely adopted. In
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addition, the formal relationship between these different approaches is poorly addressed in the 
literature as is the correspondence between the model of computation provided by dataflow and 
formal models of computation. Indeed, it is interesting that despite the fact that the dataflow 
approach is in many senses closely related to CCS (see Milner [1989]) that (as far as we are 
aware) dataflow has not been formalized using this well-developed formalism. It has been sug
gested that this is due to the ‘value’ passing nature of dataflow networks that CCS does not 
handle concisely.

3 .3 .4  T h e U p tak e  o f D ataflow

Despite the extensive body of dataflow research the dataflow approach appears to have had little 
impact on the traditional approach to ‘von Neumann computing’. Indeed, even the most well- 
known dataflow language LUCID (see Section 3.8.4) has been described as ‘a language looking 
for an application’.

The reasons for the poor uptake of the dataflow approach may stem from two different areas: 
on the practical side, implementation of the dataflow approach on conventional architecture leads 
to inefficiencies, including large and wasteful memory usage, that has required the development 
of specialized architectures; and on the theoretical side, as we have already mentioned, the lack 
of a clear and straightforward semantics.

Perhaps the recent move toward more parallel architectures will change the current attitude 
toward dataflow and the general usage of dataflow techniques.

3 .3 .5  Syn ch ron ous D ataflow

The asynchronous nature of dataflow can lead to problems with non-determinism and associated 
anomalous behaviour (see Broy [1990]); and cyclic networks can suffer from deadlock (see Wadge 
[1981] and Misunas [1975]). Synchronous dataflow has been developed to avoid these problems. 
While each filter in a synchronous dataflow network still has its own clock, rather than a global 
clock as the name might suggest, the interplay between these clocks is restricted and ensures 
synchronous (and hence deterministic) behaviour.

We discuss synchronous dataflow more fully in Section 3.8.5 when we examine the language 
LUSTRE that is used to describe synchronous dataflow networks.

3 .4  S p ecia lized  F u n ction a l and Logic P rogram m in g

Functional and logic programming comprises a very broad and diverse area of past and current 
research within computer science. However, the theoretical approaches used to incorporate 
streams into functional and logic programming languages are in many cases closely related, 
and are essentially that of a domain-theoretic approach. Indeed, it is for this reason that 
we have grouped these two areas of research together into a separate section of our literature 
survey. A detailed discussion of the domain-theoretic relationship between functional and logic 
programming languages can be found in Silbermann and Jayaraman [1992],

In Section 3.4.1 we examine the functional approach to stream processing and in particular
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the work of M Broy.
In Section 3.4.2 we look and logic programming with streams, and in detail at a modification 

of PROLOG that can be used for stream processing.

3.4 .1  F u n ction al A pp roaches to  S tream  P rocessin g

The use of the function abstraction operator (A-abstraction) provides a mechanism for the rep
resentation of STs in functional languages in both second-order and higher-order forms. Indeed, 
most dataflow languages are functional languages, and some researchers regard dataflow as a 
particular implementation technique for the functional paradigm (see the bibliography of Sharp 
[1991] for a list of references on this subject). In particular, within functional programming, STs 
are often referred to as being in d a t a  p a s s i n g  f o r m  and higher-order STs (third-order or above) 
are referred to as being in a g e n t  p a s s i n g  f o r m .

As dataflow languages and functional languages are closely related, in some sense any func
tional programming language can be considered suitable for general purpose stream program
ming. For example, the well-known functional languages LISP, ML and MIRANDA (see Milner 
[1984] and Turner [1985]) can all be used to represent STs. However, whether such languages 
provide a natural and straightforward mechanism for the specification of STs is less clear and for 
this reason several specialized stream orientated functional languages have been developed in
cluding ARTIC (see Dannenberg [1984]), HOPE (see Burstall e t  a t .  [1980]) and RUTH (see Har
rison [1987]) designed to meet more specific needs such as real-time programming over streams.

Functional SPSs and Semantics. Typically ADU-SPS and ANU-SPS are studied using 
the functional paradigm and as with dataflow languages the work of G Kahn has been widely 
adopted as a semantic approach for functional stream processing. However, other (sometimes re
lated) approaches are also used including g r e a t e s t  f i x e d  p o i n t s  (see de Roever [1978] and Gordon 
e t  a t .  [1979]) and A c z e l ’ s  l o g i c a l  t h e o r y  o f  c o n s t r u c t i o n s  (see Dyber [1985] and Dyber and Sander 
[1988]). In addition, the work of Friedman and Wise [1976] and Henderson and Morris [1976] 
on l a z y  e v a l u a t i o n  has provided an implementation technique for functional stream processing 
that has been widely adopted.

Applications. The verification of functionally specified STs has been explored in the lit
erature. In particular, operating systems have been an area of quite extensive research (see 
Jones and Sinclair [1989] for an overview) as the swapping of processes can be modelled using 
agent passing stream transformers. An example of operating system specification can be found 
in Broy and Dendorfer [1992] and in addition this paper provides an example of how ANU-SPS 
can be specified using c l a s s e s  of functions.

As a more detailed example of functional stream processing research we now discuss the 
work of M Broy who has made a significant contribution to the development of techniques 
for functionally based stream processing. In particular, we discuss the FOCUS project that 
provides a functional framework for the specification of distributed systems based on stream 
communication.



T he FO C U S P ro je c t. FOCUS (see Broy e t  a l .  [1993]) is based on the work developed in 
Broy [1986], Broy [1988a], Broy [1988b], Broy [1989], Broy [1990], Broy and Lengauer [1991], 
Broy [1992a], and Broy [1992b],

FOCUS is not a language, but rather a collection of tools and modelling concepts that pro
vide a framework for the description of parallel distributed systems as concurrent asynchronous 
processing elements. Within such networks data is exchanged via unbounded FIFO channels 
that are modelled as streams.

FOCUS aims to provide a theory of stepwise refinement and modular development of parallel 
systems and includes verification calculii that are intended to provide a formal system to reason 
about the correctness of system implementations at various level of abstraction. However, it 
is not the intention of FOCUS to provide a theory of stream based distributed processing (see 
Broy e t  a l .  [1993]).

Despite the fact that FOCUS is a paradigm and not a language it does provide two concrete 
representations for expressing STs (as SPS). The first (and most abstract in the sense of specifi
cation) is the language AL based on AMPL (see Broy [1986]) and the second is the language PL 
based on the work in Broy and Lengauer [1991] and Dederichs [1992]. We discuss the languages 
AL and PL in Sections 3.8.9 and 3.8.10 respectively.

Cdven the specification of an ST in AL the FOCUS paradigm provides transformational 
rules (refinements) towards more concrete representations (in the sense of specification). Indeed 
within FOCUS a representation is considered to be in its most concrete form (an implementa
tion) if no further refinements and no further re-writings to another formalism (representation) 
are possible. Given this definition the implementation language of FOCUS can be consider to be 
PL, although one can imagine that these techniques could be extended to additional languages.

3 .4 .2  L ogic P rogram m in g  L anguages w ith  S tream s

As logic programming provides a high-level and useful method of specification for some classes of 
systems it is natural that some researchers have explored the use of logic programming languages 
for the specification of SPSs. Indeed, there are several examples of modifications of relational 
languages for stream processing that can be found in the literature. In Parker [1990] these 
languages are divided into three groups:

(1) C o m m i t t e d  c h o i c e  parallel programming systems, for example, P A R L O G  (see Clark and 
Gregory [1985]).

(2) Extension of PROLOG to include either the p a r a l l e l  a n d  or p a r a l l e l  o r  operators (see for 
example Li and Martin [1986]).

(3) Extension to PROLOG to include functional constructs, for example, Kahn [1984], Lind- 
strom and Panangaden [1984], Subrahmanyam and You [1984], Naish [1985], Bellia and 
Levi [1986], and DeGroot and Lindstrom [1986].

However, a different classification can be found in Bellia and Levi [1986] wherein logical languages 
for programming with streams are divided into two groups:
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(A ) Languages based on s t a t i c  i n p u t - o u t p u t  m o d e  v a r i a b l e  d e c l a r a t i o n s  for example the lan
guages of Clark and Gregory [1981] and van Emden and de Lucena Filho [1982],

(B ) Languages based on d y n a m i c  v a r i a b l e  a n n o t a t i o n s  for example Clark and Gregory [1983], 
Shapiro [1983] and Subrahmanyam and You [1984],

While we are not aware of any work in the literature that describes the relationship between 
these two classifications, it is possible to make the following general comments on the methods 
used to incorporate the use of streams in logic programming.

Describing SPSs as Relations. The use of the term ‘coroutine’ in relational languages does 
not directly imply the use of streams (see Parker [1990]). However, typically logic programming 
languages modified for stream programming are designed to represent ADU-SPSs, although the 
particular description of ADU-SPSs will of course depend on the stream processing operations 
and types of concurrency allowed in the particular language.

The Use of Stream s. As with the functional approach streams are treated as the union of 
finite and infinite sequences. In particular, streams are typically implemented as finite lists, al
though the declaration and manipulation of infinite lists (and hence streams) may be permitted. 
However, the use of infinite lists in some relational languages may be non-terminating as they 
tend to use eager evaluation.

Specialized logic programming languages extended with non-strict processes and lazy eval
uation to cope with stream programming are sometimes termed p e r p e t u a l  p r o c e s s e s  (see Lloyd 
[1984]) and have many similarities with functional languages. (A survey of the relationship be
tween logical and functional languages can be found in DeGroot and Lindstrom [1986] and Bellia 
and Levi [1986].) Alternatively, relational languages can be modified to cope with streams by 
eliminating the o c c u r s  c h e c k , although this can lead to ‘unsound inferences’ (see Parker [1990]).

Sem antics. Several semantic approaches have been adopted for dealing with perpetual pro
cesses including a fixed-point semantics in the style of Kahn. A discussion and comparison of 
these approaches can be found in Levi and Palamidessi [1988].

Languages. In addition to the specialized logic programming languages we have already 
mentioned in Section 3.4.2 we look in detail at a modification of PROLOG to cope with the use 
of streams.

3.5  R ea c tiv e  S y stem s and S ignal P ro cess in g  N etw ork s

The r e a c t i v e  s y s t e m  paradigm (see Harel and Pnueli [1985]) and s i g n a l  p r o c e s s i n g  paradigm are 
conceptually closely related. The essential difference between the two approaches is that reactive 
system research is concerned with SDB-SPSs and signal processing is concerned with SDU-SPSs; 
that is, in reactive systems channels are bidirectional. Consequently, from this point we will use 
the term ‘reactive systems’ to mean both reactive systems and signal processing networks.
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Reactive systems are designed to model real-time systems such as operating systems and 
process control programs that ‘repeatedly respond to inputs from their environment by producing 
outputs’. Stream communication provides a natural method for the specification of real-time 
systems. However, real-time system specification is not limited to this technique and is the reason 
that in general real-time system theory is less related to stream processing than the specialized 
real-time system research explored in reactive system theory. Therefore in this section we discuss 
reactive systems as a separate topic.

3 .5 .1  S tream s, S ignals and Sensors

Reactive systems and signal processing systems communicate via signals that are related to our 
concept of streams. Signals are divided into two types: p u r e  s i g n a l s  that are un-typed and 
simply communicate an ‘event’ that can be used for synchronization; and typed signals that 
communicate data. Within the reactive system paradigm signals may be used for both input 
and output, but we note that typed signals are only used for input and are referred to as s e n s o r s .  

Given this informal definition signals in signal processing networks are all sensors. A comparison 
of typed signals and streams can be found in Section 3.8.7.

3 .5 .2  T h e S tron g  Syn ch ron y H y p o th esis  and M ultiform  T im e

The reactive system paradigm is based on what is referred to as either the s t r o n g  or p e r f e c t  

s y n c h r o n y  h y p o t h e s i s  (see Berry and Gonthier [1988]) that requires all filters within a network 
to react instantly to input producing a corresponding output in zero time. As a consequence 
the whole computation performed by a reactive system is ‘instantaneous’. In addition, reactive 
systems also use what is referred to as a m u l t i f o r m  notion of time (see Berry and Gonthier 
[1988]) wherein signals (streams) may be used as a time unit. As such co-operation of sub-tasks 
(processes) defines new temporal relations that are used to define the global ordering of the data 
(compare Harman [1989] -  see Section 3.9).

Sem antics. The semantics of reactive systems have been formalized using t e m p o r a l  l o g i c  

(see Pnueli [1986]). In addition, Pnueli [1986] also includes a comparison of several different 
semantic approaches to general concurrent systems and how these approaches can be applied to 
reactive systems.

Languages. In Sections 3.8.5, 3.8.7, and 3.8.8 we describe three languages for programming 
reactive systems, respectively LUSTRE, SIGNAL, and ESTEREL, and contrast the different 
approaches that they take.

3.6  O ther S tream  P ro cess in g  Form alism s

3.6 .1  A L P H A

While the language ALPHA (see Dezan e t  a l .  [1992]) is not specifically a stream processing lan
guage we mention ALPHA here as it is described by its authors as ‘. . .a grandson of LUCID... ’
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and is used for the design and synthesis of systolic VLSI (see Verge et al. [1991]). In particular, 
ALPHA is an equational language that involves a generalization of stream variables that can be 
used to represent a ‘spatial domain’; that is, a (possibly infinite) matrix indexed by a sub-set of 
ZT For example, if variable X  is declared on the domain D defined by

D = {(¿, j )  | * > 0,1 < j  < 2}

then A' represents a matrix
^1,1, Xl,2,2l,3> .. •
Xo i*, %2,2 %2, ’ • ♦

Using this methodology if variable Y  was declared over domain D' defined by

D' = {i | i > 0}

then Y  would essentially be a stream

yoi Vii 2/2) J/3i • ■ • •

To compute over spatial domains ALPHA uses a generalization of point-wise extensions 
called ‘motionless operators’ whose semantics is formalized denotationally in the style of Kahn.

3 .6 .2  S tream  X -M ach in es

Stream X-machines (see Holcombe and Ipate [1994]) are based on the X-machine model of 
computation (a generalization of the Turing Machine -  see Holcombe [1988]) that allow streams 
as both input and output. Stream X-machines have been used in the study of system testing 
and verification for which the authors claim they offer significant advantages.

3 .7  S trea m  P ro c ess in g  P r im itiv es  and C o n stru cts

3 .7 .1  In tro d u ctio n

As we have already discussed one of the main motivations of our reserach is the development 
of a mathematically well-founded, high-level language that is suitable for the formal specifica
tion and formal verification of systems that compute over streams. In particular, we require a 
formalism for representing STs that is independent of implementation issues; that is, a specifi
cation language for STs that does not either require or imply that any implementation will use 
a specific Type of SPS. Indeed, we require that the representation of a ST does not imply an im
plementation as a SPS at all. Furthermore, we also require that the specification language does 
not imply the use of any particular language for the representation of a suitable implementation 
of the abstract ST.

Of course it is fair to observe that these pre-conditions for our stream processing language 
seem rather obvious. Moreover, it is correct to observe that these requirements are necessary 
of any specification language that can be classed as abstract whether it specifies either stream
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based computation or not. Despite this fact, as we will show in this section, given the pre
occupation of stream processing research with distributed processing we believe none of the 
specialized languages that exists in the literature satisfy these requirements, indeed, we believe 
that this fact becomes self-evident from even an informal examination of these languages’ syn
tax and stream processing constructs. In contrast, we believe that these languages should be 
considered as useful specialized implementation languages.

However, we still believe that a detailed analysis of these languages is appropriate as in 
Chapter 6 it will enable us to demonstrate that our specification language ASTRAL is suffi
ciently expressive to represent abstract specifications of implementations written in many of the 
existing stream processing languages that we discuss. Furthermore, this analysis will enable us 
to discuss computability theoretic issues relating to the use of each stream processing prirni-

Therefore, in this section we analyse in some detail the abstract stream processing primitives 
and constructs that can be found in the literature; and in the following section we look at specific 
languages that can be found to specify the particular classes of stream processing systems that 
we discussed in Sections 3.3, 3.4 and 3.5.

3 .7 .2  C om m on  F unctional S tream  P rocessin g  O perations

As explained in Section 2.5 it is common for stream processing languages to be formalized using 
a domain-theoretic semantics. As we have discussed a domain-theoretic semantics requires that 
all operations be continuous, and further that streams be generalized to include finite sequences 
with an appropriate partial ordering. (This is true of most functional approaches to stream

In this section we describe informally the typical functional stream processing primitives that 
can be found in the literature using the generalized concept of a stream. (However, we note in 
passing that these primitives are used in other formalisms as well, sometimes under a different 
name.) This formalization is based on the description given in Broy and Dendorfer [1992].

Functional Stream  Processing Prim itives Let A be any continuous algebra with an appro
priate partial ordering for each carrier. VVe use Au = [T —> A] |J A* to denote the set of all finite 
and infinite sequences (generalized streams) wherein <> G d “ denotes the empty sequence and 
-+> denotes a continuous mapping.

(1) Stream  construction operator. We define the stream construction operator, denoted :, 
with functionality : : A -* Au -» Au by (in infix notation)

tives.

processing.)

(Va € A) (Vs G Au) a:s = s'

wherein if |a| < |N| then

and if |a| = |M| then s' = a.
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(Va 6 /1 “ ) <> • a = a

( 2 )  C o n c a t e n a t i o n .  W e  d e f in e  t h e  c o n c a te n a tio n  o p era to r , d e n o t e d  • ,  w i th  f u n c t io n a l i t y

•  4 “  -»  A u b y  ( in  in f ix  n o t a t i o n )

and
(V(a:s),5/ 6 /l") (u:s) • s' = a:(s • .s').

(3) First elem ent selection. We define the head operator, denoted hcl (and also f i r s t ) ,  
with functionality hd  : A“ A 1 by

hd. <>  = 1

and
(V(a:s) 6 Au ) hd.(a:s) = a.

(4) First elem ent elim ination. We define the tail operator, denoted tl (and also res t) ,  with 
functionality tl : /!“ —*■ Au by

tl. <> = <>

and
(V(a:s) 6 Au) tl.(a:s) = 5.

(6) Last elem ent selection. We define the last operator, denoted last ,  with functionality 
la s t  : Au A 1 by

(Vs 6 Au) last .s

1 if s = <> or \s\ = |N|;

a if s = < a > for some a 6 A;
last .( tail .s)  otherwise.

(7) Filtering. We define the filter operator, denoted © , with functionality © : p(A) Au —*■ 
Au by (in infix notation)

(VS 6 p(A)) 5 © < >  =  < >

and

(VS 6 p(A)) (V(a:s) 6 A“ S©(a:s) = S© s  if a 0 5; 
a:S©s  otherwise.
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(8) Pointwise change. W e  d e f in e  t h e  poin t-w ise c h a n g e  o p e ra to r , d e n o te d  .[. .], w i th

f u n c t i o n a l i t y  .[. •— .] : A *  -> T  - »  A  — A "  b y  ( in  in f ix  n o t a t i o n )

(Vs € A") (Vi, f  G T) (Va G A) s[i ~  a](i')
s(tr) if V ^  t; 

a otherwise.

It is also common in functional stream processing to use the following two higher-order primitives 
that act directly on STs themselves.

(A ) A fte r. We define the after operation, denoted <C, with functionality <  : (A" -» /? “ ) — 
A -> (.4“ B")  by (in infix notation)

(V/ G (A" -  £T)) (Va G A) (Vs G A“ ) ( /  <  a).s = f.(a-.s).

(B ) Then. We define the then operation, ambiguously denoted <C, with functionality < : ! ? - +  
(A“ -» B u ) —> (A“ -» J?w) by (in infix notation)

(Mb G £ )  (V/ G (A“ -» 5 “ )) (Vs G A“ ) (& <  / ) .s  =  fu/.s.

3 .7 .3  S tream  P ro cess in g  P r im itiv es  in Logic P rogram m in g

In this section we identify four generic stream processing primitives that can be found in the 
logic programming literature. We conclude the section with some concrete examples of these 
types of stream processing primitives based on the list given in Becker and Chambers [1984],

Generic Relational Stream Processing Prim itives. In Parker [1990] stream process
ing primitives in logic programming languages are referred to as transducers (see Abelson and 
Sussman [1985]) and are divided into four groups. However, as pointed out in Parker [1990] this 
list of transducer types is not exhaustive, although no indication is given as to why this is the 
case.

(1) Enum erators (G enerators). Enumerators produce a stream derived from some initial 
values. A generic enumerator definition is as follows:

enumerate (Stream)
initiaLstate (State), 
enumerate (State, Stream).
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e n u m e r a t e ( S , [ X  | X s J )

n e x L s t a t e ^ a n d - v a l u e ( S , N S , X ) ,

/•>
e n u m e r a t e  ( N S ,  X s ) .  

e n u m e r a t e  ( - , [ ] ) ■

(2) Maps. Maps produce an output stream by applying a function to an input stream. A 
generic map definition is as follows:

m a p _ f ( [ X  | X s ] , [ Y  | Y s J )  

f ( X ,  Y ) ,  

m a p - f ( X s ,  Y s ) .

m a p  J ( [ ] , [ ] ) .

(3) Filters. Filters produce part of their input stream as output, the elements selected being 
based on defined criteria. A generic filter definition is as follows:

f i l t e r ( [ X  | X s J ,  Y s )  

i n a d m i s s i b l e  ( X ) ,

!•)
f i l t e r  ( X s ,  Y s ) .

f i l t e r ( [ X  | X s ] , [ X  | Y s ] )  

f i l t e r  ( X s ,  Y s ) .

filter)[],[]).

(4) Accum ulators. Accumulators produce an ‘aggregate’of input values as output. A generic 
enumerator definition is as follows:

a c c u m u l a t e  ( S t r e a m ,  V a l u e )  

i n i t i a L s t a t e ( S t a t e ) ,  

a c c u m u l a t e  ( S t r e a m ,  S t a t e ,  V a l u e ) .

a c c u m u l a t e ( [ X  | X s ] , S ,  V a l u e )  

n e x t . s t a t e ( X , S , N S ) ,  

a c c u m u l a t e  ( X s ,  N S ,  V a l u e ) .

a c c u m u l a t e d ] , S ,  V a l u e )

f i n a L s t a t e ^ v a l u e ( S ,  V a l u e ) .

Notice that accumulators are strictly first-order primitives.
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Exam ples o f Relational Stream Processing Prim itives. We now list the examples of 
second-order stream processing primitives (in functional form) presented informally in Parker 
[1990] based on the list given in Becker and Chambers [1984],
Let A be any standard 5-sorted E-algebra.

(A ) For each constant c £ /13 for some s £ S  we dehne

ConStrc [T -  A],

by
(Vi £ T) ConStrc(t) = c.

(B ) For each constant i £ Z we define

In tFrom’ > [T —*■ Z]

by
(Vi £ T) IntFrom'(t)  = i + (t -  1).

(C) For each binary operator a  : A ,  X A ,  —* /13 for some s  £  S  we define

Agg° : [T -> A], -  [T -  A],

by

( V a e [ T - + A ] ,) ( V f e r )  Agg°(a){t)
fl(0) if t = 0, and
cr(Aggc,(a)(t -  1), a(i)) otherwise.

(D ) For each unary operator cr : A, — A, for some s £ S' we define

4/ap'7 : [T —> A], —► [T —► A],

by
(Va £ [T -> A],) (Vi £ T) Mapa(a)(t) = a(a(t)).

(E) For each binary relation p C A, x A s for some s £ S we define

Com'1 : [T -> A]. X [T — A], -> [T — B] 

by

(Vlii , dn £ [T A],) (Vi £ T) CoTnp( a i , a 2) ( t )  =
ii il> (a1(i) ,a 2(i)), and 
f f  otherwise.

(F ) For each ra £ N and for each s £ S  we dehne

Repns : [ r  -> A]j [T -  A],

by
(Va £ [T -  A],) (Vi £ T) Repns {a){t) = a(i div n).
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(G ) For each s £ S and for each n,x  £ A, we define

: [T -  A], -  [T -  A],

by

(Va e [T -  N]) (Vi G T) L a g ^ a ^ t )
x if t < n, and
a(t — n) otherwise.

(H ) For each s £ S we define

Merge, : [T —> A], X [T — A], —> [T —* B]

by

G [T — A]s) (Vi G T) Merge,(ai, a2)(t)
Oi(i)

a2(0

if t is even, and 
otherwise.

3.8  S tream  P ro c ess in g  L anguages

As promised we now examine some examples of stream processing languages designed to repre
sent the particular classes of SPSs we have identified in the literature.

In Section 3.8.4 and Section 3.8.5 we discuss the languages LUCID and LUSTRE designed to 
programme asynchronous and synchronous dataflow SPSs respectively. Also, in Section 3.8.6 we 
briefly discuss the so-called Manchester Languages and mention some other dataflow languages 
that can be found in the literature.

In Section 3.8.7 and Section 3.8.8 we discuss the related languages SIGNAL and ESTEREL 
that are used for programming signal processing networks and reactive systems respectively.

In Section 3.8.9 and Section 3.8.10 we discuss the functional languages AL and PL.
In Section 3.8.11 we examine a modification of PROLOG designed for stream program

ming.
Finally, in Section 3.8.12 we look at the language STREAM used in the design and verifica

tion of hardware.
However, we begin this section with a discussion of the RS-Flip-Flop, that we will use as a 

running example for presenting and hence comparing the syntax of the existing stream processing 
languages that we discuss.

3 .8 .1  A R u n n in g  E xam ple: th e  R S-F lip -F lop

The RS-Flip-Flop (that sometimes for convenience we will simply call the Flip-Flop) is a widely 
occurring device found in computer hardware. The Flip-Flop is designed to output a stream of 
‘true’ (U) and ‘false’ (ff) signals (high and low signals) controlled by two input streams of true 
and false control signals.

Valid control signals consist of one of three simultaneous input pairs:

• ‘Reset’ -  ( t t j j ). This indicates that the Flip-Flop’s next output should be a ff.
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• ‘Set’ -  This indicates that the Flip-Flop’s next output should be a it.

• ‘Hold’ -  This indicates that the Flip-Flop should repeat its previous output.

However, while the pair (tt.tt) is considered to be illegal input, in general a practical implemen
tation of the Flip-Flop should be able to cope with this input.

3 .8 .2  F orm alization  of th e  F lip -F lop  as a ST

This informal description of the Flip-Flop’s operation can be made more precise by defining the 
Flip-Flop as an abstract ST as follows:

Flip-Flop : [T —r B]2 —> [T B]

defined by
(V6i,62 e [T B]) Flip-Flop^,& 2)(0) = It

and
(V6l562 e [T —*■ B]) (Vi € T)

iff
Flip-Flop(61, b2)(t + 1) = tt

if bi(t) = tt and b2(t) = ff; 
if bi(t) = //an d  b2(t) = tt; and

Flip-Flop(6i, f>2)(f) otherwise.

In particular, notice that this specification outputs its previous output if the illegal control signal 
(tt,tt) is supplied as input.

3 .8 .3  A n Im p lem en ta tio n  o f th e  F lip -F lop  as a SPS

A typical implementation of the Flip-Flop can be visualized at the conceptual level as a SDU- 
SPS comprising two input streams, two modules, and two output streams wherein both modules 
compute the ‘nor’ function; that is,

nor : B X B —> B

defined by
(Vi»!,62 G B) nor(bu b2) = not(or(6i,b2)).

To reconcile this implementation with the functionality of the specification only one stream is 
considered as ‘proper output’ (the first module’s output), with the other stream used only as 
‘feedback’ to compute the Flip-Flop’s next output.

The Flip-Flop S P S ’s Com putation. The SPS representing the Flip-Flop is shown in 
Figure 3.1. Initially the modules of the SPS representing the Flip-Flop will output some initial 
values (see Sections 3.10 and 8.3) that for convenience we will assume is the pair (ttjj).



Figure 3.1'. The RS-Flip-Flop us a, SPS

After the Flip-Flop’s initial output each module computes (synchronously) on the streams 
of control signals and the previous output of the other module to produce the next output.

Properties o f the Flip-Flop. Despite the relative simplicity of the Flip-Flop, the device 
has many subtleties and has been the subject of extensive study (see for example Thompson 
and Tucker [1991]). Indeed, in order for the Flip-Flop SPS’s implementation to meet the re
quirements of the specification the Flip-Flop requires pre- and post-processing of its input and 
output respectively. Indeed, in Chapter 7 we show that the formal verification of the imple
mentation of the Flip-Flop we have presented is non-trivial. However, the device is simple to 
specify at the conceptual level and relies on mutual recursion and therefore provides a useful 
small example to illustrate the syntax of the stream processing languages that we discuss in the
following sections.

3 .8 .4  L U C ID

LUCID (Wadge and Ashcroft [1985]) is perhaps the best known of all the dataflow languages 
that have been developed. A LUCID programme is essentially a system of recursion equations, 
although LUCID is described by its authors as a ‘functional dataflow programming language’. 
The term ‘dataflow’ is chosen because each LUCID programme is semantically equivalent to a 
dataflow network; and ‘functional’ because the output of each filter is a function of its inputs. 
(Note that the term ‘functional’ used here does not imply a computation without side-effects as 
in the mathematical sense.) LUCID is also described by its authors as a ‘typeless’ language as 
there is no declaration section. However, a more formal description would be to say that LUCID 
operators are overloaded and their type is inferred fiorn their context.

LUCID was conceived by its authors in 1974 with what they claim to be quite modest aims; 
that is, to show that real-life programmes could be written in a purely declarative style so that
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programme verification would be possible. The authors felt that a purely functional language 
was not creditable for this purpose for reason of efficiency, and so LUCID contains iterative 
constructs so that (the authors claim) when writing LUCID programmes the programmer may 
make use of algorithms used in real ‘everyday’ programming. It was also (later?) intended that 
LUCID could exploit the new highly-parallel, multiprocessor dataflow machines.

Constructs and Prim itives. Each LUCID programme is an expression structured using 
the ‘where’ clause taken from ISWIM  (see Landin [1966]) over simple ‘data types’, for exam
ple: integers; reals; Booleans; words; character strings; and finite lists. LUCID also uses the 
if. . . then.. . else construct.

LUCID has the ‘usual’ operators over the data types just mentioned and treats them as 
point-wise extensions over time and hence can be used to manipulate streams directly. In addi
tion LUCID uses six explicit stream processing primitives with the following semantics.

Let A be any standard 5-sortcd E-algebra.

(1) First. For each u £ S_+ we define

F i r s #  : [T -  A]'1 —<■ [T —► A]

by
(Vfl £ [T — A]u) (Vi € T) Firs#(a)( t ) = n(0).

(2) N ext. For each u £ S_+ we define

N e x #  : [T —> A]u —► [T —> A]

by
(Va £ [T -  A]u) (Vi £ T) N ex# (a ) ( t ) = a(f + 1).

(3) Followed By. For each u £ S_+ we define

Fhy^f: [T —*■ A]u x [T — A]u —> [T — A]u

by
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(4) A t T im e. For each u £ S_+ we define

by

AtT im e j - : [T -  A]u x \T -> N] -  [T -  A]u 

(Va £ [I" -* A]u) (Vn £ [T Nj) (Vi £ T) AtTime^(a,  n)(t) = a(n(i)).

(5) W henever. For each u £ 5 + we define

Whenever—■: [T —* A]u x  [T 

by

[T -  Aju

fF7ienererA(a, £>)(£)

(Va £ [T -  A]u) (V6 £ [T -  B]) (Vi £ T)

J  a(i) if b(t) = tt, and
) Whenever~-(a, b)(t -f- 1) otherwise.

(6) As Soon As. For each u £ S.+ we define

Asa± : [T -> A]u X [T -> B] -  [T A]u 

by

(Va £ [T A]u) (Vi> £ [T -> B]) (Vi £ T) A s a ± ( a , b ) { t )  = a { f i  k.[b(k) = it]).

(7) Upon. For each m £ ¿ + we define

Upon± : [T -  A]u x [T 

by

[ r  -  a ]’

(Va £ [T -  A]u) (V6 £ [T -* B]) (Vi £ T)

rr ( n / e  f a(°) if i = 0,Uponu(a,b)(t) = < .
|a(NumOfTrues(iVea;i^(6))(i)) otherwise

wherein N e x t ^  is defined as above and NumOfTrues : [T —> B] —► [T —> ¡V] is defined by

(V6 £ [T

NumOflrues(6)(0) =
1 if 6(0) = tt, and 

0 otherwise
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and
[ 1 + NumOfTrues(h)(i) if b ( t  + 1) = I t ,  and

N um O fTrues(6)(/+1)= < _  . , .1 NumOfTrues(6)(i) otherwise.

T he use o f S tream s. As with many of the other languages we will discuss streams are repre
sented as variables. In the particular case of LUCID any free variables (not explicitly declared) 
are treated as input streams.

Language D evelopm ent and  C u rre n t Uses. Since its conception various implementations 
of LUCID have been written (see Farah [1977] and Sargeant [1982]) and one such implementa
tion p L U C I D  -  LUCID over the algebra of POP-2 taken from Burstall e t  a l .  [1971] -  has been 
used experimentally for software design (see Wadge [1984]).

Lucid Syntax . The RS-Flip-Flop can be described in LUCID as follows:

f l i p f l o p f l n l ,  I n 2 )  =  ( O u t ] ,  O u t 2 )  

w h e r e

O u t l  =-• t r u e  f b y  ( I n i  n o r  0 u t 2 )

O u t 2  =  f a l s e  f b y  ( l n 2  n o r  O u t l )

3 .8 .5  L U S T R E
LUSTRE (see Caspi e t  a l .  [1987]) is a synchronous dataflow language related to LUCID. Like 
LUCID it is based on the description of a SPS as a system of equations. However, unlike LUCID, 
LUSTRE requires that the output at time t  of the functions defined by such a set of equations 
depends only on input received either before or at time t .  This property is referred to by the 
authors of LUSTRE as c a u s a l i t y .

We note in passing that intuitively c a u s a l i t y  appears to restrict LUSTRE to expressing the 
class of c o u r s e - o f - v a l u e s  r e c u r s i v e  f u n c t i o n s  (see Tucker and Zucker [1988]). However, the au
thors do not discuss the issue of computability in this respect.

In common with languages for describing reactive systems LUSTRE is based on the s t r o n g  

s y n c h r o n y  h y p o t h e s i s  and has a m u l t i f o r m  notion of time (see Section 3.5). Furthermore, in 
common with the language ESTEREL (see Section 3.8.8) LUSTRE programs are implemented 
via compilation into finite automata.

The authors state that LUSTRE programs are subject to a strict analysis for d e a d l o c k  based 
on a domain theoretic analysis of the various clocks defined using the W h e n  operator, rather 
than by the c y c l e  s u m  t e s t  that is applied to LUCID programmes (see Wadge [1981]). However, 
the authors concede that while this approach does detect any potential deadlock it also rejects 
some valid programmes. It is this strict approach to the interplay between the various clocks 
over which the various filters compute within a programme that ensures the synchronous nature 
of LUSTRE.
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Prim itives and Constructs. In common with LUCID underlying operations are treated as 
point-wise extensions over time in LUSTRE and can be directly applied to streams.

Any LUSTRE program, that is correct with respect to the various static-semantic tests that 
are applied to it, is compiled into a simplified basic abstract syntax. Compilation into this 
restricted syntax eliminates separate node (filter) definitions, used to employ a modular pro
gramming technique. In particular, stream operators are compiled into a restricted subset of 
stream operators that form a functionally complete set. This functionally complete set consists 
of the following four operations that we now define informally.

Let A be any standard 5-sorted E-algebra wherein S = {sj, . . . ,  sn} for some n £ N. Also, let 
U = <  USl, . . .  ,U Jn > be some collection of distinct values such that Us, <4 As> for i = 1 , . . . ,  n, 
and let Au = A UU.

(1) Previous. For each u £ S_ we define

Pre£  : [T -  A]u -> [T -  Au]u

by

(Va € [T -  A]u) (Vi e T) Pre±{a){t) =
(a)(t -  1) if t > 0, and
(UUl, .. .,U „M) otherwise.

(2) Followed By. For each u £ S_ we define

FBy± : [T -  A]u x [T -> A]u -» [T -> A]u 

by
(Val5a2 G [T -  A]u) (Vi £ T) FBy^{au a2){t)

a^O) if i = 0, and 
a2(t) otherwise.

Notice that this is different from the LUCID operator Fby.

(3) W hen. For each u£S_\ve  define

When± : [T — A]u X [T -> B] -  [T — A]u 

by

(Va e [T —> A]u) (V6 £ [ T -+ B]) (Vi £ T ) When±{a,b)(t) = a(fik.[b(k) = tt A k > t}).
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(4) Current. For each u £ 5 we define

by

Current±  : [T -  A]u X [T ^  B] -  [T -  A]u

(Va 6 [T -> A]u) (V6 G [T —> B]) (V¿ G T)

Current£-{a,b)(t) = <
a(t)
Current£-(a,b)(t — 1) 
When${a,b)( 0)

if b(t.) = It
if b(t) = f f  A t > 0
otherwise.

The use o f Stream s. As is common in equational stream processing languages undefined 
variables are treated as input streams in LUSTRE programmes. Indeed the notion of a stream 
in LUSTRE is the same as in standard dataflow and is not the same as in the reactive system 
paradigm. It is for this reason that we choose to classify LUSTRE as a dataflow language.

Sem antics. Two separate approaches to the semantics of LUSTRE have been applied. The 
first is a domain-theoretic approach in the style of Khan’s work. The second approach is an oper
ational semantics based on the work of Plotkin (see Plotkin [1981]). This operational semantics 
can been used for proofs of equivalence of different LUSTRE programs, and is the semantic 
models that has been used to analyse the properties of the compilation of LUSTRE programmes 
into finite automata.

Language D evelopm ent and Current Uses. LUSTRE has been used for such diverse 
applications as music synthesis description (see Amblard and Charles [1989]) and for verifica
tion of real-time systems (see Halbwachs et al. [1992]) and appears to have superseded its parent 
language LUCID as the the language of choice for dataflow systems.

S yn tax . The RS-Flip-Flop can be expressed in LUSTRE as follows:

node flipflop(Inl, In2 : bool) 
returns(Outl ,  Out2 : bool); 

let
Outl =  tt : F B y  pre(Inl)  nor pre(Out2);
Out2 =  f f  : F B y  pre(In2) nor pre(Outl);  

tel

3 .8 .6  O th er D ataflow  L anguages

The ‘M anchester Languages’. There are several so-called ‘Manchester Languages’ (see 
Ilerath et al. [1986]) including SASL, SISAL, LAPSE and MAD that have been used on the 
Manchester Dataflow Machine. In this Section we very briefly discuss these languages. The 
reader interested in the topic of specialized dataflow architecture can consult Gurd et al. [1981]
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and more recently Sharp [1991].

SASL. The language SASL (see Herath et al. [1986]) is a functional language. SASL derives 
its name from the fact that only single assignment functions (one argument) are permitted. 
Multiple argument functions are achieved with Currying.

SISAL. The language SISAL (see McGraw et al. [1985]) is a typed ‘value orientated’ func
tional language designed for dataflow computing machines. The name SISAL is derived from 
Streams and Iteration in a Single Assignment Language. SISAL allows recursive constructs and 
looping. In addition to being implemented on the Manchester Machine, SISAL has also been 
implemented on the VAX, CRAY and IIP dataflow machines (see Sharp [1991]).

VALID. The language VALID (see Amamiya et al. [1984]) is a higher-order functional language 
designed to achieve very high-level parallelism. VALID derives its name from Value Identifica
tion Language and has a mix of ALGOL- and LISP-like syntax, including block-structuring and 
case statements.

D C BL. The language DCBL (pronounced ‘decibel’ -  see Herath et al. [1986]) is a high- 
level dataflow language designed to define the operational semantics for dataflow computing 
languages. In particular, DCBL is designed to enable users to express programmes with many 
forms of concurrency, at a high-level of abstraction without any machine dependent character
istics.

G enera l D ataflow  Languages.

VAL. The language VAL (see Dennis [1974] and Brock [1987]) is a synchronous functional 
language with implicit concurrency. The name VAL is derived from the languages ‘value orien
tated’ rather than ‘variable orientation’ nature; that is, new values can be derived, but cannot 
be modified. This principle is used in the language so that values can be assigned to identifiers, 
but identifiers cannot be used as variables in order to address certain issues arising from the 
automatic generation of concurrent implementations.

ID . The language ID (see Arvind and Gostelow [1978]) is an un-typed, functional, block- 
structured language that supports non-determinism and the use of streams. A programme in 
ID consists of a list of expressions wherein each expression is either a ‘loop’, a ‘conditional’, a 
‘block’ or a ‘procedure application’.

3 .8 .7  S IG N A L

SIGNAL (see Guatier et al. [1987]) is an applicative language designed to programme real-time 
systems using synchronous dataflow. The authors claim that a SIGNAL representation is very 
close to the specification of a system, either mathematical or graphical, and leads to an elegant 
formal ‘synchronization calculus’.
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SIGNAL uses two concepts of time: l o g i c a l  t i m e  and an associated timing calculus based on 
the strong synchrony hypothesis (see Section 3.5); and p h y s i c a l  t i m e .  Using this system tempo
ral references are determined entirely by the sequence of communication events and not (as the 
authors claim) by the input events as in either ESTEREL or the dataflow approach.

Individual processing elements in a SPSs described by SIGNAL are n o t  synchronized by 
a single global clock T  = { 0 ,1 ,2 ,...} , rather SIGNAL has a ‘multiform’ notion of time (see 
Section 3.5).
The use o f Stream s. The name SIGNAL is derived from the infinite sequences called s i g 

n a l s  over which all processes in a SIGNAL system compute (see Section 3.5.1). Each signal 
is a map a  : T  —- A for some data set A and some c l o c k  T  = {1 ,2 ,...} . (Notice that the 
clock starts at 1 and not 0.) It would appear from this description that signals are streams. 
However, the individual values of a signal may be ‘sampled’ at continuous points rather than 
simply at the discrete division indicated by the signal’s clock. In addition, the values are not 
persistent and as such may only be sampled in order; that is, once the value of a signal a  has 
been sampled at time t  G T  it may henceforth only be sampled at some time t '  wherein t '  > t .  

(Also see the following section on further operators.) Notice that this interpretation of a sig
nal is related to Kahn’s visualization of streams as asynchronous FIFO queues (see Section 2.5).

Constructs and Prim itives. SIGNAL operators are divided into two classes: ‘S-operators’ 
that define signals and "P-operators’ that are used to create interconnections between processes. 
We will only consider signal definition operators here.

(1) Basic Operations. The syntax
a  b  + 1

for some signals a  G [ T  —* A ]  and b  G \ T '  —* A] for some data set A wherein 1 is a constant 
signal creates a process with the following semantics:

( V t e T )  a ( t )  =  b ( t ) +  1;

that is, it creates a process that takes a single signal input b  and produces a single signal 
output a  that at every time cycle t is precisely the value of a ( t )  plus one.

Notice here that because of the nature of the process specified the two clocks T  and 
T '  are synchronized and hence considered to be the same. This is not a property of signal 
processes in general.

(2) Delays. The syntax

a  i n i t  c  

a  := b  $1

for some signals a  G [ T  —► A] and b  G [ T '  -> A ]  for some data set A wherein c is a constant 
signal and creates a process with the following semantics:

, c if t  = 0 and
(Vi G T )  a ( t )  =  {

[6 ( i—1) otherwise;
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that is, the statement creates a process with a single input that delays its output by one 
time cycle and outputs a constant at time t — 0.

Notice here that a delay is defined by two separate processes (statements) and hence 
if the first statement is omitted (as in some of the reference examples) then the signal 
described by its process is undefined at time t = 0. Also, there is an inconsistency in the 
reference examined in that the signal’s underlying clocks are given as T  = {1,2 ,.. .}, but 
the init statement define values of streams at time t = 0.

(3) C om position . The syntax

(|a init c|a := b + 116 := a $ 11)

denotes the process formed by the composition of the processes a init c, a := b -f 1 and 
b := a $1 specified in the previous examples. The ordering of the sub-processes within a 
composition is unimportant; that is, it is associative and commutative, and communication 
is implied between processes wherein an output signal of one process (an identifier on the 
left of an ‘:= ’) has the same name as an input signal (an identifier on the right of an ‘:= ’) 
from a different process. So our example has the intended semantics

)c if t = 0 and
a(t -  1) + 1 otherwise;

(4) Further operators. SIGNAL also uses the operators when, event and synchro with the 
following syntax

a b when c, 

a := eventb

and
synchro a,b

respectively. Because the semantics of these statements is ‘formalized’ using a clock calcu- 
lus, that we will not discuss, we will only give the intuitive meanings of these statements: 
when is a so-called undersampling operator that, in the context of our example, produces 
the input signal b if it is defined at the same time the Boolean signal c is defined and ‘true’; 
event delivers an always ‘true’ Boolean signal whenever (in the context of our example) 
signal b is defined; and synchro (again in the context of our example) explicitly synchro
nizes the signal’s a and bs clocks.

Because of the lack of a global clock and the definition of a signal, when examining 
the current value of a particular signal a : T  —> A we have two possible result: it may 
either be undefined or will have some value in the data set A. Because of this definition 
of signals the authors use a clock calculus to give and check the semantics of SIGNAL 
definitions. As Boolean signals are used to define clocks (via the event operator) this
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clock calculus requires two data sets (and is the reason, the authors claim, that a Boolean 
calculus is insufficient); that is, C = {-1 ,0 ,1}  for Boolean signals, wherein 0 denotes the 
absence of a value, —1 denotes ‘false’, and 1 denotes ‘true’; and C  = {0,1} for all other 
signals, wherein 0 denotes the absence of a value and 1 the presence of a value. Within 
this calculus the data set C is given the structure of a commutative field onto which all 
SIGNAL processes can be mapped. This ‘mapping’ of a process is used to analyse the 
relationship of any sub-modules clocks and to detect incorrectly defined processes. For 
example, the compositional process

( |x := a when (a > 0)|y := a when (not(a > 0))|r := x + y |)

gives rise to the following equations in the clock calculus (using c to represent the Boolean 
expression a > 0)

o 2/ 2\x “ — a ( - C  -  c ) 
r  = a ( c - c  )

O 0 Oz~ = x~ = y

that gives - c  = c. As this has a single solution (c = 0) the process defined by this 
composition is undefined. This is intuitively clear from the example as the clocks over 
which x and y are defined are mutually exclusive.

Sem antics. SIGNALS semantics is based on the clock calculus described above that we will 
not discuss further.

Syntax. The RS-Flip-Flop can be expressed as follows in SIGNAL:

( \  O u t l  init  t t  | O u t 2  init  ff  |

I n i '  : =  I n l $ l  | I n S f  : =  I n 2 $ l  \

O u t l • : =  O u t l $ l  | O u t S 1 : =  O u t 2 $ l  |
O u t l  : =  I n i '  n o r  O u t s '  | O u t S  : =  I n S /  n o r  O u t l '

\ )

3 .8 .8  E ST E R E L

ESTEREL (see Berry and Cosserat [1984], Berry e t  a l .  [1988], Berry and Gonthier [1988] and 
Boussinot and de Simone [1991]) is a real-time imperative concurrent language for describing 
reactive systems. However, ESTEREL is designed for describing ADII-SPSs rather than ADU- 
SPSs as in the case of the languages LUSTRE and SIGNAL. (See the following section on the 
use of streams in ESTEREL.)

The authors state that the aim of ESTEREL is to develop a rigorous formal model of real
time computation with an operational semantics that can be used for tasks where programming 
using conventional languages is difficult.

54



C o n stru c ts  and  P rim itiv es. The basic structuring device in an ESTEREL programme 
is the module with input and output signals for broadcast communication and internal signals 
for internal broadcast communication.

The body of a module that describes its operation can include the following basic primitives 
and constructs:

(1) N ull process. The command

nothing

creates a process that does nothing in zero time.

(2) Local variable declara tion . The command

var X : type in i end 

creates a local variable X for process i.

(3) V ariable assignm ent. The command

X := exp

assigns variable X with the value of the expression exp.

(4) Signal T ransm ission . The command

emit s(exp)

emits the value of exp on signal s.

(5) C onditional execu tion . The command

do i upto s(exp)

repeatedly execute process i until the value exp is broadcast onto signal s and

do i uptonext s(exp)

repeatedly execute process i until the value exp is broadcast onto signal ‘s’ twice.

(6) S equentia l C om position . The command
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Hi h

invokes process i2 immediately upon completion of process ¿j.

(7) P ara lle l C om position . The command

r i l l  ¿2

simultaneously invokes processes ¿1 and i2 sharing the same local variables and local sig
nals.

(8) Iteration. The command

loop 2 end

executes process i in a continuous loop. However, processes like

X := 0; loop X := X + 1 end; loop emit s(X) end

have no semantics, due to the strong synchrony hypothesis, and are checked for during 
static semantic evaluation.

(10) If Then Else. The command

if boolcxp then ix else i2 fi

has the usual semantics, but because of the strong synchrony hypothesis, we assume here 
that boolexp is evaluated in zero time so control is passed immediately to either iy or i2.

(11) Process term ination. The command

tag T in 2 end 
exit T

executes process i until ‘exit T ’ is executed (in 2) whereupon process i is terminated.

From these basic primitives many ‘higher-level’ construct are formed. However, these are just 
for convenience during programming and to not occur in the semantic model.

The use o f Stream s. ESTEREL uses the same notion of stream processing as SIGNAL; 
that is, signals and a multiform notion of time. However, unlike SIGNAL in LSTEREL some
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signals are used for both input and output from processes and information is broadcast in the 
sense that complete connectivity is assumed between processes. A commutative operator is 
explicitly associated with each signal to deal with simultaneous transmission (see Milner [1983]) 
such that if the values iq, i;2, . . . ,  v n for n  > 1 are broadcast simultaneously onto a signal s  then 
the value on s  is tq * v2 * ■ ■ ■ * v n .

Sem antics. ESTEREL has a complicated semantic model with three different levels:

(1) Static Sem antics. Used to establish temporal relations between processes and check for 
any temporal paradoxes.

(2) B ehav ioural Sem antics. Used to define the temporal behaviour with respect to the 
static semantics.

(3) Com putational Semantics. Used to establish exactly what a program computes.

Once the computational semantics has been established any concurrency is eliminated by 
compiling into a sequential programme that is implemented as an automaton in C (for example) 
by a similar method used in parser generators (see for example Sun [1988]). The authors are 
confident that this technique leads to an efficient implementation.
Language Developm ent and Current Uses. ESTEREL has been used for 1ICI and 
for programming communication protocols and real-time controllers (see Clement and Incerpi 
[1989], Murakami and Sethi [1990] and Berry and Gonthier [1991] respectively). An ESTEREL 
environment exists (see Boudol e t  a l .  [1990]) that includes simulators, debugging tools and a 
compiler to hardware, based on the techniques discussed in Berry [1991]. One current research 
aim is to implement existing ESTEREL programmes directly in hardware.
Syntax. The RS-Flip-Flop can be described in ESTEREL as follows:

var L l , L 2  :  b o o l  i n  f l i p f l o p  ;  

module f l i p f l o p :

input I n i ,  I n 2  :  b o o l  ;  

output O u t l ,  O u t 2  :  b o o l  ;

L l  : =  t r u e  ;

L 2  : =  f a l s e  ;  

emit O u t l ( L l )  ;  

emit O u t 2 ( L 2 )  ;  

loop
L l  I n i  n o r  L 2  ;

L 2  : =  I n 2  n o r  L l  ;  

emit O u t l ( L l )  ;  

emit O u t 2 ( L 2 )  ;  

end.
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3 .8 .9  AL

AL is a typed equational language that provides a specification formalism for (potentially) re
cursive stream operations. Implicit concurrency is expressed by the juxtaposition of equational 
definitions within both programme and agent definitions.

Constructs and Prim itives. AL uses a block structure and includes constructs such as 
i f . .  . t h e n . . . e l s e . . .fl. It also includes the finite choice operator □, and hence is AL is able to 
define non-deterministic behaviour.

AL has all of the basic stream processing primitives as described in Section 3.7.2 as built 
in operators. In addition, f u n c t i o n s  mapping data to data and c o m p o n e n t s  mapping data and 
streams of data to streams of data can be defined by the user.

The use o f Stream s. The declaration of input and output streams is explicit in AL and 
streams may occur at most once on the left-hand-side of an equation. In particular output 
streams must occur exactly once as a left-hand-side and input streams may not occur as a left- 
hand-side.

Sem antics. AL is restricted to second-order definitions and has a fixed-point semantics 
in the style of Kahn.

Language D evelopm ent and Current Uses. For an introduction to the use of AL see 
Section 3.4.1 on the FOCUS project.

A prototype of AL has been implemented on a SUN workstation (see Nueckel [1988]) and 
experiments to implement AL on an INTEL hyper-cube are in progress (see Gorlatch [1992]).

Syntax. The RS-Flip-Flop can be represented in AL as follows:

programme f l i p f l o p  = chan bool I n i ,  I n 2  —> chan bool O u t l ,  0 u t 2 :  

f u n d  n o r  =  bool b l ,  b 2  —> bool:
n o t ( b l  o r  b 2 ) ,

agent s t r e a m n o r  = c h a n  b o o l  s b l ,  s b 2  — >- chan bool s b o u t :  

s b o u t  = n o r f f t . s b l ,  f t . s b S )  

end,
agent l e f t b s  =  chan bool I b s l ,  r b s l  —> chan bool l b s  

l b s  = I b s l

end,
agent r i g h t b s  = chan bool I b s l ,  r b s l  —> chan bool r b s  

r b s  = r b s l

end,
O u t l  =  t r u e  &  s t r e a m n o r  ( I n i ,  r i g h t b s , f l i p f l o p ( I n l ,  I n 2 ) )  &  l e f t b s .  r t .  f l i p f l o p  ( r t .  I n i ,  r t . I n S )  

0 u t 2  = f a l s e  &  s t r e a m n o r  ( I n S ,  leftbs. f l i p  f l o p  ( I n i ,  I n 2 ) )  &  r i g h t b s . r t . f l i p f l o p ( r t . I n l ,  r t . l n 2 )  

end f l i p f l o p .
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3 .8 .10  PL

PL is a imperative, parallel procedurally language designed for stream programming.

C o n stru c ts  and  P rim itiv es. In some sense PL can be considered to be a classical lan
guage containing assignment statements and while loops. However, in addition PL also has the 
non-terminating loop construct loop. ..pool. PL is syntactically very similar to AL and allows 
the definition of functions and components (see Section 3.8.9) and also has all the stream pro
cessing functions described in Section 3.7.2 as basic operations.

T he  use o f S tream s. As with many stream programming languages variables are used 
to represent input, but in addition as with AL variables are also used to explicitly represent out
put. In contrast to AL there are two explicit operators in PL for ‘reading’ and ‘writing’ values 
to and from streams (channels) denoted '? ’ and ‘!’ respectively that can be defined informally

as follows.
If c is a channel identifier and a: is a variable of appropriate type then the command

is interpreted informally as ‘remove the first value from channel c and assign this value to variable 
x ’ If c is empty then execution of this command is delayed (possible infinitely). Similarly if c is 
again a channel identifier and E  is an expression of appropriate type then the command

c\E

is interpreted informally as ‘evaluate E  and then write this value to channel c.’ Again if E 
cannot be evaluated, as it may depend on some input evaluation, then this command may also
be delayed (possible infinitely).

The use of these two operations provides a model of asynchronous communication and it is 
pointed out in Broy et al. [1993] that they should not be confused with the operators *?’ and 
T  in CSP (see Hoare [1985]) that provide synchronous communication.

In PL equations are further restricted in that channel identifiers may only occur once (at 
most) in the right hand side. Also, new channels may be introduced dynamically within PL via 
recursion and hence dynamic networks may be modelled. For this reason the use of the word 
channel is less related to the concept of a stream in PL than it is in AL.

Sem antics. PL is based on an operational state transformer semantics derived from work 
in Broy and Lengauer [1991] and Dederichs [1992], It is intended that this semantics can be 
related to an equivalent abstract (denotational) semantics as a ST and hence PL can be related 
formally to an AL specification.

Language D evelopm ent an d  C u rre n t Use. For an introduction to the use of PL see 
Section 3.4.1 on the FOCUS project.

Syn tax . The RS-Flip-Flop can be represented in PL as Mows:

59



p r o g r a m m e  f l i p f l o p  = c h a n  b o o l  I n i ,  I n 2  -  c h a n  b o o l  O u t l , O u t 2 :  

v a r  b o o l  i l ,  i 2 ,  1 1 ,  1 2 ;  

v a r  b o o l  o l  :  =  t r u e ,  o 2  : =  f a l s e ;  

v a r  n a t  t i m e  : =  0 ;  

l o o p

i f  t i m e  > 0  t h e n  

I n i  ? i l ;

I n 2 ? i 2 ;

0 1  : =  i l  n o r  1 2 ;

0 2  : =  i 2  n o r  1 1 ;

fi
O u t l l o l ;

O u t 2 ! o 2 ;

1 1  o l ;

1 2  : =  o 2 ;

t i m e  : =  t i m e  +  1 ;

p o o l

e n d  f l i p - f l o p .

3 .8 .11  PR O L O G  w ith  stream s

BeUia el al. [1982] and Bellia et al. [1984] describe a modification of PROLOG (see Kowalski 
[1974]) (that for convenience we will denote PROLOG) to provide an applicative langnage for
the specification of a class of ADU-SPSs.

C o n stru c ts  and  P rim itiv es. In PROLOG a network of agents is specified by a set of 
H o r n  c l a u s e s  wherein each clause corresponds to a particular agent. The structure of the lan
guage is essentially that of PROLOG and the stream processing primitives available are those
used in the functional approach (see Section 3.7.2).

T he use o f S tream s. The approach to streams in PROLOG is the same as that in func
tional languages. In particular, in PROLOG uni-directional channels are modelled by shared 
syntactically distinguished input and output variables within each atomic clause and hence the 
expressive power of PROLOG is limited compared to conventional PROLOG, as mvertibility is 
limited. However, the authors claim that this is not a problem in practice.

Sem antics. PROLOG is formalized using a standard fixed-point semantics (see van Emden 
and Kowalski [1976]) and makes a explicit distinction between d a t a  c o n s t r u c t o r s  and functions 
(see Levi and Pegna [1983]) to modify the semantic model to deal with infinite terms.

Language D evelopm ent and  C u rren t Uses. It is intended that .PROLOG is viewed 
as a proper extension of a term re-writing system, wherein each Horn clause is interpreted as 
an extended re-write rule. It is also the authors’ intention that completion algorithms such as
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Knuth-Bendix (see Knuth and Bendix [1970]) can be generalized to generate confluent systems 
from PROLOG network descriptions. However, we are not aware of any subsequent work by the 
authors in this field.

Syntax. The RS-Flip-Flop can be represented in PROLOG as follows: 

t y p e  B O O L  i s  t t , f f  ;

t y p e  S T R E A M - O F - B O O L  i s  n i l ,  c o n s ( B O O L ,  S T R E A M - O F - B O O L )  ;

f f l o p l  :  S T R E A M - O F - B O O L  x S T R E A M - O F - B O O L  - >  S T R E A M - O F - B O O L  ;

J J l o P 2  :  S T R E A M - O F - B O O L  x S T R E A M - O F - B O O L  -  S T R E A M - O F - B O O L  ;

N o r  :  B O O L  x S T R E A M - O F - B O O L  -  B O O L  ;  

n o t  :  B O O L  — B O O L  ;

f f l o p l  ( c o n s ( b l  , s b l ) , c o n s ( b 2 , s b 2 ) )  =  c o n s ( c o n s ( t t , o l ) , o 2 )  — <■ 

o l  — N o r ( b l , f f l o p 2 ( c o n s ( b l , s b l ) , c o n s ( b 2 , s b 2 ) ) )  ;

° 2  — f f l o p l  ( s b l , s b 2 )  ;

f f l o p 2 ( c o n s ( b l , s b l ) , c o n s ( b 2 , s b 2 ) )  = c o n s  ( c o n s  ( f f ,o 3 )  , o J t )  

o 3  =  N o r ( b 2 , f f l o p l ( c o n s ( b l , s b l ) , c o n s ( b 2 , s b 2 ) ) )  ;

° 4  — f f l o p 2 ( s b l ' , s b 2 )  ;

N o r ( f f , c o n s ( b , s b ) )  =  n o t ( b )  —*• ;

N o r ( t t , c o n s ( b , s b ) )  —  f f  —> ;

n o t ( t t )  =  f f - >  ;  

n o t ( f f )  =  t t  ;

3 .8 .12  S T R E A M

STREAM (see Kloos [1987a] and Kloos [1987b]) is a concurrent scheme language designed for 
formally specifying, reasoning about and transforming hardware designs at the conceptual, regis
ter and gate level. Furthermore, STREAM is intended to address description features associated 
with each level in a single formalism. The approach is rather like a single programming language 
that includes formal, high-level and machine-code descriptions as primitives, and is referred to 
as a l m o s t  h i e r a r c h i c a l  approach (sec Sussman and Steele [1J80]).

STREAM is an acronym for STandard REpresentation of Algorithms for Micro-electronics. 
However, the name STREAM is also intended to reflect the stream processing nature of the 
language. Indeed, in addition to its role as hardware description language STREAM can also be 
directly interpreted as a dataflow language, resembling the language of Dennis [1974], However, 
the formal equivalence of STREAM and Dennis’s language is not addressed.

Constructs and Prim itives. STREAM uses the Mowing stream processing primitives
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that are referred to as agents.
Let A be any standard 5-sorted E-algebra.

( l )  A ppend . For each s £ S  we define the append agent

&, : A, x [T -  A], -  [T -  A],

(ambiguously denoted &) by

(VaG A,)(Va' G [T-*  /l],) (Vi £ T) (a k  a')(t) = T  A t 0, m
I a (t -  1) otherwise.

(2) Lifting. For each a £ for each w £ S + and for each s G .S’ we define the lifting agent

V .  : (Aw -  A,) -  ([T -  A]“ -  [T A],)

(ambiguously denoted *) by

(Va G A“ ) (Vi € T) <7’(a)(i) = cr(a(/)).

(3) D istribution. For each s £ S  we define the distribution agent

distr, : [T —» B] x [T —» A], [T —► A], x [T —> A]s 

(ambiguously denoted distr) by

(V6 € [T -  B]) (Va G [T A],) (Vi G T) distr(6,n)(i) = (xu x 2)

wherein
x1! = a(fi k > i.[6(fc) — tt])

and
x2 = a(pk’ >t.[b(k') = fj\).

(4) Selection. For each s £ S we define the selection agent

selec3 : [T —*■ B] X [T —> A]“ —> [T —► A], 

(ambiguously denoted selec) by

(V6 G [T -+ B])(Vai, a2 £ [T ->• A].,)(Vi G T) selec(6, au a2)(t) =
a{(t) if b(t) = tt, and 
a2(t) otherwise.

In addition STREAM also uses the following functional constructs for building SPSs from more 
primitive SPSs:
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(A ) P ara lle l C om position . For each u, u', v, v' G S + we define the parallel composition 
constructor ambiguously denoted JJ. with functionality

1J- : ([T —> A]“ -  [T -  A]v) x ([T A]u' —> [T —> A]"') -  ([T A]uu> -+ [T -  A]v "')

by
(VS G [T -  A]u -  [T -> A}v) (VS' G [ r  -  A]“' -  [T -> A]"')

(Va = (a1, . . . , a |uu-|) G [T -> A]“ “') (Vi G T)

(S Jj- S/)(a)(0 = (XlT ■ -,X\vv'\)

wherein

{(S(aj., . . . ,  a|u|)(i))i if i < | u|, and
(S'(aH+i , . . . ,  a|UU'|)(0)i otherwise.

(B ) Sequentia l C om position . For each u ,v ,w  G S + we define the sequential composition 
constructor ambiguously denoted => with functionality

=> : ([T A]u —*■ [T — A]v) x ([T -  A]" —*• [T —»• A]") ([T A]u —>■ [T —► A]u)

by

(VS G [[r -> A]u —> [T —> A]v]) (VS' G [[T -  A]u -  [T ~  A]“ ]) (Va G [T -  A]“) (Vi G T)

(S =» S')(a)(i) = S'(S(a))(i).

(C ) Feedback. For each s G S  and for each u, v G S + we define the feedback constructor 
ambiguously denoted C with functionality

C : ([T -> A]*“ -> [T -> A]5”) -* ([T -  A]u -  [T — A]v)

by

(VS G [T —>■ A]5U -> [ r  A]5 ") (Va G [T -> A]u) (Vi G T) (CJ'u't'S)(a)(i) = S (z,a)(i)

wherein
x = (S(x,a))j.

Notice here that as x is defined recursively in terms of itself whether C(S) is computable 
will depend on the definition of S.

(D ) Forking. For each s G S we define the fork constructor ambiguously denoted fork with 
functionality

fork : [T -*• A], [T -* A], x [T A],

by
(Va G [T -  A],) (Vi G T) fork,(a)(f) = (a(i),a(i)).
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(E) Perm uting. For each s G S we define the permutation constructor ambiguously denoted 
perm with functionality

perm : [T -  A], X [T -  A], -  [7 -  cl], x [7 -  A],

t»y
(Vtii, a2 G [T —► /l],)(Vt G T) perm,!«!, n2)(i) = (a2(i), a^t)).

(F ) Sinks. For each s G S  and for each u G S * we define the sink constructor ambiguously 
denoted sink with functionality

sink : [T A]1U -  [2’ ^  .4]'*

by

(Va = (fl11<i3 r .,«H + 1) G [ T -  A]su)(Vi G 7)  sink* “(a)(0 = («->(0, • • •, aH+1(0)-

The use o f stream s. Again in common with the functional approach to stream programing, 
STREAM adopts the generalized concept of stream as the union of finite and infinite sequences.

Sem antics. Both a denotational and algebraic semantics have been derived for STREAM 
(see Kloos [1987a] and Kloos et al. [1986] respectively). The denotational semantics is used 
in Kloos [1987a] to demonstrate the equivalence of STREAM with a procedural language for 
stream processing.

Language D evelopm ent and Current Uses. We are not aware of the development of 
the use of STREAM in hardware design.

Syntax. SIGNAL uses two syntactic styles to reflect the different requirements of hard
ware description at different levels of abstraction: an applicative style and a functional style. 
The RS-Flip-Flop can be represented in the two styles as follows:

A pplicative.

agent RS-jiipflop = 
in r, s ni

t := no/’*(r, s'), 
r' := tt & t, 
u := nor', (s , r'), 
s' := f j h  u 

out r1, .s' tou

Functional.
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agent RS-flipflop =
C{

c ' (

(perm JJ. let JJ. lit  ) =>
( Id" JJ. perm* JJ. Id") =>• 
(nor JJ. nor) =>
( f f k  JJ. tt.k) =>
(fork JJ. fork) =>
( let JJ. perm JJ. le t)

)
)

3.9  S tream  P ro c ess in g  in th e  D esig n  and V erification  o f  H ard
w are

As our research places a strong emphasis on the formal specification and verification of hardware, 
in this section we discuss the use of streams as a method for formal hardware description. We 
begin with a brief general overview of the topic of hardware specification followed by a more 
detailed discussion of how STs and SPSs provide a natural and general purpose mechanisms 
for the formal specification and implementation respectively of many types of hardware devices. 
However, for emphasis we leave a discussion of the theory of synchronous concurrent algorithms 
(SCAs) that is the basis of the techniques that we advocate to the following section.

3.9 .1  A b stra ctio n  L evels and Form alized  H ardware D escrip tion

Several levels of abstraction can be identified for the description of hardware. These are (in 
descending order of abstraction from the actual physical device)

(1) The Conceptual Level. A high-abstraction level characterized by the use of graphs and 
high-level algorithmic descriptions.

(2) The Architectural Level. Description by block diagrams.

(3) The Register Transfer Level. Architectural entities are identified that are synchronized 
by a global clock and the transfer of information between them is modelled by binary words.

(4) The Logic Level. Combinational and state-preserving elements are identified character
ized by the laws of boolean algebra and additional mechanisms.

(5) The Circuit (G ate and Switch) Level. Gates and devices are identified, characterized 
by a simple description of power sources, transistors, resistors, etc.

(6) The G eom etry Level. The geometry level is the lowest level of abstraction of hardware 
description and is subdivided into two further levels:
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T he Flexible G eom etry  Level. Characterized by the description of relative orientation 
of primitives (stick diagrams).

T he M ask G eom etry  Level. Characterized by the description of physical sizes and 
absolute locations.

As pointed out in Stavridou [1993] constructing a formalism that encompasses the details and 
requirements of hardware at different levels of abstraction is a non-trivial task, as is the formal 
translation of a description at one level of abstraction into another level of abstraction. As such, 
it is common for hardware description languages to address a single level of abstraction, although 
this is not always the case (see Section 3.8.12). Indeed, there have been many experiments 
with the formal specification and verification of hardware using a variety of different languages 
and logics. However, a discussion of most of these approaches lies outside the scope of our 
research as they are not directly related to the subject of stream processing. The interested 
reader can consult the following general references on the subject of hardware specification and 
verification: Goguen [1987], Melham [1988], Milne [1989], Cohn and Gordon [1990], McEvoy and 
Tucker [1990], Weijland [1990], Johnson and Zhu [1991], Zhu and Johnson [1991] and Hanna 
and Daeche [1993].

3 .9 .2  T h e  A d van tages o f Form al H ardw are D escrip tion

One of the main advantages of a formal (syntactic) description of a hardware device is that 
when such a description is combined with an appropriate formal calculus it makes possible ei
ther an automated or a machine-assisted proof of device correctness. Moreover, the application 
of a mechanical theorem prover for the verification of hardware is particularly appropriate as 
correctness proofs tend to be straightforward, but long and tedious and hence error prone.

Despite this fact the application of formal methods to the study of hardware is by no means 
straightforward and as we mentioned in our introduction has had limited ‘real-world’ practi
cal success. In particular, in Stavridou [1993] it is observed that at present the value of the 
specification of hardware at low levels of abstraction is limited in the sense that with current 
technology only devices comprised of a limited number of components can be tractibly modelled 
and formally verified with a sufficient degree of accuracy (see Section 8.5). Moreover, this is 
especially the case at the moment as current technology is based on transistors and the accurate 
modelling of devices based on transistors is difficult (see Gorden [1981]).

Furthermore, in Stavridou [1993] it is also pointed out that the improvements in the correct
ness of device fabrication that formal specification techniques provide can be difficult to quantify. 
More specifically, the benefits offered by formal techniques are typically observed through prac
tical experience rather than by any mathematical argument to justify their effectiveness.

While these objections are justified we believe that there are significant advantages offered by 
formal techniques at high levels of hardware abstraction, particularly at the four most abstract 
levels of hardware description that we have identified. We justify this statement by observing 
that:

( l )  Experimental evidence suggests that a significant proportion of design errors are introduced 
at high levels of abstraction and hence a formally-verified, high-level implementation of the
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required hardware device is in general beneficial, especially in the context of safety-critical 
applications.

(2) With particular relevance to our reserch we believe that the use of streams at high levels of 
abstraction of hardware description provides a particularly natural mechanism for the for
mal description of many types of (safety-critical) devices. Indeed, this fact is demonstrated 
by the successful modelling and verification of hardware as SCAs.

In order to motivate these important points more fully in the remaining part of this section 
we explain in some detail how streams may be used for general purpose hardware description. 
We begin this discussion by examining a very straightforward and useful theoretical tool for 
hardware description based on the changes of a device’s state. We continue by showing how this 
description method can be naturally considered as a special case of a more general stream-based 
description technique.

3 .9 .3  S tream s and H ardw are D escrip tion

At many levels of abstractions of hardware description the role of clocks (see Section 2.4.1) 
is an important one. The so-called state transformer formalization of hardware (see Harman 
and Tucker [1993]) relies on the use of an abstract clock T  = {0 ,1 ,2 ,...}  to provide a discrete 
measure of the evolution within a device of the values of (for example) the registers and memory 
from some initial values to the values at some time t G T -  referred to as the evolution of the 
device’s state

Given an algebra A coding all possible states, the state transformer view of hardware allows 
us to formalize a device in two related ways:

(A ) As a function
F : A -* [T —r A]

defined by
F(a)( 0) = a

and for each t G T
F(a)(i + l) = N S (i,a ,F (a)(0 )

wherein a £ A is some initial state and NS : T  x A x A —»■ A is referred to as the next state 
function for F that in general depends on the current time, the initial state value n, and 
the previous state of F\ and

(B) A refinement of Method (A) based on the observation that it is typical, indeed desirable, 
for a piece of hardware to be independent of any particular initial state. Consequently, 
we may fix the initial state to be either a ‘don’t care’ value or some fixed initial value 
x G A. This provides a further more abstract definition of the hardware in question by 
the function

Gx : T  -» A

defined relative to the initial state-dependent representation F  by

(Vi G T) Gx(t) = F(x)(t).
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Generalizing the State Transformer Description. While the description of hardware as 
a pure state transformer is a useful and accurate model it is in some sense rather unrealistic as 
the evolution of a piece of hardware’s state is also usually influenced by some external input. 
Moreover, typically any useful hardware will also produce some output and indeed the correct
ness of a piece of hardware will usually be stated in terms of the output generated as a result 
of its input. However, this fact is not problematic as we will now show that we can incorporate 
the state transformer description into a more general description of hardware based on abstract 
stream transformers.

The Stream  Transformer Description M ethod. It is natural to imagine that in ad
dition to its state any input and output to and from a piece of hardware will also change at 
discrete time intervals described by two (further) abstract clocks C and C' , representing re
spectively the rate at which the device receives and produces output. Furthermore, typically 
the input received by a piece of hardware at any particular time c <E C will be stored as some 
sub-set of its internal memory and register values; that is, as a sub-set of its state. Similarly, 
it is accurate to assume that the device’s output at some time c' 6 C' can be derived in the 
reverse manner by selecting a particular sub-set of its memory as representing the ‘result’ of a 
computation.

Therefore, formalizing this idea: if the abstract data types B and B' are appropriate to code 
all possible input and output values respectively; the function

X : B -* A

models the appropriate change to the overall state given some input; and

0  : A B'

models the appropriate output given the current state then our most general and abstract 
description of a piece of hardware (that we refer to as the stream transformer description, of 
which the state transformer description can be thought of as a special case) can be formalized 
as follows:

i r  : [C -+ B] -  [C B'}

defined by
(Vò 6 [C -> #]) (Ve' G C )  H ‘ (b)(c') = 0(G ‘ (X(6(r(C')))))

wherein Gx is some state-independent state transformer specification of the hardware device we 
wish to model and

r : C' —* C

is a so-called re-timing (see Harman and Tucker [1988b], Harman [1989], Harman and Tucker 
[1990], and Harman and Tucker [1992]) that relates the ‘ticks’ of clock C  to the ‘ticks’ of clock
C.

At this point the reader unfamiliar with these ideas may be surprised that we model a 
hardware device using several clocks; that is, as by definition a clock is simply an isomorphic 
copy of the natural numbers, why should we need more than one clock? Essentially, the reason
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that we may need more than one clock is that the individual ‘ticks’ of each clock need not denote 
the same amount of ‘real time’ relative to either the actual device’s system clock or the ‘user’s’ 
notion of time. For example, as the general stream transformer description technique shows a 
device may consume stream input at a different rate than it produces stream output. Hence, 
multiple clocks are an essential tool for modelling hardware devices.

3 .9 .4  H ardw are as S tream  T ransform ers

The general method we have just discussed for describing (electronic) devices at the concep
tual level provides the foundation for a theory of hardware based on the formal analysis of 
the computability of abstract functions (STs) that compute over streams, and the analysis of 
their algorithmic implementations (SPSs). Moreover, as we will show given a suitably abstract 
formalization of stream transformers much of this theory will have applications outside of the 
theory of hardware (see Section 7.5).

Indeed, the basis of just such a theory of stream transformers has already been developed and 
because it is suitably abstract makes use of many well-understood techniques from computability 
theory. This theory is referred to as the theory of synchronous concurrent algorithms and has 
provided the stimulation for our own work on stream processing. One of the main advantages of 
the SCA approach is that it relies on an essentially first-order semantic model and hence avoids 
many of the complications of a higher-order semantics that is a more typical approach when 
computing with streams. In the following section we discuss SCA theory in some detail and in 
particular the advantages that an algebraic approach to stream processing provides as the basis 
for a general purpose theory of stream processing.

3 .10  D iscu ssion : an A lgeb ra ic  A pproach  to  S tream  P ro cess in g  
and S C A s

As our examination of the literature has shown, stream processing is a diverse subject without 
any clear overall objective that is based on specialized rather than general purpose theory. 
Moreover, rather than an abstract study of STs stream processing has typically been applications 
driven and has concentrated on either the study of special purpose languages for representing 
particular classes of SPSs or modifications of general purpose languages for the description of 
SPSs. Indeed, even the specialized stream processing languages we have identified are general 
purpose in the sense that these languages are intended for the specification, verification, and 
implementation (animation) of STs as SPSs in a single formalism. Therefore, as we discussed 
in Section 3.7 we believe such languages are not sufficiently abstract as a tool to develop the 
general theory of stream processing that we require.

In addition, from the perspective of the automated verification (of hardware) we have the 
following four additional specific objections to the approaches to stream processing that are 
found in the literature:

(1) Higher-order semantic models are used to reason about ST specifications and implemen
tations. In particular, while in principle we have no objection to higher-order semantic
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models, typically stream processing languages are based on a domain-theoretic semantics 
in the style of Kahn. Therefore, as the generation of an implementation from a least fixed- 
point semantics is non-trivial (see Cai and Paige [1989]) such languages typically require an 
‘equivalent’ operational semantics that is used to effectively study specific computational 
properties.

However, the equivalence of the denotational (Kahn style) and operational semantics 
of stream processing languages is, as we have observed before, poorly addressed. Hence, as 
this means that essentially an operational semantics is used to reason about many stream 
processing formalisms based on a higher-order semantics, we argue that languages based 
on this approach are inappropriate as abstract specification languages for STs.

(2) General purpose languages mean that either invalid or incorrect or incomplete STs can be 
specified leading to non-determinism and deadlock (see Broy [1990] and Wadge [1981]).

(3) The expressive power of general purpose languages means that if automatic tools for the 
verification of STs are to be used then in general completion algorithms such as K n u t h -  

B e n d i x  (see Knuth and Bendix [1970]) must be applied to specifications (see Bellia e t  a l .  

[1982] and Stavridou [1993]).

(4) The infinite size of streams means that traditional methods for the evaluation and repre
sentation of data structures for finite objects are not suitable and ‘new’ strategies must be 
used to implement and animate STs (see Henderson and Morris [1976] and Friedman and 
Wise [1976]).

In contrast to the existing approaches to stream processing we have identified, in our research we 
intend to develop a general and abstract theory of stream processing that specifically addresses 
these and other problems associated with current stream processing techniques. This theory 
is based on existing theoretical tools from recursive function theory and universal algebra and 
provides a mathematically neutral and well-understood approach to stream processing that is 
more appropriate for the abstract specification of STs.

In particular, the theory that we develop in the following chapters is based on the well- 
developed theory of s y n c h r o n o u s  c o n c u r r e n t  a l g o r i t h m s  (SCAs). As such we now discuss how 
we may abstract the basis of a general theory of stream processing from the techniques used in 
the formal specification and verification of SCAs.

3 .10 .1  SC A s

The concept of a s y n c h r o n o u s  c o n c u r r e n t  a l g o r i t h m  (SCA) was developed by B C Thompson 
and J V Tucker in the early 1980s (see Thompson and Tucker [1985], Thompson [1987] and 
Thompson and Tucker [1991]). Informally, a SCA can be visualized as a particular class of 
dataflow SDU-SPS; that is, a SCA is as a fixed, synchronous, deterministic dataflow network 
wherein m o d u l e s  (filters) compute and communicate in parallel via c h a n n e l s  synchronized by a
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discrete global clock T.
In more detail, the most basic component of an SCA is a module that computes some pre

defined total function. Modules receive and supply data via fixed channels that communicate 
individual data elements between modules, and also communicate external input and output 
respectively. The parallel operation of the modules in a SCA is synchronized by the ‘ticks’ of 
a global clock. As such all modules receive and produce data deterministically and hence the 
SCA as a whole also computes a total function. An typical SCA is shown in Figure 3.2. We

Figure 3.2: A Typical SCA 

now discuss each of these features of an SCA more rigorously.

M odules. The set of all modules that make up a SCA are divided into three subsets: sources 
that receive the algorithms input; internal modules that perform some computation; and sinks 
that produce output.

Sources. Each source in a SCA is distinguished by the fact that it has no input and produces 
a single stream on its output channel. However, as with other channels this stream output may 
branch to pass multiple copies of the data to more than one internal module.

Internal M odules. Internal modules can have any finite number of inputs from either 
sources or other internal modules (including themselves) and must compute a total function. 
However, the function computed by an internal module need not be continuous with respect to 
any partial ordering (see Section 2.5) of the data they receive -  as would be required if SCAs
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were formalized by a domain-theoretic semantics. Indeed, two unique characteristics of SC A 
networks compared to other classes of dataflow SPSs are that:

(1) Associated with each internal module is an initial value that is output before the module 
begins to compute; that is, at time t = 0 determined by the global clock each module 
outputs a pre-defined value that is independent of any input that module will receive; and

(2) While internal modules may receive stream input from a source they are not viewed as 
producing stream output. Rather, each module produces data at each ‘tick’ of the global 
clock. As we will show this apparently trivial distinction is extremely important and is 
essentially the basis of the Cartesian form specification method that we mentioned in our 
introduction. We will return to this point in the following section.

Sinks. Sinks are characterized by the fact that they have no outputs and receive a single input 
from an internal module. In particular, sinks may not receive input from sources.

Channels. As we have indicated the channels in a SCA network are unidirectional and in 
addition may branch finitely allowing the copying of data. However, channels may not merge.

We now give a description of SCA computation and how the concept of an SCA and its 
operation can be formalized as a ST.

A rchitecture. Let n, m and k be the number of sources, sinks and modules respectively 
of some SCA wherein for l = 1 , . . . ,  k each module has n, £ N inputs. The architecture of the 
SCA is described formally by three partial functions a, (5 and out called wiring functions with 
the following functionality:

a : { 1 ,. . . ,  k} X N {1,.. -, max(n , k)},

I 3 : { 1  xN~»{S,A/}

and
out : {1,.. ., m} { 1 ,...,  k]

respectively. For each module i £ {1, . .  .-,k} and for each input j  £ { 1 , . . . ,n,-} the meaning of 
these functions is defined as follows: if the j th  input to module i is from module x £ {1,.. 
then

a ( i , j )  = x

and

Otherwise, if the j th  input to module i is from source x £ {1,.. .,/r} then

a( i , j )  = x

and
P(h j )  -  s.

Finally, if module x £ k} is the input to sink o £ { 1 ,..., m} then

out(o) — x.
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Exam ple 2. The architecture of the Flip-Flop as described in Section 3.8.1 can be formalized 
as an SC A as follows:

a  : {1.2} x N {1,2}

is defined by
a = {(1,1)- 1, (1,2) t—  2, (2,1) i— 1, (2, 2) — 2};

,6 : {1,2} x N -  {S ,M}

is defined by 

and out :{1}

6 = {(1,1) -  5, (1, 2) -  M, ( 2 , 1) M, (2,2) ^  5}

{1,2} is defined by

out = {1 i-> 1}.

An Informal Description of SCA Com putation. The initial values that are output by 
each module at the first clock cycle of the network’s operation are formally represented by a 
vector z = ( ;q ,. . . ,  2fc) £ A k wherein A is the data type over which the functions associated 
with each module compute; that is, the output at time t = 0 of module i £ { 1 ,... ,  A;} is q-. 
In particular, the output of a SCA’s initial values takes place independently of any subsequent 
computation that is performed. More specifically, each module in the SCA network computes 
in a synchronous output, read, compute, store cycle that is governed by the global clock T. 
At each clock tick t £ T  each module i first outputs the result it computed at the previous 
clock cycle (with the exception that at time t = 0 each module outputs its initial value Zj) 
and simultaneously reads in the value(s) at its input channel(s) a q , . . . ,x ni. Each module now 
computes the value y = /,(.iq ,. . . ,  £„,) wherein /,• is the total function associated with module 
i and stores this value ready to be output at the next clock cycle t + 1.

The synchronicity of the SCA network is achieved by the combination of the totality of each 
module function and the following assumption (compare Sections 3.3.5 and 3.8.5):

The Unit Delay Assum ption U. The value on each output channel of each internal module 
at time t + 1 is uniquely determined by its input at time t.

Essentially, this means that at each clock tick 0 ,1 ,2 ,. . .  the modules compute and concurrently 
exchange data wherein any module that takes less than one time interval to compute ‘waits’ for 
any slower modules to complete their computation.

3 .10 .2  A  Form al A lgebraic  M od el o f SC A  C om p u tation

Despite the informal similarity between SCAs and dataflow networks there are many technical 
reasons, including the approach to computing with streams and the formalization of a deno- 
tational semantics, that separate SCAs from dataflow computation. In particular, SCAs have 
been designed to provide a formal model of computation suitable for the rigorous study of the 
properties of hardware. Consequently, as we will discuss in the following sections, the properties



of SCAs are understood from the perspective of recursive function theory, specification theory 
and verification theory in the sense that the mathematical properties of the languages and logics 
needed to specify and reason about SCAs are understood in precise detail.

As we discussed previously, dataflow was conceived with very different aims and objectives 
from that of the formal specification of hardware, although some researchers have tried to adapt 
dataflow to this use. For this reason we believe that SCA theory has significant advantages over 
dataflow computing (and all the other stream processing formalisms that we have discussed) as 
the basis for a formal stream processing paradigm.

We now discuss these ideas in more detail beginning with a formal algebraic description of 
SCA computation.

Form alizing th e  C om ponents o f an SCA. Recall that an SCA network N  is comprised 
of k modules computing functions f i , - - - , f k  respectively, a global clock T and an underlying 
algebra A from which the values over which the network computes are taken. To begin our 
formalization of a SCA network N's computation, firstly we gather together some of these basic 
constituents into what is referred to as the underlying algebra, denoted UN. While UN will vary 
depending on the particular network N  the minimum requirement that we place on UN is that it 
is an enrichment of a standard algebra; that is, that Ipy will always have the following standard 
algebra as a redact:

(/l, T, B; 0, Succ, tt,ff., not, ana, or).

This assumption is both necessary and convenient as we must have the natural numbers to count 
the successive ‘ticks’ of the network’s clock, and we also have some basic functions available for 
specification purposes (see Section 6.7.1).

Secondly, in order to formalize the type of stream input that network N  receives and also 
to fix the basic level of abstraction over which we can formalize the computation performed by 
network N,  we enrich the underlying algebra to form the component algebra, denoted AN, as 
follows:

A n = (A, T, B, [T -» A}] f x, . . . ,  fk, 0, Succ, tt,ff, not, and, or, eval).

Again, notice that A N is a standard algebra, although this time a stream algebra (see Defini
tion 2.4.2), enriched with the basic functions computed by each module in the network.

The component algebra enables us to rigorously define the computation of an SCA as a ST 
as follows.

Form alizing SCA  C om pu ta tion : Value Functions. Let N  be any n source, m sink, 
k module SCA with global clock T,  wiring functions a, (3 and out, and component algebra 
A n . If a = (a1, . . . , a n) <E [T — /l]n is the stream input received by network N's sources and 
a = (¿ i , .. ., zk) are network N's  initial values then we formalize the computation of network N 
with the value functions

Vi : T  x [T -+ /l]n x A k -* A

for each i = 1 , . . . ,  k as follows:
Vl(0,a,z) = zi
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and for each t G T
Vi(Succ(t), a, V) — f i ( x j , . .  • , Xn,)

wherein for j  = 1,. . . ,  n,

_  j aa(i,j){0  P(i, j)  = S; and

The intention here is that the ¿th value function Vt is defined such that V,(l,a,z)  denotes the 
value output by module i at time t. Therefore, if we define

VN : T  X [T A]ri X -  A k

by
(V/ G T) (Va G [T — A]n) (V~ G Afc) VN(t,a,z)  = (V^i, a, n ) ,. . . ,  Vk{t, a, z))

then VN tells us the output of every module at every clock cycle. The function VN is referred to 
as the global state function, although as in general we are only interested in the networks output 
at its sinks, we also define the network jV’s output specification

Vout : T x [T -* /l]n X A k — Am

by

(Vi G T) (Va e [ T ~ *  A]n) (V* G A k) Vout(t, a, z) = (Vout(1)(t, a, z ) , . . . ,  Vout(m)(t, a, z))

to represent the output of only certain specific modules of interest.

E xam ple 3. The RS-Flip-Flop is described as an ST by the following value functions:

Vi, Vi : T  x [T ->■ B]2 x B 2 -> B

defined by
(Vôi, bn G [T —» B]) (Vzi, Zn G B)

Vi(0,6i ,b2, z 1, z 2) = zr, 

v2(0, bl,b2, z l , z2) =  Z2;

and
(Vi G T) (Vi>i,¿2 G [T —► B]) (V~i, Zo G B) 

Vx(Succ{t),bu b2, z x, z2) = Nor(bx(t) ,V2(t,bx,b2, z x, z 2))-, 

and
V2(Succ(t),bx,b2, A, -2) = or(Ei(£, 61,60, m, z2), &2CO).



In particular, notice that the wiring functions a , /I and out of Example 2 can he effectively 
derived from the value functions coding a particular network. Therefore, not only do value 
functions encode the semantics of a network, but also the necessary s\nta.ctic information to 
reconstruct the network itself. Indeed, in general, value functions provide a simple recursive 
method for calculating (either symbolically or otherwise) the output of an SCA at any time t G T. 
This is why we refer to this class of systems as synchronous concurrent algorithms reflecting not 
only the nature of computation performed by each network (that is, synchronous parallelism), 
but also that each network has a precise, straightforward and denotational description wherein 
both the underlying algebra and the function computed by the network are explicit. We believe 
this is a significant advantage over Kahn’s method (see Section 2.5) that is more complicated 
at the syntactic level of network description, and also relies on a semantics that in practice is 
neither explicit nor necessarily effective.

In more detail, by using Kahn’s method for formalizing complex SPSs it it not obvious at 
all what the least fixed point of the function that the network specifies may be, and lienee if 
the network specifies a function at all! For example, the network might specify the everywhere 
undefined function, but in general there is no effective procedure for determining this fact! 
Moreover, Cai and Paige [1989] shows that the construction of a function from a least fixed- 
point semantics can be extremely difficult. Therefore, even if the network does specify a function 
then it is still not clear how in practice we can effectively construct the networks least fixed point 
and lienee formally simulate the networks operation.

In addition, SCAs have an extra advantage as a specification technique in that it is obvious 
from the restricted equational structure of value functions and the totality of each function 
computed by the individual modules that value functions are a special case of primitive recursive 
functions (see Chapter 4). We return to this point in the following section and in more detail 
in later chapters where we will show that the explicit primitive recursiveness of equational 
definitions has many useful theoretical and practical implications.

The second important observation that we can make at this point about the general form of 
value functions is concerned with their functionality as stream transformers. Specifically, notice 
that our general definition of a stream transformer as described in our preliminaries is essentially 
a function of the form

F : [T ~ *  A]n -  [T -  A]m

for some data type A and for some n ,m  € N. However, both the individual value functions V- 
for i = 1 the global state function and the output specification VN and Vout respectively
are functions of the form

G : T  x [T -»• A]n x A1 -> Am

for some n ,m , l  € N and hence are not strictly speaking stream transformers. In particular, 
this difference in functionality raises the question: if we wish to exploit the advantages of the 
SCA specification technique as the basis of a general stream processing theory then can we 
reconcile this difference in functionality with the more usual approach to stream transformer 
specification? As we will show in detail the answers to this question is yes! Indeed, based on 
the following two observations, naively it appears that the reconciliation of these two methods 
is trivial:
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(1) With res poet, to the elimination of non-stream input in the domain of G we can apply the 
same technique that we discussed in Section 3.9.3 to derive a family of functions indexed by 
each x € A 1 with functionality

G1 : T  x [T -  /l]n Am

defined relative to G by

(Vi € T) (Va € [T -  A]n) Gx(t, a) = G{t, a, x)

(2) We can now observe that the family of functions G1 are essentially nothing more that the 
un-Curried form of F  -  what we call a Cartesian form stream transformer (CFST) rather than 
what we refer to as either a Curried or applicative form stream transformer (AFST) that we 
have described so far.

Therefore, the distinction between the CFST specification method and the AFST specifica
tion method appears to be of Little significance in the sense that for each CFST

F T x  [T -  A]n -  Am

we can define an equivalent AFST

II  : [T A]" -> [T -  A]m

by
(Vi e T) (Va e [T ~ *  A]n) H'(t ,  a) = H(a)(t).

However, as we will show this apparently unimportant difference in specification technique is 
subtle in its implications. Specifically: from the perspective of computability the reconciliation 
of these two techniques is by no means straightforward; and from the perspective of automated 
verification the use of Cartesian forms has significant advantages in that it will allow us to ap
ply first-order techniques to establish the correctness of stream transformers. Indeed, after we 
conclude this section with an SCA bibliography we motivate the issues that we must address in 
our research to exploit the use of both explicit primitive recursive definition and Cartesian form 
specification.

A n SCA  B ibliography. SCAs have been studied extensively as a formalism for the specifica
tion and verification of hardware including several case studies (see Harman and Tucker [1988b], 
Harman and Tucker [1988a], Harman [1989], Eker and Tucker [1989], Harman and Tucker [1990], 
Eker et al. [1990] and Harman and Tucker [1992].)

Furthermore, the SCA model is also appropriate for the study of many specialized hardware 
devices and specialized models of computation including: systolic arrays (see Thompson and 
Tucker [1985], Thompson [1987], Hobley et al. [1988], Derrick et al. [1989] and Ilobley [1990]); 
neural networks (see Holden et al. [1991a], Holden et al. [1991b], Holden et al. [1992b], Yates 
[1993] and Thompson et al. [1992]); and cellular automata and coupled map lattice dynamical 
systems (see Marshall [1991], Blom [1992], Holden et al. [1992a], Holden et al. [1993] and Blom 
et al. [1993]). For general introductions to the topics of systolic architectures; neural networks; 
and cellular automata and coupled map lattice dynamical systems see respectively Mead and



Conway [1980], Kung [1982]; McCulloch and Pitts [1943], Widrow and Hoff [1960], Minsky 
and Papert [1969], Kohonen [1972], Kohonen [1978], Rurnelhart et al. [1986], Ilumelhart and 
McClelland [1986a], Rumelhart and McClelland [1986b]; Kamp and Ilasler [1990] and Ilansson 
[1993]; and von Neumann [1966] and Wolfram [1986].

Finally, the SCA computational model has been generalized and formalized in several ways: 
graph theoretical models (see Meinke [1988] and Meinke and Tucker [1988]); process theoretic 
models (see Tofts [1993]); operational semantic models (see Thompson [1987], Martin and Tucker 
[1988], Martin [1989] and Poole [1994]); and infinite SCAs (see McConnell and Tucker [1993] 
and McConnell [1993]).

3 .10 .3  T h e  A d van tages of th e  SC A  M eth od o logy  as a B asis for Form al S tream  
P rocessin g

SCA research has shown that the algebraic specification of hardware as primitive recursive Carte
sian form stream transformers offers significant advantages. In particular, from the perspective 
of the formal verification of hardware, SCA theory is extremely useful. In our research we gen
eralize the SCA approach and use this as (an alternative) basis for a formal approach to stream 
processing, although, the verification of hardware as SCAs remains of significant importance 
and interest.

In this section we motivate what we believe are the advantages of this approach, and in the 
following section we set a research agenda for the rest of this thesis so that we may begin to 
properly explore the theoretical and practical implications of primitive recursive Cartesian form 
equational specification in the broader setting of general purpose stream processing.

C artes ian  Form s. A Cartesian form stream transformer (CFST) is a function of the form

G : T  x [T ->■ A]" — Am

for some n ,m  € N. This is an alternative form of specification for a stream processing system 
in the sense that for every AFST F  with functionality

F  : [T — A]" -*■ [T -+■ A]m

we can define a map
F* : T  x [ T  A]’1 -> Am

by
(Vi 6 T) (Va € [T -  A]n) Ffit,  a) = F(a)ft).

We call F * the Cartesian form of F  (and sometimes the weak second-order form of F) and as far 
as we are aware, as a specific specification methodology for modelling second-order specifications 
the use of Cartesian forms is unique outside of SCA theory.

Notice that CFSTs return data and not functions (streams). Consequently, we may use an 
extremely weak second-order model (essentially first-order) to formalize the specification of STs 
that cannot be used when using AFSTs to specify stream transforming systems. This fact gives 
us two distinct advantages:
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(1) We have a straightforward theoretical account of STs based on first-order methods. In 
particular, we will show that we may use methods based on first-order equational logic 
to reason about CFSTs. This fact is particularly useful as most, indeed if not all, of the 
underlying data types used in computer science (and hence used in stream processing) have 
equational theories. We will return to this point in more detail in the following chapter.

(2) CFSTs eliminate the need for the specialized evaluation of the particular infinite data 
structures that are used to represent the stream data generated by an Ah S I. Wc justify 
this statement by observing that as CFSTs simply return data we need now only evaluate 
(external) stream input. Since for any stream input a the availability of the individual 
data values a(t) and a(t') for some t ^  t' will (from the perspective of the specification) be 
mutually exclusive, we obviate the need for any partial evaluation strategy. Therefore, in 
principle we may use any general purpose language for the animation and implementation 
of CFSTs.

P rim itiv e  R ecursive C FST s. Finally, since each primitive recursive function is total, any 
primitive recursive ST specification will be effectively testable against a corresponding primitive 
recursive implementation. Moreover, we will show that primitive recursive specifications when 
presented in the language PR (see Chapter 4) that is used for the specification of SCA can 
be compiled directly into equivalent PREQ specifications that are complete when considered as 
left-to-right re-write rules (see Chapter 5).

Therefore not only does PREQ provide the basis of a high-level equational specification 
language, but its theoretical properties can also be used as the basis of automated verification 
tools that we present in Chapter 8.

3 .10 .4  D ev elo p in g  an A lgeb raic  A pproach To Stream  P rocessin g

We believe the advantages of primitive recursive Cartesian form specification ol Sds are cleai 
in the context of hardware verification. Our objective now is to develop this methodology for 
general purpose stream programming. In particular, we must address the following.

(1) U sing C FST s Specification as a  P rac tica l Tool: C artesian  C om position.
One important aspect of CFSTs that we have not discussed so far that the reader may have 

noticed is that they do not appear to provide a compositional model of stream processing; that 
is, as we have already pointed out CFSTs take streams as input, but return data as output. 
One of the appealing aspects of AFSTs is that they allow a modular and hierarchical approach 
to stream processing. In particular, given two AFSTs II and G (that represent two systems S\ 
and ,?2 respectively) such that II and G have functionality

II  : [T -  A]n -  [T -  A]m 

and
G :[T —r A)m -  [T AY

for some n, m,/> £ W we may define a AFS1 F with functionality

F : [T -> A]n -  [T -  A]p

79



(to give a composite system S)  as follows

(V/ 6 T) (Va e [T -  A]n) F(a)(t) = G(H(a))(t).

However, given the equivalent Cartesian forms of II and G:

I! ’ : T  x [T -  A]n -  Am

and
6'* : T  x [T A]m -  Ap

respectively we can no longer directly define the composite system represented by

F ’ : T  x [T -> /l]" — Ap

as the ‘definition’

(Vi € T) (Va e [T -»■ A]n) F m(t, a) = G"(i, / / ’(i, a))

is not well-typed.
Naively, adopting a standard functional-programming technique, we could simply define F * 

from II" and G* using A-abstraction as follows:

(Vi G T)  (Vii € [T -+ ri]r\) F*(t,a) = G*(t, \ t . tr ( t ,a)) .

However, this would require adding A-abstraction as a primitive operation to our specification 
language PREQ (see Point (2) to follow). The subtle problem with this approach is that existing 
theory has shown that A-abstraction when combined with the language PR, (that captures the 
class of primitive recursive functions) provides a stronger model of computation than PR alone 
(see Tucker and Zucker [1992]); that is, it is not computationally conservative. Consequently, as 
PREQ is formally equivalent to PR in its expressive power if we add A-abstraction as a primitive 
to PREQ then we will lose the theoretical properties that PREQ enjoys by virtue of its primitive 
recursiveness.

This complication means that if we are to use the SCA methodology as the basis of a stream 
processing theory then we must show that for any CFSPs H* and G* (defined as above) we 
can construct E* (defined as above) representing a composite system without the use of full 
A-abstraction. Furthermore, since one of our aims in this thesis is that our theory can provide 
the basis of software tools, clearly we require a constructive proof that CFSTs are compositional 
in this sense.

To this end in Chapter -1 we show constructively that:

(A ) The class of primitive recursive CFSTs is closed under Cartesian composition.

(B ) The class of pPR computable CFSTs (see Section 4.4.2) is closed under Cartesian compo
sition; that is, we are able to show that the SCA methodology is appropriate for the most 
general class of computable STs and hence our first-order theory of stream processing is 
indeed general purpose.
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Ill more detail, Properties ( A) and (P) above of C l STs are stated formally iu Theorem i . We 
prove Theorem 7 constructively using Theorem 9 that concerns the properties of a formal com
piler C such that given two schemes O//- and ckq" representing the Cartesian forms of the Si s 
II and G respectively, C(aH. , a 0-) produces a scheme a F. such that the semantics of a F. is F* 
the Cartesian form of F — G o H .

In addition, in Chapter 8 we also discuss the implementation of a slightly generalized version 
of the Cartesian composition compiler denoted C that is defined in Chaptoi i. I he compiler C 
is tailored for specific practical requirements arising from the use of Cartesian composition in 
the formulation of the semantics of ASTRAL. Specifically, the compiler C will allow us to use 
CFSTs for specification in the same way that AFSTs can be used, and hence will allows us to 
apply modular specification techniques (see Point (3) to follow).

(2) D eveloping a D eno tational Sem antics for S tream  Processing: P R E Q . As our dis
cussion of SCA theory has shown there is a strong theoretical motivation for using an equational 
specification methodology. In addition, from a more general perspective an equational language 
provides a high-level of mathematical abstraction that is well-suited to implementation inde
pendent representation. In particular, for the specification of CFSTs an equational language is 
particularly appropriate and satisfies the criteria for the abstract representation of STs that we 
set down in Section 3.7.1. Furthermore, as mentioned previously, primitive recursive equational 
specifications give rise to equivalent complete term re-writing systems. This fact combined with 
the observation that typical data types in Computer Science have equational theories means 
that not only may we use equational specifications for CFSTs, but we may also use equational 
logic as the basis of a calculus for reasoning about their correctness (see Chapter 7).

In order to exploit the advantages that the equational specification of CFSTs provide in 
Section 6 we develop the specification language ASTRAL. In particular, in order that we main
tain a sufficient level of mathematical abstraction, and hence avoid the problems that we have 
highlighted with existing approaches to stream processing, we will provide a denotational seman
tics for ASTRAL by compiling our ST specifications into a first-order equational specification 
language PREQ. Furthermore, in order to maintain precise control over issues relating to com
putability if we restrict the syntax of PREQ so that it captures the class of primitive recursive 
functions. This fact is particularly important if we wish to maintain the advantages of the SCA 
methodology for hardware specification. Specifically, should we wish to relax the requirement 
that a specification should be primitive recursive, as is sometimes required outside of the context 
of hardware specification, then using PREQ we may do this in a controlled way. If we do not 
take this approach to the formulation of a denotational semantics then we will have to face 
the problems associated with general purpose specification languages that we discussed at the 
beginning of this section — especially as unrestricted equations provide an extiemoly poweiful 
specification technique in the sense of the class of functions they may specify.

In more detail, PREQ provides a straightforward syntax for the equational representation 
of primitive recursive functions and hence can be given a semantics in a rigourous way. There
fore, by compiling ASTRAL specifications into PREQ to derive a semantics, we can develop an 
implementation of ASTRAL that is suitable as a structured, modular high-level programming
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language, but which can still be given a formal semantics. In ¡¡articular, ASTRAL can be given 
a formal semantics using this technique without encountering the complications in developing 
a semantics for a high-level language that are typically observed when a top-down approach 
to language design is adopted. For example, languages such as C and PASCAL have usable 
implementations, but the direct formulation of a rigourous semantics for these languages is not 
straightforward as a result of their complex syntax.

As such, we continue the development of our 'fust-order’ stream processing theory in Chap
ter 5 as follows:

(A ) First, we design the syntax and semantics of the language PREQ.

(B) Secondly, we show formally that PREQ is sound and complete with respect to the class of 
primitive recursive functions (Theorem 10), and hence that PREQ provides an appropriate, 
neutral specification tool to develop a theory specific to stream processing without any loss 
of mathematical abstraction. We do this by designing two formal compilers: CPREQ and 
CPR that compile PR into PREQ and PREQ into PR respectively. In addition, we pay- 
particular attention to the design of the compiler CPREQ from the perspective of the number 
of equations that are produced from a PR scheme, so that <CPREQ can be used as the basis 
of efficient software tools.

(C ) Finally, we establish formally the important fact that we wish to carry over from the SCA 
methodology: that primitive recursive specifications give rise to equivalent complete term 
re-writing systems when expressed directly in PREQ (Theorem 11).

(3) D eveloping an  A b strac t Specification Language for STs: A STRA L.
One of the aims in the development of ASTRAL is to provide a usable, user-friendly specifi

cation language for STs. As previously discussed, while CFSTs have mathematical advantages 
from the perspective of formal verification, AFSTs provide a more natural and directly modular 
specification technique. Therefore, while designing ASTRAL, as its semantics is derived using 
CFSTs, we have been careful to develop the ASTRAL syntax without losing the mathematical 
abstraction we have carefully preserved. In order to achieve these aims we proceed as follows:

(A ) In Chapter 6 we begin by defining an abstract mathematical formalization of ASTRAL 
based on applicative form specification techniques, and hence that provides the basis for 
the hierarchical (modular) implementation techniques that are useful in systems design 
and implementation.

(B ) Secondly, we define a formal compiler that maps abstract (applicative) ASTRAL speci
fications into equivalent Cartesian form PREQ specifications and hence provide a formal 
(first-order) denotational semantics for ASTRAL.

(C ) Finally, we present a prototype BNF for an implementation of ASTRAL based on the 
abstract mathematical formalization and comment on the underlying design criteria.

In this way we avoid the complications with languages such as C and PASCAL that we discussed 
at the beginning of this section.
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(4) D eveloping a T heo ry  o f th e  (A u to m ated ) V erification of STs. The formal
ization of ASTRAL’s semantics using PREQ means that the theoretical properties that I REQ 
enjoys with respect to the construction of equivalent TRSs ( Theorem 11) are also enjoyed by 
ASTRAL. As we have discussed in Section 3.9.1 typically the formal verification of hardware 
requires routine, but long and hence error prone proofs. Therefore it is important to fully utilize 
the advantages offered by using the properties that PREQ specifications possess when inter
preted as left-to-right re-write rules; that is, completeness.

Typically, the intended semantics of any data type is its initial algebra semantics (see for 
example Meinke and Tucker [1992]) unique up to isomorphism that captures the essential char
acteristic of any acceptable implementation of the operations that the data tvpe describes. 
However, while complete TRSs are useful in the sense that they provide a decidable equational 
theory, this decidability is with respect to truth in all models of the data type (sometimes re
ferred to as loose semantics — see Goguen [1988] and Gogucn [1990]) that is more gcneial than 
initial truth. In particular, loose validity implies initial validity, but initial validity does not 
imply loose validity (see Section 7.1.3). Of course in general we cannot hope to have a complete 
and decidable theory with respect to initial algebra semantics by Godel’s famous incompleteness 
result. Furthermore, SCA theory has shown that in general deciding the correctness of an im
plementation of a hardware specification when expressed as a ST is equivalent to deciding the 
membership of a co-recursively enumerable set, and hence is co-semi-decidable (see Thompson 
and Tucker [1994] and Davis et al. [1976]). However, as we are interested in automated theorem 
proving one important question we must answer is: how much does Theorem 11 gain us in terms 
of the decidability of ST verification?

We will show that in order to answer this question we can make use of the following two 
facts:

• Over ground terms (variable free terms) loose validity is equivalent to initial validity, and

• Free variable induction and equational logic are sound with respect to initial validity. 

Specifically, we will show that these two fact will allow us to to the following.

(A ) First, given an ASTRAL representation of a ST specification and a corresponding ASTRAL 
representation of an implementation we can characterize the decidability of the correctness 
of the implementation relative to the syntactic complexity of an equational correctness 
statement (Theorem 18). Essentially, this means that we can identify a useful syntactic 
sub-class of all decidable equational correctness statements relating STs whose correctness 
can be verified fully automatically.

(B) Secondly, we may use this syntactic characterization to implement an automated theorem 
prover designed around first-order term re-writing and free variable induction to reason 
about ST specifications. This provides precisely the basis for a theory of the automated 
verification of STs that we require and as we will show has important implications for the 
formal automated verification of (safety-critical) hardware when expressed as SC As.



Concluding R em arks. The realization of topics discussed in Points (1), (2), (3) and (4) 
of this subsection are the theoretical and practical agenda around which the development of 
the rest of this thesis is based. In particular, in Chapter 8 we demonstrate the effectiveness of 
our theory of stream processing by using the automated verification of the RS-Flip-Flop as a 
small case study. We also discuss practical ideas to improve the efficiency of the implementation 
of our software tools to make them appropriate lor complex hardware devices such as micro
processors.

Therefore as promised we begin our research agenda by developing PllEQ and constructively 
demonstrating that it has the theoretical properties that we require.



C hapter 4

Prim itive Recursion

Cultivate simplicity...

Charles Lamb
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4.1 In tro d u ctio n

The class of primitive recursive functions (PR) was first formally identified as a specific func
tional class late last century by R Dedekind in Dedekind [1888] with the intention that they 
could be used as a foundational structure for mathematics in the reductionist style of Hamil
ton (Kiliminster [1993]). Indeed, since that time primitive recursion has played a fundamental 
role in classical computability theory as the most basic class of total functions formulated by 
recursive definitions. Moreover, it was as late as the 1930s that S Kleene suggested that partial 
recursive functions (primitive recursion with least number search -  see Section 4.4.2) should be 
considered as the most general class of functions in the study of abstract computation. While 
this fact may now seem surprising, the use of PR as a general model of computation is in some 
sense an obvious choice as most ‘everyday’ functions (in what has become Computer Science) 
are primitive recursive.

Typically in classical computability theory primitive recursive functions are formulated over 
the natural numbers. However, for our purposes we require a more abstract definition that can 
be characterized informally as follows:

Definition 9. For any standard 5-sorted T-algebra A if /  : T X .4“ —+ A v is defined by

(Va € A'1) /(0 , a) = g(a)

and
(Vi € T )  (Va e  A u )  f ( t  + l,n ) = h ( t , a ,  f ( t , a ) )

for some functions g  : Au —- A” and h  : T  x A u x A” —* A", for some u ,  v  £ S +  then we say /  i s  

d e f i n e d  b y  a n  i m m e d i a t e  a p p l i c a t i o n  o f  p r i m i t i v e  r e c u r s i o n .

Early this century T Skolem (Skolem [1923] -  work of 1919) developed the idea of providing 
a foundation for elementary arithmetic by combining primitive recursive function and predi
cate definitions with induction as a proof technique. This system, known as p r i m i t i v e  r e c u r s i v e  

a r i t h m e t i c , does not allow either unbounded existential quantification or unbounded negated 
existential quantification and as Skolem himself observed is similar to an intuisionistic approach 
to arithmetic, although it is actually more restrictive.

Since its development primitive recursive arithmetic has been studied by several researchers 
see for example Hilbert and Bernays [1934], Curry [1941], Goodstein [1941], Church [1954], 
Church [1957a], Church [1957b], Goodstein [1957], Rose [1961] and Rose [1962], This work 
includes a consistency proof, some incompleteness results developed from a formalized meta- 
theory and the study of primitive recursive arithmetic as a logic-free calculus. As pointed out 
in Curry [1941] much of the impetus of this work was the use of primitive recursive arithmetic 
by K Godel in the formulation of his famous incompleteness theorems.

Our interest in primitive recursive functions, and what essentially amounts to primitive re
cursive arithmetic, is stimulated by their advantages as a specification formalism, and as a formal 
calculus respectively, to study the properties of hardware and certain specialized abstract com
putational models that can be formalized as STs. Indeed, as we have indicated in Section 3.10, 
the next chapter will concentrate on the development of an equational formalization of the class
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PR (the language PREQ) and later chapters will examine the automation of primitive recursive 
arithmetic using techniques based on term re-writing.

In the next two Sections we motivate our choice of using the class PR as a specification 
formalism, and in Section 4.1.3 we overview the material presented in the rest of this chapter.

4.1 .1  PR -  A Secure B ase

While our work is more specialized than classical studies of PR and primitive recursive arithmetic 
in that we are specifically concerned with their applications to stream processing, it is important 
to observe that much of the existing theory of primitive recursion carries over to any standard 
abstract algebra. Consequently, as stream algebras are standard algebras, by developing the 
semantics of ASTRAL using PREQ much of the theory of stream processing using ASTRAL is 
already implicitly known. Moreover, this fact means that we have an intellectually accessible 
and trusted tool as the basis of the theory of stream processing that we wish to develop -  as T 
Skolem observed ‘a secure base1.

Indeed, the generalization of the theory of computability over the natural numbers to al
gebras with streams has already been considered in Tucker and Zucker [1992] and Tucker and 
Zucker [1994] that includes the formalization of a Church-Turing thesis for stream computation. 
Therefore, not only is much of the algebraic theory of stream processing already developed, but 
we also have a mathematical Aard-stick’ against which we may measure certain aspects of the 
development of the theory of stream processing in this thesis (see Section 4.4).

4 .1 .2  A  Form al L anguage for th e  C lass PR

As part of its role in computability theory many formal characterizations of the primitive re
cursive functions have been developed (see for example Péter [1950], Goodstein [1961], Cutland 
[1980], Simmons [1988], Tucker and Zucker [1992] and Tucker and Zucker [1994]). In particular, 
in SCA theory the languages FPIT (see Thompson [1987]), CARESS  (see Martin [1989] and 
Poole [1994]) -  both based on the concurrent assignment statement (see Welch [1983]) -  and 
the functional language PR (see Thompson [1987]) are of interest to us. Indeed, the fact that so 
many languages already exist to express primitive recursive functions raises the question: why 
should we need to formulate another? We argue that the reason we need a further equational 
characterization of PR arises from the following two facts: (1) several of the existing languages 
are based on an operational semantics and hence are not appropriate as specification languages; 
and (2) the existing formalisms with a denotational semantics are too low-level in the sense that 
they are not suitable for high-level, user-friendly specification.

Despite having made these observations about existing languages as we will need to show 
that our equational language PREQ does indeed capture the class PR the most obvious (and 
constructive) way to do this is to show the following:

(V$ G PREQ) (3a € Lra) [a] = [$]

and the converse
(Va € LP1) (3$ G PREQ) [$J = [a];
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that is, to show s o u n d n e s s  and a d e q u a c y  with respect to some existing language L «  that cap
tures PR. In fact, this is precisely what we will do (see Section 5.3.3). Furthermore, in so doing 
if we make an appropriate choice of language then we may directly and constructively exploit 
some existing results that we will require in the development of our stream processing theory.

The language PR is a rigorously formulated functional specification language based on simul
taneous primitive recursion that has been used successfully for the specification and verification 
of hardware as SCAs. Therefore, a formal, semantically sound compiler from PltEQ to PR to
gether with another from PR to PREQ will not only establish that PREQ is sound and adequate 
with respect to the class PR, but it will enable us to use constructively existing theory that has 
been developed using PR. Specifically, it will enable us to develop a constructive solution to the 
problem of Cartesian composition that is more conveniently expressed at the level of function 
schemes.

4 .1 .3  C h ap ter O verview

The predominantly technical material in this chapter is devoted to the formal introduction of the 
language PR and to a discussion of the use of Cartesian forms as a general purpose specification 
methodology. In particular, this chapter is concerned with the development of the necessary 
theoretical results for the use of Cartesian form specification in the context of primitive recursive 
functions. The following chapter deals with the equivalence of PR and our equational specifica
tion language PREQ.

Section 4.2 is concerned with the formal definition of the language PR, and the definition of 
some useful PR computable functions that we will require in later sections.

So that we may demonstrate the generality of our results, in Section 4.3 we discuss using 
PR (and hence PREQ) as a method for specifying STs and set ourselves the task of identifying 
the scope and limits of Cartesian form computation.

In order to answer this important question rigorously in Section 4.4 we introduce the lan
guages /¿PR, APR and A/iPR and show that /rPR provides a general model of Cartesian form 
stream computation:

Theorem  2. L e t  M C  b e  a n y  e f f e c t i v e  m o d e l  o f  c o m p u t a t i o n  a n d  l e t  M C { A ) b e  t h e  c l a s s  o f  

f u n c t i o n s  c o m p u t e d  b y  M C  o v e r  t h e  f f - s o r t e d  E - a l g e b r a  A .

I f  F  :  A f  —*  [ T  —+ A]v G M C ( A ) ,  f o r  s o m e  x  G ,  a n d  f o r  s o m e  v  G S +  t h e n  t h e r e  e x i s t s  a  

s c h e m e  a F .  G p P R ( M ) t  X i V  s u c h  t h a t

(V/ e T )  ( V a  6  A f )  F ( a ) ( t )  =  [ a p . ^ t ,  a);

t h a t  i s ,  f o r  e v e r y  c o m p u t a b l e  f u n c t i o n  F  t h a t  r e t u r n s  e i t h e r  o n e  o r  m o r e  s t r e a m s  a s  o u t p u t  t h e r e  

e x i s t s  a  c o m p u t a b l e  f u n c t i o n  t h a t  c o m p u t e s  t h e  C a r t e s i a n  f o r m  L  * o f  F .

In the final section of this chapter (Section 4.5) we address formally the problem of composing 
CFSTs that we discussed in Section 3.10.4; that is, we show the following:

Theorem  3. L e t  G  a n d  F I  b e  a n y  f u n c t i o n s  o f  t y p e

G  : [ T  -  A]n -  [ T  -  /l]p
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and
II  : [T -  A f  -  [T -  A]m 

r e s p e c t i v e l y  f o r  s o m e  m ,  n , p  G N+ a n d  l e t

F  : [T —> A]n -  [ T  -r A ] m

be defined by
F  =  I I  o  G .

(1) If G \  H'  € P R { A )  then F* G P R ( A ) .

(2) If G ' , H ’ G ;tPR( A) then F* € pPR(A).
(3) Furthermore, in both cases above, given schema a G. and a H. representing Gm and IF  
respectively we can effectively construct a scheme c t f  representing F from olq• and olh*, that 
is, the composition of CFSTs is uniform in A.

Despite the straightforward nature of the statement of Theorem 3 (that is set in a simplified 
form as an exercise in Goodstein [1961]) a full constructive proof is surprisingly technical and 
requires several intermediate results. Indeed, Section A.2 and Section A.3 in Appendix A are 
given over to the proof of our main technical result (Theorem 9) that we use to prove Theorem 3 
(via Theorems 7 and 8).

Finally, notice that the implication of Theorems 2 and 3 is that Cartesian form specification 
is indeed a general purpose specification technique in that, for every A1 ST there exists an
equivalent CFST; and given any two appropriately typed CFSTs we may compose them to give 
a single equivalent CFSTs. These facts are precisely what we required to demonstrate that the 
SCA^specification methodology (see Section 3.10) generalizes to provide the basis of general 
purpose theory of stream processing. We return to this point in the following sections.

4.2  T h e  A b stra c t S y n ta x  and S em an tics o f  P R

We now introduce formally the language PR that we wiU use as a convenient mathematical tool 
to establish the compositional properties of STs in Cartesian form when specified in PREQ.

Given a standard E-structure A we can build-up functions (function definitions) from the 
constants and operations of A using sequential and parallel composition, and primitive recursion. 
Thus, formal (syntactic) function definitions will use E-symbols as ground terms to denote 
basic functions, and use named function-constructors to build larger terms denoting composite 
functions. The set of all well-structured syntactic function definitions is denoted PR(E), and 
a member of PR(S) may be thought of as a program in a low-level, strongly-typed functional 
programming language whose semantics is a function on S-algebra A.

4 .2 .1  T h e A b stract S yn tax  o f P R

The M owing definition of the language PR is based on the account presented in Thompson 
[1987] although we include definition-by-cases as a primitive operation rather than a function 
building tool." This definition is essentially a generalization of bounded Kleene schemes that can
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bo found in (for example) C'utland [1980].
Let 5  be a standard S-sorted signature. We define

PR(S) = < P R (S )UiV | u ,v  g S + >

wherein each set PR (E )U|„ of schema of type (u, v)  is defined uniformly in u and v by induction 
as follows:

Basis Schema.

(1) Constant Functions. If a  =  c w for some c G EAi3 for some .s G S  and for some w  G ¿'+ 
then a  G PR(E),„iS.

(2) Algebraic Operations. If a =  a for some cr G E,„i3 for some w  G S+ and for some .s G S 
then a G PR(E),„3.

(3) Projection Functions. If a = U“ for some w  G ¿'+ and for some i  with 1 < i < |u>| then 
a  G P R (S ) ,itt|.

(4) Definition-by-Cases. If a  =  d c ,  for some s  G S  then a  G PR(E))j 3 3 3 .

Induction: Function Building Tools.

(5) Vectorisation. If a  = < a m > wherein m  > 0 and for i  = 1,. . . ,  m, a,- G PR(E)UiJi
for some .sy G S then a G PR(E)U)3l...Jm.

(6) Com position. If a = ct2 0 a i where ay G PR(L),l tl, and a 2 G PR (S)„„ for some 
u, v, w G S +  then a  G PR(E)Ui„.

(7) Prim itive Recursion. If a  = * ( o t i , a 2 ) where a i  G PR(E)Ui„ and a 2 G PR(E)nu„ u for 
some u, v G 5 + then a G PR (S)I1Ui„.

4 .2 .2  T h e  S em an tics  o f P R

Let A be a standard E-algebra. For each a G PR(E) the m e a n i n g  o f  a over A is [oJ.A where
i-Li is the 5 + x 5 +-indexed family

l h  = < u r  I «, » e >

where each mapping : PR (S)U,« — [-4U — Av] (ambiguously denoted [.J^) is defined uni
formly in u and v by induction on the structure of a scheme a G PR(E)U,„ as follows:

Basis Schema.

( l )  Constant Functions. If a  = c w for some c G Ea,j for some s  G S  and for some w  G S +, 
then [a]],, : A w —>■ .4., is defined by

(Vu G Aw) H ,t ( a )  = c A .

90



(2) Algeb raie Operations. If a  =  a  for some a  G £,UiJ for some w  G S +  and for some s  G S \  

then [a]^ : A w —> A, is defined by

(Va G A“ ) H U (fl)  = crA(a).

(3) Projection Functions. If a  = L“ for some w  G S +  and for some i  with 1 < i  <  ¡m|, 
then [jnj],i : .-1“ — AU(i is defined by

(Va = (a t ---- - an) G A“ ) [a],,(a) = a{.

(4) Definition-by-Cases. If a  =  d c s for some s  G S  then | a ].4 : A1’5 ,5 —> A., is defined by

(V6 G B) (V ai,a2 € A,)  [a],i(6, au a2) = < 1
[a2 if b = fj.

Induction: Function Building Tools.

(5) Vectorisation. If a  = < > for i  = 1 > 0, a,: G PR(E)USi for some
s i  G 5, then [aj^ : Au — A’1' ,m is defined by

(Va G Au) [a ]A(a) = ( ¡ a j ^ a ) ,  ■ • •, [«m]n(a)).

(6) Com position. If a  = a 2 0 a i where a t G P R (S )u ti, and a 2 G PR(E),„it, for some 
u , v , w  G S +, then : Au -> A" is defined by

(Va G Au) I« ln (a ) = I« i la ( I« 2ii (a ))-

(7) Prim itive Recursion. If a  = + ( a ! ,a 2) where oq G PR (S)U,„ and a 2 G PR (E)Uu „ „ for 
some u, v G S +, then [aJA : T  X Au -*■ Au is defined by

(Va G Au) [a ]A( 0 , a ) =  [ai],t(a)

and
(Vf G T)(Va G Au) H , t (£  +  l , a )  =  [ a 2],t(t, a, H a(*, a)).

4 .2 .3  N o te s

(1) Formally we require a proof to justify the existence of functions defined by Clause (4.2.1) of 
the preceding definition. The interested reader can consult Tucker and Zucker [1988] for such a 
proof. Also, notice that Clause (4.2.1) allows us to capture the class of simultaneous primitive 
recursive functions that is strictly larger than the class of primitive recursive functions over an 
arbitrary abstract standard algebra. However, in this thesis the simultaneity of the function def
initions does not play a central role and hence we will simply refer to this class as the primitive 
recursive functions.
(2) There is a sense in which the Boolean type and its standard operations (see Section 2.3.5)
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are not necessary in a standard algebra as they can be readily coded using the natural numbers 
and primitive recursion (see Chapter 8 of Thompson [1987]). However, from the perspective 
of efficiency of specification, definition-by-cases is useful as a primitive and will therefore be 
included (see Section 6.7.1). Although, as it is included lor convenience and not as a mathemat
ical necessity, we will omit definition-bv-cases in the definitions of the formal compilers in the 
following sections and leave the construction of the appropriate schemes and the proof of their 
correctness to the reader.

To complete the functional formalization of the primitive recursive functions on a 51-algebra. 
A we make the following definition:

Definition 10. Let A be a standard E-algebra. We define PR(4) the class of primitive recursive 
functions by

PIl( A) = {I«].4 | a £ PR(E)}.

4 .2 .4  F u rther P relim in aries

In this section we define further notation and functions either specific to this chapter or that 
we will be used throughout the rest of this thesis. In particular, with respect to this chapter 
we introduce operations on S'  that will be used for replacing individual sorts by words. The 
reader not interested in the details of how we establish the compositionality of Cartesian forms 
can omit these definitions (Definition 13 onward) and move directly to Section 4.3.

Throughout the rest of this chapter unless specifically stated otherwise S will denote any 
standard ¿’-sorted signature and .4 will denote any standard ¿-sorted E-algebra. However, 
sometimes for emphasis we will re-state this assumption. In addition X  will always denote 
any ¿-sorted collection of variable symbols. Moreover, to avoid any confusion of symbols we 
will always assume that E and A' pairwise disjoint, and in addition that neither contain the 
distinguished symbol /  nor any of the distinguished symbols from the set {/„_„/ | n ,n ' £ N}.

N o ta tio n  1. Given a vector a  £ Aw for some w £ ¿ + it is natural to write a  = ( a u . . . ,  a[tu|) 
to name the individual components of a .  We will use a similar notation for the individual 
components of a vector-valued function: if function /  has functionality /  : .4“ —>■ Av for some 
u ,  v £ ¿ + we write ‘/  = ( / i , . . . ,  f \ v \ )  ■ Au —* .4" ’ to mean that /„• : Au —+ AVx for i  = 1 ,. . . ,  | ¡;| 
are those functions such that for each a  £ Au

/(« ) = ( / i ( a)> • • - i /|ri(a))-

We call / i , .  . . , / H the c o - o r d i n a t e  f u n c t i o n s  o f  f .
Finally, if f A  : Au —>■ .4,, for some u  £ ¿ +, and for some s  £ ¿  is some function defined using 

the operations of A then we use Aj  to denote the extension of algebra A that includes f A  as a 
basic function wherein Aj  is an ¿’-sorted E/-algebra such that Ey — E U {/}. For convenience 
if f A  : .411 —• Au, for some u ,  v £ ¿ + is a vector-valued function then we also write Aj  to denote 
■4 extended with f A  as a basic operation noting that formally this is an abbreviation for the 
algebra ({{Af l )f ,) ■ ■ - )f wherein /, for i = 1 , . . M are the co-ordinate functions of / .

92



Definition 11. Given some scheme a £ PR(E) in the sequel we will write 3 C a to indicate 
that ¡3 is a sub-scheme of a; that is, a scheme from which a has been constructed by zero or 
more applications of the function building tools of PR. Furthermore, when f3 C a and ¡3 ^  o; 
that is, when 3 is a proper sub-scheme of a we will write ¡3 Q a.

Definition 12. For each a £ PR.( for some u, v £ S +, we refer to u and v as being the
domain and range of a respectively and we write dom(a) to mean u and ran(o ) to mean v.

Operations on Strings

Definition 13. For any w £ S + , for any ~ £ 5* and for any i £ {1,. . .|n |}  we define

w{i/z}  £ SH+b-l-i

by
— u)i • * * | ~ i • ■ • ,

that is,
W { i / z }  =  I Vi  ■ ■ • W i _  i  J i  '  • '  Z \ z \ W i + 1 • • •

Notice that it is possible that c = A in which case w { i / z } is w with uy deleted.
Finally, for later convenience, for any iv £ S +, for any z £ S* and for any i ^  { ! , . . . ,  \tu\] 

we define w{i /z}  £ 5 ^  by w{i/z} = w.

Exam ple 4. If S =  {n, t, b, a, b, c}, w  = c c b b a b and :  = n b  then tc’ {4 /  ~} = c c b n b « 6 .

N o ta tio n  2. Given w £ S +, i £ { 1 , . . . ,M }  and :  £ S ' a typical member x of A,UF/*} is a 
vector

wherein a; £ A Wj for j  = 1,. . . ,  i -  1, i + 1,. ■ •, \w\ and bk £ AZk for k = 1 , . . . ,  |.z|. Of course we 
can quantify over all such elements by writing “Vz £ but in practice we will want to
name the elements of 4 , , , . . .  , 4 . M that occur in x. To do this we can write

Vz = (al5. , 4- • • • > ̂ |~| > 4+11 • • • i ) G 4 ,{i/A

or just,
Vz = (fli, ■ • •, 4 - i ,  b, 4+ i, • • •, a |m|) € A'G’G)

provided it is clear that b is a vector of |z| elements. However, this notation is too cumbersome 
for our needs. For this reason we write for a typical element of 4 u,{i/ 4 ; that is,
a{i/b] denotes a vector (£ £ ,..., «¿_i, b, a1+i , .. •, «h ) for some ax £ AWi £ A w<_l , ai+l £

, . .  ., a\w| £ 4 ,^^  and some b £ Az, and we use

(Va{i/b} £ A w{,/:})

to mean

(Vrt, £ AWi) • • -(V«,--! £ 4«,,.,) (V6 € 4") (Vai+1 £ AWt+1)- • -(VaH  £ 4,Um).
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F o r  e x a m p l e ,  in t h e  c o n t e x t  o f  E x a m p l e  4

(Vafl/6} 6 Aw{4/z])

means

that is,

D efin ition  14. Let S be any sort set. For any s € S, and for any w 6 5 +, we define l ’’u' C 
{1,. • H )  by

Thus, given a sort s £ S, and a word w € 5 +, P 'w tells us which elements (if any) of w are 
exactly s. The size of P-w is denoted by \P'W\.

E xam ple 5. If w is defined as in Example 4 then I h’w = {4,6}.

The remainder of this section is devoted to an extremely technical definition of a function 
I  nit whose purpose will not be clear until Section 4.5.4. Therefore, we suggest the reader omit 
this material until that time.

D efinition  15. For any s € 5, and for any w € S +, we define A}'" : {1,.. ., |u;|} —* {0,. .. ,  | / J'a,|} 
by

Thus, given a sort s  € S ,  a word w  € 5 +, and a number n  such that 1 < n  < |u;j, A\ , w ( n )  = r n  > 0 
if and only if w n  = s and wn is the mth occurrence of s in w (reading left-to-right). If X \ ' w ( n )  = 0 
then wn 7̂  s.

E xam ple 6. Let S  be defined as in Example 4. If w = a b e  a c h a  £ S  then

(Vj 6 { ! , . . . » } )  J G IS'W ^  '»¡ = 8

wherein XSQ'W : {1 ,.. ., | u;|) {0,.. . , \P'W\} is defined uniformly in w by

(Vn € {1, • •., M}) Ao'x ( n )  = 0;

Ao'"(0) = 0;

(1) A ^ (6 )  = 2,

(2) X f n’ (7} = 3, and

(3) A{’,u(5) = 2.
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Definition 16. For any .s £ S, and for any w £ S +, we define A fw : {(),. . ., j /5'u,|}
{1,. . . ,  | u;j} uniformly in w by

(Vme ALA(m)

(V.s/ € S) (Vrn € { 1....... | |  -  L}) Aa/ w(m + L)

Thus, given a sort 5 £ 5, a word w £ 5 + , and a number m such that 1 < m < | / s’u,|, A ^ (m ) = n 
if and only if wn is the mth occurrence of s in w (reading left-to-right), otherwise A’/ “ (m) — 0. 
(Notice A(,UJ and AL'" are essentially inverses; see Lemma 2).

Exam ple 7. If 5 and w are defined as in Example 6 then

(1) AylW(2) = 6.

(2) ALW(1) = 3, and

(3) A f^(l) = 1.

Lemma 1. For any s £ S and for any to £ S, if P 'w /  0  then

r ' w = {Ai-u' ( i ) , . . . , A r ( | / i,u'l)}-

=  0; 

=  0 ;

1 T A2‘ (in') ii V = s;
1 -f A 2,w(m + 1) otherwise.

□
L em m a 2. For any s £ S , and for any w £ S +,

(t)  (Vn £ F ’w) AL,U(A;■“ («)) = n, and 

(2) (Vm £ A H A H m ))  = m -

□
D efinition 17. Let S  be any standard sort set. For any s £ S, we define nr3 : 5+ S '  by

(Vm £ 5 + ) 7r s ( w )  =  .
times

Thus, given a sort s £ 5 and a word w £ 5 +, tcs(w) is a word w', of length |P ',U|, where for 
i = 1 , . . . ,  w'i = s. This trJ(m) is used to type n >iW in Definition 18.
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Definition 18. Let A be any standard S - s o r t e d  S-algebra. For any s G S , and for any w € 5’+ 
such that D '“ 2  0 . we define IF-“ : Aw -  A"’1'"1 by

(Vn 6 A1") IF ,ul(a) = («Ay'"(i), • • •, «Ay,"(|r>.»|)).

Thus given a sort s G 5. a word w G S +, an 5-sorted algebra A, and a vector a G A“ i IF '" 
selects all elements from vector a that are of sort s.

(Notice that the co-domain of IF “ is given by ttj (w), and the indices of the co-ordinates of 
a that are selected by IF1“ , are members of the set P'w: see Lemma 1).

D efinition 19. For any s 6 S. for any w G S +, and for any i. G P 'w, we define

A ''“''* : 5" x S + S +

by

( V « g 5 + ) ( V : £ 5 + ) A '  “ M «.
A if u = A; and
Ci ■ ■ ■ C(u| otherwise,

wherein for j  = 1,. . ., |u|,
c = i «; if j $ P ' u\
; ) 6 s,'v,' { z )  otherwise

wherein for any s G S, for any w G S+, and for any i G P ’w, (A'“ ’1 : S + —> 5 + is defined by

(Va G S + ) 6’ 'w'‘( z )  = n w '

wherein w' — ~i (m){A5L,“'(i)/~}-
Given a sort s G 5, words u,w,3  G 5+, and an i G P 'w, A ’^ - \u , z )  is a new word u' that is 
exactly u except that every occurrence of s is replaced by An example of the use of A
is given at the end of this section.
Definition 20. Let A be any standard 5-sorted S-algebra. For any s 6 5, for any -up 2 G S+, 
and for any i , j  G P 'w we define

X /[v X AJ -+ A6 ' ^

wherein u = up • • • uy_i and v = uy + i ■ • • by

(Va e Au) (VT G Au) (V6 G A1) a\b) = (X[^w(J),]V’u(a),bJV^l'(n,)).

An example of the use of 0 is given at the end of this section.

Definition 21. Let 5 be any sort set. For any w , u  G 5+ we write w 2  u if, and only if 
> |/u,,u| for I _ I _ |u|. that is, w 2  u when every sort w, of w occurs at least as many

times in w as it does in u.

Exam ple 8. If w =  a b c d a, u =  dcb  a and v =  a  a then w 2  « and w 2 v, but a 2 v.
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Definition 22. Let S  be any sort set and let w, u £ 5 + such that w D u. If <p : {1,. . ., |-«|} — 
{1,. . . , \w\} is an injection such that u, = «^(0 for i = then we say that (w, is a
w/u-re placement. We will often write </> for (w, u, <t>) if w and u are understood or unimportant. 

For each («/«-replacement 6 wre define (p : |u;|} —> {0,. . ., |u|} by

(Vi G |i«|}) 0{ i )
0 if ~  (3j) d{j) -  i; and 
k if (f>(k) = i.

Exam ple 9. If iu,u,v  are defined as in Example 8 then y = {1 |—̂ 4,2 3,3 »-*■ 2,4 t—> 5} is a
re/«-permutation and ip = {1 e- 1,2 1— 5} is a « ;/«-permutation.

Lemma 3. Let S be any sort set and let w, u £ S +, and let (w,u,qi>) be a w/ u-permutation.

(Vi £ /m (</>)) 4>{0(i)) -  >■

Definition 23. Let A be any standard 5-sorted S algebra. For each re/u-replacement </>, for 
each s £ S such that P ’w ^  0 , for each p £ P 'w, and for each rr £ S * we define

ImP'z's'p : Aw{ph] -

by
(Va{p/6) e .4u'{p/"}) In i t ,?'z’s-p(a{p/b}) = (yu . . . , y H ) 

wherein for k = 1 ,.. ., | u|

= U , {k) if k $ P ’\
^ g s,w,P,z,^k)^ai---- , ap_1? ap+l, . . . ,  «|TO|, b) otherwise.

Exam ple 10. Let S  = {r, s, .s', c, d) and let /I be any S-sorted algebra. If w = s s’ c s  r s,
u = s r  s s', <+> = {1 t— 6, 2 h-* 5, 3 4, 4 1-+ 2}, z = d d and p = 4 then
( 1 )

<p —  (1 1—► 0,2 •—*■ 4,3 1—k 0,4 1—*■ 3,5 >—>■ 2,6 1—> 1}

and
(2) The function In i t lp'z’s'p has functionality In i t4>'z's'p : wherein

w{p/z}  = s s' c s r s{A/d d} = s s' c d d r s 

and
A5'u,'p(u, z) = &*'ss' csr3' \ s r s s ' , d d )

= Ss-W'p(z) r Ss‘w’p(z) s'
= x r x s'
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wherein x = n s d d s since

¿’■w'p(z) = 6, '3S' c,r3’4(dd)
= n ~3(s s ' c s r s ){ \  
= n s s s { ‘2/dd}

S ,3 3 C 3 r 3(4 )/dd}

— n s d d s:

and

(Va{p/b] G Aw{p/:]) ¡ n i t : ' ‘ '"(a { p / b } ) =  (e3'w'p^ 6(a',a",b),a:>,93'™-p'3>4(a \a" ,b) ,a2) 

wherein a' = ai,a2,a3 and a" = a5,a 6. It now follows from the definitions that

and
(a',a",bu b2) = (2 ,au bu b2,a6);

that is

4 .2 .5  S im p le  P R  C o m p u ta b le  F u n c tio n s

Each of the following facts states that a certain function /  : Au —>■ Av on an 5-sorted S-algebra 
A for some u, v 6 S+ is PR computable. To prove this fact we must show that there exists a 
scheme a  6 PR(E)Ui„ such that |a ] y, = / .  However, as for each of the following functions the 
construction of such a scheme is straightforward they are omitted.

Lem m a 4. For any n 6 N and for any w G S+, if Copy”x'w : A“ —► (A'")’1 is defined by

then Copyn'w G PJl(A).

Lem m a 5. For any n G N for any s G S and for any 1 < i < n if S w i t c h y  •' : A*“ A, is 
defined by

then S w i t c h y '' G PR{A).

Finally, the function / nit as defined in the previous section is PR(A) computable.

Lem m a 6. For each w/u-replacement <f>, for each s G S  such that I 3,w ^  0 ,  for each p G I 3,w, 
and for each z G S"

n times
(Va G A” ) Copyf'w(a) = ( a , .. ,,a )

Im t>; 3 p G PR{A)

wherein FniVp'z,, p is defined as in Definition 23.
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4 .3  U s in g  P R  to  R ep resen t S tream  T ransform ers

Recall the definition of a standard stream algebra A from Section 2.4.2 and consider the class 
of functions that may be computed by PR(A)- In particular, notice that there are only two 
types of primitive operations that may take a stream as an argument: aval, for each s G S - 
that simply evaluate a stream at a particular clock cycle; and projection functions (from the 
language PR) -  that simply select a stream argument as output. Furthermore, notice that 
there are no mechanisms such as A-abstraction (see Section 4.4.2) for making streams from non
stream data. As a consequence, it would appear that PR(A) provides a very weak model of 
stream computation. In more detail: if A is any standard A-sorted E-algebra then any function 
F  G PR(A) of the form

F : A* — [T -  A]u

for some x G S_+ and for some v G S + must use projection functions to produce the stream 
output. Thus, x must include stream sorts (otherwise F $ PR(A.)) and F  must simply copy its 
stream inputs to its stream outputs; that is, F  must essentially be of the form

F :[T — A]u x Ay -* [T —> A]v

for some u G A+ and for some y G S* and be defined such that for all a = (a1;. .. ,a |u|) G [rf  —> 
A]u and for all b G Ay if F(a,b) = ( a j , . . . ,  a\v{) then for each i G { l , . . . , |n |}  there exists a 
j  G {1,.. ., |«|} such that a\ = a,. (Although, notice that this j  may depend on a and b.)

The following lemma formalizes these observations:

L em m a 7. Let A be any standard S_-sorted Ehalgebra. If

F  = ( F j , . : [T -  A]u x A y -> [T A]y G PR(A)

for some u, v G and for some y G S* then:
(1) For each i G {1,.. ., | v \}

U )
(3j G |u|}) Uj = Vi,

(B )
(Va G [T -  A]u) (V6 G Ay) (3j  G { 1 ,.. . ,  |u|}) F,(a, b) = a,

and
(2) For each such F there exists

/  =  ( / : , .  • - , / m ) : [ T  -  4 ] u X A *  -> N'"' G P R ( A j

such that
(Va G [T -> A)u) fi(a, b) -  j  <=> Ft(a, b) = ak. 

for some k G |u|} such that ak = a j .
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Proof. Property (1) follows by induction on the structure of a scheme a such that = F. 
Property (2) foOovvs as a Corollary to Theorem 9 (see Section A.2).

Lemma, 7 appears to place severe restrictions upon the class of STs that we may represent 
in PR. In particluar, Lemma 7 states that STs in PR may only permute or copy their stream 
arguments. For example, by Lemma 7 even a simple ST such as

cannot be primitive recursive over A since F neither returns exactly ax nor exactly n2.
Despite this fact we will show in the following section that a large and useful class of stream 

transformers can be admitted to PR(A) provided we work with Cartesian forms.

4 .4  C a rtesia n  Form  C o m p u ta b ility

The language ASTRAL that we present in Chapter 6 derives its semantics from the language 
PREQ. Therefore, as in the following chapter we show formally that PREQ is equivalent to PR 
in its expressive power, Lemma 7 also appears to place severe restrictions upon the class of STs 
that may be represented in ASTRAL. In order that we may show formally that ASTRAL is 
a general purpose specification tool in the context of primitive recursive STs, we now discuss 
the use of Cartesian form specification from the perspective of computability. In particular, we 
introduce four extensions to the language PR and discuss the classes of STs that these languages 
can represent.

4.4 .1  C artesian  Form s

The informal definition of Cartesian forms from Section 4.1 can be formalized as follows:

D efinition  24. Let /  : A -*• [T — A]" for any u G Sf and for any v G S +. We define the 
Cartesian form / '  : T x T - *  A v of f  (also written cart(f))  by

Notice that conceptually the Cartesian form of a function /  is similar to the un-Curried form 
of / ,  although in general the un-Curried form of a function and its Cartesian form are not the 
same. For example, if g is the un-Curried form of /  then g has functionality

□

/•' •• ; •  • 4]2 ~ { T ~  A]

defined by

(Va1;a2 G [T — A]) (Vf G T)  F (a 1,a 2)(f)

(Vf G T) (Va G A'1) = f(a)(t).

|v | times

g : T  X ■ ■ ■ xT xA u -  Av

tts we must un-Curry each co-ordinate of / ’s stream output individually.
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It is also appropriate at this point to give a formal definition of the dual concept to that of 
a Cartesian form; that is, the applicative form, and two simple lemmata.

D efinition  25. Let g : T  X Au -* A" for some u £ 5* and for some v £ S +. We define the 
applicative form g : A" [T A]1’ of g (also written app(g)) by

Lem m a 8. Let f  and g be as above.

(1) app(cart{f)) = f .

(2) cart(app(g)) = g.

Lem m a 9. If f  -  ( f l ,. . . ,  /„) : T  X Au A", for some u £ 5* and for some v £ S + then

Notice that the Cartesian form of F  as defined in the previous section is a function F * : 
T x [T —* A]2 —■■ A and can be defined by

Also notice that while F  PR(A) the Cartesian form of F is readily seen to be a member 
of PR( A) and therefore it would appear that at least informally that some useful STs may be 
specified in PR in Cartesian form. However, as we are developing the basis of a stream processing 
theory using Cartesian forms as a specification methodology it is important to be precise about 
the class of functions that may be specified in Cartesian form; that is, (1) what are the scope and 
limits of Cartesian form computation in the context of stream algebras?; and more specifically
(2) what are the scope and limits of Cartesian form computation in the context of PR(A)? In 
order that that we may answer these questions rigorously in the following sections we introduce 
three extension to the language PR.

4.4 .2  /¿PR

It is a well-known result that the class of primitive recursive functions do not provide a gen
eral model of computation in the sense of the Church-luring Thesis (see for example Cutland 
[1980]). However, the language /¿PR is a generalization of PR (see Tucker and Zucker [1988]), 
that includes Kleene’s least number search operator, and in the context of algebras with lists 
containing only finite or countable infinite carriers does provide a general model of computation. 
We can define /¿PR by extending PR with the additional induction clause:

('in £ Au) (Vi £ T) g(a)(t) = g{t.a).

f =( f u- . - Jn) .
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(8a) M inim alization . If a  — f i ( a ' )  wherein a '  £ /¿PR(S)ntJib for some u  £ S ' "  then o 6
M PR (S)u>n.

The semantics of this additional clause is formalized as follows:

(8a) M inim alization . If a = /¿(a') wherein a1 £ /¿PR(E)nuh lor some u £ S" then [n]rl : 
.4“ N is defined by

(Vu £ .4U) [e*]U(a) = leastn.({a'jA(n,a) = tt).

The class of functions computed by /¿PR(E) is formalized in the usual way:

D efinition  26. Let A be any standard E-algebra. We define /¿PR(E) the class of primitive 
recursive functions with least number search over A by

/¿PR(>1) = {!«]., | a  € pPR(E)}.

Notice that similarly to the language PR the formulation of/¿PR is essentially a generalization 
of Kleene schemes (also see Cutland [1980]).

4 .4 .3  A PR

One operation that is often (implicitly) included in functional languages is A-abstraction. Indeed, 
languages such as ML (see for example Milner [1984] and Wilkstrom [1987]) based on the A- 
calculus often have this facility. The class of functions that can be computed when PR is 
extended with a limited form of A-abstraction, referred to as ‘stream abstraction’, has been 
considered in Tucker and Zucker [1992]. The language APR is PR extended with an additional 
induction clause as follows:

(8b) S tream  A b strac tio n . If a = A (a1) wherein a' £ APR(S)nuu for some u £ S" and for 
some U Ç then a  € APR(S)u,r  (Note that if u = A then the type of A(a') is u by 
definition.)

fhe semantics of this additional clause is formalized as follows:

(8b) S tream  A b strac tio n . If o = A(c/) wherein a' G APR(E)„ u „ for some u £ S* and for 
some v £ S + then |a ] yl : .4“ —- [T —* -4]t' is defined by

(Va G -4U) |[a]U(a) -  A .n([aXt(n,a)).

Again the class of functions computed by APR(E) is formalized in the usual way:

D efinition 27. Let A_ be any standard S-algebra. We define APR(/() the class of primitive 
recursive functions with stream abstraction over A by

APRU) = { Ia |iL|aG A P R (S )} .

102



Having defined /rPR(L') and APR(S) one further obvious extension to PR, that is also considered 
in Tucker and Zucker [1992], is to define A^PR(S); that is, PR with both additional induction 
clauses ((8a) and (8b)). As before the class of functions computed by A/iPR(E) is formalized as 
follows:

D efinition 28. Let A be any standard S-algebra. We define A/iPR(_4) the class of primitive 
recursive functions with stream abstraction and least number search over A by

A/j PR(A) = { M a i  a  € A/iPR(S)}.

4 .4 .4  A/iPR

4.4 .5  T h e  S cop e and L im its o f C artesian  Form C om p u tab ility

The formalization of the three extensions to the language PR above enables us to characterize 
precisely the nature of Cartesian form computability by drawing on two results from Tucker and 
Zucker [1992] and Tucker and Zucker [1994].

T heo rem  4. Let MC be any effective model of computation and let MC(A) be the class of 
functions computed by MC over the S_-sorted algebra A.

If  F : A f  —* \T —* A\v G MCfA) , for some x G i£+ and for some v G S + then there exists a 
scheme ctp G ApPR(ff)r,v such that

F  = [apJa.-

T h eo rem  5. If  F : Af  — [T — .4]u G XfiPR(A), for some x G A+ and for some v G A+ then 
there exists a scheme G f.iPR(£)tx,v such that

(Vi G T) (Va G A x ) F(a)(t) =  I « M a(C «)•

Notice that clearly Theorem 2 (Page 88) follows as a simply corollary to Theorems 4 and 5 
and thev provide a precise answer (and from our perspective positive answer) to the first part 
of our question concerning the scope and limits of Cartesian form computation that we set at 
the end of Section 4.4.1: that from the perspective of effective computability Cartesian form 
specification is a general purpose technique. However, what does this result tell us about the 
second question concerning the scope and limits of Cartesian from computability in PR(/t) and 
in particular the computability of STs in ASTRAL?

In fact the answer to this second question follows from an examination of the proof of 
Theorem 5 that is by induction on the structural complexity of the scheme exp such that

M J a = F.

In particular, we can observe from this proof that the use of least number search does not play 
a significant role other than in the obvious sense of increasing the class of functions that may
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be computed; that is, as a straightforward corollary to the proof of Theorem 5 we have the 
following:O

C oro llary  1. If F \ Af — [T — A]11 £ PR( A ) for some x e S_+ and for some v £ S + then there 
exists a scheme a F. £ PR(ff)t r ,„ such that

(Vi £ T) (Vra € Af) F(a)(t) = [a F.]A(*, a);

that is, Cartesian form computability is also a general purpose technique in the context of prim
itive recursive STs.

Indeed, as by definition PR captures the class PR we may infer from this result that the class 
of all primitive recursive CFSTs can be specified in Cartesian form in PR. More specifically, 
every SCA (see Section 3.10) can be specified in PR by means of CFSTs. Therefore, as PREQ 
is equivalent to PR (Theorem 10) the language ASTRAL is also an appropriate and general 
purpose tool for the specification of SCAs and hence hardware.

4 .4 .6  T h e  R o le  o f /¿PR in th is T h esis

As Corollary 1 shows that the explicit inclusion of least number search plays no significant role in 
the relationship between STs and the formulation of an equivalent Cartesian form, for generality, 
in the following sections we will formulate our proofs concerning Cartesian composition in terms 
of ¿¿PR computability. In particular, Theorems 7, 8 and 9 are concerned with /¿PR computability 
and in a similar fashion to the method that we deduced Corollary 1 from dheorem 5 we will 
show that the composition of primitive recursive STs (Part (1) of Theorem 3) follows directly 
from Theorem 7.

One slight complication that arises from the use of pPR(F)  in our main theorems is that we 
are now dealing with partial and not total functions. As such, formally in order to demonstrate 
that two functions are equivalent we must show Kleene equality (see for example Cutland [1980]). 
However, as in the case of Theorems 7, 8 and 9 it is trivial to deduce Kleene equality from a 
demonstration of the equivalence of the functions under the assumption that they are both 
defined we leave the details of the completion of our proofs in this respect to the reader.

4 .4 .7  P R  w ith  C artesian  co m p o sitio n  as a P r im itiv e

In contrast to the duality of the expressibility of full STs and their Cartesian forms in PR( A) 
and A/rPR(A), Tucker and Zucker [1992] shows that this duality breaks down in the case of 
APR(AJ computable stream transformers. In particular, Pucker and Zucker [1992] demonstrate 
the following:

T h eo rem  6. There exists an F  : Ax —+ [T —>■ cl]u £ XPR(A), for some x £ 5 + and for some 
v £ S + such that there does not exist a scheme a F- £ PR(A)o,» satisfying

(Vi £ T)(Va £ Ar ) F(a)(t) =  K - W h a ) .
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The proof of Theorem 6 is by the counterexample of showing that Ackermann’s function is 
APR(A) computable.

What makes this result even more interesting from the perspective of this thesis is that, 
from a computability-theoretic perspective, Part (1) of Theorem 3 shows that combining stream 
abstraction with composition in a single operation does maintain the duality of Cartesian form 
and full ST expressibility in PR(A). This point can be clarified by considering a further extension 
to the language PR.

The language PR(S) is PR(E) extended with an additional induction clause as follows:

(8c) Cartesian Com position. If a  = o(a2 ,aa) where a x £  PR(S)tZi!i and a 2 £  PRdI),,,« 
for some u, v £ S + and for some z £ Sf then a £ PR (S)t ,it,.

The semantics of this additional clause is formalized as follows:

(8c) Cartesian Com position. If a  — o(Q'2 i a i) where £ PR(S)tiiU and n 2 £ PR(S)„it, 
for some u, v £ S + and for some z £ 5 ’ then JaJn : T  X A~ Av is defined by

(Vi G T)  (Va € Af) |a ]yV ,a) = | a 2ln(P A.n([QiJA)(n, a)).

As with the other three extensions to PR we make the usual formulation of the class of 
functions computed by PR.(S).

D efinition 29. Let A be any standard E-algebra. We define PR(A) the class of primitive 
recursive functions with Cartesian composition over A by

P R U ) = { i« U |a e P R ( S ) } .

We can now use Part (1) of Theorem 3 to make a formal statement concerning PR(A) 
computability that is in contrast to Theorem 6 concerning APR(A) computability.

C oro llary  2. Let A be any S -algebra. I f  a' £ PR(]k)u,v, for some u,v £ S then there exists a 
scheme a £ Pi2(S),I)t, such that

(Va £ Au) [a']U(a) = H n ( a );

that is,
PR(A) = PR(A).

Proof. It is sufficient to show that if

G — o(g^,G^)

for some a\ £ PR(E)UiW, for some a'2 £ PR(S)to,u and f°r some w £ 5 + then there exists a 
scheme a £ PR(E) such that

(Va € Au) [a'IU(a) = H nj/O -
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This follows immediately by Part (1) of Theorem 3.
□

Im plications o f C orollary  2 to th is Thesis. Corollary 2 states that adding Cartesian 
composition to PR; that is, adding a limited form of stream abstraction with composition as 
a single operation does not increase the class of functions that may be computed. Therefore, 
we may conclude that it is the specific combination of the primitive recursion operator and 
stream abstraction that enable us to define functions that are not computable in the absence 
of stream abstraction on its own. From the perspective of providing a modular approach to 
the specification of primitive recursive STs this is an important result, as it shows that PR is 
the most general expansion of the language PR that we can use. We return to this point in 
Chapter 6 when via the definition of a specialized compiler we provide what essentially amounts 
to an implementation of the language of PR that we use to compile ASTRAL specifications into 
PREQ.

Having discussed the scope and limits of Cartesian form primitive recursive computability 
we now move on to the proof of Theorem 3. The reader not interested in the technical details 
of the proof can now move directly to Chapter 5 on Page 120.

4.5  T h e  E ffective  C o m p o sitio n  o f  ST s in C artesian  Form

Note that before continuing at this point if the reader has not already done so then they should 
read the comments in Section 4.4.6 concerning the demonstration of the equality of two pPR(E) 
computable functions in the following theorems.

4.5.1 C o m p o s itio n  o f C a r te s ia n  F o rm  S tre a m  T ra n s fo rm e rs  in  P R

For technical reasons that will become clear later in order to formally prove Theorem 3 it is 
necessary for us to reformulate and then generalize the theorem in several specific ways. First, 
we make a modest generalization of Theorem 3 in the form of Theorem 7 that makes explicit the 
types of the functions G and II and more specifically allows the domains of G and H to contain 
both stream and non-stream inputs. In particular, Part (2) of Theorem 3 is readily seen to be a 
special case of Theorem 7. Part (1) of Theorem 3 also follows from Theorem 7, but in addition 
also requires Lemma 10. Secondly, we state Theorem 8 which is a restricted form of Theorem 7 
in the sense that G may not be vector-valued. We can now show that Theorem 7 follows directly 
from Theorem 8 by the repeated composition of the co-ordinates of a vector-valued functions and 
hence to prove Theorem 3 we may now concentrate on a proof of Theorem 8. Finally, to prove 
Iheorem 8 we use Theorem 9 that concerns the properties of a formal compiler C. However, in 
Sections 4.5.5, 4.5.6 and 4.5.7 before we state Theorem 9 we motivate its precise technical form 
using a high-level algorithmic description of C and in particular show how Theorem 8 can be 
considered as a special case of the compiler’s formal properties.
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4 .5 .2  P r o o f o f T h eorem  3

D efinition  30. For any ul , u1 G 5*. for any v,y  G S + and for any :  £ 5* if a = u1 y u~ and 
h and g have functionality h : 4 “ —* A v and g : T x A~ —- A y respectively then we define the 
Cartesian composition f  : 4 “ " “ — . P of h and g, in symbols /  = h o g , by

(Vfl = (fli, b, a2) G A/ /(« i, 6, (¿2) = h(ai,g(b), a2).

We now use Definition 3 to formulate Theorem 7 from which we prove Theorem 3.

Theorem  7. For any ul , tr G S* /or any i>, y G 5 + and /or any z G 5* if u = ul y u1 and 
h : Au —+ A" G gPR(A) and g : T x  A* — Ay G gPR(A) then f  = h o g  G gPR(A).

For convenience we first re-state the theorem:
Theorem  3. Let G and H be any functions of type

G : [ T  — A]n -  [T -  A]p

and
II : [T -  A]p -  [T -  A]m 

respectively for some m ,n ,p  G M+ and let

F : [T — A]r‘ -  [T -  A]m

be defined by
F -  II 0 G.

(1) If G", IF  G PR(A) then I "  G PR(A)-
(2) I f G ' , i r  G fiPR(A) then /•" G gPR{A)-
(3) Furthermore, in both cases above given schema ag . and ot[[. representing G’ and IF  re
spectively we can effectively construct a scheme a p  representing F* from ag . and « //•; that is, 
the composition of CFSTs is uniform in .4.

P roo f. We prove Part (2) of Theorem 3 and leave the reader to formally deduce Part (1) using 
Lemma 10. Notice that if we take A~ — [T /l]n, Au = A/ = [T A]p, Af = [T —> A]m,
g = G~ and h = IF  then by Theorem 7 we have /  = IF  o Gm = F'  G /AMl/A) as required.

□

4 .5 .3  P r o o f  o f  T h e o re m  7

Notice that Theorem 7 concerns the Cartesian composition of a vector-valued function g. Our 
method of proving Theorem 7 is to repeatedly compose h with the co-ordinate functions of g 
one at a time. In order to discuss this idea more rigorously we introduce the following notation 
for composing a single-valued function g at a selected argument position of a function h:
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D efinition  31. For any s £ S, for any d £ S_+ such that I-‘d 0 , for any p £ for any 
x £ S + and for any q £ S_" if d{p/q} = dl q d1 and h and g have functionality h : Tx
and g : T  x Aq -» /Is respectively then we define the co-ordinate p Cartesian composition 
f  : / ldl ? —* ,4X of h and g, in symbols /  = h op g, by

(1) (Va = (ciL «2) € Ad qd ) / ( « i , b, a->) = h(au g(b), a2);

that is,
(Va{p/6) £ Ad{p/'l}) f{a{p/b}) = h(a{p/g(b)}).

As with Definition 30 we can use Definition 31 to formulate a further more convenient form 
of Theorem 3, but now wherein g is single-valued.

T h eo rem  8. For any s £ S, for any d £ S_+ such that I - ,d ^  0 , for any p £ [-‘d, for any
x £ S + and for any q £ ST if h and g have functionality h : Ad A1 and g - . T y . A f  — A s
respectively then f  = hop g £ fiPR{A)-

D iscussion. Notice from Equation (1) that /  is computed by replacing the pth argument
of h with g(b). Therefore for any g = {g i , . .. : T  x A~ —> Ay we can compute h o g  by
repeatedly replacing the arguments of h with the appropriate co-ordinate functions of g\ that 
is, by replacing the pth argument of h with gp(b) for i — 1, . . . ,  |p|. This is the basic idea behind 
the following proof of Theorem 7 from Theorem 8. (We note that these semantic ideas are also 
formalized in the definition of the compiler o in Section 6.1.1.)

P ro o f  o f T heo rem  7. By induction on the value n = \y\ £ N.
Basis. If n = 1 then y is a single sort and hence this follows immediately from Theorem 8 if 
we take d = u, x = v, q — z, p = |?P| -+- 1 and s = y.
In d u c tio n  H ypo thesis . Assume for any y' £ S + such that \y’\ = k for some fixed k > 1 and
for any u3,u 4,z'  £ Sf  and for any v' £ S_+ if u' = u3 yf u4 and h1 : Au -* A v G /¿PR(/t) and
O' = (<7i , . . . ,  g[) : T  x A*' — /Is' € /iPR(A) then / '  = h1 o g‘ £ pPIt(A).
In d u c tio n  S tep . We must show that for any y" £ S + such that \y"\ = k + 1 and for any 
u \ u \ z "  £ S'  and for any v" £ £ + if u" = u5 f  u6 and h" : Au" -> A*" £ pPR(A) and
g" = .. ., g'k+\) : T X A‘" -  /Is" e pPR (A) then /"  = h" o g" £ pPR (A).

Notice that by the Induction Hypothesis if we take u3 = uJ, y' = 2/" • • • Pt, «4 = p" u'\ 
F = v", z ’ = z", h' = h", and g' = G = (g", ■ ■■,g't) then there exists

/ '  ; q - 5-'"!/"’*6 Av" £ /iPR(A)

such that
(Va =  (ai ,b,a2) £ / T ^ " * " “6) f '(a)  =  h"oG(a).

Therefore, by Theorem 8 if we take d = u° z" p"+1 ub, p = |n5 z"\ + 1, x = v", q — z", h — / ' ,  
and g = g'f+{ then there exists

/  : A”* -  A v" £ pPR(A)
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that satisfies

(Vu = (aL, 6, «v) 6 A u ‘ ) f (d \ ,b ,b ,a2) = (h" o G)o i g^+l(ni,b,b.a2);

that is,

= h"(al,G(b),g"k+l(b),a-,)

by the definition of . o . and . o,- .

=  h."(ai,(g",. . . ,gk)(b),g"k+l{b),a2)

by the definition of G and by Lemma 9

= h,l(al ,g"{b), a2)

by the definition of g" and by Lemma 9

= h" o g"(a\ , b, a->)

n . _  Av" by
by definition.

Consequently if we define / "  : A

(Va = (au b,a2) G A''5-’" " “) /" (a i ,6 ,a 2) = f {a x,Copy2'*"(6), a2)

then as /  G /iPR( A) by hypothesis and Copy2'1“ G PR(A) C aPR(A) by Lemma 4 we have

/"  = h" 5 g" G /iPR( A)

as required.

4 .5 .4  A C a r te s ia n  C o m p o s itio n  C o m p ile r  C

As we indicated previously to prove Theorem 8 we will use Theorem 9. In particular, Theorem 9 
concerns the properties of a compiler C : /*PR(£) -  /*P&(£)- While the definition of C is based 
on a straightforward idea, the full proof of Theorem 9 is highly technical and long and is therefore 
banished to Appendix A.2. Consequently, in the Mowing sections we informally, but rigorously 
discuss the construction of the compiler and take great care to explain why the constructions 
made are the correct ones. In particular, we will show by means of a high-level algorithm that 
if g and h are primitive recursive over A then so is /  = hopg by showing how to construct a 
scheme a s = C(ag, a h) G P/2(S) such that ¡af j± = f  for any schemes a gia h G PR(X)  such 
that [q ] * = g and f a ^  = h respectively. In essence, the basic algorithm underlying the 
construction of a f from «"an d  a ,  is to replace occurrences of eval, in a h by a ,  in such a way 
that whenever ‘executes’ eval, on arguments (t,ap), a f executes a ,  on (t,b). We will now 
explain this idea in some detail based on the account given in Stephens and Thompson [1992],
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4 .5 .5  A n A lgor ith m  for P erform ing  C artesian  C om p osition  in P R

Recall Section 4.2.1 where the denotational semantics of a PR scheme a is defined. This defini
tion can be informally viewed as providing an operational semantics in the sense that it defines 
a virtual machine which ‘executes’ a PR scheme a on some suitable arguments a = {ax, . . . , an) 
by starting with the expression -|[a]U(a ) \  and then repeatedly expanding and simplifying this 
expression using the appropriate clauses of the definition of until no further expansion or 
simplification is possible. For example, consider what happens when this virtual machine is 
executed on a h with arguments a l5. . .  ,an. In particular, consider what happens to argument 
ap as the execution proceeds. Since ap is a stream of sort s and the only operation of A that 
processes such streams is the algebraic operation eval,, the only stage at which the value of ap 
can influence the execution is when ap is passed to eval, together with some natural number t so 
that the value {eval,jA(t, ap) = ap(t) is computed (and is presumably used in some subsequent 
computation).

Now imagine a second machine executing ah on the same arguments a = (al , . .. ,a„), but 
in the case of this second machine we first compute g(b) (for some b £ A") and substitute this 
for ap. (Notice that in general this preliminary computation of g(b) must be done externally 
since if g is a non-trivial ST then g cannot be primitive recursive by Lemma 7.)

If the two machines are executed on their arguments in parallel, then the machines will 
perform identical computations at the same times until the first time that the pth argument is 
used. At this time, the first machine is about to compute

[e-t)aljA(t,ap) = ap(t)

whereas the second machine is about to compute

leval,lA(t,g(b)) = g(b)(t).

However, g(b)(t) = g(t,b) -  ¿0- Thus, if we could modify the first machine so that
at this critical stage in the execution sequence it executes ag on arguments t and b instead of 
eval, on t and ap, then both machines will compute the same value (g(t,b)) at this point in the 
execution sequence.

In essence then, we have forced the first machine to simulate the second by replacing an 
occurrence of eval, in a h with ag. If we can consistently modify a h so that whenever it would 
normally execute eval, on some t1 and the special stream ap we replace this with an execution 
of oty on l! and b, then both machines will compute the same result: /(a{p/6})_ T_he difference 
between the two computations is that the first machine computes f (a{p/b})  using only primitive 
recursive computations. This suggests that /  is indeed primitive recursive, and the technique 
of substituting a g for relevant occurrences of eval, is at least the basis of an effective procedure 
for performing Cartesian composition.

4 .5 .6  T h e  E ffectiven ess o f our A lgorithm : C od e V ectors

The difficulty with the above procedure is that we need an effective mechanism for determining 
whether a stream argument to eval, is the special stream ap or not. However, in general this
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test is impossible to perforin effectively since streams are infinite objects and hence equality on 
[T A,] is only co-semi-decidable. In order to describe how we avoid this problem it will be 
helpful if we first establish some notation.

Recall that h is a function of n arguments a = (al5. .. , «„) of which the streams of sorts s 
are a,-,,. . .  , aim. Thus, for k = 1,. .. , n, if ak £ [T — A3] then there exists some j  = j (k)  £ 
{L,.. . , m}  such that ak = . In particular, there must be some r = j(p) £ { 1,.. . , m) such
that ap = air.

Now consider executing a h on a — (ak, . . .  , a„) again. At any stage in the calculation where 
eval, is to be executed on some stream, it must be the case that the stream in question is a*. for 
some j  £ {1,. .. , m} by part (a) of Lemma 7. However, nij = ap when ij = p (or, equivalently, 
when j  = r). Thus, if we can modify a h so that it computes with the indices of streams rather 
than the streams themselves, then we can effectively test whether or not a stream is ap by 
comparing the indices of the two streams in question.

We use the indices of streams to compute /  by executing a new scheme a'h obtained from 
o>h in the following way. (For simplicity we will assume in what follows that |r/| = 1 so that a 
typical argument b £ A_z to g is a scalar rather than a vector.)

Given arguments a = (ai , . .  . , a„), we replace each argument ak that is a stream of sort s 
with what we call its code

(“) code(k) — (j(L’), atl, . . .  , air̂ i > b, fl,r+i, • •.

for k = 1 ,.. . , ii wherein r is such that ciir — ap as above. The idea here is that first component 
of each code is the index of the stream it represents. (The code also contains copies of b and all 
the streams of sort s as these will be needed later.)

The crucial idea is to construct a'h so that in each place that a /, uses a stream of sort s, a'h 
uses a code instead. In particular, wherever eval, occurs in a h and is passed a number t and 
a stream a to evaluate, at the corresponding place in a'h the available arguments will be t and 
a code c — code(k) for some k £ {1, . . .  ,n}. Thus a /, can now inspect the first component oi 
c and decide what action to take. Let the first component be some j  £ {1, . . .  ,m}. If j  = r 
then c represents ap so o), needs to execute otg on t and b this is straightforward to arrange 
since t is already available and b is the (r + l)th  component of c. Alternatively, if j  ^  r then c 
represents aij so a'h needs to execute eval, on t and this stream. Again, this is easy to arrange 
since a{j is the (j  + l)th component of c.

More formally, the scheme a'h is obtained from a h in the following way. First note that a 
code has type ne where e comprises m copies of s_ with the /’th occurrence of s_ replaced with (j. 
Thus codes are members of the set

d ne =  N x [T -  A,Y  x A; X [T -  A,]m~r .

We now construct a h so that it computes in the way described above by replacing all occurrences 
ln (Ah of eval, in a h by a scheme Eval  of type

{Eval\A_: T  x Ane -> A,

that is,
{Eva l}^ : T x N x [T -  A5]r x A1 x [T -  A5]m~r -  A,
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a n d  is d e f in e d  fo r  e a c h  t £  T  a n d  e a c h  c — ( c l 5 . .  . , c m +1) £  W x  A 5 by

(3) ¡Eual}±(t,c) I t t g i A l ^ C r  +  l  )  if C i  — T

I eval,]d (t,c  Cl + l ) i f c ^ r .

4 .5 .7  R em ark s

The transformation of a h into a'h obtained by substituting Eval  for eval, is the essence of our 
method of compiling a g and a/, into otj. However, there are a number of matters arising:

(1) Some readers may have asked themselves why we do not use part (b) of Lemma 7 in our 
construction to compute the index of a stream at the point at which that stream is about 
to be used as an argument to eval,. The reason for this is simply that we have been unable 
to prove Lemma 7 without using results based on the composition of CFSTs(!)

(2) Simply substituting Eval for eval, will create ‘type clashes’.

(3) Although it is clear that a'h can be used to compute / ,  a'h is not the required scheme af
since does not have the same domain as / .

(4) This description of the compilation process does not consider the case where h returns 
streams.

(5) The presentation of Eval contains a subtle flaw.

Each of points (2)-(5) has an impact on the precise formulation of the compilation of a g and 
Oa into aj.

With respect to (2), it is not sufficient to modify a h by simply replacing occurrences of eval, 
with Eval  as we must also modify all of «/,’s other basis schemes so that they have the right 
types. For example, if a h involves a constant scheme dx for some constant symbol d and some 
i E 5 +, then in a'h this needs to be changed to d1' where x' is x with any occurrence of s is 
replaced by the type ne of a code. Projection schemes and definition-by-cases schemes require 
similar modifications, but we will leave the details to the formal definitions in Section 4.5.3. 

With respect to (3), the constructions discussed above result in a scheme a'h such that

K U  : A '  -  A e
where d' is d with every occurrence of s replaced by ne. Notice that if a denotes a = (ii i , . . .  , an) 
with each at that is a stream of sort s replaced by code(k) for k £ {1, . . .  ,n}, then it follows 
from the above discussion of codes and Eval  that

K k ( « )  = Raip/b}).

Thus is the required characterisation ctj of /  = hbpg except that a h has the wrong domain. 
However, it is easy to see that a can be computed from a{p/6} with a PR scheme I  nit such that 
if we define aj  by

a i — cth o I  nit
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t h e n

[[a/ jAaip/b])  = K  ° Ini t jAa{p/b})

= IK  l a d 7 nit.j±(a{p/b}))

= K k ( « )
= f(a{p/t>})-

(Recall that Init was defined in Definition 23.)
With respect to (4), the hypothesis on the function h is that it does not return streams. 

(Recall that the co-domain of h is for x £ S + and not x 6 S_+). However, notice that it is 
possible for a h to be of the form a h = a 2 o ay where an returns streams. This means that a 
theorem stating the primitive recursiveness of /  = hopg cannot be proved by an argument that 
proceeds by induction on the structure of o/, since the induction hypothesis will not be strong 
enough. (We note in passing that g and h must have the general form given in Definition 30 for 
the same reason.)

This matter is easily resolved: if we allow the co-domain of a /, to be Af  lor x £ 5 + then the 
construction will generate a scheme a'h with co-domain Af  where x‘ is x with every occurrence 
of s replaced with ne. Since this is not the co-domain of / ,  the theorem to prove in this case is 
one stating that for each co-ordinate function /q of h: (a) if the co-domain of /i,- is not [I" —> /15] 
then the ¿tli co-ordinate of {a'h o Init jA returns the ith co-ordinate of f opg, and (b) if the co- 
domain of hi is [T — .4,] then [a), o Init]A returns the code of the stream returned by (/o pp),-. 
(Theorem 9 that states the correctness of the compilation process has exactly this form.)

With respect to (5), the discussion of Eval  was simplified in Section 4.5.6 for ease of pre
sentation. The difficulty is that the generalisation of h described immediately above is still not 
sufficient for a proof by structural induction to succeed if we use Eval naively.

To see the difficulty, recall the semantics of Eval from equation (3) above. Notice how this 
definition is implicitly dependent on d (the domain type of h); that is, ‘EvaV is properly iEvald . 
For example, suppose a h = eval,. In this case d is ns, and since the second argument to h is 
the only stream, we deduce that p = 2 is the only possibility. This means that there is only 
one code: code(2), and it must be that always returns code(2) = (1,6) since the second
argument is the first and only stream. This in turn means that the definition of Eval = Evalni 
collapses to Eval = ctg. While this is correct in the case where a h is eval,, in general eval, will 
only be a sub-scheme of a/,. Thus in an argument that proceeds by induction on the structure 
of a h we need to replace eval, by Evald, but the induction hypothesis will only cover the case 
where u = n^. This is not what is required, and as with the situation above, we must generalise 
the construction again to give us a stronger induction hypothesis.

We do this in the following way. When eval, occurs as a sub-scheme of cv̂ , the only streams 
oil which eval, could ever be executed must be inputs to ol̂ . In other words, the (stream) 
Arguments to eval, are contained in the (stream) arguments to a^. lo  reflect this situation in

induction hypothesis wre consider the substitution of 5(6) for the pth argument in any list 
«' = (u) , . . . , a'n,) which contains the arguments a = («1, . . .  ,«„) to a h. More precisely, in terms 
of the notation and terminology of Section 4.2.4, our approach is to consider the effect, of sub
stituting g(b) for the pth component of a vector a of type w where w D d and there exists some
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tn/r/-replacement p. (This was the reason for defining sort replacements in Definition 22.)
In an argument based on the structure of a h in this context, the basis case where a h = eval, 

does not require the domain type d of a h to be exactly ns as it is now sufficient to have d D s. 
This reflects the idea that the stream argument to eval, when it is a sub-scheme of a h must 
be one of a h's arguments, and leads to a construction wherein eval, is replaced by Evald as 
required.

Finally, to recover the theorem we set out to prove, it is a simple matter of considering the 
special case where w = d and p is the identity function.

4 .5 .8  A  Form al D efin ition  o f th e  C om piler C

In the previous section we explained informally the structure of a compiler C such that

C(ag, a h) = a'h o Init

and
[C(otf, a H ) ] A  = [a,JA Sp | a J A

(Recall that a h is of type (d,x)  wherein dp = s and ag is of type (t q,s).) In this section we 
present a complete definition of this compiler and make a formal statement of its properties that 
we use to prove Theorem 7.

For technical convenience the formal definition of C is given by two separate functions. For 
example, the construction of the scheme a'h is formalized by the definition of the compiler 0 
wherein for additional technical reasons concerning the functionality of 0 the scheme ag is given 
as an index rather than an argument. For example, the formal construction of the scheme ci'h 
as above is given by

°'h =

The formal construction of a scheme to represent the function Init  was given in the latter part 
of Section 4.2.4 to which the reader may now wish to refer before continuing. Specifically, notice 
that the function Init. is used to compute the appropriate input to a’h where each stream is 
replaced by a code vector, and the function 0 is used to compute the individual code for each 
particular stream. The function A computes the correct type for the domain and co-domain 
of a'h where streams are replaced by codes and the function 6 is used to compute the type of 
each individual code. In particular, in the case of a'h as above A ^ d’p(d,q), and As-’x’p(d,q) are 
the domain and co-domain of a'h respectively wherein the type of each code vector replacing 
each stream of sort s is 6^d'p(q); and if id is the identity function on {1,. . . , \d\)  then for each 
a = (a',b,a") 6 A d{p/,l] the input to a'h is In it id'<1'’-’p{a) wherein In it id̂ ^ p has functionality 
/ : ,4-dr/?} anj  replaces each stream of type s occurring as the Jbth co
ordinate of d with the code ,a",b).

The C om piler 0. We now present the formal definition of the compiler 0- Recall that 
for technical reasons concerned with the formal proof of the properties of C (stated as Iheo- 
rem 9) that the definition of 0 involves a further domain type w such that w D u (wherein u



is now the domain of the function we are performing Cartesian composition on) and a iv/u- 
replacement <p. However, to deduce Theorem 7 from Theorem 9 it is sufficient to have w = u 
and & as the identity function (as above).

D efin ition  32. Let T be any standard 5-sorted signature. For each s G S , for each w, u, v G 5 + 
such that w D u and I- 'w ^  0  for each p G I s,w, and for each ¡3 G pPR{ S )t , 3 for any :  G 5* 
we define

: p P R W u .v  -  /< m s )

(ambiguously denoted 0 3,“' ,p or just 0) by induction on the structural complexity of a scheme 
a G pPRÇ5P)UiU uniformly in (u,v)  as follows:
Basis Cases.

(1) C o n stan t Functions. If a = cu for some c G for any s' G S then

0 : pPR(±)uy

is defined by 

\Vell-Defiricdne.ss.

A /  \ A l -  w,T>(u)z )0(a) — c K .

Since Ai ’,u,p(s/, z) = s1 by definition it is clear that

0(a) G

as required.

(2) A lgebraic O perations. If a = cr for some a G Eu ,> for any s G S then

0 : pPR(^.)u,)' pP

is defined by

0(a) -
a if cr 7̂  eval,,

Eval™'*'p if cr = eval,

wherein for each w G 5 +, for each z G S_ arid for each p G /  ,w

Eval1! switch)1 ’ ',5,a‘ ^  0 < Oo"1,/?!,. . .  ,/3|/i >

where sw itch1- is as in Lemma 5, x = 6^w'p(z), and for j  = 1, 11’- '

eval, o < u \ >uj - >

f3 o < M+1
eval, o < U{x, P^+iq+i >

>
if 1 < j  <
if j  = \['w(p); 
if Ay,'"(p) < j  < IP-'

Note, when defining 3j above, in the case that j  — Â  (p) if ~ — £ and hence |~| — 0 then 
the sequence of projections • • ■, ^/+p|+i 's cmPW aiu  ̂ wo opeiate the convention that 
3j = (3 o < I ’l x >.
Well-Definedness. We have two cases to consider.
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(a) a ^  eval,. Notice that since a ± eval, we have A--W'p(u,z)  = u and Ai ’u''p(.s\ z) = s'
by definition and therefore 0(a) € a^ ' P ,\z) as required.

(b) a = eval,. First notice that if 1 < j  < Af,UJ(p) then x j+2 = s by definition. Similarly
if Af w(p) < j  < 1 then x-j+p|+1 = s. Thus, eval, o < Ufx2 > and eval, o <
jr tr  fjtx y  are well-defined as compositions since the domain of eval, is t s. 
Second, notice that if j  = Af 'w (p) then Û 2, . . . ,  t/‘+p|+1 is of type (t x , z )  by definition 
and therefore (jo  < U{x, . • •, Uj+\z\ + i > is well-defined since by hypothesis the 
domain of ¡3 is t z .  Also, notice that < U2*,fiu .. . ,P\i^\  > is well-defined since pj £ 
PR(Yp t l  for j  = 1,. . \ P W\ and U‘,x is of type (t x,n) by the definition of x and 
by hypothesis s w i t c h f i,A' ^  £ PR(12)nx',s wherein x '  = Si---S|/>,»| such that 
sq = s for q = 1 , . . . ,  | / iU,|. Therefore switch11*”1’'x> (p) o < U.jr ,p u .. > is
well-defined as a composition. Finally, since AiW’p(t 5,z) = t S^w'p(z) by definition 
and ^ w’p(s,z)  =  s by definition, we have 0(a) £ ^ , p {s>z) as
required.

(3) P ro jec t io n  Functions. If a = U“ for some j  £ { 1 , . . . ,  \u\} then

0 : pP.R(£.)u,Uj ->■

is defined by

0(a)
u ;r ,(v ) if j  0 P-

< U j( > 11 J £ i -

wherein j '  = |Ai,UJ,p(ui • ■ •Uj-i> 2)l + 1- 
Wcll-Definedness. We have two cases to consider:

(a) j  i  P ’u. Notice that since j  t  I L,U we have Uj ± s and hence &z<“-P(uj, z) -  Uj by
definition. Therefore as f  = • • • u7_i, z)\ + 1 we have z))y  = Uj
and therefore 0(a) £ nPR(S.)Ai-v,'r(u,z)AL'w'r̂ i^ )  as recluired-

(b) j  £ /*■“. Notice that since j  £ / * “ we have Uj = s and hence A*-“ '*(«,•,z) = S ^ - P(z)
by definition. Therefore as ?  = | A ^ ' PK  ' + 1 we have

((A ‘ ;'(u, z ) ) y  ■ ■ ■( A s- ’w’p( u ,  l- i)  =  <fs,u' ,P(-)

and therefore 0(a) £ /.¿PP(L.)a ' iW-’’(u,z), Ai'“,p(u),P as requiicd.

Induction H ypothesis . Assume for any scheme a ' £ pPR (S)u>, for some id, v' £ N+ of less 

structural complexity than a  that

O f - f ( a ')  £ /iPR.(S)Ai--'(u',0Ai-"-'(»,,0- 

Induction: Function Building Tools.
Note that in eacli of the cases below the well-defmcdness of 0(a) follows immediately from the 
Induction Hypothesis. Consequently we leave the details to the reader.
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(4) V ectorisation. If o = <  O)....... o m > for some oy £ pP R(Y,)U:St for any ,s,- G S for
i = 1 , . . . .  m > 0 then

0  : f iPR (^ .)u,,l - sm - >  fi P  R {£ )A i'm-’(u,i),

is defined by
0(a) =< 0(oi), • • O(Om) > •

(5) C om position . If a = a-, o «! for some a x G f iP /¿(S)u u< and for some a 2 £ / iP P (£ ) tl, t, 
for any u' £ F+ then

0 I flP R(~l)u,v ~ ¡¿P

is defined by
0(a) = 0 (a 2) 0 0(«i).

(6) S im ultaneous P rim itive  Recursion. If a = *(a1?a 2) for some aj £ //Pi?(E)Ui„ and 
for some a 2 £ fiPRÇF,)tuv.v then

0 : f lPR(ff) t u,v —■’ flP P { l k ) ■ p(t u,z),A^w’̂ vlz)

is defined by
0 (a )  = * ( 0 ( a ! ) ,0 ( a 2)).

(7) Minimalization. If a  = f i ( a ’ ) for some a 1 £  /iPP(E)n,lb then

0 : // .PP (E )u,n -* / ¿ F F ( S ) a¿.-.p(Ui .)iAí .-.p(i1¿)

is defined by
0(a) = p(0(a')).

Lemma 10. Let E be any standard 5 -sorted signature. For each s £ S, for each w ,u ,v  £ 5 + 
such that iv 3  u and T ' 1’ ±  0  for each p £ I 5■“ , for each ¡3 £ PÆ(E)t for any z £ S '  and for 
any a £ PR(Z)U<V

O^'P(a) £ PP(£).

Proof. Immediate from the definition of 0 since 0 never introduces any new instances of 
minimalization. This fact is used to deduce Part (1) of Theorem 7.

□
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T he  Form al Definition of the  compiler C.

Definition 33. For each s £ 5, for each w,u  £ such that I-'w fz 0 ,  for each w/u- 
permutation o, for each p £ for each a £ /¿PR(T)Uit, and for each 3 £ p P /?(S)t ,i5 for 
any z £ Sf  we define

C f ^ l ,  : /tPR(S)u,„ x /tPR(£)tiiJ -  /^P R ^ ip /.- j .A i—

(ambiguously denoted C'p'w'p) by

= 0 f ' r p(«) 0

Notice that by Lemma 6 we have In i t<p':,i,p £ PR(S). Therefore if a,/I £ PR(S) then by 
Lemma 10 we have 0 ^ w'p £ PR(S) and hence C^w'p(a,f3) £ PR(S). Otherwise, if a, (3 £ ^PR(S) 
then C*-w-r{a,i3) £ /¿PR(S).

4.5 .9  P r o o f  o f  T h eo rem  8

We now complete this section with a formal statement of the properties of the compiler C and 
use this to prove Theorem 8 and hence Theorem 3. Notice that the statement of the theorem 
concerns the particular co-ordinates of the function created by the compiler C. In particular, in 
the context of our example notice that if sort Xi of the co-domain of a^ is not a stream of type 
1 then the output produced by the compiler is precisely as required by Theorem 7. However, as 
discussed under Point (4) in Section 4.5.7 if sort .r,- of the co-domain of a /, is a stream of type * 
then the compiler produces a scheme that returns some code vector 0-'d'p'q'r (a*, a", b) for some 
r £ I L,J of type Si,il,p(q) that was produced by Init.

T heorem  9. Let A be any standard S-sorted S -algebra. For each s £ S, for each w, u £ S_+ 
such that P--w /  0 , for each w/u-permutation <j>, for each p £ P-’w, for each a £ pPR(E)UiV for 
some ( ; £ ! + ,  for each ¡3 £ /iPf?(h)t . ,  for some z £ Sf and for each i = L,. . . ,  |u|:
( l ) i f i  I - ,v then if we define

. ppu{plz} _  ̂ ^

(ambiguously denoted F f ”3) by

f ; ,p
(IQa,/3)L

wherein j, = (i -  + ([/¿■"•■■■«'.-i | * + 1 then

(\/a{p/b) £ z f ’{r/'’}) F f ’̂ a fp /b } )  = ( [a]Ji(P(a{p/6})))_

wherein

is defined by

p  . 4 _4 >‘ {p/H

P(a{p/b}) = i P]-''(^)i a>P(p+1)> • • ■' «0t|u|));
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wherein p — 6{p); othenri.se
(2) if i £ F-'v then if ire define

p a . p . O . w . p  . j<"{p/-} _j. ĵ'5-

(again ambiguously denoted Ff 'r>) by

F r ^ wp =

wherein j i:l = ji as defined above and j ik = ji,k-i + 1 f or ^ = 2 , . . . ,  |¿iU'’p(~)| then

(\fa{p/b} £ Aw{p/l}) F?J (a{pfb}) = 0w "',r(ai, ■ . . , a p_ i,ap+1, . . . , a w ,6)

for some r £ I - ’w such that

(P(a{p/b}))^  r) = ([ al±(P{a{p/b}))),.

We now show how it is straightforward to deduce Theorem 8 from Theorem 9.
P ro o f  of T h eo rem  8. Notice that as by hypothesis h,g £ pPR(A)  there exist schemes 

a h, a g £ /iPR(S) such that f«A]A = h and = g. We claim that by Theorem 9 if we take
u = w = d, <p(j) = j  for j  = 1 , . . |ti|, v = x, z — q, a = a h, p =  a ,  and p = i then

f “*’“’ = = hop g.

To see this first notice that F°"°" £ pPR(A) for j  = and as a,- G S+ we have
^-■d’‘(x,q)  = x and hence FaK’ag is of the same type as h op g. Also, again since x £ S +,
by Theorem 9 we may calculate as follows for each a{p/b} £ Ad[ph}

F ^ af i a { p / b } ) ^ ( F r ' ag
r~iCX h , Ot g \
1 |x| >

= (t«Ak(G(a{p/&}))i, , [a,,lA(6'(a{p/&}))|r|)

= M A(C?(a{p/6}))

— fo'A JA(ni , . . . ,  ap_ i , JA(6), ap^_i, . . . ,  aj ¿f)

by the definition of G with the hypothesis that d>(j) = j

— h ( a \,. - ■, Up_ g( b ) ,  , a^ )

by hypothesis

= A op g{a{p/b})

kv the definition of h op g as required.
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C h ap ter 5

Prim itive Recursive Equational 
Specification

A little inaccuracy sometim.es saves tons of explanation.



5.1 In tro d u ctio n

In this chapter we define the language PREQ that we will use to give a formal semantics 
to our stream processing language ASTRAL that is presented in the following chapter. Our 
motivation for the development of PREQ can be found in Sections 3.7.1 and 4.1 and in particular 
Section 4.1.2.

5.1.1 O verv iew

Essentially we have two main aims in this chapter: (1) to show formally that PR and PREQ 
are equivalent in their expressive power; and (2) to establish some formal properties of PREQ 
that demonstrate its effectiveness as a specification language from the perspective of automated 
verification. In a similar fashion to Chapter 4 wherein we used the formal compiler C to establish 
a theorem constructively, in order to prove Property (1) we will employ the use of two formal 
compilers: CPR and <CPREQ. As with the compiler C both of the compilers CPn and CPREQ are 
also highly technical in nature and so the formal proofs of their properties (Lemmata 27 and 
28) are again banished to an appendix (Appendix B). Iherefore, as before we concentrate on 
an informal, but rigorous algorithmic description of our compilation techniques.

In more detail, this chapter is structured as follows: in Section 5.2 we introduce the impor
tant concept of a normal form representation for PR schemes. The use of normal forms will 
enable us to reduce the number of equations produced by PR schemes when they are compiled 
into PREQ to a theoretical minimum. As a motivation for this normal form representation we 
present the high-level algorithm for compiling PR schemes into equations that is the basis for 
the compiler definitions that we use to show the adequacy of the language PREQ.

In Section 5.3 we concentrate on the development of the language PREQ. First, in Sec
tion 5.3.2 we define the syntax and semantics of PREQ. In Section 5.3.3 we are now in a 
position to define the two formal compilers that we will use to show that PREQ captures the 
class PR:

T h eo rem  10. There exist compilers

CPR : PREQ(T,, X )  -+ F/2(E) 

and
C P R E Q  .  prt(S )_> PREQ(Z,X)

such that
(V<h € PREQ(Z,X))  M a  = ICPR(‘L)1  ̂

and
(V<* € PX(S))  lain = [C™E’Q(a)]U

re-spectively from which we deduce that
(1)

(V<t> € P/iE'Q(S,A'))(3a 6 />«(£)) = M a



and
( 2)

(Vo G P/i(E)| (3<l> e PREQ('E,X)) [$3,t = H . 4.

To conclude this chapter (Section 5.4) we concentrate on the properties of PREQ from 
the perspective of automated verification; that is, we show that any PREQ specification when 
interpreted as a TRS is complete:

T heorem  11. //4? G PREQ(E,, X )  and PZ = TRCON{$) C TRS(E,X); that is, if 1Z is the 
term re-writing system formed from ‘i> by onenting each equation m 4> as a left-to-right re-mite 
rule then 7Z is complete.

As with the previous chapter this chapter is also predominantly concerned with the technical 
development of our stream processing theory. Therefore as before for the reader not interested 
in these details we will indicate which sections can be omitted.

5.2  C om p ilin g  P R  in to  E quations: P R  N orm al Form s

In order to establish the adequacy of the language PREQ in the sequel we will define a compiler 
CPREQ that maps PR schemes into a semantically equivalent equational representation in the 
PREQ syntax. A compiler that maps PR schemes into equivalent equational representations 
can already be found in Thompson and Tucker [1991]. However, while this compiler is mathe
matically concise in its construction, it is highly inefficient from the perspective of the number 
°f equations produced from a PR scheme and this in turn leads to unpractically large TRSs (see 
Chapter 8).

In order to produce compact TRSs the compiler CPREĈ in this thesis relies on a scheme 
o G PR(S) being first converted into an equivalent ‘normal form ot before it is finally converted 
into equations. (In the sequel we will denote the class of all such normal forms PRB.) This 
intermediate compilation into a normal form means that the number of equations created from 
a PR scheme o can be reduced to what in general constitutes a theoretical minimum; if k is 
tile number of applications of primitive recursion in a scheme ex then C ^ produces either '2k 
equations if a  = *{au a 2) or 2k -  1 equations otherwise.

1 he formalization of this intermediate compilation process relies on the construction of a 
compiler

CPFU' : PR(E) -*■ PR/j(S U T )

(wherein T  is a set of additional function symbols dependent on the scheme a that we are 
compiling) that essentially performs the following two operations. (1) the replacement of occur
rences of primitive recursion by new function symbols (Definition 44), and (2) the elimination 
°f occurrences of vector-valued compositions (Definition 34).

While at an intuitive level CPRs is straightforward in its operation, a detailed description 
of its precise functional beha.viour is highly technical. Therefore, we motivate the form of the 
systems of equations that it produces with a high-level algorithmic explanation of the recursive
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operation of the compiler CPREQ. As such, we suggest the reader not interested in the precise 
nature of our compilation technique limit their attention to this informal algorithmic description 
of the operation of <CPREQ presented in Section 5.2.2. For the reader who is interested in the 
technical details of the compiler <CPREQ we suggest they limit their attention to Section 5.2.2 on 
a first reading, and return to Sections 5.2.3 to 5.2.6 when they are familiar with the intuitive 
ideas underlying our technical definitions.

Finally, despite the fact that the elimination of vector-valued composition from a scheme re
lies on first replacing occurrences of the primitive recursion operator with new function symbols 
we explain vector-valued composition elimination first as it is intuitively more straightforward 
and is only performed for technical convenience.

5.2.1 E lim in a tin g  V ector-V alued C om positions

The elimination of vector-valued compositions from a scheme a relies on the fact that either a 
contains no application of the primitive recursion operator or a contains one application wherein 
a is of the form a  = *(oq,a2)- The class of all PE schemes that satisfy this property (see the 
following section) are denoted PRc(S), and we call the process of eliminating vector-valued 
compositions from a scheme a G PRc(S) thinning.

Essentially, the compiler that we define to perform the thinning operation:

Thin : PRc(S) -  PRfi(S)

is nothing more than a homomorphism that converts any sub-schemes of a scheme a  G PRc(S) 
of the form

into a semantically equivalent scheme of the form

< a 2 , l  O O q , « 2 , 2  0  a l  > • ■ • i a 2,n 0  o q  >  .

The operation of Thin is formalized as follows:

Definition 34. For each u G 5 + and for each v G S + we define

T iling  : PRC(E) ^  PR e (E)

(ambiguously denoted Thin) by induction on the structural complexity of an argument a G 
p R c(£ )Ul„ as follows:

Basis Schema.

( l )  Constant Functions, (2) Algebraic Operations, (3) Projections and (4) Definition- 
by-Cases. If either a. — cw for some c G Ta,j for some w G S + and for some s G S or 
a — a for some a G for some w G S + and for some s G S or a = UJU for some w G S + 
and for some i with 1 < i < |w| or a = dc, for some s G S then

Thin(a) = a.
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Induction.

(5) Vectorization. If a = < ,. . ., a m > wherein E PR6-(S)u,i, for some u E 5+ and for
some ,s, E S for i = 1 ,  m then

Thin(o) = < Thin(ai ) , . . . ,  Thin(am) > .

(6) Composition. If a  = a 2 o  a v wherein a t E PRc(S)u,» and a 2 E PRc(S),u,t, for some 
u, v, w E 5 + then

Thin (a) =
a 2 o Thin(al) if |ran(a2)| = 1,
< Thin(a2il o op ) , . . . ,  Thin(a2iH o op) > if a 2 = < a 2|1, . . . ,  a 2_|u| >, and 
Thin(a22 o (q2ii o cvl )) if a 2 = a 2j2 o a 2 l .

Notice that these three cases are exhaustive by the hypothesis that ; a  E PRC(S).

(7) S im ultaneous P rim itive  Recursion. If a — *(a 1,a 2) wherein op E PRc(E)u „ and 
a 2 E PRc (S)iiu„,v for some u,v  E 5 + then

Thin(a) = *(Thin(a1), Thin(a2)).

Notice that from a close examination of Case (6) of the preceding definition it is not imme
diately obvious that Thin is terminating. However, the compiler can be shown to terminate by 
observing that Thin reduces the number of sub-schemes of a such that

a  =  a 2 o a li2 o

wherein |ran(a2)| > 1. However, we leave the details of a formal proof of this fact to the reader. 
The main property of Thin that we require can now be stated as follows:

Lemma 11. I f  a  e  P R c ( £ ) f o r  s o m e  u ' v  e S +  t b e n

[a ]A = {Thin(a) JA.

Proof. By induction on the structural complexity of a and by sub-induction on the number 
°f sub-schema ¡3 C a such that ¡3 = (32 o (3X wherein |ran(72)| > 1.

□
As demonstrated by Lemma 11 the correctness of the compiler Thin relies on the fact that 

a scheme a satisfies a  E PRc(S). As such, we now informally define the process of converting 
a scheme into an equivalent representation in PRc(S).



5.2.2 A n Inform al A lgorithm ic  D escription  of C om piling P R  into Equations

We first explain the intuitive visualization technique on which the operation of the compilers 
CPRs and CPRE<2 are based and a straightforward theoretical result that provides the basis for 
a recursively defined compilation procedure.

Visualizing P R  Schemes. Exploiting a technique that is common in computer science 
we can visualize a PR scheme as an inverted tree wherein branches represent applications of 
the function building tools -  vectorization, composition and primitive recursion -  and leaves 
represent constants, projections and algebraic operations. In particular, according to some pre
defined ordering we may index the nodes (branches and leaves) of a tree t;o enable us to talk 
about concepts such as ‘the ¿th node of scheme a ’ and ‘the j th  primitive recursive node of 
scheme a ’. For example, the scheme

wherein ‘.’ represents some basis scheme and V represents some function building tool other 
than primitive recursion can be visualized as the tree shown in Figure 5.1. Specifically, notice 
that each node is annotated with a tuple (x, y,z)  that represents three separate indexes as per 
a top-down, breath-first traversal of the tree: the number x counts each node; ignoring the root 
node, the number y counts only branches that represent an application of the primitive recur
sion operator -  what we refer to as ‘proper’ primitive recursions; and ignoring the root node 
again, the number z counts only branches that represent applications of the primitive recursion 
operator that do not occur below any other applications of primitive recursion -  what we shall 
refer to as ‘top-level’ primitive recursions.

In particular, observe that using this indexing: the second node is the first proper primitive 
recursive node and also the first top-level primitive recursive node; the tenth node is the fourth 
proper primitive recursive node, but is not a top-level primitive recursion; and the thirteenth 
node is the fifth proper primitive recursive node and also the third top-level primitive recursive 
node.

E lim inating Top-Level P rim itive  Recursions. Recall the meaning of A; from Sec
tion 4.2.4. In general, as part of our normalization process we wish to eliminate top-level 
Primitive recursions by replacing them with (new) function identifiers. For example, in the case 
of ot as defined in Figure 5.1 we can replace nodes 2, 8 and 13 with the function symbols _/■>, / 4 
and / 6 respectively (the reason for this choice of numbering is explained in the sequel) to give 
scheme

Of course now a ' € PR(S U {/2, / i , / 6}), but if we define / 2, / 4 and f 6 by the semantics of the 
sub-scheme of a that they have replaced; that is, if we define

a = *(*(*(•»•),-)’V(*(.,*(.,.)),*(.,.)))

a7 = *(/n, V(/.t, / 6)).

/*n/□ <i\ >/6 _
J2 ~
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a— ) *

Figure 5.1: An Example Tree Representation of a PR Scheme with Three Indexes 

and
/¿n.u.u  =

wherein a 2, a 8 and a 13 are the sub-schema of a with nodes 2, 8 and 13 respectively as their 
root node then

[ « ' i w 3.i4l/s = H a -

More generally, the result on which the correctness of this phase of normalization is based 
can be stated as follows: given any scheme a  € PR(S U {/}) if /  represents a function that is 
Primitive recursive over algebra A then there exists a scheme a' 6 Pll(S) such that semantically
a and a ' are equivalent:
Lemma 12. Let f  , : Au' — A v‘ for some u',v' 6 £ + be any function that is primitive recursive 
over A. If a 6 PR{E U {f})uv f or some u,v  € h + then there exists a scheme a 6 PR('LiJu v 
such that, = |[a]^  .
Proof. By induction on the structural complexity of a. By hypothesis there exists a scheme 
¡3 e PR(v;)u u such that |/3]4 = f A. Therefore, if we replace each basis scheme of a  with ¡3
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to give o' then = [o],i/ as required.
□

Compiling P R  Schemes into Equations. As we will now show, by combining Lemma 12 
with the technique of visualizing a PR scheme as a tree we have the basis for a recursive algorithm 
to compile PR schemes into equations. For example, notice that to equationally specify scheme a 
of our running example, it is sufficient to specify a' as defined above. Moreover, to do this we can 
firstly specify a 1 by a system of equations E q wherein / 2, /.i and f , ; are basic operations; secondly 
specify / 2, f A and / 6 themselves with separate specifications Ei, En and E3 respectively; and 
finally derive the required specification E  of a by merging E q ,  E i , En and E q . We now explain 
this ‘divide-and-conquer’ technique in more detail, by discussing each of its four constituent 
phases of operations individually. This is follow'ed by a high-level algorithmic description of the 
whole compilation process.

First, given a scheme a we replace all top-level primitive recursions in ot with new function 
symbols. The function that we define to formalize this procedure in the sequel is denoted 
ElimSubPR. One important feature of ElimSubPR is that as it is used recursively we wish 
to avoid clashes in the use of function symbol names that are used to replace applications of 
primitive recursion. For example, we would not want Eq through Eq to all specify the function 
symbol f x . Therefore, throughout the compilation process we use a natural number index e, 
that is passed to ElimSubPR on each recursive application of <CPREQ, to enable us to avoid any 
potential name clashes.

Secondly, after we have applied ElimSubPR we use the main sub-function of CPREQ (denoted 
C°PREQ) to either generate one or two equations depending on the structure of a. In particular, 
if the scheme ci to be compiled into equations does not contain a primitive recursion after the 
top-level primitive recursions have been replaced then

<CfREQ(a) d= f e [ x 1 , . . . , x n )  = T

wherein aq are some variable symbols for i = 1 , . . . ,  n 6 N and r £ T(E, {aq, otherwise
>f a does contain a primitive recursion after ElimSubPR has been applied then

c opREQ(a ) /e(d,2q, • ■ • , X n } 

f e ( t  + 1, X \ ,  . • • , X n )

T

T '

wherein aq are some variable symbols for i = 1,.. •, n £ N, t  is a distinguished variable symbol 
of type n, r  G T(E, {aq,.. .,£„}) and r ' € T(S, {f, x u • • ■, xa, Y }). (The significance of the 
variable Y  is explained in Section 5.3.2.)

Thirdly, CPREQ is applied recursively to the sub-schemes of a that have been replaced by 
ElimSubPR.

Finally, all the sets of equations produced are joined into one single specification. Ihese four 
phases can be explained more rigorously using the following high-level algorithm.

Let a  contain k £ N top-level primitive recursions and let a* C a  such that scheme a,- has 
the ¿th top-level primitive recursion of a as its root node for i — 1 Finally, let r be
the function defined such that for each i € {1, ra(i) = j  if and only if the ¿th top-level
Primitive recursion of a is the j th  proper primitive recursion of oq and let the index value e — 1.
b e g i n
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(1) For i = 1 replace each sub-scheme n, with function symbol f,.<.{l]+f, and •thin’ all
occurrences of compositions to derive scheme a ' 6 PR/j(E). (Notice that if k = 0 then 
a = ah)

(2) Let E = C PREQ(a').

(3) Recursively repeat the compilation process on a, for i = 1.. . . , with c, = ra(i) as an 
index value to give the sets of equations Et.

(4) Join E wi th E u . . . , E k.

END

Exam ple  11. Using ft as defined in Figure 5.1: at Step (1) we derive

a '  — * { f r " ( l )  + e i ' ' s { f r ‘*C2) +  e , f r ° ' C J )  + e ) )  =  *( f ' 2 , V( f 4, / rt ) ).

At Step (2) a' is compiled into the following set of equations E (say):

/i(0, x) = f 2(x) 

and
f i ( t  + 1,2:) = / i( / g(U x ))-

At Step (3) we recursively repeat the procedure on schemes oq = ft', ft2 = ft8 and ft:) = ft13 
with indexes t\  = 2. e-, = 4 and e;i = 6 respectively to give the sets of equations E\, E2 and ¿’3 
that give specifications of the function symbols / 2, f 4 and / 6 respectively.

At Step (4) we join E with E u E2 and E3 to produce a single equational specification of a 
defined over function and constant symbols taken from E and the function symbols / i , . . . , / e  
representing each occurrence of an application of primitive recursion in ft.

Discussion. The recursive structure of the algorithm defined above offers two advantages: 
firstly, in a uniform way we are able to compile PR scheme into minimal sets of equations in the 
sense defined previously; and secondly, the recursive structure of the algorithm enables us to 
verify its correctness using an inductive argument based on the number of occurrences of proper 
Primitive recursions in a scheme.

The following three technical sections formalize the intuitive ideas behind the high-level 
algorithm that we have just described. The reader not interested in these technical definitions 
can now move directly to Section 5.3 on Page 137.

5-2.3 S ection  O verview

dhe first section formalizes the methods of counting particular occurrences of applications of 
Primitive recursions in a scheme ft and identifies particular classes of I R schemes ba,sed on these 
countings.

The second section formalizes the functions necessary to relate the indices of a given node 
ln a scheme under different countings.



The final section gathers together these definitions to present the main lemma of this section 
(Lemma 22) that formalizes the intuitive idea of the construction of a normal form representation 
in PR,

5.2 .4  C ou n tin g  P r im itive  R ecursions

In this section, as many of the lemmata are simple exercises in using the definitions, we will 
either omit proofs or sketch proofs and leave the details to the reader. Also, as a concession to 
conserving space we will present the definition of some functions defined by structural induction 
on the complexity of PR schema simultaneously. We also omit the proofs of the well-definedness 
of these constructions.

D efinition 35. For each a G PR(E) we define

|.| : PR(E) -  N

by
M = |{ 3 | / i C a } | ;

that is, |q | is the number of nodes in a.

We now present four functions that tell us the number of primitive recursive sub-schemes 
and proper primitive recursive sub-schemes of a scheme a.

D efinition 36. We define the function

NPRSS : PR(S) -  N

that counts the Number of Primitive Recursive 5ub-5chemes in a scheme a. However, for 
convenience we will also define the functions

NPRSS', NPPRSS,NPPRSS' : PR(E) -  N

that we will require in the sequel. For each a € PR(T)

NPRSS (a) = \{3 | (3 = *(3u3s) Q a}|,

NPRSS'( a ) = NPRSS(o) -  |{7 I 7 = *(7m 7n) C *(¿1,^2) C a}|,

NPPRSS(a) = |{0 | (3 = C a}|,

and
NPPRSS'(o) = NPPRSS(a) -  |{7 I 7 = *(71. 72) C *(¿1,^2) C a}|

respectively.
Thus: NPRSS (a) is the number of sub-schemes of a  that are primitive recursions; NPRSS'(a) 

is the number of primitive recursive sub-schemes of o. counting only the root of cv and top-level 
Primitive recursions; NPPRSS(o) is the number of proper primitive recursive sub-schemes of a; 
a n d  NPPRSS'(o) is the number of top-level proper primitive recursions.



Lemma 13. I f  a  G P/RE) t h e n

NPPRSSpa)  < NPPRSS{ a ).

In particular, if ¡VPPRSS(a) = 0 then NPPRS'S'(a) = 0 and if ¡\'PPRSS\a) = 1 then 
NPPRSS'(n) = 1.

Using the function
NPRSS : PR(S) -  N

we can now define our class of normal forms PR/RE). We do this via four intermediate sub
classes of PR schemes as follows:

Definition 37. We define PR.flf). PRb (E), PURE), PR/RS). PURE) c PR(E) to be the re
stricted forms of PR schemes as follows: for each a G PR(E)

a € PR,RE) NPRSS(a) = 0,

a G PR/RE) <=> a = *(01, 0:2) A (NPRSS(ai) = NPRSS(a2) r- 0), 

a  G PRc(S) <=> a  G PR.RE) V a  G PR/RS), 

a G PR/RE) a G PR,,' E) A [(VcR C a) a = fi2 o R <=> |ran(/>,)| = l]

and

o G PR/RE) o G PRc(S) A [(Vo C a) o — R  0 Pi s—c [ran(Rio) | = l].

Thus: PR.RE) is the set of all polynomial functions over E; that is, PR schemes without an
application of the primitive recursion operator; PR/RE) is the set of all schemes over E with 
a single primitive recursion at the root node; PILRE) is the union of PR,RE) and PR/RE); 
PR/RE) is PU R E) with the additional restriction that compositions cannot return vector types; 
and PRi;( E) is PR<RE) with the additional restriction that compositions cannot return vector 
types.

Lem m a 14. For each a G PRfA.E) if NPRSS(a) = 0 then a G P/iR(E). In particular, 
PRd ( E) C PRe (S) (see Definition 62 on Page 163).

5.2.5 In d ex in g  N o d es  in P R  Schem es

We now simultaneouslv define several functions that formalize the intuitive concepts discussed 
in the introduction to this section relating to the indexing of nodes in a scheme when it is 
visualized as a tree. The informal description of these functions is as follows.

Let q G PR(S) be any scheme: Ci’r(a ) = x + p -  1 if and only if the zth node of « is the 
f;th primitive recursive node of o; R ’Rct) = x + p — 1 if and only if the xth node of rv is the 
eth top-level primitive recursive node of o; (0 ) replaces all top-level primitive recursions in 
« with function symbols /  /  +1, . . . : and <fRo) returns the sub-scheme of a that has the eth
aode of a as it root.



Definition 3 8 .  For  e a c h  e £  N,  for  e a c h  p  £  M+ , for e a c h  b £  B. for  e a c h  T  s u c h  t h a t  { / i , i }  C

T  C { f n , n ‘ \ n • n ' £  N } .  for e a c h  a £  S + a n d  for  e a c h  v £  S + we  def ine

structural complexity of an argument a £ PR (£)U,„ as follows:

Basis Schem a.

(1) Constant Functions, (2) Algebraic Operations, (3) Projections and (4) Definition- 
by-Cases. If either a = cw for some c £ f°r some w £ 5'+ and for some s £ S or
a = a for some a £ I E , ,  for some w £ S + and for some s £ S or a = U“ , for some 
w £ 5 + and for some i with 1 < i < |m| or a = dc, for some s £ S then

Induction.

(5) V ectorization. If a — < o m > wherein a, £ PR(S)U3i for some u £ S + and for
some s, £ S  for i — 1,. . ., m then

and

(«) = cf,fe («.■)

wherein

otherwise;

k = e -  NPRSS(a; )

and

k' = p + 1 + £  |«j|,

wherein
//.(/< ; NPRSS'(a, )] if E ;  = i‘ NPRSS'(aj ) > e,

i = otherwise;/;?

k = e -  Y ,  NPRSS' K )
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and
j = ! - l

k' ~ P + 1 + ^
; = i

T ,b,? / N
< £f'i l (n i) ....... s > otherwise

wherein for i ~ 1 i’, = e + Ej- = i ' NPRSSftVj ); and

S2,u,Ji---jIn (°d
a if e < 1,

otherwdse

wdierein
p(l < m)[E;=ì la jI > < ? - ! ]  if E i="‘ K l  > e -  1,

and
m otherwise

j=,-i
k = e -  J 2  K !“ 1

j = i
respectively.

(6) C om position . If a = a 2 o wherein an G PR(E)ti,w and cv2 G PR(iC)u,iU for

\ E ' ,+1(«2) if NPRSSÎQj) > e,
( [ ’’(a!) otherwise

wlnerein k = e — NPRSS(oi) and / = p + 1 + |o2|i

u, c, u; G 5 + then

c r ; U « H . L

= ,Co'P+V i )  if NPRSS'iai) > e, 

<,2,U’’J  ̂ ' C*’*(̂ i ) otherwise

wherein k — e — NPRSS'(q i) and / = p + 1 + |« 21>

lu,r \ s f ,<’(«2) 0 sm*(Qi) Otherwise

wherein k = c + NPRSS(o2); and

r if e < 1,

S2,u.t(o) =  ̂£2" V a )  if 1 < e < j no I,
^e-|a2|- i ( a i ) otherwise

respectively.

some
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(7) S im ultaneous Prim itive  Recursion. If a = * (a i ,n 2) where on 6 PR(F!),lt, and o 2 G 
P R ( i ) UU!;(U for some u, v G S + then

c S ,b ,c ,  
m , u , n  l

P if c < 1,

C i , =
-e- l’p+l(« 1) if e > 1 A NPRSSfaj) > e -  L,
,-fc

^1 ■'(«2) otherwise

-  l -  NPRSSfo [) and l —p 4-14- loo];

P if e < 1,
,-orV2,u G ■l-p+1( a 1) if e > 1 A NPRSS'(q !) > e -  1.

1d otherwise

~ i -  NPRSS'(o ¡) and / = p 4" 1 -P | ct 11;

«i if b = tt,

/e.l if b = JJ, f e, 1 6 T  and M = 1,

< h.U- ••/oM > if b = jj. /„ , - * * * ? fe,\v G F  and |uj > 1

f  l, 1 otherwise

wherein k = c 4- NPRSS(an) 4- 1; and

a

S2 ,u.Aa )
ce-lS2

if e < 1,

(ag) if 1 < e < |« i),

v> ^oo) otherwise

respectively.

5.2.6 T h e  Formal D efin it ion  and C orrectness o f  th e  N orm al Form C om piler

We now gather toget her the definitions of the previous two sections to formalize the remaining 
ideas presented in the introduction to this section.

We first formalize tin' idea of identifying a particular sub-scheme of a scheme a relative to 
some index value.

Definition 39. For each ;z, v G S + we define

SubSchy „ : N x PR(L)Uj„ — PR(L)

(ambiguously denoted SubSch) by

(Vn € N) (Va € PR(h)u|t) SubSch(n.o)
a if n = 0 V n > |a 
^2  (a) otherwise.

Wlms, SubSch(«, a)  returns a if n = 0 or n > |a| and the sub-scheme of a that has the nth node 
°f a as its root node otherwise.



Definition 4 0 .  F or  e a c h  a, v £ 5 + we def ine

PRSSU,„ : PR(S)Ui, x N -  PR(S)

(ambiguously denoted PRSS) by

(Vtt e PR(S)u,r) (V/i e N)

I SubSclUC;1'1!«),«) if n < k; and
PRSS a. n) = <

( SubSch((,‘i ' (a), a) otherwise

wherein k = NPRSS(a). Tims, PRSS(n.a) is the sub-scheme of a with the nth primitive 
recursive node of a as its root node.

Definition 41. For each u, v £ 5 + we define

P P R S S , , : PR(S)U,„ X N — PR(S)

(ambiguously denoted PPR.SS) by

(Vo £ PR(S)u,„)(Vn £ N)

SubScli(C!‘+1’1(Q), a) if n = *(tvi,a2) and n < k]
PPRSS(o.n) = < SubSch(C1ri,1(a), a) if a  ^  * (a i ,a 2) and n < k; and

SubSch(Cf ̂ (a), a) otherwise
V

wherein k = NPPRSS(a). Thus, PPRSS(n.a) is the sub-scheme of a with the nth proper 
primitive recursive node of a as its root node.

D efinition 42. For each u, v £ S'+ we define

PPRSS;, t, : PR(S)„,„ x N — PR(S)

(ambiguously denoted PPRSS') by

(Vo £ PR(S)U,„) (Vn £ N)

SubSch((2+1,1(o),o) if a = *(o1, a 2) and n < k;

PPRSS'(o, n) -  < SubSchfC?’̂ « ) - 0 ) n ~~r *(«1, 02) arid n < k\ and
SubSch(C2 n ) otherwise

wherein k = .\TPRSS'( o ). Thus, PPRSS'(n, a) is the sub-scheme of a that has the nth top-level 
Primitive recursive node of 0 as its root node.

Lem m a 15. Let o £ /'/>'( V).
(1) If i t  { L,....... \PPRSS\a)} then

\PPRSS(PPRSS(a,i) )  < NPPRSS(a).

(2) [ f i  £ { ]....... .XPPRSS(n)} Hun

\PPRSS(  PPRSS'(a, i)) < NPPRSS(a).
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L em m a 16. Let a £ PR(T,) such that NPPRSS(a) > 1. If i £ {1 ,.. . .  NPPR.SS(n)} then for 
j  = 1 ... ., NPPRSS( PPRSS(a . i))

PPRSSX a , i + j )  = PPRSS( PPRSS(n . i ) J ) .

We now formalize the definition that relates the values of the index of a sub-scheme according 
to a counting of proper primitive recursions anti top-level primitive recursions.

Definition 43. For each a € PR(E)U t, such that NPPRSS'(cv) > 1 we define

ra : { ! . . . .  .NPPRSS'(a)} -  {1.. . . ,  NPPRSS(a)}

(ambiguously denoted r) by

i = NPPRSS'( or

n  = U
t-1

r-[C2+1,1(«) = c;,+m («)]} if a = *(ai, a 2), and 
otherwise.

Thus, for each scheme a £ PR(L) if a' = PPRSS'(o, i) for some i £ {1 , . . . ,  NPPRSS'(cv)} then 
a' = PPRSS(a, /•(/)).

Exam ple 12. If
a — . 3̂)» *(A j *($s>$5))) 0

for some schema /i,- for i = 1,. . ..8 (see Figure 5.1) then

r'1 : {1,2,3} -  {1,2,3,4.5}

>s defined by
r“ = {1 e- 1,2 ^  3,3 ^  5}.

Lem m a 17. Let a £ P/?(E). If NPPRSS{a)  > 1 then

r“ ( l )  = I-

Lemma 18. Let « £ PR{S2). If n =  .\PPIlSS’{a) >  2 then 
( V  For each ¿ £ { l , . . . , n — 1}

rn(i) + NPPRSS(PPRSS(a , ¿)) + I = r“(i + 1).

( 2 )

ra(n) + .\PPRSS( PPRSSf a, n)) = NPPRSS{a).



Finally, wo are now in a position to make a formal definition of the function ElitnSubPR that 
eliminates top-level primitive recursion from a scheme and hence to make the formal definition of 
the compiler CPRi:. In particular, notice that as the number of additional function symbols that 
will be required to replace the top-level primitive recursions in a scheme a £ Pll(E) cannot be 
determined in advance we are forced to define the co-domain of our formal compiler ElimSubPR 
to be the union of all PR schemes defined over Id extended with all possible sub-sets of the 
set { /,j | i, j  £ N}. However, notice that from the perspective of developing software tools 
based on ElimSubPR, by defining ElimSubPR using the function £ once given a scheme a we 
can determine precisely which finite sub-set of {/,-j | i . j  £ M} we require using the functions 
PPRSS' and r ' \  This idea is made precise in Lemma 19.

Definition 44. For each it, v £ S+ we define

ElimSubPR,,,, : PR(S)„ , x N -  (J  PR(E U S')
X'CS

wherein
G = I i-j  € W}

(ambiguously denoted ElimSubPR) by

(Vo £ PRI E),;,,) (Vn £ M) ElimSubPR(a, n) =

wherein
. = NPPFlSS'(a)

T  — Î J {/ r“ ( ‘ ) + !»,l ’ - • • ! /r“ (t)+ri,|i;,l }
i = l

and n1 = ran(PPRSS'(a, f)) for i = 1,.. ., NPPRSS'(ft). 

l e m m a  19. Let a £ P /?(£)„,, for some u, v £ S +. For any e £ N

ElimSubPRio. n) £ PP(E U F)

wherein
, - . \ ' p r n s s ' ( a )

F  -  U  
1 = 1

/,r'v( t) + e,h ■ | }-

This lemma is used implicitly in the following results.

Lemma 20. Let ex £ PP(E)„,r for some it, v £ S +. For any e £ N if either NPPRSS{n) =  0
or for each i = 1....... \ 'PPRSS{n) and for each ] = 1 , . . . ,  |ran( PPR.SS(a, t))| the function
fr=u)+ej  is defined over .1 by / , : ; = (jPPRSS  («, Mlen

|a|,.i = lElimSubPR{a,e)lAr

wherein F  is defined as in Lunina 10.



P r o o f .  Bv  i n d u c t i o n  o n  t in;  s t r u c t u r a l  c o m p l e x i t y  o f  a  u s in g  L e m m a  12 a n d  t h e  de f in i t i on  of

ElimSubPR.
□

Definition 45. For each v £ 5 + and for each e £ N we define

(pPR/:
. U , V PR(S)„,„ — U  IM{.B(SUE')

X'C 3

wherein
G = {/cj I i , j  G N}

(ambiguously denoted CPRe) by

(Va £ PR(E)Uil.) CfRE(a) = Tlun(ElimSiibPR(a, c)).

L em m a 21. If a = * (a1, a 2) £ FRIT,) and a' = *(«',. as) = C f/f'; (a) for some e £ N then 
FPRSS\a\)  = NPRSS( a '.,) = 0.

Proof. By definition of <CPRe.
□

L em m a 22. Let a £ PR('R)ut for some u,v  £ S +■ For any e £ N i /  either NPPRSS (a) = 0 
or for each i = 1,. . . ,  NPPRSS(a)  and for each j  = 1 , . . . ,  | ran( PPRSS{a, ¿))| the function

f.-t/ro(,)+ej is defined over A by ffia(i)+e j q , i j j|,.i J then 
j

wherein
i = X r P R 5S'(a)

F =  [ J  { / r " ( . i )  + n,l ’ • • • 5 / r ‘*(i)+n,| *̂| }•
i = l

Proof. By the definition of C1 Re. Lemma 20 and Lemma 11.
□

5.3  P r im itiv e  R ecu rsiv e  E q u ation a l S p ecifica tion

We can now begin the first, stage of the development of our abstract specification language 
for STs. As we have indicated, in order that we preserve a sufficient level of mathematical ab
straction ASTRAI/s semantics is formulated denotationally and will be derived using essentially 
nothing more than a first-order equational formalism for making primitive recursive definitions.

The language PR HQ that we develop for this purpose is distinct from existing equational 
specification languages such as OBJ (see Goguen [1987], C.oguen and Winkler [1988], and Goguen 
et al, [1992]) in that it is deliberately and syntactically restricted to capture the class PR; that 
is, it does Iu,t as a matter of course provide a general model of computation (see Section 4.4.2).



We will show that PREQ is sound and adequate with respect to the language l’R. by defin
ing two appropriate compilers. As a consequence we may constructively apply Theorem 7 (see 
Section 4.5.1) in order that we may compose CFSTs when specified in PREQ (see Section 3.10).

5.3.1 O verv iew

We begin by defining the abstract syntax of the equational specification language lì PREQ that 
can represent a restricted class of primitive recursive functions. Secondly, we define the abstract 
syntax of PREQ in terms of RPREQ. Thirdly, we define the formal semantics of RPREQ and 
PREQ. Finally, we make the formal compiler definitions that map between PREQ and PR, and 
hence provide a constructive proof of Theorem 10. However, for convenience of presentation, 
the formal proofs of correctness of our compilers are given in Appendix 13.

5.3.2 T h e  S y n ta x  and Sem antics  of R P R E Q  and P R E Q

We now introduce the formal abstract syntax and semantics of RPREQ and PREQ.

Abstract Syntax of RPREQ. Let E be any standard 5-sorted signature and let A' be any 
•S-indexed collection of variables satisfying the conditions set out in Section 4.2.4. We define the 
S + x 5 +-indexed family of restricted primitive recursive equational specifications

RPREQ(S, A) = < RPREQ(S, A )u,„|u, v G 5 + >

wherein for each u, v G S + the set RPREQ(E, AQU,„ is defined uniformly in (u,v) by one of 
the following cases: (throught the following definitions we use X to denote the set {xl t . . . ,  ,x-n} 
wherein x,- G A',i for some s, G S for i — 1,.. ., n > 1)

(1) Simple Specifications. If
<?'  =  f ( x u . . . , X n )  =  T

for some distinct xq G A S| for i = 1 , . . . ,  n > 1 and for some r  G 7 (E,X), for some s G S 
then

<? G RPREQ( W A )3l

(2) Vector-Valued Simple Specifications. If

O  —  / ( X 1 .  • • • ,  X n  )  —  < C  T \ ,  . .  .  ,  T m  >

for some distinct x, G A’,, for i = 1... ., n > 1 and for some Tj G 1 (L, X),» for some s' G S 
for j  = 1,.. ., m > 1 then

Q G RPREQ(S, A

(3) Primitive Recursive Specifications. If

O d= /((), . . . ,  mri) = u ;

f  ( t  T 1, X1. • ■ • i X  n ) — To
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for some distinct, £ A',, for i — L I ,  for some r, £ 7’(E,X)., and for some' 
r 2 £ TC£,X')„  for some ,s £ S wherein X '=  XU {i, V'} such that t £ X n and Y £ X 3 are 
distinguished variable symbols distinct from x; for i = 1. . .  n then

P €  RPREQ(S,A')tll .

(4) Vector-Valued Primitive Recursive Specifications. If

o — f  {0. x i .. . .. xn) *4 T[ ,̂. . .. j  ̂m y>,
f ( t  + 1. x  ---- ,x n) = < r21, . . ., r2m >

for some distinct x, £ X , x for i = 1 > 1, for some r 1; £ T(S,X).,/ and for some
t2j £ T fS .X 'lg- for some s' £ S for j  = 1---- , m > 1 wherein X' = XU {/, iy ,. . ., Vrm}
such that / £ X a and V} £ X 3> for j  = 1----- m are distinguished variable symbols distinct
from x, for i — 1.......n then

o £ RPREQ(S,.V)t 4l...ill|i;..vm.

Discussion. It is our intention to formalize the semantics of a specification <p £ RPREQ( S, A”)Ui„ 
for some u, v £ 5 + in some algebra A to give a primitive recursive function

= (/i^....... /^ ,) : .-1“ — A".

In order to ensure that function f A is indeed primitive recursive when <j> is defined by Case (3) 
and Case (4) we restrict the interpretation of o as follows: in the context of Case (3) (Case (4) 
is similar) for each a = {av, . . . ,  fl|u|) £ .4“ if ax = 0 then the value of I0J,\(«) is the value of tx in 
4 under the assignment of a ^ a ? , . . . ,  to the variables t, x x, . . . ,  xn respectively; otherwise if 
ai > 0 then the value of [d>]..i(fl) is the value ol r2 in .4 under the assignment of ag — 1, «2, . . ., «|u| 
to the variables t, x x, . . . ,  xn respectively and variable 4 has the value Ig’],.1(nI — 1, a2, . . . ,  ri|u|). 
^Ve illustrate this idea in the following example:

Example 13. Let A' D A'n 3 { x j .  The RPREQ scheme:

0 = f (  0,x ,) = x i;
f{ t  + 1, xO = Succ(Y)

represents the addition function on the natural numbers.
The use of the variable Y  to represent f(  t, x , ) (and more generally Y{ to represent /,■(£, x2, . . . ,  

xn)) in this wav may at first sight seem rather unnatural. However, it is important to remember 
at this stage that we are designing an abstract theoretical tool not an implementation language. 
•4s such the use of the distinguished variable V' in this way allows us to avoid the possible 
complication with unrestricted epilations that /(¿~F 1,^4, ■ • . , an) inay be defined (either directly
°r indirectly) in terms of f ( t  + d ,a \ ....... u'n) for some d > 1 and for some a' such that n' 7̂  a,
for i = From this perspective the use of the variable T provides a concise syntactic
Method to control the class of functions that we may specify. Indeed, as we will show this choice 
cT syntax greatlv simplifies tin* formulation of a denotu,tional semantics for PR.FQ without 
adversely affecting the design of a user-friendly' syntax foi the implementation oi AS I HAL (see 
^-dilution 77 on Page 191).



T he  A b s tra c t  Syn tax  of P R E Q . We continue our equational formalization of the prim
itive recursive functions by introducing the idea of a family of mutually dependent RPREQ 
specifications; that is, a PREQ specification. Essentially, the formulation of PREQ is based on 
the definition of the class P R  as the union of all classes of functions in the Gregorczvk Hierar
chy (see Grzegorczyk [1953] and also Roddling [1964], Marchenkov [1969] and Kozmidiadi and 
Marchenkov [1969]); that is,

P R  =  |J  £n

wherein £ n is the class of all n-ary functions closed under n nested applications of bounded 
(primitive) recursion. Informally, we can think of the Gregorczyk Hierarchy as being the suc
cessive classes of functions that are computable by increasing the number of nested ‘for loops’ 
in an imperative programming language.

Based on this idea a PREQ specification is comprised of a number / > 1 of RPREQ specifi
cations defined over a common signature E extended with extra function symbols i, •••,/,> , 
for some n{ G N+ for i = 1 , . . . , m  > /. Each extra function symbol is interpreted as the 
semantics of co-ordinate j  of some RPREQ scheme <pt(,-) wherein l : { l , . . . ,m }  {1 ,. . . , /}  is
some given injection such that ¿(1) | ,  that tells us which function symbol is to be interpreted by 
which RPREQ specification. A semantics is given to the PREQ specification itself by choosing 
a particular RPREQ scheme cy for some c G { 1 }  as representing the ‘main function’ that 
is being specified.

This method of formalizing the PR.EQ syntax provides a sound basis for the equational 
formalization of the class P R . However, unfortunately by itself this method 'is still not suffi
cient to ensure that a PREQ specification does indeed define a primitive recursive function. In 
order to deal with this complication we first define the class of prc-PRbQ specifications (Defini
tion 46) denoted PREQ0, based on the informal explanation given above, and use the function 
InTermsOf (Definition 49) to syntactically test for a PREQ0 specifications ‘primitive recursive
ness’. Specifically, given a PREQ0 specification comprised of / component RPREQ specifications 
and a number j  G { 1 ,. . . , /}  the function InTermsOf tells us which other RPREQ specifications 
the j th  RPREQ specification’s definition depends upon. To do this the function InTermsOf 
uses the function DefOvcr (Definition 48) to tell which additional functions symbols from the 
set {fi i , . . . , / ,  „,} for some n, G M+ for i = 1 , . . . ,  m > / occur in the term(s) over which the 
Jth RPREQ specification is defined. If for each j  G {1 ,. . . , /}  the Rl REQ specification j  is 
Hot defined in terms of itself by the use of the additional function symbols then the PREQ0 
specification potentially represents a primitive recursive function and is admitted as a member 
of the class of partial PREQ denoted PREQ, (Definition 50). We use the phrase ‘partial’ here as 
in order to be a total PREQ specification we must further ensure that each additional function 
symbol is indeed interpreted by a particular RPREQ specification.

The class of total PREQ specifications is presented in Definition 51. For convenience we 
<dso identify a further sub-class of total PREQ specifications that we refer to as standard PREQ 
specifications in Definition 52.

lliese ideas are formalized as follows:
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Pre-PREQ Specifications.

Definition 46. For some /, m G N+, for some c G { 1 , for some injection t :
{1,.. .. /} and for some mapping rj = ( pD,  r ] n ) : m} — 5 + X 5+ if G RPREQ(E', X)u. r ,
for some u‘, ul G S +  for i. = 1...... / wherein A' = A U i f  and T  is defined bv

i=m j - l v ' U  i )|

~ U bJr)D(),( rj'ipDj {/ij }
-' = i ;' = i

then we say that
<f> = < >

is a pre-PREQ specification of size l, scope m and type. ( u \  vfi denoted <f> G PREQ0(A 
(and sometimes ambiguously just <t> G PRRQofA, A" )u, ).

r/.i
Ju*,v<

Checking Pre-PREQ Specifications for Primitive Recursiveness. The function DefOver, 
that determines which function symbols from the family T  a particular RPREQ specification is 
defined over, uses a further sub-function TennsDefOver defined as follows:

Definition 47. For each s G 5 and for each T  C { fn,n' I n , n' £ N}

TermsDefOverf : 7’(A U J-. A ), X p({/n,n' I n - n' £ N}) ~► p(N)

(ambiguously denoted TermsDefOver) is defined for each F G p({/n,n' | n,n'  6 N}) uniformly in 
s by induction on the structural complexity of a term r  G ./ (A U T , A’), as follows:
Basis.

(1) Constants. If r  = c for some c G AAi, for any s G S then

TermsDefOver,(r,F) = 0.

(2) Variables. If t  = x  for some x  G A , for any .s G S  then

TermsDefOver,(r,F) = 0.

Induct ion.

(3) Algebraic Operations. If r  = <j { py , . .  ., T|u,|) for some a G {L U for any w G S +,
and for any ,s G .S’, ami for some r, £ T ( L U / , A )Wi for i — 1 , . . . ,  |u’| then

{A:} (J  TerinsDefOverfr,, F) if a = f kJ G F for some k j  £ N
TennsDefOver,(r, F) = < 1-_|u,|1 !

TennsDefOver(r,, F) otherwise.
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Thus, given a term r 6 T(E U F , X ) ,  and an F E p{ | v, r i  E M}), the result of
TermsDefOver( r, F) is the first index of all the function symbols / , j  G F  sudi that /,■ 3 G F and 
/ , j  occurs in r.

E xam ple  14. If
F =  { /i.i....... / i l5- / 2.i........ / 2l3},

r = Acld{Succ(flA(x l)),f-,'3{X',<x3))

and
F  =  { / l , l  ,  • • ■ :  / l , 5 }

tlie n
TerinsDefOver(r, F) = {!}.

Using TerrnsDefOver it is straightforward to define DefOver:

Definition 48. For each u, v G S + and for each F  C | n,n'  G N}

DefOver^ : RPREQ(S U F , X ) U,V x p |  n, n' G N}) -  p(N)

(ambiguously denoted DefOver) is defined for each F E p ({/«,„< I G N}) by the structural 
complexity of a specification <? G RPREQ( E U JF, A )u „ as follows: (through! the following 
definitions we use X to denote the set {ay, . . . ,  xn} wherein a,- G A,, for some G S for 
1 = 1,. . ., n > 1)

(1) Sim ple Specifications. If
q J= f{x  = r

for some distinct ay E A',, for i — 1 1 and for some r  E T(S U JF, X), for some
s G S’ then

DefOver,,,.. , ni,(p, F) = TermsDefOver(r, F).

(2) Victor-Valued Simple Specifications. If

O d~f f ( x  j , . . . ,  ayj = < n , . . . , r m >

for some distinct, x, G Ah, for i = 1,. . ■. n > 1 and for some r;- E T(E U -F,X),< for some 
s' E S for j  — 1 ,.. ., m > l then

j=m
DefOver,, ,,g(o. F) = | J  TermsDefOver(r; , F).

j = i

(3) Primitive Recursive Specifications. If

y ( / "f- I , X 1 , . • . * X  ri ) — Tn
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for some distinct .r, £ ,AS for z = 1....... n > 1, for some rl £ 7’(N U VAX)., and for some
r2 £ T(S  U -TAX'), for some s £ S wherein X' = X  U {t, X} such that t £ A'n and V' £ A', 
are distinguished variable symbols distinct from x,- for i — 1 ,.. n then

DefOvert .Jni,(p, F) = TermsDelOver(ri, F) U TermsL)efOver( r-,, F).

(4) Vector-Valued Primitive Recursive Specifications. If

O ' = / ( ( ) ,  X x...........X n ) =  < Ti  l ,  . . . , T l m > ;

1, X 1, . . . , X n ) =  <  £>, 1, • ■ . , To ,,, >

for some distinct .r, £ X , t for i = 1... .. n > 1, for some tjj £ T(S U JF,X),< and for some
r3ij £ T( h u A ,  X')»' for some s' £ S for j  = 1 ,----m > 1 wherein X' = X U {t, Yj,.. ., V'm}
such that t £ A'„ and Yj £ A',< for j  = 1,. . m  are distinguished variable symbols distinct 
from x, for i = 1.. . . ,  n then

j  = PI
DefOvert F) = (J  (TermsDefOver(r1 , F) U TermsDefOver(r-2ij, F)).

j = i

Given a pre-PREQ specification to test 4>’s ‘primitive recursiveness’ our strategy is to 
repeatedly test each constituent R.PREQ specification p, for i =  1 to see which function
symbols from the set J~ are being used in their definitions. From this information we construct a 
set T i C T  associated with each <?,- and a set T j  representing the transitive closure of T, relative
to F l , . . . , F i_ u T i+l....... JF,. Now mutato mutandis the ‘re-numbering’ i, if T j  2 {¿} then we
can conclude that if every function symbol from T  is interpreted by a RPREQ specification then 
the pre-PREQ specification does indeed represent a primitive recursive function.

Essentially, the definition of InTermsOf that follows is a formalization of the informal al
gorithm that'we have just described. Notice in particular the role of the sets S and S' in the 
following definition that we use to ensure that InTermsOf is terminating.

Definition 49. For each i] and ç defined as in Definition 46 and for each u,v  £ 5+ we
define

InTermsOf, : PREQ„( S, A' 

(ambiguously denoted In'l'ermsOf) by 

(V<1> £ PREQ0(N, .Y )^  ‘'"'Q

x x p({/„,„< | n, n.'£ N}) — p({ 1 ,. . . , /} )

(Vf £ { ! , . . . , / } )  (VF £ p( | n, ri £ N }))

InTermsOf( '!>, i, F) = InTermsOf'( i, 0 ,  F) 

wherein for each /. m. /. // and s and for each u, v t  .fV defined as before

InTermsOf; : PREQ0( N, X ) !ur!';lJh' x x p(N) x p( | n ,n’ £ N}) — p ({ l , , . . , /} )

; ambiguously denoted

(VT £ PRHQ„(X

InTerinsOP) is defined by

A ' ( V i - £{! , . . . , / } )  (VS £ p(N)) (VF e p({/„,n n ,n '  £ N}))
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wherein

InTermsOf'f <h, ¿, S, F) = IF, U T j  

f i  = {i( / ) | /G D efO v c r(p i,F ) A i( / ) l}

and
T j  -  U  InTennsOf (<I>, k. S'. F)

wherein
S' = S u  {/}.

Thus, for example if $ = < cp.......di;i; /?: C >G PREQ0(E, A") wherein for i = 1 , . . . , /  we
have Oi G RPR EQ(S', X ) defined using Case (1); that is, if 6; is defined using a single term r, 
then

for some P C  {1,.. 
k,p  G Pf appears in t

InTermsOf(< 6r,r, //M > , i ,E '  -  E) = P

.,/} if and only if for each j  G P either the function symbol f kp for some 
and i( k) = j  or the function symbol f kiP appears in r,- and j  G InTermsOf(<

<̂ i, •. . ,  or, t; >. t(*K E' -  S).

L em m a 23. For each <I> = < eg, . . . ,  or l\ r/; ? > € PREQX{L ,X )U|„, /or some u, v G 5 + , for 
each j  G {1....... /} and /or each F C {/„,„' | «, G N} if

and

\ InTcrmsOj[$, j,F)\ = P 

DefOvcr[<Pj,¥) D {&}

for some h e . rnj then for each e G {1,. ■ • , j  — E j  + 1 > • • • > 0  such that 

fnTennsOJlf&yj, F) D {e}

tee have
\InTermsOf{^,e,F)\ < |P|.

Proof. Immediate from the definition of InTermsOf and DefOver.
□

P P E Q j Sp ecifications. As we indicated we can now use InTerrnsOf to identify the sub
set of all pre-PRFQ specifications that define a primitive recursive function; that is, the class 
PREQ, C PREQU. Finally, we identify the class of total PREQ specifications (Definition 51). 
Th« role of PREC^ specifications is explained prior to the formalization of the semantics of 
^PREQ and PRFQ at the end of this section.
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Definition 50. We define PREQ JE, A) C PREQn(E,A') such that

<I> = < <j)u .. i\ ?/;? > € PREQj(S, A')

if and only if

( 1 )
( V i e

i £ In TermsOfi < O i ; /; ij\ q > , X)

wherein T  is defined as in Definition 46 and

( 2) (Vi G m}) i(i) i = >  (n1<!) = r ] D ( i )  A nl(,) = r j ! { ( i ) ) .

E xam ple 15. Let E and X  be defined as in Example 13. If

<?i =; / (  0,xi) = x u
f ( t +  1, xQ = Succ(Y);

<p2=f f (  0 , Z l )  =  0 ,

f ( t +  1, xi) = / i , i ( :riiE);

<¿>3 d= f ( 0 , Xl)=: S U C C ( O ) ,

f ( t  + 1, xQ = /2,i(a;i, L );

and l = {1 h— 1,2 k  2,3 3}, r/° = {1 n 2, 2 w  n2,3 k+ n 2}, and t]h = {l k  ii, 2 k  n ,3 k

n} then <j>2, <f>3; i; r/; 3 > G PREQ ^S, A Q ^ A
Given the semantic interpretation we intend represents the exponential function over the 

natural numbers.

Using the class PREC^ of partial PREQ specification we can now identify the class of total 
PREQ specifications that do indeed specify a primitive recursive function.

D efinition 51. For any <i> € PREQ ^S, G PREQj for some /, m, /,, 77, c, u and v defined
as in Definition 50 if for each 

j=i
i G (J InTermsOJ[$, j, {fi,u ■ ■ ■ , , f m,u ■ ■ ■ , f m,\vn(m)\})

j = i

We have i(i) .[ then we say that either $  is a totally defined primitive recursive equational 
specification or }nst totally defined denoted $ G PREQ(E, X ) lfi™'l',ls.

In common with other formal language definitions in this thesis we gather together all totally 
defined PREQ specifications into an 5 + x 5 +-indexed family

PREQ( E, A”) = < PREQ(E, X)„tV | u, v G S + > .
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Of the class of all total PREQ specifications one particular further sub-class that we wish 
to identify are those wherein each function symbol is interpreted directly by the RPREQ spec
ification indicated by its index; that is, wherein function is interpreted by co-ordinate j  of 
the ¿th RPREQ specification:

Definition 52. For any <f> € PREQ(E. •r'* for some and v defined as in
Definition 50 if
(1) / = m ;
(2) t( i) — i for i = 1 ,.. ., m; and
(3) c = 1
then we say that 'i> is standard.

In the sequel if $ is standard then we will write ‘< <pi, . . . ,  <j>m > ’ for <1> omitting i, q 
and c. Similarly, if <h € PREQfS, satisfies (1) and (2), but not (3) then we will write
‘< Pi, • • • , Pm; f > ' for <I>.

See Example 16 on Page 150 for an example of a standard PREQ specification.

L em m a 24. If  = < f a , . . . , P, > € PREQ{E,A')U,„ then for each i E { 1 }

< <f>u .. i > E PREQ(T,,X)n>iV'.

M odular ity :  Jo in ing  P R E Q  Specifications. Rather than directly define the class of 
total PREQ specifications as a sub-class of PREQ0 we have identified the intermediate sub-class 
PREQj to address one of the issues that is important in the development of ASTRAL: the use 
of modular specification techniques. In particular, it is useful at the abstract language level to 
allow several partially defined specifications to be joined together. At the ‘’front end’ this enables 
a user of ASTRAL to define a complete specification either ‘bottom up’ or ‘top down’ via the 
definition of sub-functions that may be incompletely specified. Using a common programming 
technique these sub-functions can then be brought together to give a final complete specification 
wherein each function is specified by either some particular equation or equations from within 
the specifications constituent parts.

In order to support the use of this technique it is sufficient to define a function that joins 
two PREQj specifications into a single specification. The following function |+j designed for this 
Purpose sets out formally the conditions under which two partial PREQ specifications may be 
joined.

Informally, we will allow two partial PREQ specifications and d>2 to be joined if the 
resulting specification is itself at least a partial PREQ specification (it does not need to be 
total). To ensure that this is the case we place certain constraints upon the functions i)l and 
aud r/2 and i2 from <!>! and d>2 respectively: that (1) t]x and t/2 must agree on the functionality 
°f any function symbols for which both functions are defined; and (2) the sub-domains of the 
domains of i.x and for which each function is defined must be disjoint.

Definition 53. For eacli li,U, m 1, m 2 G N+; for each

rji : { l , . . . ,m i}  S + x S +
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such that 

for each injection 

and for each injection 

such that

//2 : {1----- m2} — ¿'+ x S +

i>h 2 ij2) V ( i)2 D 7/0 V (;/! P) 7/, = 0); 

: i l ....... '»} {1, ■■■'ll}

¿2 •' ni} {1,.. . , /2}

Dorn l ( l 1) p  id077?. {(?2) = 0;

for each sy £ /1} and for each <r2 € { l , . . . , / 2}; and for each n G {1,2} and for each
ul , u 2, v l , v 2 e S + we define

; PREQ1(S, X ) p p v ' I1'il x P R E Q O S , ^ ) ^ - ^ ' -  -  PREQ^S, A p p p T 1’̂  

(ambiguously denoted (+)„) by

(Vd>i =<<?},... ,  p ;  ii; 7/j; > e PREQO'S, A')„o,„si)

(V‘K  = <  <?],.. t2-,r/2;<i2 > €  PREQOE,

‘hi liL'E- = =<  ^i1+/2; 7; 7/;

wherein o' = 6] for i = and o' = for i =  +  1---- -¿1 +  /■_>; t :
{ l , - f -  / 2} is defined by

(Vi € {1---- ,7/?}) ?(?)
? i ( i )  i f  7-i(?) I ,  a n d

¿2(0) T f 1 if i2( i )};

7/i if '/i 2  V 2 ,

7/ = <; 7/2 if 7/0 0  7/!,

7 /1 U 7 / 2  otherwise;
and

/t = ?i if 7? =  1
v2 -f /[ otherwise

Well-Defineclness. We consider the case wherein n = 1 and leave the case wherein 
(that, is similar to the case wherein n = 1) to the reader.

To show that l+J, is well-defined it is sufficient to show that

(A) (Vi G {1,.. ,,/i + Z2}) ? £ InTermsOf(<f>',i,F)

whetafin IF = {/„ n, j ;?, n' € N} and for i = L,..

7 ( ? ) 1 = >  (w

m

(B) =  7 / ° ( i )  A vL{i) =  ? P ( i ) ) .



To prove property (A) we will use induction. In the basis case we will show that the assumption 
that there exists a, A £ {1,. . .. I y -f /2} such that InTermsOl(<I)', A, F) D {A} leads to a contradic
tion.
P ro o f  of (A). By induction on q = |InTermsOf(<I>', Ay F)|. We consider two basis cases:

(1) |InTermsOf! <!>', k. F)| = 0.

(2) |InTermsO£t <!>', Ay F)| = 1.

Basis Case ( l )  q = 0. This is obvious and is omitted.
Basis Case (2) q = 1. In this case InTermsOf( <i>'. A', F) = {A}. We consider two sub-cases: 

(a) 1 < A < / t .

( b ) / 1 <C A A l y T/o.

Sub-case (a) 1 < A < ly. This assumption implies that there exists a A' £ { l , . . . ,m }  such 
that

{ly(k') = A) A DefinedOver{<j>\,F) D {A'} 

contrary to the assumption that <!>] £ PREQj(E, X).
Sub-case (b) ly < A < ly + l2. This assumption implies that there exists a A' £ { l , . . . ,m }  
such that

(/-_>(A') = p = A -  ly) A DefinedOver(4%,F) 2 {A'} 

contrary to the assumption that $ 2 £ PREQ^E.A').
Induction Hypothesis. Assume that for some fixed q' £ N+ if i £ { 1 , . . . ,  + /2} and
| I n T e r m s O f ( i, F)| < q' then i InTermsOf^I»', i, F).
Induction. We must show that if there exists d £ {1,. . . ,  ly + /■_>} such that

|IiiTermsOf(<R,fi,F)| = q + 1

then d InTermsOf(<h'. d. F). 
Notice by definition that

wherein

and

InTermsOf(<t>', d, F) = {i(j) \ j  £ T  A /,(j) j.} U T

T  = DefincdOver(<p'd,F),

T' = [J InTermsOr( <̂ ,1 j, {d}, F),
jtR

R = {¿(A) | (A £ T -  {d})A t(k )[} .

We have two sub-cases to consider:



(a) d £ {/(j) | j  £ T A

(b) d  e r .

Sub-case (a) d £ {¿(j) | j  £ T A /(j) [}. This implies that there exist a k' £ 7’ such that 
i{k) = d and hence that either

if L(k') = or

T, £ P R E C IS . X)

<f>2 £ PREQJN. A')

if i(k') = /2(A-') + contrary to hypothesis.
Sub-Case  (b) d £ T ' . Notice in this case that as d £ S = {i ( j ) | j  £ T A t(j)  [} it must be the
case that T D {q} for some q £ {1....... tn) such that t(q) d otherwise by definition we would
have R = 0  and hence that \T'\ = 0 contrary to the hypothesis that |IuTerinsOf( lf>', d, F)| > 1. 
Therefore, |5| > 1 and consequently \T'\ < q' and so by the induction hypothesis d T' as 
required.

□
P roof of Property (B). Notice that if we let (u ‘ , v ' ) be the type of o' for i. = 1 , . . . , / ,  + /2,
( trJ. s.: ) be the type of oj for j  = 1 , . . . , / !  and let (yk,~k) be the type of o\ for k — 1, 
then by definition of l+J j

o' = o!

for i — f,. . ., 11 and
hip)  L i ( p )  = h i p )

for p — 1 , . . . .  rn we have
up) wuip)

and
v‘lp) = x ,,(p)

Similarly, as by the definition of [+J i
<Pi =  <t>i

for i — lY + 1,. . ., 11 + /'j and
h ( p ) l = >  '(/J) = h i p )  +

for p — (the fact that i\(p) [ and i 2ip) I are mutually exclusive is guaranteed by
hypothesis) we have

„UP) = y>2(p)

and
„up) _  .o(p)

Consequently notice that by hypothesis for each p £ {1,. . . ,  m} we have

hip)  l = >  ( wlllp) =  Ji°(p) A x ‘i<p) = / / " ( / > ) )
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and

as required.

(;>) nD(p) a (;>) _
v d ( p ) )

□

E xam ple  16. If <I> is defined as in Example 15 and

= < o. /'.//• 1 > G P R E Q JS ^ Y ),^

wherein
O f ( Xl) -  / 3,i( / :, i (x i ,2).2)

<f> y  2<E' = <i>" = < <?!,. . . ,  ¿>3 , <P; ¿'; //; 4 > .

Furthermore, given the semantic interpretation we intend is the equational specification of 
the function 22".

Also notice that is totally defined and standard, is totally defined, and <!>' is partial. 
In particular, notice that we may make totally defined PIIEQ specifications by joining partial 
PREQ specifications.

T h e  Sem antics  of R P R E Q  and P R E Q . We begin by defining a variable evaluation map u 
(see Section 2.3.10) that we require to give a denotational semantics to RPREQ specifications.

Definition 54. Let A' be any .5”-indexed collection of variable symbols. For each X =  {xL, . . . ,  a:,,} 
for some x,- G A' of type ¿q for i = 1 , . . . ,  n we define

vx 'x : A’1""* -  X  -  A

(ambiguously denoted ux) by

■y a; if x = X;, and
(Va = ( « ! , . . . ,  O  G .•Pl 5,‘) (Vx € A') //x(a)(x) =

I \ otherwise.

L em m a 25. Let X = {¿iq,. . ., x„} for some x,- G X Si for some ,s, G S for i = l , . . . , n .  If 
r G T(S, X) then

('in G A" 3" ) V;:q(l)(r) |  .

T’his fact is used implicitly in the following definitions.
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Definition 55. For each <? G RPREQ(S, .V) we define the meaning o f  0  over /I by the S + X S+- 
indexed family of mappings

l h  = < [•];'„ : RPREQ(£, A')Ul„ -> [,F‘ -  A")|u, «> G 5 + >

wherein for each u, v G S + the map [■!„' „ : RPREQ(S, A' )U|U —* [Au — A1'] (ambiguously 
denoted [,J_.V) is defined uniformly in (u,u) by the structural complexity of the specification 
0  G RPREQ( E, X  )UtV as follows: (throughout the following definitions we use X to denote the 
set {xl r . wherein x, G A”,, for some s{ G S for i = l , . . . , n  > 1)

(1) Simple Specifications. If
Q d-  f ( x l , . . . , x n) = r

for some distinct x, G A'4| for i = 1 1 and for some r  G T(E,X)., for some s G S
then {0]A : A31 —* A, is defined by

(Va = ( f l i , . . . , 0  G A’1'"5") [g>iv(a) = V;*(a)(r).

(2) Vector-Valued Simple Specifications. If

• def r, \
O  -  f ( X i , . . . , X n ) =  <  T x , . . . , T m  >

for some distinct x, G A',, for i — 1 , . . . ,  n > 1 and for some Tj G T(E,X),< for some s' G .S’ 
for j  = 1,. . ., ni > 1 then [d>],v : A’1'"'’" —>• A3> ' is defined by

( Va =  (a y , . . . ,  an) G A 31 ‘ =  ( V„Z(a) ( r i ) , .. ., V„z(a)( r m) ).

(3) Primitive Recursive Specifications. If

(t>J= f(Q,Xl,. . , , x n) = n ;  

f{ t  + M i ,  • • - , x n) = r,

for some distinct x, G -V3, for i = 1 , . . . , n  > 1, for some tx G T ( Y , X ) s and for some 
r2 G T ( Y , X ')3 for some s G S wherein X' = X U { t ,Y}  such that l G A'n and Y G A', are 
distinguished variable symbols distinct from x,- for i — 1 , ,n  then : T x A u Sn —* A, 
is defined by

(Va = («!,. . . ,a „ )  G A5’ s") [<?]n(0,a) = V A n)(Ti)

and

(VF G T) (Va = (« ! , . . . ,  an) G A*«'1") M a i l '  + U )  = V > K(, il0)(r2).

(4) V ector-V alued  P rim itive R ecursive Specifications. If

0 J= f {  O . X , , .  .  . , X „ )  =  <  I " ;  ^ 7 " i  j m  > ;

/ ( /  -i- L, x !,. . . ,x n) = < r2|1, .. . , r 2i,ri >
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for some distinct x, G A',, for i = l , . . . , n  > 1, for some rlj  G T(E,X),< and for some 
r2,j G T (E ,X ') , ' , for some .s' G 5 for j  = 1,. . m > 1 wherein X' = XU {i, Vi. . . . .  V,,,} 
such that t G A'„ and 1} G A',- for j  = 1,.. ., m are distinguished variable symbols distinct 
from z,- for i = 1....... n then : T  x A’1 3,1 — A3'1 ’h is defined by

(Va = a„ ) G -43l"'3n ) 0, a) = (V>(a)(ru  ) , . . . ,  V>.(a)( r lm ) )

and
(VP G T) (Va = (au . . . ,  a„) G A31'"3" )

+ f.a) = (f'h~'(d,i'1[A.A(<',a))(7'2,l)! • ■ -i

Using the formal definition of the semantics of RPREQ specifications we now finally complete 
this section with the formal semantics of PREQ specifications.

Definition 56. For each <l> G PREQ(E, A”) we define the meaning of <I> over A by the S'+ x S +- 
indexed family of mappings

I-I-i = < I I Y  ■ PREQ(S, A')Ui„ -  [A“ -  A1’] | u , v e  S + > 

wherein for each a, u 6 5 + the mapping

I.]“ " :P R E Q (S ,A )Ui« - [ A u ^  A“]

(ambiguously denoted [-1,0 >s defined for each <I> G PREQ(E, as follows:

(Va G Au) [<i>it(«) -  [<A]U(«)

wherein each f tj  G T  for i = 1 . . . . ,  m and for j  = 1 , . . . ,  |r;fi(i)|; and ?  as defined in Definition 50 
satisfies

f t i  = (I< <?i, • • •, 4>n A W ¿(0

Notice that the well-definedness of < <px, . . . ,  <j>t; i; r/; i(i) > is addressed in Lemma 24.

5.3 .3  T h e  S ou n d n ess  and A d eq u acy  of P R E Q

In this section we turn our attention to the proof of Theorem 10; that is, we show that PREQ is 
both sound and adequate with respect to the class of primitive recursive functions. In order to 
prove Theorem 10 we define two compilers CPR : PREQ(S, A”) —> PR(E) and CPRhQ : PR(E) —- 
PREQ(E, A”) respectively, with the intention that a proof of Statement (1) of Theorem 10 follows 
as a corollary from a proof of the correctness of CPR and similarly the proof of Statement 
(2) of Theorem 10 follows as a corollary from a proof of the correctness of CPRRQ. However, 
for convenience we leave the formal proofs of correctness of the compilers CPR and CPRhQ to 
Appendix A.

An informal algorithm that describes the basic intuition behind the operation of the compiler 
CPREQ can |je foun(j ¡n Section 5.2. The compiler CPR is structured so as far as possible it behaves



as the inverse of CPRLQ. The reader wishing to omit the technical material concerned with the 
construction of both these compilers can move directly to Section 5.4 on Page 170.

T he  Soundness o f  P R E Q . In order to define CPR we will require three sub-compilers: C 1 
and C7 that compile terms into PR, and C*1’*1 that compiles RPREQ specifications into PR. As 
such we begin with the definitions of these compilers.

Discussion: Com piling Term s into P R . Recall that due to the particular form of the 
definition of a PREQ specification = < <?i, . . . ,  g>; > G PREQ(X, A') it is the terms that occur 
on the left-hand-side of each RPREQ specification g>, for i = 1 , . . . ,  l that play the central role 
in the description of the function that <I> represents. Also recall that all of these terms fall 
into two categories: (1) the terms used in simple RPREQ specifications and in the basis case of 
primitive recursive RPREQ specifications -  that are defined over T(EUJr ,X) (see Definition 50): 
and (2) the terms in the induction case of primitive recursive RPREQ specifications - that are 
defined over T j S u T ,  XU {£, T j , . . . ,  !'„}) for some n G N+ wherein the variables t and Yj for 
j  = l , . . . , n  are given the particular interpretation described in the discussion at the beginning 
of Section 5.3.2.

First, we remark that in the context of compilation into PR it is useful to consider these two 
classes of terms separately as the special interpretation of variable symbols T1, . . . ,V ’n slightly 
complicates the compilation process. In particular, we require terms from the second class of 
equations to be mapped into PR schemes of type ( tu ,v )  for some u, v G S +. However, in general 
this requirement is not true of the first class of terms. Therefore, while both compilers Cr and 
C* perform essentially the same compilation process, using two separate compilers is convenient 
as it simplifies the overall complexity of our constructions.

Secondly, while the similarity of terms and function schemes make the process of compiling 
terms into PR basically routine, it is slightly more difficult in the context of terms occurring in 
PREQ specifications due to the intended interpretation of each additional function symbol from 
the signature J7. In more detail, recall that (ignoring for the moment the role of the function i) 
each of the additional function symbols f , j  G T  for some i , j  G N+ is interpreted by co-ordinate 
j  of the ¿tli RPREQ specification g>,. Therefore, if symbol /¿j occurs in term r  (say) and we 
wish to compile r  into an equivalent scheme a T G PR(L') then as part of this process we must 
construct the sub-scheme C a T equivalent to f itJ. However, the structure of the required 
scheme a j t} must by definition be dependent on the structure of <p,-; that is, more specifically it 
must be dependent on the terms in o, that are not part of the structure of r  itself. Moreover, as 
we cannot derive the structure of <p,- from r  alone and we cannot predict in advance the particular 
value of i G {1,. . . , /}  we must in general have the whole of <f> =<  g q , . . . ,  > available when
we compile r into a function scheme. For this reason when compiling a term r  it is necessary 
to index both compilers C1’ and C3- by the particular PREQ specification <1> in which r  occurs. 
As such if function symbol / , j  t  J7 occurs in r  then the appropriate PR scheme can be created 
by recursively using the compiler <C*pn that compiles RPREQ specification into PR to generate 
the scheme O/,, •

The only potential problem with this method is that C PR is itself defined in terms of C1
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and C1 and therefore we must consider the termination properties of this recursive process; that 
is, if t  occurs in RPREQ specification <p{ then we must show that C,£(r) cannot give rise to a 
recursive call of Q /’11 (<?,). Fortunately, it is not difficult to demonstrate this fact as in order for 
<f> to be a total FREQ specification it must satisfy Property (1) of Definition 50.

Finally, we note that we must also index Cr and C7 with the particular variables X =  
{x ! , . .  . , r„}  wherein ,r, 6 A's> for some st £ S over which the term r  to be compiled is defined. 
This enables us to determine the type of the function scheme that will be required (as variables 
are used as input) and reduces the construction of the necessary sub-scheme to represent a 
variable to an analysis of the particular index i £ n}. In particular, if u = j .. . ,s71
then we can straightforwardly define C,£ :i(x) = U'1 that clearly has the required semantics as it 
represents a function that has n inputs of the correct type and selects the zth co-ordinate of its 
input (which is variable z,-) as output. These ideas are formalized as follows:

T he  C om piler CT .

Definition 5 7 .  For each <1? £  PREQ( X, for some l,m,i ,ij,s,in and v as defined in
Definition 50; for each u = s x ■ ■ -sn £ 5 +; for each s £ 5; for each X = {xt , . . x„} C X  such 
that x t £ A”,, for i = 1,. . ., n are distinct; and for each s £ S  we define

C liS,Ui, : T ( £ /,X)1 - .  PR(S)Uli

(ambiguously denoted either <C„ , or just Cr ) wherein S' = X U T  is the extended signature of 
<1> as defined in Definition 50 uniformly in u and .s by induction on the structural complexity of 
a term r  £ 7’(S',X)., as follows:
Basis Cases.

(1) C o n stan ts .  If r  = c, for some c £ S'A , for some s £ S then

C T(r) = C

Well-dcfinedness. It is clear here from the simplicity of the scheme that C (r  ) £ PR(X)Ui, 
as required.

(2) Variables. If r  = for some z,- £ X 3 for some ,s £ S then

C r  { t ) =  u;*.

Wcll-dcfincdness. By hypothesis on x,- we have u, = ,s,• = s and therefore C  (r) £ 
PR(X)U 3 as required.

Induction Hypothesis. Assume for each r  £ rf ( X ' , X ) 3 for some s £ S  that for any term 
r' £ T(X',X),- for some s' £ X of less structural complexity than r  that C r (r ') £ PR(S)UiJ-. 
Induction.

(3) Algebraic operations. If r  = <j (tx, . . . ,  r t ) for some a £ , for some w £ ,S’+ and for
some s £ S, and for some r,- £ 7’(X',X)3' for i = 1,.. .,/r = |u>| wherein w = s' • • . s'k then

CT(r) = no  < CT( r ! ) , . . . ,  CT(rt ) >
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if a G N and
CT(r) = U‘,p’ o Q I>R(<?l(P)) 0 < CT( r 1) , . . . , C r (r t ) >

if a = f vq G T  wherein C*PR is defined as in Definition 59.
Well-defuK.dncss. We have two cases to consider:

(A) ere W

(B ) a — f rq G T  (-  { /l,l....... /l,|r;"(l )|, ■ ■ • ! fm,l , ■ ■ ■ , /m,|7)«(m)|}-

However, for convenience we first consider the sub-scheme common to both cases

< CT ( r, , CT ( Tk ) > .

Notice that by the induction hypothesis C r (r;) is of type (u,.s') for i = 1,. . , , k  and hence 
< Cr (M ) , . . . ,  C1 ( rk ) > is well-defined as a vector-valued scheme with type ( u, w).

Case (A) a G Ï .  As by hypothesis a G E„.v, it is clear that

cro < Cr (r;.) >

is well-defined as a composition and Cr (r) G PR(S)Mi, as required.

Case (B) a = f pq G T . Notice that, by hypothesis on <I> that Q PR((A(r)) is terminating 
and well-defined with type p(p) = ( i)D(p), r//f(p)) = ( w,qR(p)) and therefore

c*PR(d>1(» )  o < >

is well-defined as a composition with type (u,r}R(p)). Finally, notice that by hypoth
esis f p q is of type (r]D[p),(T]n(p))q) = (iu,s) and therefore

o C PR(01(p))o < CT(r1) , . . . ,  Cir (rA.) >

is well-defined with type (/¿,.s) and therefore C l (t ) G PR(Xi)U|, as required.

T he  C om pile r  C r . As we have already remarked the definition of C7 is essentially the same 
as C 1 -  the only difference being that C7 must deal with the special interpretation of the variable 
symbols t and l y , . . ., V,,. To motivate the construction of the necessary function schemes for 
these variables recall the types of the sub-schemes oy and a-, in a scheme cv = *(oy,o2) defined 
by primitive recursion. In particular, recall that if the overall type of a is (t a, v) for some 
a, ii G 5 + then ay and a 2 must be of type ( u,v) and (t u v,v)  respectively. Therefore, in 
general if we consider that in the case of a primitive recursive RPREQ specification our aim 
is the construction of some scheme a  as defined above then essentially we use C3- to construct 
that part of a defined by scheme a 2. Also, recall that form the perspective of semantics if 
a = («,,«•_>,. . .,fl|u| + 1) G Atu is the input supplied to Fn wherein Fa is the function computed 
by scheme a then by definition

a — («1 ~ 1. <h- • • • i + 1 ~ 1, «2, ■ • ■ , «|u|+t ))

155



is the input supplied to Fa., wherein Fa2 is the sub-function of Fa computed by scheme ov. 
Therefore, if we also index Cj x with the particular variables t and Yj, . . . , Y m then as with 
the set X this enables us to determine the type of the function scheme that we will derive and 
again reduces the construction of the necessary sub-schemes a x C n T to represent a variable 
x  to an analysis of the particular index i G { l , . . . ,m } .  In particular, if x  = t then we can 
straightforwardly define C ^ x )  = UJ“ 1'; if x = x, then wre define Cr (x) -■ Uf^Y"; and if x  = Yj  

then we define C r (x) = U‘Y|»| + i wherein j  + |it| + 1 will select the particular co-ordinate of 
Fa(ai -  1. a2, ■ . ■, fl|u| + i) from a1 as required.

Definition 58. For each <f> G PREQ(T, X ) Iw mw i, ’ ,h < for some /, m, i , c ,  w and w' defined as in 
Definition 50; for each u = .st ■ • • sn G 5 +; for each v — sj • • G 5 +; for each .s G S ; for each
X = {xq....... x „ , t , Y u -----i«'} C Ar such that x t G X , t for i. = 1........ a are distinct, t G A'„
is a distinguished variable symbol distinct from each x t , and Yj G AV for j  = are
distinguished variable symbols distinct from each x, and /; and for each ,s G S  we define

:T (E ',X )5 -> PR(S)t „ UiJ

(ambiguously denoted either or just (5 )  wherein S' = 1C U !F is the extended signature of
<i> as defined in Definition 50 by induction on the structural complexity of a term r  G 7’(S ',X )s 
uniformly in u, v and s as follows:
Basis Cases.

(1) Constants. If r  = c, for some c G Ej , for some s G S then

CT(r) = c\uv.

Well-dejincdncss. It is clear here from the simplicity of the scheme that T/^r) G 
PIl(S)tuv J as required.

(2) Variables. If r  = x  for some x  G X, for some s G S  then

HtUV 
U I if x —  t;

Uf+V if X  =  X{ for some i  G {1,. . . , n } ;
Tit U V
u M+; + i if x =  Yj for some j  G { 1 , . .

Wcll-dcfintdncss. We have three cases to consider:

Case (A) x = t. By hypothesis t G Aj, and therefore it is clear here that C5(r) G 
PR(E)tu as required.

Case (B) x  = x; . By hypothesis on x,- we have u,- = s,- = s  therefore as ( t uv)i+1 = u{ = s 
we have C? (r) G PR (S )tul,,5 as required.

Case (C ) x — Yj. By hypothesis on ) j we have Oj = Sj -  s therefore as (t u t;)|u|+j + i = 
Vj = s we have C ^ r )  G P R (S )tUCiJ as required.

Induction  H ypothesis . Assume lor each r  G for some ,s G S that for any term
t ' G T{Y, ',X)S' for some .s' G S of less structural complexity than t that C ^ r ')  G PR(X)t u „ 
Induction .



(3) A lgebraic opera tions. If r  = a( n , . . . ,  rk) for some a £ for some w £ 5 +, for some 
s € S, and for some r, £ T (E \ X),/ for i = 1,. . ., k — |?n| wherein w = .s'! ■ • • s'k then

CT ( r ) =  cr o < CT ( t x C7 (r k ) >

if a £ X and
CT ( r )  =  U f ) o Q p,l(<?t(P))o < C T ( r 1) , . . . , C i T ( r fc) >

if & —  fp,g £ { f  i , i ' • • • i f},\gR{ 011 ■ ■ ■7 fmA1 • • • i } wherdii C  ̂R is defined as in
Definition 59.
Well-define driers. The well-definedness of both cases follows by essentially the same
argument as the well-definedness of Cr in the same case and is omitted.

The Compiler C*p n . Using Cr and C7 we continue by defining the compiler C*PR that maps 
RPREQ specifications into PR

Definition 59. For each <P £  PREQ(E, for some /. m , i ,  r;,c, w  and w 1 as defined in
Definition 50 and for each u, v £ S + we define

Q™  : RPREQ(S', A )u,„ -  PR(S)„,V

(ambiguously denoted either Q PR or just C*PR) wherein E' = S U T  is the extended signature 
of as defined in Definition 50 by analysis of the structural complexity of the specification 
<P £ RPREQ(X, A')u „ as follows: (Note that the termination properties and the well-definedness 
of this construction are considered at the end of the definition.)

(1) Simple Specifications. If
def n x

0  =  f { X  1, . . . , X n )  =  T

for some distinct £ A',, for i = 1,.. n > 1 and for some r £ T (£ ,X ), for some s £ S 
then

C PR(c?) = Cl,x,«,.i(7’)

wherein u = ■ • • sn and X = { r e j , :r„}.

(2) Vector-Valued Simple Specifications. If

O  — f  { X i, . . . , 2 Tl ) D1 • • • i 0

for some distinct x , e A',, for i = 1 , . . . ,  n > 1 and for some rj £ T (E,X )J/ for some s' £ S 
for j  — 1,. . . ,  in > 1 then

C 1 R ( d > )  =  <  C i > , % , u , . » ' 1( ' r l ) )  ■ • <f - i i , X  , u , J (  D n  )  >

wherein u = s, • • • sn and X = {-r x, . . . ,  x„}.
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(3) Primitive Recursive Specifications. If

6 d= f( 0, :r L.........r „ ) = r t ;

f i t  +  I.-¡a- ■ • =  t 2

for some distinct x, g A's, for i = l , . . . , n  > 1. for some tx g T(X,X), and for some 
r2 g 7"(E,X'),. for some wherein X' = XU {¿,K} such that t g A'u and Y g A', are
distinguished variable symbols distinct from xx for i = 1....... n then

e PR(o) = H C , s lUl.(n),<Cj1x'lU .,.,(7-2))

wherein u = ,sl ....... sn. X = {xx, . .  and X ' = {xx, . . .  , x nJ  , Y } .

(4) Vector-Valued Primitive Recursive Specifications. If

<y= f { 0,X!,. . .,x„) = < r M, . . , ,Tl}tn >;

f ( t  + l , x i . . ■ . ,.r„) = < r2, i , . . . , r 2i,n >

for some distinct x, g A',, for i = 1 , . . . , n  > I, for some r li; g T(E ,X )S< and for some 
r2iJ- g T( X, X ')3<, for some s' g 5 for j  — 1 , . . . ,  rn > 1 wherein X' = X U {i, 1 ^ , . . . ,  Ym} 
such that t g A’n and Yj g A',* for j  = 1 , . . . ,  m are distinguished variable symbols distinct 
from Xi for i = 1 , . . . .  n then

C PR(p) =

*(  <  ( r l , l ) i  • • ■ > <C $ lX,u,s 'TO( 7’1,r n ) > 5

<  • • • > <C " i , X ' , u , v , s ' m ( T 2 , m )  > )

wherein u — s i . . .  ., sn , X — {x  ̂ , .  . ., x n }, v — s ̂ , . . . ,  s rri, and X

ym).

Termination. Notice that as previously discussed because both C1' and <C*PR, and C1 and 
e PR are mutually recursive before we can show that C*PR is well-defined we must first show 
that for any <1> and <? that Q PR(g>) cannot give rise to a recursive call of Q PR(T>). To see this 
notice that <I> g PREQ( X, A ) and hence that i InTermsOff < < j > </>,; t\ q\ i >,i ,  JF) for each 
i g { 1 , . . . , /} .  Therefore, C’PR( ^ )  for each j  g {1 , . . . , /}  cannot give rise to a recursive call 
of C PR(<p; ) and clearly as a consequence C rPR(<̂ ) cannot give rise to a call of <C*PR (<?!>,■) that in 
turn could give rise to a recursive call of C I>R(<?j). Hence termination is guaranteed.
Well-Defined ness. Since we are guaranteed termination the well-definedness of <C*PR follows 
directly from the hypotheses on <1> and the well-dcfincdncss of Cr and (5  and is omitted.

The Compiler Cr>n. Finally we are now in a position to define the compiler CPR : 
RREQf X, A') — PR(X). Indeed, this is now straightforward using C PR as by definition for 
each PREQ specification T = < C>i, • • • < <Pi\ i  > it is <j>< g 11PREQ(X',.A) that provides the 
semantics for <I>.



C PR = < C PR : PREQ(A, A')„,u PR(I')Itil. | a, » G S + > 

wherein for each <!' G PREQ(S, A')u i; for any it, v G S + the mapping

CPR :PREQ(S.A ')Uil. -  PR(S)U,„

is defined as follows:

O * )  =

W ell-definedness. As by hypothesis ‘î> G PREQ(£, A') by the well-definedness of C*1>R(cpç) 
we have C PR(<h) G PR(S)UitJ as required.

The A dequacy  of P R E Q . We now define the compiler <CPREQ : PR(L') —« P R P Q ( L'. A' ) 
that we gave an informal algorithmic description of in Section 5.2.2. As with the definition of 
the compiler CPR the compiler CPREQ is also defined in terms of a number of sub-compilers: 
e PREQ, C°PREQ, e PREQ. CVPREQ and the compiler CPRfi. Of these sub-compilers it is C°PREQ 
and CPRe that perform the most complex aspects of the compilation procedure.

In order to formally define C°PREQ that maps PR schemes into RPREQ specifications we 
employ the use of the normal form representation PR# (see Definition 37). Indeed, the use 
of PR./- in essence enables us to reduce the compilation of PR schemes into RPREQ into the 
construction of either one or two appropriate terms. More precisely, recall that if a  G PRk(E) 
then either (1) a contains no applications of primitive recursion or (2) a contains one primitive 
recursion and is of the form a = *(«!, o 2); that is, either (1) a  G PRd Q PRe and represents a 
polynomial function or (2) a G PRe and represents a primitive recursive function defined using 
two polynomial functions «i G PRe> and a 2 G PR/j. Also recall that PRE(A) = PR/t(A) is 
precisely the class of functions that can be represented in RPREQ over algebra /l. Therefore, 
(ignoring vector-valued functions that we discuss in a moment) in Case (1) the process of con
verting a into RPREQ can essentially be reduced to converting a to a single term r  -  used in 
a simple RPREQ specification; and in Case (2) the process of converting a  into RPREQ can 
essentially be reduced to converting oq and a 2 to two terms tx and r2 respectively -  both used 
in a primitive recursive RPREQ specification.

The compilation of PR0 schemes into terms is performed by the compiler C PREQ. In
deed, as far as possible C PREQ is structured to be the inverse of the compilers C r and C  
described in the previous section. In particular, C*1 RE<̂  deals with the generation of the ap
propriate variables to represent each input by making the order of the sets X = {xx, . . . ,  xn}
and X ' = { t , x i ___, i n, Yx, . . . ,  Tm} significant (see Definition 5.3.2). Thus, if a = IP" then
C*p1U:,P (q ) = x wherein x = t it i = 1; x = x,-_i if 1 < i < n -f 1; and x = if
11 -f 1 < i < l | u G  m.

Einally, returning to the question of vector-valued functions notice that in the following def
inition of [Q'prkQ that (ignoring other indexing) in fact C*1 RE<̂  is properly a family of compilers 
Q-PRi.Q for e ^ [\f+. The index e is designed to deal with the slight, complication created 
with vector-valued functions in that regardless of the size of the co-domain of the PR scheme a,

Definition 60. W e d e f in e  the  S + X . ^ - i n d e x e d  fa m ily  o f  c o m p i le r s
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we require the result of the compilation C*PRLQ(o) to produce a term r  that must by definition 
be single-valued. In more detail, to cope with this problem, essentially each compiler Q P!U'JP 
is only well-defined on a PR. scheme a if a defines a function Fa = (/■'",..., Fg) for some 
k > e. In particular, Q r>Ht;Q(a-) produces a term r  such that the semantics of r  is ('quivalent, 
to F". Therefore, to produce a RPREQ scheme for the vector-valued function rv as above, if
NPRSS(o) = 0 then we simply compute the terms r, = Q preq(cv) for i — 1....... k and use
these to make a vector-valued simple RPREQ specification; otherwise if a — * (a1, o 1!) then we 
compute the terms tx , = <C*1 RLQ(c*i) and r2, = Q preq(q2) for i = I,...,A; and use these to 
make a vector-valued primitive recursive RPREQ specification.

The Compiler e PREQ.

Definition 61. For each X = {xx, . . . .  X|u|} C A such that x,- £ AU( for i = L,. . ., |u| we define 
the .9+ x ,S'+ x N-indexed family of mappings

c preq = < Qi’tmq . PRo(S) ^  T(S,X)„. >

wherein for each u, v £ S +, for each n £ {1,.. ., |n|}

C ™  = PRd(S) —► 7’(E .X)Un

(ambiguously denoted Q PREQ) is defined uniformly in (u, v) by induction on the structural 
complexity of a scheme rv £ PRo(E)tl l, as follows:

(1) Constant Functions. If « = cw for some c £ F a,, for some ,s £ S  and for some in £ S + 
then

Wcll-definedness. It is clear here that since by hypothesis c £ S A>J and v = vx = s we
have C^1MU'Q(a) £ T(A.,X)S as required.

(2) A lgebraic O perations. If a -  a for some a £ for some in £ S + and for some s £ S 
then

Well-dcfinedness. Again as by hypothesis n = tq = s and also as by hypothesis we have
x, £ XWi for i = 1....... |tr = u| and cr £ h WiS it is clear that £ T(X,X)3 as
required.

(3) Projection Functions. If a = U'" for some in £ S + and for some i with 1 < i < |-ir| then

q pS ( « ) = f .

ID !!-<!> jint ilnt .<>. It is clear here that since by hypothesis x, £ A'u., for i -  l , . . . ,  jin - u\ 
and r = in,- = .s we have CjPREQ(o) £ T ( 2 , X ) W, as required.
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Induction . Assume that for each a £ PRo(H)Uil, for some a, v £ S + that for any scheme
a' £ P RD( E f o r  some u\ v' £ S + of less structural complexity than a if X' = {.r ,̂ . . . ,  xfu<|} 
wherein x' £ A'u- for j  — 1,. . .. |u'| then for each i £ | | }

^ , ( a ) G T ( V . X ) 1!;.

(4) V ectorization. If o = < a 1. . . . ,Q |m| > for some m > 0, for some a, € PRD(E)„ for 
some u £ 5 + and for some s, £ S for i = 1,. . |u| then

caPREQ
, U , 3 i • • • , n ( û )

jP̂ PREQ / >, s n , 1 (Û nj

lVeil-dejinedness. By the induction hypothesis Q* Rl'Q(a u) € 7’(S, X).,n. 'L'hercfore, it is 
clear that Q preq(a) £ T { ^ . X ) , n as required.

(5) C om position . In this case o = q2 o qj for some op € PRofS),,,«, and for some os £ 
PRi)(S )„ i, for some u, w £ S + and for some s £ S. As a £ PRD(S) we now consider two 
sub-cases:

(A )  w — s' £ S .
(B) w -  s ] ■ ■ - 51,„| £ S + w herein  \ w\ > 2.

Sub-case (A) w — s' £ S. In this case

Q puRï ï ( a ) =  ^ ( Q puni Qi(«i))

if a 2 = cw, 
if a 2 = cr, and 
if a 2 = U'f.

Notice that by the hypothesis that |u>| = 1 and the definition of PRD(N) the scheme 
a must correspond to one of the above three cases.

Sub-Case  (B) w = Si • • • *’|,„| £ S + w herein |rc| > 2. In this case

jpxPIŒQ 
• -  , !1 . .1 , 1

(a)

if fto =

if = <x, and*PREQ

pJrPREQ
fti — < ,vi,u • • • i «i,M >
if a 2 = U'u and
«1 = < «1!, . . . ,  >.

Notice that by the hypothesis that |tt-'| > 2 and the definition of PRo(Xl) the scheme a 
must correspond to one of the above three cases.
Well-Dcjinalness. We consider the well-defmedness of Sub-case (B) and leave Sub-case 
(A) that is similar to the reader.
We have three sub-sub-cases to consider:

(A) a-, = c. In this case since by hypothesis c £ S AiJ it is clear that Q PRPQ(a) t  T(S,X ), 
as required.
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(B) Qo = a. By the Induction Hypothesis G T(E ,X )tiJi for i -  I....... |w|
and by hypothesis a G Z Wi,. Therefore, it is clear that Q PRECJ(a) G T(T,,X)S as 
required.

(C) o L> = U'C This case is similar to Case (B) and is omitted.

T he  C om piler e PREQ.

Definition 62. We define the N X ST X S+ -indexed family of compilers

C P R E Q  =  <  C O P R E Q  . PR(v )u t; _  RPREQ(E', A')u t, | e G N and u, „ € 5+ >

wherein E' C Id U T  and T  is defined as in Lemma 19 as follows: for each e G N for each u G 5,+ 
and for each u G 5 + the mapping

(poPR EQ  
, u, v PR.(S)u,„ -  RPREQ(S',A')U,

(ambiguously denoted <QpreQ) is defined by the structural complexity of a scheme o G PR(E)U „ 
as follows: (as the well-definedness of the various cases follows directly from the well-definedness 
of C*PREQ and CPRe and by Lemma 14 we leave this to the reader; also, notice that in each of 
the following cases X = {:i*x. . .  ., X|u|} wherein x,- G X U t  for i = 1 ,.. |u|)

( 1) Constant Functions. If a = cw for some c G E*iS for some s G S  and for some w G S + 
then

(poPH EQ (a) = /(W ,- ■ • i ¿'M ) — Qï
P R E Q  / (pPR  e  
:,tu,s,lV̂ e («))•

( 2 ) A lgebraic O perations. If a = a for some a G S,U|J for some w G S + and for some s G S 
then

Q p“ h C u (a)).

(3) Projection Functions. If a = LT for some w G S +  and for some i with 1 < i < |;r] then

(poPR EQ
W.UJ.IU, (a) =; / ( x i , . . -, -x-|„ _  ,p*PR E Q

( C lE(«))-

Induction.

(4) Vectorization. If o = < o q , . . . , f tm > wherein a, G PR(E)UJi for some u G S + and for 
some Si G S for i — 1,. . . ,  in then

Q t ï X P j “ ) = = <  < s œ « r * ( « . » ....... « s s ' . M T ' i n - ) )  > ■

(5) Composition. If a  = ft? o oq wherein oq G PR(S)UiW and e*2 G PR(S)W , for some 
u, w G A+ and for some .s G S then

q ™ Q(û)

' / ( x I. . . . . x |u|) = Q PR̂ ( C r RE(a)) if M = Rand
/ ( x , ........ rI„j) - <  Q 1S ( c r iE( « ) ) , - - - ^ ; s , l( c r RE(a)) > ¡ f id  > i.

162



(6) S im ultaneous P rim itive  Recursion. If tt = *(<*!, a;>) wherein n, 6 PR(E),lt and 
n -2 € PR(S)nuu j, for some u, v E b’+ then

q ™  Q (<*)='

/(0, 2-,,u|) = Q PJ ^ ( C IlB(rt[) )

i ( t  + 1^ 1, ......iH )  = Q '. tu Qu,u. i(c rRE(«2))

if | e| = 1 and
Q , ^ EQ(«) =

/ ( 0 , = < Q P, ^ ( C r Rt' ( a i ) ) ,Q PS l(C‘,Il« (a1)) >

/ « + 1, . . . ,  j ,u.|) = < Q ^ lt(ll( c r R'i(Q 2 )) , . . . ,Q ,: i ^ iI)iH( c r ,iB(a 2)) >

if |u| > L wherein X' = {t, ;t-i , . . . ,  X|u|, Y \ , .. ., Yi„|}.

Using C°PREQ we now define the compiler C*PREQ that given a scheme « produces a partial 
PREQ specification essentially of the form <5 = < C°PRt'^(a) >.

T he  C om pile r  C*PREQ.

Definition 63. For each e € N + and for each u,v € S + we define

qPREO . PR(S)Uit) _» P R E Q ^ S , * ) ! ; ™

(ambiguously denoted C*PRLQ) as follows:

(Va G PR(E)U,U) q PREQ(a) = <& = <</>; r; r/; ? >

wherein
<? = q pû Q(a);

L= { e t -  1};

¡1 = {e h-  ( ¡i1, v1), e +  r a ( 1) e-> (u~, v~),. . . ,  e + ra(k) t-*- ( uk+l, t/"+1)}

wherein ul = u, v1 = v, and for i = 1 NPPRSS'(o) we have u'+l = £>om(PPRSS'(a,t))
and i),+1 = /¿un( PPRSS'fa, ¿));

and

i = i;

rri = e -f k.

Well-tiefincdness. First, notice that by the well-definedness of C°PREQ we immediately have
4> G RPREQ(S', A')Uili wherein

U{/«+r'»(l),l } U  ' ‘ ‘ U{/e + r*1(l)>2| }

HJ-UU
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Secondly, again by the well-definedness of C°PREq we have

1 (f InTermsOff <L, ! ,£ '  — £).

Finally, as

and

and

Dom [ (i) = {e}

u — u‘{e) = ul = r]D(e)

v = vlle) = v l = ¡ fie)

by definition it is clear that <l> G PREQ JE, A as required.

T he  C om pile r  c vr,REQ. Following the structure of the informal algorithmic description 
presented in Section 5.2.2 our strategy is to now define the compiler CVPREQ to use <C*PREQ to 
produce partial PREQ specifications for each top-level primitive recursion in a  and join these 
specifications together using the function 1+J (see Definition 53) to make a single (total defined) 
PREQ specification with the same semantics as a. As we indicated during the discussion of 
the high-level algorithm to perform this procedure the main technical problem is to ensure that 
each additional function symbol from the signature T  is given an appropriate index. To achieve 
this formally we use the function r (Definition 43). The correctness of this indexing procedure 
is address in Lemma 26.

Definition 64. We define the N+ X S + X 5 +-indexed family of compilers

c vpreq = < c^PREQ . PR(v ) ii tj _  PREQ(S,A')„iU | e G N+ and u,v  G S+ >

wherein for each e G M+ and for each u, v G 5 + the mapping

CVPREQ . p R(v )ti u _  p REQ(S, A )u,„

ambiguously denoted C^PHLCi is defined as follows:
(Va G PH(£)„,„) C7PREQ(o) =

q PHEQ(a) W , C P(“ Qe(PPRSS'(a, 1))
W i€rV̂ f ; Qe(PPRSS'(o,2))

l±J iC^*ĉ (P P R S S '(« ,fc ) )

wherein k = NPPRSS'(a).

Lem m a 26. If  a G /'7i>( E ) „ l for tome u, v G S + then for each e G N+

c T u r E Q l<*) d= ^ = <  <?t........Ohiyn^  >  g p r e q c s , x ) l ,171,1.,1) , <, 
tt , V
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w h e re in

D)

for i = 2,. . / = (ra(k) = A' = NPPRSS(a)) + 1 wherein k = NPPRSS(a);

t =  {e i—- 1, e +  1 i~ 2 , .  . ., e -f K  t— /} ;

?/ =  { e t -  ( u 1. r 1 ). r -f 1 ( it2, i;2) . . .  ., e +  A' ^  ( u A + 1, l>a + 1)}

wherein ul = u, vl = v, and for i = 2,. . ., A’ we have u‘ — Dorn(PPRSS(a, i -  1)) and 
v' = lian{ PPRSS( a, i — 1));

c = l;

and
ni — e + K.

Notice that if e — 1 then ‘I* is standard.

Proof. Bv induction on K  = NPPRSS(a). We consider two basis cases:
(a) K  = 0, and
(b) A’ = 1.

(a) K  = 0. In this case by definition

cvnu ':Qin) = c ; PREQ(«)

and hence the proof is immediate from Lemma 71 and the definition of C*PREQ.

(b) K = 1. In this case as by hypothesis NPPIlSS(a) = 1 by Lemma 13 we have NPPRSS'(a) = 
1 and therefore by Lemma 17 we have ra = {1 >->■ 1} and PPRSS'(a, 1) = PPIlSS(o,l) 
and hence

<L = <t>! f+J !<I>L,

wherein
= q PREQ(o) = < Oi ; ri ; r/,;l >

and
<I>, = C ^ ;REQ(PPRSS(a, 1)) = C:RREQ(PPRSS(a, 1)) =<  p ,; t , ;  rh ; 1 >

w lie re in

= c?pnEQ(«)
o2 = q pf Q(pi>Rss(o, i))

h = {e e- 1}
/, = ( e +  l e t  1}

Ui — {c l—* {u1, it1), e -f 1 • (u~, v~)}
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a n d

7/2 = {e + 1 i— (ir,  e2)}.

Notice, that by the well-definedness ofC*PRLQ we immediately have <h, G PREQjf E, A' )ui „1 
and <f>2 G PREQ, (1C, A' . Therefore as Dam |. ( i t ) f | Dom j (¿2) = 0  and T]x D ;/2 by 
the well-definedness of 1+j 1 we have

<f> € P R E C IS , X) Xe+1,
U , V

wherein

that is,

( = {ee+ l,e  + 1 m  2}; 

<i> =< </>n 0 2 ; 7/1; l > .

Therefore to complete onr proof in this case it remains to show that <h is totally-defined; 
that is, for each

;= -
1 G U  InTermsOf(‘l>,j,E', - S )

; = i
we have ¿ ( 7 )  j.. This is obvious as by the definition of C°pniJQ we have

;
( J  InTerinsOf(<i>, j, S', - S )  = e + 1 

and by the definition of l we have t(e -f 1) = 2.

Induc tion  H ypo thesis . Assume for any scheme a' G PR(S)ti>- for some u', v' G S + that if 
NPPRSS(a') < K 1 for some A'' G N then for each e. G N+

(pVPRIiQ(rv') = $ ' =<

wherein
0', = C ^ ( « ' ) ;

for i = 2 =  (ra‘(k1) -  NPPRSS(o') = K')  + 1 wherein k' = NPPRSS'(a');

/,' = {e e- 1, e + 1 2 , . . . ,  e + A ' i— /'};

// = {e >-* ( x \ / / ) , e  + 1 h- (x2, > /) , . . . , c + A' i— {xK'+l, >jK'+l)}

wherein x l = it', y1 = v1, and for i = 2 , . . . ,  A'' we have x‘ = Z)om( PPRSS(<T, i -  1)) and 
I/' = /¿unf PPKSSf o', i — 1));

= l;
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a n d

m' = c + A".

Induc tion  Step. We must show for any scheme a" € PR(E)„</ v>, for some a", v" £ S + that 
if NPPRSS(a") = K" = K'  -f 2 then for each c £ M+

(«") = <5>" =< # v

wherein

for i = 2

O;

9" =

= y 2 - A ' , i7 ' ( ppRSS(a " ' i -  n*
" = (r*"{k") = NPPRSS(a") = K")  + 1 wherein k' NPPRSS'(a");

t" = { e t -  l , e + W 2 , . . . , e + A " V / " } ;

7/ = {e t— (x1, yl ), c. -f 1 i~ (x~, y~),. . . ,  e + A " (xh + l , y h +1)}

wherein x 1 = u", y1 = v", and for i = we have x ‘ = Dom.(PPRSS(a", i -  1)) and
f  = Aan( PPRSS{a", i — 1));

c" = 1;

and
Hm e + A'".

Notice that by definition

<r = C7PREQ(a") = C:PREQ(a'0 W i C ^ ^ f P P R S S ' i a " ,  1))

W iC +Pr-"?fc'')(PI>RSS'(a ',’r ) )

wherein for each i £ { 1 , & " }  by Lemma 15 NPPRSS(PPRSS'(a", i)) < K"  and therefore by 
the Induction Hypothesis we have

CVPRJ-?o(pl)RSS'(ft" ’ 0) e PREQ(S, A")
t5 T r l  * J

l ’ , m  ‘ , l 1, r; ‘ , 1

wherein

/■ = k' + 1 = NPPRSS(PPRSS'(a", ¿)) + 1,

;n‘ = e + ra (i) + k \
i- = {e + ra"( i) i -  \ ,c  + ra" + 1 — 2 , . . . ,  e + r°"(i) + kl h- /'},

and

,? = {e + t * (T?,ui) ,e+ ra"( 1) + 1 -  (ui+\ D i+l).......

c+ r°"(i) + k' -
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wherein ul = Dom{ PPRSS'fa",;)), i;1 = /?.<'iri(PPRSS'(a", ¿)), aj 1 = Dom( PPRSS( PPliSS'(rt",
0)) and TJ ~l = Rnn( PPRSS( PPRSS'fa", i))) for j  = 2---- - (fc1' = NPPRSS( PPRSS(o", ¿))) + 1.
Furthermore, notice that as by hypothesis NPPRSS'fo") > 2 that by Lemma 18 for each 
i € {1....... NPPRSS'fa") -  1} we have

r*"(i) + NPPR.SS(PPRS S'(a ", i )) + L = ra"(i + 1)

ami
/•*"(NPPRSS'(a")) + N P P R S S (P P R S S' (a  ", N P P R S S' (a ")) = NPPRSS(a").

Therefore for each i . j  t  {1,.. • 

i < j  => ({Dom 

and hence it is clear that

*  =  c vi;,llEQr“"(l) + e

, ra (A;")} we have 

1.1 ' P) Dom 1 f  = 0 )  A (doni( //‘) P)dom( /y') = 0 ))

(PPRSS'(a", D)liJ iCj+Pr̂ 1)+e(PPRSS'(«",2))

till C ™ l *!*)+e( P ? R S S ' ( a " , k " ) )

is well-defined.
In addition, notice now that as K"  > 2 by Lemma 13 we have NPPRSS'(o") > 2 and hence 

by Lemma 17
■r“"(l) = 1

and by Lemma 18 for each i £ {2, . .  . ,k" — 1} we have

r “”(i) + NPPRSS(PPRSS'(ft", ¿)) + 1 = t ° " { i  + 1)

and
ra“(k") + NPPRSS(PPRSS'(a", k")) = NPPRSS(a") = K"

and therefore
t  =<  >

wherein
0n = qnREQ(p p RSS

for i = 1 . =  A'";

l" = {e + 1 h- 1, e + 2 ^  2 , . . . ,  e + K"  h- /"}; 

i f  -  {e + 1 i— (ir,]72),e + 2 e- [ x ' \ l f ) ....... e + A " h-  (xk +1 , y k +1)}.

Finally, notice by definition that

c .pnKQ(o") =< , ; ; ! > £  P R EQ L (S , X f c v / ’-11



w h e re in

<P =  C tPREQ(a") ,

/ = 1,
771 “  6 -f" k  ,

t = {e h-  1},

and

V = {c ^  U'1,? /) .e  + ?■'*"(!) h-  (x2, i f  ), + (k") -  ( W’+t 77̂ "+l
)}■

Consequently, as by the definition of ra" we have PPRSS'(tt",i) = PPRSS(o", r r*"(i)) for i = 
1,.. ., k" it is clear that

Dom J, l P) Dom [ l" = 0  

and
V" 2  rj

and hence that
<K =  C 7 P R E Q ( a " )  =  q P R E Q ( a " )  y

is well-defined and furthermore that <I>" € PREQ(E, A')*, ’ve,?h ,l 'v 11 as required.
□

Finally, we are now in a position to define the required compiler CPREQ that is essentially 
c vpre<j , but ensures that the resulting PREQ specification is standard (see Definition 52).

The C om pile r  CPRECC

Definition 65. We define the 5 + x S + -indexed family of compilers

c pREQ = < c rREQ . PR(S)ti u ^  PR EQ ^S, „ | u, v 6 S + >

wherein for each u 6 S + and for each v 6 5 + the mapping <CPREQ : PR(E)Ui„ -+ PREQ(S, A')u „ 
(ambiguously denoted CPREQ) is defined as follows:

(Vo: e PR(S)Ui0) CPREQ(o) = c ? PREQ(o)-

This completes the definitions of our formal compilers. In the following section we state 
two lemmata regarding the formal properties of  CPR and CPREQ that we can use to deduce 
1heorem 5.3.3. The proofs of these lemmata can be found in Appendix B.
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5.3.4 P r o o f  of T h e o r e m  10 

Lem m a 27. If
0 =< Oi..... <?/;/;'/: s > £ P R E Q ( Z ,  X ) nv

for some u, v £ S + then
(V «£ . T ‘) m A(a) = lCPR( ^ ) j A(a).

Lem m a 28. For each a £ P/?(S)Uit, /or .some u, v £ 5 + i/<L = Cp/i£,<?(a ) then

(Va £ , 1“) H , i  = M u -

For convenience we first re-state Theorem 10.

T h eo rem  10. / /  A is some standard algebra then
(1)

(70 £ PREQ('J ,X))(3a  £ Pfl(E))

(Va £ P P (S ))(3$  £ PREQ{Z, A'))

H . t  = M ,t-

[^l,i = H u -

P ro o f  of S ta te m e n t  (1) of T heorem  10. This now foLlows as a simple corollary to 
Lemma 27.

For each cf> £ PR EQ (S ,X ) if we define a  = C F K (<?) £ PR(S) then by Lemma 27 we have 
[0]^ = [a] ,v as required, and hence PREQ is sound with respect to PR.

P ro o f  of S ta te m e n t  (2) of T heo rem  10. This now follows as a simple corollary to 
Lemma 28.

For each a  £ PR(£) if we define <I> = CPREQ(a) £ PREQ(S,X) then by Lemma 28 we have 
H a  = f/hj.-t as required, and hence PREQ is adequate with respect to PR.

5.4  T h e  P ro p er tie s  o f  P R E Q  S p ecifica tion s as T R S s

To conclude this chapter we complete the technical development of PREQ by turning our atten
tion to the proof of Theorem 11 that is concerned with the properties of PREQ specifications 
when interpreted as left-to-right term re-writing systems. Theorem 11 plays a significant role in 
our formulation of techniques for the automated verification of S Ls in (Aiapter 7.
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5.4.1 O verview

While essentially PREQ specifications are a restricted class ol first-order systems of equations we 
cannot directly convert a PREQ specification into a TRS (by orienting the equations as left to- 
right re-write rules) because of the following two technical problems: (i) PREQ specifications 
may be vector-valued; and (2) (R)PREQ specification involve the use of the special variable 
symbols

As we will require the use of PREQ specification as both proper ‘first-order’ systems of 
equations and as equivalent TRSs in Section 5.4.2 we begin by defining two functions: the 
function EQCON that converts a PREQ specification into a proper equational specification; and 
the function TRCON that converts a PREQ specifications into TRS. In particular, TRCON 
is defined to be exactly EQCON except that it orients each equation as a left-to-right re-write 
rule.

5.4.2 In terp retin g  P R E Q  Specifications as T R Ss

Definition 66 . For each a. v G S +, for each /, m G N, for each t : {1 ,. . . ,  m}  — {1,.. for 
each 77 : {1, . . . ,  m} — S + x S + and for each ? G {1 ,. . . ,  /} as defined in Definition 50 we define

EQCON'Q)1^  : PREQ1(S ,.Y )^ -‘-,I-i -  EQ(E",.Y)

(ambiguously denoted EQCON) wherein

E" = { f m ) j  | f i , j  G f  A ¿(0 !}

wherein T  is also defined as in Definition 50 by

(V4> = < Ou / ; m s- > e PREQ(S,*)£•*•’
¡=1

EQCOKW = U  E Q C O N ' ^ i * :

wherein for each /, m G W. for each i G for each 1 : —> { 1 ,. . . , /}  and for
each 77 : {1....... m} — S + x N+ as defined above we define

EQCON' : RPREQ(L’\  A') — EQ(S", A”)

(ambiguously denoted EQCON') by the structural complexity of a scheme <p G RPREQ(E', .Y) 
as follows: (in the following definition 1/ = X U P)

(1) Simple Specifications. If
<?d= f ( x l , . . . , x n) = r

for some distinct .r,- G A ,t for / = 1,.. •, n > I and for some t G / (X/, X)., for some .s g S 
then

EQCON'(a) = { k i ( x i , . . . , x n) = r} 

wherein . . , ,,p = m j = |r)n(P)l
7  = r U U [ f p . j / U p ) j ] -

r=i 1=1
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(2) Vector-Valued Simple Specifications. If

o /U ' i . • • .. x„) = «  7V...,7V >

for some distinct x, £ X s, for i = 1---- , n >  1 and for some r; £ 7’(LV, X)3- for some .s' £ S
for j  = 1....... n' > 1 wherein X = {a,-! , . . . ,  xn} then

j=n‘
EQCON'(p) = |J  {/¡j(.ri---- , x„) = Tjj

; = i

wherein for j  — 1 . . . . .  n'
P = rn

fi = rj U  U [ f p . : / M p ) j \ -
p=1 ;=>

(3) Primitive Recursive Specifications. If

(pd~ f ( 0 , x u . . . , x n) = v ;
f ( t  + 1, :r j ---- ,.Tn) = r2

for some distinct x, £ X Si for i = l , . . . , n  > 1 for some tx £ T (Y ' ,X ) ,  and for some 
t-> £ T’iE .X '), for some s £ S wherein X' = X U {<, V} wherein t. £ A'u and V £ X,  are 
distinguished variable symbols distinct from x, for i = 1 then

EQCOX'(o) = {/,, i(0,.Tt, .. . , x n) = T u f i ^ S  ucc(t), x u .. . ,x„) = r 2}

wherein
P = m  ; = | r ; « ( f > ) |

b = h  U  U  ifp,i/Up)j]
P - 1 7 = 1

and
P = m i=|7H(;’)|

r, = V ( U  U  [/P.;//I(r,,;])[>7/M(E^,...,XX)].
P=i j —i

(4) Vector-Valued Primitive Recursive Specifications. If

Q d= f { 0 , x i , ....... r j  = < r M, . . . , r ln , >;

f ( t  +  l , Xi , .. ., x n ) = < r2, i , .. . ,r2i„, >

for some distinct x,- t  ASi for i — > 1, for some tXj £ T(S',X).,i and for some
t2j £ for some s' £ S  for j  = l , . . . , n '  > 1 wherein X = {r xri} and
X' = X u { / ,V i , . . . ,  in-} wherein t £ X u and Yj £ AV for j  = 1,.. ., m are distinguished 
variable symbols distinct from x, for i = 1 , . . . ,  n then

;=r:
EQCO.V(p) — i Ĵ {fi.j (0, x’i , . . . ,  x,i) — Txj , fi j (S  ucc(t), x x. = ^ j }



w heroin
p~rn J = l ’ln(p)l

7W = iu U  U [ f r j / U - ) j ]
p=i j =i

and
p = rn j =j p n ( p ) l  q — n'

— T ' i ( U U [ f p , j  /  f ‘ ( p ) j } )  U [̂ ?//*.«( N 2'l’ • • • J :l'n )] •
P=1 J = 1 ■/ = !

Well-Definedness. Essentially, EQCON and EQCON' eliminate the use of the function t in a 
PREQ specification <!> (see Section 5.3.2) and replace the special variable symbol Y  (or Yj, y  
depending on the form of <1>) from each constituent primitive recursive R.PREQ making-up <I>. 
However, we leave it as an exercise for the reader to deduce formally that both EQCON and 
EQCON' give a well-defined equivalent equational specification.

We now use EQCON to define the function TRCON that converts PREQ specifications into 
equivalent TRSs by orienting the equations generated by EQCON as left-to-right re-write rules. 
Formally:

Definition 67. For each u. c t  5 +, for each l, m t  N, for each l : {1 ,., . , /n}  — for
each i] : {1,. . .. m} — S + x S + and for each ? € as defined in Definition 50 we define

TROON;/;; ' ' : PREQ ^E, -  TRS(S",X)

(ambiguously denoted EQCON) wherein E" is defined as in the previous definition by

(VT = < <5,; e PR EQ JS,

TRCON(<f>) = {p = {l ^  r) | e = (l = r) € EQCON($)}.

Using TRCON we now set about establishing that for each T € PREQi(E,A') the TRS 
II = TRC0N(<1>) is complete.

5.4 .3  T R S s  as C onstructor  S y stem s

Before we proceed we recall one further concept form the theory of term re-writing: constructor 
systems (also see Section 2.3.12).

Definition 68. Let R Ç TRS(E,X) be any TRS. If there exists a rule p = (r k | ) £  R  such
that r = f [ r x........rn) for some terms r,- for i = 1 , . . . , «  6 N+ and for some algebraic operation
/  e v t i,en W(, say d iat. /  is either a defined symbol of S or simply just a defined symbol if E is 
either understood or unimportant.

I f  f  6 e  is not a defined symbol then we say that /  is either a constructor symbol of E or 
simply just a constructor symbol if E is either understood or unimportant.

A signature that has been partitioned into defined symbols and constructor symbols is re
ferred to in the literature as a constructor system. Indeed, constructor systems are used widely 
for the analysis of the particular properties of TRSs including most notably modular properties.
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The list of references on this subject is extensive including: Toyama [1987a], Toyama [1987b], 
Middeldorp and Toyama [1991], Kurihara and Ohuchi [199'2b], Kurihara and Ohuchi [1992a], 
and Toyama e t  n l .  [1989]; and in general is a subtle and complicated problem. Moreover, as 
pointed out in Fernández and Jouannaud [1993] the subject at present lacks an overall coherent 
theory, although Fernández and Jouannaud [1993] goes some way to resolving this problem.

In the sequel we will use constructor systems to analyse the termination and confluence 
properties of particular classes of TIlSs.

Transitive  C losure  and Separability. Given a collection of signatures id, D X for i = 
€ IH+ we now present a formal mechanism for establishing which symbols from XT, -  X 

for some j  E  { l , . . . , n }  are shared by some X( for some / E  { l , . . . ,n }  such that / j ,  In 
particular, we define a formal mechanism for establishing the transitive closure of this property.

Definition 69. Let X be any S-sorted signature and let X, for i = 1 , . . .,«+  be some signature 
such that

for some function symbols /,• for i  = 1........k  E  N+. For each n, m  E  {1,.. .,&} we define the
extended signature

, ç { / i , . . . , / a  y x

s ; ‘ ç  ( j  Xj

by case analysis on the value of n  as follows:

i n ( S U  Un});

and for each n  E  {2.. . ., k }
v n _  v l 11 V*-1~‘m —‘rn Es ~Jj

wTierein Fm = {.r | f x  E  Xm}. 

Exam ple  17. If

and

then

174



a n d
V4-'1 V 5 ~  — {hJr-U- f : . } .

By analysing the transitive closure of collections of signatures based on the occurrence of 
particular function symbols we are now able to define an important property that we refer to as 
separability.

Definition 70. Let S be any S-sorted signature and let S,- for i = 1,. . ., n+ be some signature 
such that

5, C A } U s
for some function symbols /,• for i = 1,. . ., k G N+. If lor each i = 1,.. ., k 

then we say that E 1;. . . .  are separable.

Exam ple  18. If £ ! , . . . ,  E5 are defined as in the previous example then they are separable. 
However, if S 3 were defined by

S3 = { / l , / 3 } U S
then XR,. . ., E5 would not be separable as

s? = {A, A, A, A, A};

that is / ,  g Ej.

Our strategy now is to first show that by considering a TRS R C TRS(E, A") as an indexed 
collection of one-rule TR.Ss /?, C TRS(E,-,X), for some Ej C L for i = L , . . . , n  G N+, we can 
analyse the transitive closure properties of the signatures £ i , . . . , E n, based on the occurrence 
of defined symbols, to identify classes of TRSs that are complete. To prove Theorem 11 we will 
use the fact that TR.Ss created from PREQ specifications satisfy precisely these properties.

In order to do this we require one final function that eliminates all immediate applications 
of primitive recursion from a TRS.

Definition 71. Let 'Jl C TRS(E',.Y) wherein S' is a constructor system with { / ¡ , ---- f k} as
its defined symbols such that each /, : .s,-, .Sqi,.. ■, «¡.n, —*■ -s-, for some stj  G S for i = { , . . . ,  k, 
for j  — 1 . . . . ,  », > 1, and for some s, , s' G S. Furthermore, let 1Z be defined by

■R = { f x{tu x 1,1, • - -, aix,,,,) tu 

i k { h , x ktU. . . , x k,nk) ^  rk)

wherein t, G T (£ , .V),, for i = I , . . . ,  At, x.-y G AJt„ for and for j  = 1,. . . ,  and

r, G T(S,-,A'),,
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for some Y, C Y'. Also, let o : Y' —- N be any injection.
For each o and for each 7Z as above we define

PR-ST1UP" : TRS( S', A') — TRS(Y\ .Y )

(ambiguously PR_STRIP(7v) when o is either understood or unimportant) as follows:

PR-STRIP (Tv) = {/,(/,.  x lA.........Cl|„ J  ^  rj.

f k i h P ' k .  1 , • • ■, x ktHk) h— r(.}

wherein for i = 1....... k
r[ G 1 I A'. .Y

is defined bv

{r, if ti 7= Succ(x) for some x G .Yn, and

A Uj = i [/jU- X J , 1 - Amu ) /a ] otherwise

wherein Cj is some constant of type (A,s') from S' satisfying o(c; ) < o(c) for each c G YA>,< such 
that c ^  Cj. Notice that c; is guaranteed to exists by the hypothesis that in this thesis we only 
consider non-void signatures.

In the sequel we will refer to PR_STRIP(7v) as the PR-stripped version of 'IZ.

\Ye now begin presenting the preliminary lemmata that we will require to establish our main 
result. Recall that in this thesis we assume that Y is any ¿’-sorted signature, A' is any 5-indcxed 
collection of variable symbols such that Y and A are pairwise disjoint and that neither Y nor 
X  contain the distinguished symbol /  and any of the distinguished symbols for each
i,J G M+.

L em m a 29. If r = ( f { x l , .. ., x n) >— r) wherein the function symbol f  is of type (su . . . ,  sn.s) 
for some s{ G S for i = 1 . .. .. n > 1 and for some s G 5, and x, G A’,, for i = 1 ... ., n are distinct
variables and r G ___,*„}), then the one rule TRS TZ = {r} G T R S ( £ \ J { f } , X )  is
orthogonal and strongly terminating.

Lem m a 30. If IZ C 77f.5(Y|J{/i....... /¿}, A") wherein the distinguished function symbol /, :
'sci, ■ • •, -S'.,,, — for some stJ G S for i = 1....... k and for j  = l , . . . , ; q  > 1, and for some
si G S for i = 1 . . . . .  A: and is defined by

IZ — { fl  ( ^ 1,1 ? • • • i x 1, n i ) 1 * 1 11

fk ixk. ...........c k , n k ) x k  }

wherein x, j G X Sx] for i = 1....... k and for j  — 1 and

rt G T( Y,, {x, i ,. . ., a, „,})

for some Y, C Y |J { / i ....... f i- i^f i+i ........ A} f or * -  L • • • A  such that. Y ^ . . . ,  Y* are separable
then IZ. is orthogonal and strongly terminating.



Pi-oof. By induction on the number k g N+. We leave the details to the reader. (Notice that, 
the basis case follows immediately by Lemma 29.)

□
Lem m a 31. If 1Z C TilS{  L )J{/}, X ) wherein the distinguished function symbol 
f  : n s i .........s„ — .s' for some ,sy G S for i -  1 ,----n > 1, and for some s' G S and is defined by

'JZ = {/(()..;•,---- ,x„) — Ti,f(Su<:c(x),xu ....... r*) — r2}

wherein x, G -V,, for i = 1....... n. x G A'u is some variable distinct from ay- for i = 1 , . . . .  n,

r i e TfA, {x i.. • - .x n}).

and
r2 G / ( L , {x. x t. . . . ,  xn})

for some S' C S (J{/} such that any term t' C r2 with f  as the outermost function symbol is of 
the form r '  = f ( x , x x, .. . . i „ )  then 'JZ is orthogonal and strongly terminating.

D iscussion . We now use these results to establish our main technical lemma of this section: 
Lemma 32. In particular, Lemma 32 details the necessary conditions under which particular 
classes of TIlSs are ort hogonal and strongly terminating and essentially identifies precisely the 
properties of PR.EQ specifications when they are converted into TIiSs. Specifically, notice that 
Conditions ( L) to ( l) of the lemma simply restrict the definitions of the defined symbols occurring 
in the signature of Tv to be either one rule -  defining a polynomial function -  or to a pair of rules 
-  defining a function by an immediate application of primitive recursion. Condition (5) restricts 
any recursive definitions to be strictly those defined by primitive recursion; that is, Condition
(5) eliminates the possibility of any non-terminating reduction sequences.

Lem m a 32. if  71 C 77T5(S |J{/i, • • ■, /„}, A) wherein the distinguished function
fi : ,s,, sy n> — s ' ) for some G S for i = 1,. . ., n and for j  = 1,. . . ,  n, > 1, and for
some .s,, .s' G S for i = 1.......n and is defined by

JZ = { /;, (t i , x i,),. . ., x i iU,) —* ru

ft k ( l k i x r (i , • ■ ■ > x ̂  ) - i k)

wherein

(1) x i:j G A'.,t; for i = l __ >k nnd for j  = 1----- - n,;

(2) for i = 1....... k we have either t, = x, £ AJt wherein either x ,• is distinct from those
variables defined in Case (1) above or t, = 0 G T ( l)n or ti = S ucc(xt) G 7(S)„;

(3) ^  G {1....... k} for i = 1........ k arc defined such that for each p,q G { 1 ,. . . ,  k } we have

/,, =_- p =  g V (t,. = o  A tq =  Suafixfi)  V ( i ,  =  0  A tp = Succ(.r , , ) ) ;
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(4) for i = k

( A )  if t, = x t then
Tt € 7'(S.-,{xi,xM.........c,iUi}).,<

wherein D,- Ç LU { / i , • • •, f , - i  , / 1 + i, • • ■ • f k } :

( B )  if t, = 0 then
11 t  7 ( —i i, { x i 11,. . ., x i n t} ) j <

wherein S, Ç S U {A....... /¿_i,/ ,+ i----- ,/*}.’
(C )  if it = Succ(xj) then

1 i ti 7 ( i, { x ,, x j i j , . .  ., x { n i} ) 3 '

wherein S, C Il U { / , .......A} and any term r' Ç r, u’ii/i /, as the outermost function
symbol r' is of the form r1 = /¿(x,-,x,-,i....... xiini);

if S ' ....... 5^ arc the signatures from PRSTRIP('R.) as defined in Definition 71 then
S [ ....... Y,'k are separable

then 'JZ is orthogonal and strongly terminating.

Based on tdiese five conditions of the two properties that such specifications have (orthogo
nality and strong termination), only strong termination is non-trivial to establish. However, this 
property is itself straightforward to prove by induction on the number of equations occurring 
in the TRSs of interest 'JZ. Consequently as a concession to conserving space will only present 
a proof sketch of how to establish strong termination and leave the remaining details to the 
reader.

Proof o f Lemma 32. By induction on k t  Ar + .
Basis. We consider two basis cases:
(A) k — 1, and
(B) k = 2.
Case (A ) k — 1. This follows immediately by Lemma 29.
Case (B) k ~ 2. In this case we must consider two sub-cases:
(a) /; A and
(b) /, =
Sub-Case (a) f  -f- In. This follows immediately by Lemma 30.
Sub-Case (b) /. = This follows immediately by Lemma 31.
Induction Step. Notice now that as the only mutually recursive rules in 'JZ are defined by 
primitive recursion (this is guaranteed by the separability of any PR-stripped version of 'JZ). 
Consequentlv, for anv reduction sequence under JZ wherein JZ contains k 4- 1 rules and for any
redex t. it must be the case that / is always re-written in a finite number of steps to a term t' such
that, for all possible remaining reduction sequences only k1 < k rules from 'JZ can be applied to t ' . 
If we let 'JZ' denote this subset of Tv. with only these k1 rules then we can observe that the normal 
form of /' under 'JZ and 'JZ' must be the same and furthermore by the Induction Hypothesis 'JZ'
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is strongly terminating. Therefore, IZ must, be strongly terminating as required.
□

To conclude this chapter we can now prove Theorem 11 using Lemma 32 and the following 
result from Bergstra and Tucker [1992].

Lem m a 33. (L em m a 2-4-3 o f  Bergstra and Tucker [1992]) If IZ, is an orthogonal and 
weakly terminating IR S  then 'IZ is complete.

For convenience we first re-state Theorem 11.

T heorem  11. If  <J> G BREQ('£,. A ) and'IZ = TRCOi\(*P) C TRS(X,  X ); that is, if IZ is the 
term re-irriting system formed from <I> by orienting each equation in <{> as a left-to-right re-write 
rule then JZ is complete.

P ro o f  of T h eo rem  11. Notice that lor any PREQ specification <1* the equivalent term 
re-writing system TZ. = TRC0X(<1>) is of precisely the form required to satisfy Conditions (1) 
to (5) of Lemma 32. In particular, notice that, we can satisfy Condition (5) by the fact that 
T G PREQ(X,.Y) = >  <I> G PREQ^Y, .Y) and hence

(Vi G {1 ,.. . , /} )

i In TermsOf < P i ------p ! c

wherein IF is defined as in Definition 4b and is precisely the defined symbols of Tv. Therefore, 
since for any TRS strong termination implies weak termination by Lemma 33 we have that 'IZ 
is complete as required.

□



C hapter 6

A STR A L

Language is a kind of human reason, which has its own internal logic of
which man knows nothing.

Claude; Lévi-Strauss
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6.1 In tro d u ctio n

As wo indicatod in Section 3.10.4 the main theoretical consideration that we fact' in the design 
of the abstract syntax and semantics of ASTRAL is to reconcile the mathematical advantages 
of Cartesian form specification with the more natural style of applicative form specification that 
is associated with stream processing. In particular, we will require that a user of ASTRAL 
may specify applicative form definitions, while a lormal denotational semantics is achieved us
ing an equivalent Cartesian form definition in FREQ. However, in addition to these theoretical 
considerations wo also wish to design a user-friendly implementation of ASTRAL based on the 
abstract mathematical syntax, and address the practical issues that arise in the development of 
this syntax. In order to accommodate these two aims we proceed as follows:

First, in Section 6.2 we define an abstract mathematical formalization of ASTRAL that is 
similar to FREQ, but is syntactically tailored to the representation of STs. Specifically, AS
TRAL allows the specification and composition of noil-trivial AFSTs and hence is appropriate 
for the modular and hierarchical specification techniques discussed in Section 3.10.4.

Secondly, in Section 6.3 we use this formal syntactic definition of ASTRAL to define a com
piler that maps ASTRAL specifications into equivalent equational representation in FREQ. This 
compiler, denoted CASTRAL, makes use of the compilers C, <CPR and CPREQ (see Definitions 33, 
60 and 65 respectively) and as such is able to eliminate any (composite) definitions made using 
AFSTs to derive a single, equivalent Cartesian form definition. As a consequence in Section 6.4 
we are able to use the resulting Cartesian form FREQ schema created by CAS1RAL as the formal 
semantics of our original ASTR AL specifications.

Finally, in Sections 6.5 and 6.7 to complete the development of ASTRAL we present a high- 
level prototype BNF based on the abstract syntax presented in Section 6.2 and comment on 
the features that an actual implementation of ASTRAL will incorporate. In particular, we use 
the stream processing primitives and constructs that we examined in Chapter 3 as examples to 
demonstrate that ASTRAL provides a general purpose and natural specification formalism for 
a broad class of stream processing systems.

6.1.1 P re lim in a ry  N o ta t io n  and Definitions

Before' we proceed with the development of the technical material in this chapter we require 
some further preliminaries. Specifically, we require a further modification of the language FR, 
denoted F R V, that has two additional vcctorization construction. However, while we will define 
the abstract syntax of this languages we will not specify an independent semantics. Rather, as 
FRV is a computationallv conservative expansion of FR we will have a compiler:

yPRV : FRV(E) -  FR(S) 

to define the semantics of I’lCiE)  schemes.
Furthermore, in order to eliminate instances of (..artesian composition that are created when 

ASTRAL is compiled into FREQ we will define a compiler

C : FR(E) -  FR(E)
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that is a more general formulation of the compiler C. In particular, C is more general than 
C in that it will perform vector-valued Cartesian composition and also combine vector-valued 
composition and ordinary composition in a single operation.

Our final preliminaries for this chapter concern the use of higher-order signatures and terms. 
T h e  L a n g u a g e  P R V. In order to simplify the compilation of ASTRAL into PRFQ it is 
convenient to define one further computationally conservative expansion of PR. The language 
PRV includes two additional and more general formulations of vectorization as function-building 
tools: that allows vector-valued schemes to be vectorized; and ' « <  . . . > » ’ that allows
vector-valued schemes with different, domains to be vectorized. We can define PRv formally by 
extending PR with the following additional induction clauses:

(5a)  T y p e  O n e  E x t e n d e d  V ecto r iza t ion .  If n = <  a y , . . . , a m >  for some a, £ PRV(E)U
for some w, v' G for i = 1,..  ., in > 1 then a  G PRV(S)„ ,.i.. ,,m.

(5b)  T y p e  T w o  E x t e n d e d  V ecto r iza t ion .  If a = « <  0 [ , . . . , a m » >  for some ay G 
PRv(E)u. t , for some u \  v' G S + for i — 1.,..., m > 1 then a G PRv(E)ui„ ................

Notice here that, in Case (5b) as each a, may have a different domain, in contrast with standard 
vectorization, the domain of a is the concatenation of the words u‘ for 1 = 1,. . in.

We now define the compiler \ PRV that maps PIE schemes into standard PR schemes, al
though, we only formally define the compilation of schemes defined by extended vectorization. 
We leave the other cases and the well-defined ness of this compiler to the reader. However, as 
the definition of \ PRV is quite technical in the case of type two extended vectorization we begin 
by motivating the structure of the PR schemes the compiler produces (Definition 72). The PR 
schemes constructed in the case of type one extended vectorization are similar.

First, notice that as each a, of type (V, v') may be vector-valued, in general we replace a PRV
scheme « <  oy........o m » >  with a scheme < A , , . . . , / J n > wherein n = |;P • • • j;m|; that is, we
replace each n, with |/;'| schemes each representing an individual co-ordinate of a, .  Secondly, no
tice that in each of the four cases the scheme < U*,,---- UJf > selects the correct co-ordinates
of u = u1........um as input to each ‘3j\ that is, if ¡5, represents a particular co-ordinate of
then < UV........Uf > selects precisely u' from u. Thirdly, notice that if |a, |  > l then theK l ' * * | u.} \
scheme U',1 selects the appropriate co-ordinate as output for each 3j ■ Finally, notice that weK i
only inductively applv the compiler \ PR to a scheme ay if it itself contains further occurrences 
of extended vectorization.

Definition 72. W e  d e f i n e

yPRV = < X;;RV : PRv(E),m, -  PR(S)UiU | u, V G >

wherein each \ PRV : PRv(F),i(! — PR(E)„,r (ambiguously denoted \ PRV) is defined uniformly 
in (a, i;) bv induction on the structural complexity of a scheme a  G PRV(L). In particular, the 
extended vectorization induction cases are defined as follows.

(5a) Type One Extended Vectorization. If a  =<< ay , . . . ,  <>,„ W for some n, G PRv(E)Ui„. 
for some it. r' G 5 + for i = 1 . . . . .  nt > 1 then

\ f H (a ) = < Hi. . . . ,  .iu >
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w h e r e in  n — j r 1 • • • c m j a n d  for / =  1......... n

o,

r r
IT’

J >

o Mi». I ' 

0 C\j

if |i;J | = 1 and ng G PIî( T ):

if jr-'l = 1 and aj (i IMRE);

if M  > 1 and a] G PR(T); and
otherwise

wherein j  = f t  l. [j r 1 ■ • • r' | > /] and k = i -  | v1 ■ ■ ■ rj 1 j-

(5b)  T y p e  T w o  E x t e n d e d  Vec to r iza t ion .  If a -  « <  » >  for sonic a, G
PRTE for some id, td G S + for i — I ....... in > 1 then

,PRV(a) -  <

wherein n = In1 • • • n’T and for i — 1.

T

aJ o < u‘ u k. 1 . . . .  u u
i«d>

Æ ,(o. ) 0 < IT, ....... IT >‘ l«S
0 .YÜ'RvT f »( w ) ° < IT IT ^ W ,....... T>e

i t j o aj 0 < IT, \’n T>.......  1 \uJ\ >

t'1 ■ • ■V1 k = -  | e1 • • • o-> -

if |tP| = 1 and atj G PR.(S); 
if |id | = 1 and ctj 0 PR(S); 

if | id | > 1 and a} G PR(S); 
otherwise

• uJ\+p for p = 1 , . . | T| .

A n  E x t e n d e d  C a r t e s i a n  C o m p o s i t io n  Com pi le r .  We now define an extended Cartesian 
composition compiler, ambiguously denoted C, based on the Cartesian composition compiler C of 
Chapter 1, that we will use in the formalization of a denotational semantics for ASTRAL. The 
reader should consult Section 4.5.-l for an explanation of the operation of the compiler C. This 
extended compiler is precisely what we need to eliminate the instances of Cartesian composition 
created by the composition of APSTs in ASTRAL.

The difference between the compiler C and the compiler C is that the latter allows us to 
combine the actions of ordinary composition and Cartesian composition into one 'primitive’ by 
selecting the particular typo of composition required for each co-ordinate of the co-domain of a 
particular funct ion. For example, if a G PR(L) is of type (u, v) wherein u = Al,s-iiti ,li-i l°r some 

G A for i ~  1........-1 and A, G PR(S).-,.,2 and T  € PR(T)m,, i3 for some z u z-, G PR(E) then

0 ' W ] ; ; ! ^ 1M i « ) G F R ( a ;i;2J(i„

is the scheme such that

(v’u = («[. (j-j. (i;j, «.,) G 4 —“ ‘J 5 *) in l T a ) — ia |y_(at , Ai.[/Lj|TC a : j ) ,  a . j ) .

Thus, C has allowed us simultaneously compose a with L at the second co-ordinate of tv’s do
main and to perform Cartesian composition on a and /T at the third co-ordinate of o ’s domain. 
Indeed, (while for simplicity we have not demonstrated the fact in our example) C also allows 
ns to perform vector-valued Cartesian composition formalizing the idea behind the semantic
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proof of Theorem 7 from Theorem 8 in Section -1.5.1. However, for convenience we formalize 
vector-valued Cartesian composition into an eifective procedure usine; an intermediate compiler 
denoted 3. As such we begin with the definition of o.

Formalizing Vector-Valued C artes ian  Composition. The operation of the compiler 
5 is essentially straightforward in that it formalizes the process of repeated Cartesian compo
sition using the successive co-ordinates of a vector-valued function. However, the compiler is 
highly technical as we must be precise about the types of the co-ordinates of the domain of the 
resulting scheme that is created as the process is iterated. This is reflected in the establishment 
of the well-deiinedness of o that requires a proof by induction. Therefore, before we present the 
formal definition, we motivate the formulation ol 5 with a lew comments on the structure of the 
schemes it produces (Definition 73).

Not ice in the induction step that 3'-' , 3” ) i*s defined inductively using essentially three
new schemes derived from the original structure of a" and o’"; that is, the schemes 7 , and 
k. Of these schemes 7 is the vectorization of the first, to the /'t,h co-ordinate functions of the 
function computed by J", and J"+i represents the /' + 1th co-ordinate function of the function 
computed by ,j". As such by two applications of the Induction Hypothesis

° =V U , V 1 'V ' ,7 ) , /3 ; :+1)

must, represent the composition of each co-ordinate of i3" with a". The slight complication with 
this inductive technique is that (similarly to our semantic proof of Theorem 7 from Theorem 8 
in Section -1.5.1) as we have composed the co-ordinate functions of/l" individually, the domain 
of the scheme generated is not what is required. In particular, rather than the required domain 
«i ■ • • z" + i • ■ • iik we have ■ ■ ■ un" - i z" ¿W' + i • • • ¡H-. This is dealt with by the scheme 
k that duplicates the necessary co-ordinates of any input.

Definition 73. Tor each u — ( «1 • • • fU-) G N + such that there exists a a' = ( un ■ ■ -um) G for 
some 1 < 11 < m < h. for each c G N+, and for each v G 5 + we define

onu' Z  : HH(N)U,„ x PR( S) t -  PH.(S)I M U m + ,

by induction on the value / = m — » as follows:
Basis / = 0. First, notice in this case that n = m and hence we have 11/ — un. We define 
as follows:

(Vo G HH( N)u ,,) (VJ G Plt(£)e.-.u„) («> -3) = ^

wherein I dH : {1....... \u\} — {1........ ¡«1} is the identity function on each i G {1,----- |u|}.
Wdl-Ih Jim dm ss. Notice that by the well-definedness of C we have

fherefore to complete our argument it suffices to show that c, c) = e. 1 his follows
immediately from the fact that r G -V.
Induction  H ypothesis . Assume for each it — ( 31 ••■dr) G ,5. such that there exists a



u" = ( iïn, ■ ■ ■ Û'm,) G 5 + for some l < n' < m' < k such that in' -  n' < /' for some fixed /' G N. 
for each G 5 +. and for each v' G S + that if o' G PR(S),-,.„' and >)' G PR(E)t then

Induction  Step. For each h = (u i ■ ■ ■ lit) G S+ such that then1 exists a a"' = ( hn„ ■ ■ ■ G 
S + for some L < n" < ;??" < k such that m" -  n" = / ' + ! ,  for each z" G A+, and for each 
v" G 5 + we define 3" ,r,‘ as follows:U , t1'

(Vo" G G PR(S)t

n n-;n ,m , n 0 z it). , , u.i" z }" ) = 3Ç’«1 "-1 r‘m11 ù !n.'' + r / ( 5T- ,m' u,vu .z" ' !(o //
■ ' 1 )vrf,V) 0 K

= m" + ([;"| - 1). il A l l  0 3
■// . . Uji 0 A" > A"A A - T, + l = LP‘ ,, 0 j". a nd

k ~ ^ I-’OW 0 , “m" + .■■■Ûk . . . , v, nn• • Ù nu _ ! z" Ü m _ 1 "+1 ■■■iik

V ll"■■ “n"-i ■ilk U5‘' l n
• • nn _ ! Z " Û ,n
"+P"|)-i " + 1 ‘■ iik t

U'\‘, ¿m"+l ■■■ilk UÛ1----c in
Z ll mn + l‘■ Ûk )

u " 1, ̂m1'+G-T
C„"+1 ■ilk VÜl-Ùn"-l Z" “m 

* ■ * ’ (̂¿+U’/#|)-i
"+1 ’■ilk > .

Wdl-Dcjincdncss. First, notice that as 7 G PR(S)t .»_= „ ((_ and in" -  1 -  n" = /', by tin1 
Induction Hypothesis with a ' = 0 ", J ' = 7 , « = ft, «' = «„» n' = n", in' = m" -  L,

and A = we have 8 -  o'l , 7 ) G PR(S) = l ...=i>(<_i Also, notice
that as .i" G PR(T)t -"ti „ nnd P ~  P = 0 < /' by the Induction Hypothesis with o' =
3' = ¡3",+l, ii = ft, • • • 5„“-i  f/m" • • •«*. «' = »' = p, m' = p, z' = z", and ?/ = v" we have

(s L ' ^ ,(tt,,^ ) - / j' V i ) € p R (s )5l...â11„ . | i » i»ùi " +1 • nk ,V

Therefore as k G P R( t ,",y

U 1 »1 „ // _j -

, .a à, à „ •" „ .. ,a H 's clear that

° « 6 PR(^)

with type ( tii ■ • • Àm-i ùm"+i ■ • • ¡U-, as retpiired.

C om bining O rd in a ry  and  C artes ian  Composition. As with the compiler 3 the intention 
behind C is essentially straightforward in that it is based on an iterative process. The difference 
now is that, rather than acting on the successive co-ordinates of a vector-valued scheme, this time 
the composition process is iterated on successive schemes that may themselves be vector-valued. 
In particular, the compilation process is iterated on each member of the set S = {/j,,...,/!*} 
for some J, G PR( II),,. ... for some u’, v‘ G S + for i = 1 , . . . ,  A: > i. Moreover, each successive 
composition may be either a normal composition or a Cartesian composition and hence the type 
of composition required must also be indicated. Specifically, the type of each composition is 
indicated bv the mU T = {</,.. . ., r/<-} wherein tor each i G k} di = o indicates a normal



composition ami d, = r indicates a Cartesian composition. In order for this process to be well- 
defined, if di — c then (1) J, must be an appropriate scheme; that is, a ( ’artesian form ST: 
and (2) the particular co-ordinates of the domain of a to which /j, is to bo composed must be a 
stream of an appropriate type.

Again the technical nature of this compiler means that in order to establish that it is indeed 
well-defined we require a proof by induction on the number k.

Definition 74. For each S = {/U....... 3k} wherein for i = 1----- - k > 1 either J, £ PR( T) t u ,
for some z ‘ £ 5 '  and for some w‘ £ S +, or 6, £ PR(T).. !t. for some z' € 5 '  and for some
w' £ S +; and for each T = {d\....... <4} such that d,- £ {c,o} for i = 1, . . . .  k satisfies dt = c = *
A, £ PR( T ) , a n d  for each u = x wl ■ ■ ■ irk ij £ S T for some x, y £ S',  and for each r £ S + 
we define

C:;-: PRTP-. • -  P R O P ,-

by induction on the value k £ M+ as follows:
Basis, k = 1. Notice in this case that, S = {Aj}. T = {Ai}. and a = x w l y. We consider two 
sub-cases:
( 1) dx =c.
( 2) di = o.
Sub-Case ( 1) </, = c. We define as follows: (notice in this case that Ai £ PR-(W)t U)I)

(Vo £ PR(S)„,„) C;;:!(a) = o [ ^ h lxwil(a,Si).

IY(U-Drjuu dm ss. Notice that in this case by the well-definedness of o^|+.1;l'r “ 1 we have

— jr l - f  1 ,|r xu 1O1 1 i 1u , v 1 (a, 3X) £ PR(S)r .. vx

as required.
Sub-Case ( 2) d{ = o. In this case we define as follows:

( V a  £ PR( £)„.,)

A  0 \ I>R ( <  ---- . , U ^ > )  if |X > 0 and \y\ > o,
A  0 VI>RVK  q .F T if |.r | = 0 and \y\ > o,
A  o \ ' 'R' ( <  U f , . . . if |.t: > 0 and \y\ = o,
A  0 .3, if jX| = 0 and \y\ = 0.

Il'c//-Dt fundin ss. In order to reduce the complexity of the schemes created we have used the 
language PRV. In particular, this enables us to have vector-valued compositions wherein the 
domains of the functions that are combined need not be the same. Notice, that these extended 
schemes are reduced to standard PR by the use of the compiler \ pn\  Using this compiler the 
proof of the well-definedness of each of the schemes in the four cases above is straightforward 
and is left to the reader.
Induction  H ypothesis . Assume for each S = {At , .. • .A*«} wherein either ¡3i £ PR(N)t .
for some ; M £ .s’* and for some w1' £ S + or 3’ £ PR(T )o ■ for some z‘' £ S + and for some



(/>" € S + for i = 1....... k' for some fixed k' G N+; for each T  = {</'........ d'k,} such that
d\ G {b,o}, for i -  1....... is defined such that d[ = b = s  3\ G PR( E) t and for each
a' = x' wn ■ ■ ■ w,k y ' G S + for some x \  y' G 5*. and for each v' G 5 + that

(Vo' G PR(E)U>.) Q l d a )  G PR(S)r , . , , . . . , ,c },y .

Induction . For each 5" = {.J",. . . , ^¿„+1} wherein either 3" G PR(E)t .... w„, for some
z " 1 G N+ and for some w" 1 G 5 + for i = 1....... /¿" -f- 1; for each T" = {<;/",. . . ,d"„ + 1} such that
d" G {h,o}. for i = 1,. . . , k ” + 1, is defined such that d" = b <=> 3'/ G PR(E)t ; «. for each 
u" = x" w"1 ■ ■ ■ w"k" + x y" G .5'+ for some x" , y" G S’; and for each v" G N+ we define as
follows:

(Vq" G PR(S)U» ,->3" ,7 "  / i i \  ___ n  f ' h  +  i  )  d  ' - h "  +  i )l •» )  ~  ' - ' j . , ,  .; /  1 . . . .»  k "  w

wherein
C{f,"^ i i  ,, .< » } .« ...<»}

( a ) .

Wcll-Definedness. First, notice that by the Induction Hypothesis with S' = 
T' = {d", . . u' — u", x' = x", y' = 1 +1 (/", and t/ = v" we have

c, ...<„}(a) e PR( S) X„ *<• t/;' 1 k " +1 y '', i/

Therefore by the Induction Hypothesis with S' = {3'f,+x}, T' = {d'f,+l},
u' = x " 1 • • • z" k" ■w"k“ + x y", x' = x" z" 1 • • ■ z " k", ;/ = ;/', and ?/ = e" we have

„K '+ .b K ,(7 )e  PR('VA
t "  +  1 y " , v "

as required.

H igher-Orcler S ignatures  and  Term s. In the following sections we will require the use. of 
signatures containing full second-order function symbols rather than the restricted weak second- 
order signatures that we have used in the previous chapters. However, as the use of such 
functions is restricted to the purely syntactic level we will not require the full development of 
this generalized theory of universal algebra. The interested reader in directed to Meitike [l!)!)‘'b] 
for work on this extended theory.

Definition 75. As our use of higher-order functions is so limited, for our purposes it is sufficient 
to define an Assorted second-order signature E to be the 5* X (S -  5 )+-indexed collection of 
sets wherein any c G Ex v for some c G ¿ + is referred to as a (second-order) constant of type 
e; and any /  G Eu „ for each u,  v G S+ is referred to as either a (second-order) function or 
functional of type (u.c).

Notice in particular that a functional may be vector-valued and may have non-streams sorts 
in their domains. However, their co-domain type's are restricted in the sense that they must 
return stream output and hence we cannot have /  G E if /  is of type (c, w) for some z G S. and 
for souk' i/’ G S+.



Discussion. In making Definition 75 our higher-order signatures are limited in that they 
may only contain second-order function symbols with restricted types. However, as we are 
developing an essentially first-order theory of stream processing (that eliminates the use of full 
second-order functions) this limited definition is sufficient for our purposes. Moreover, we have 
not directly extended the definition of 5-sorted signatures S to include full second-order function 
symbols so that in the sequel it is straightforward to be precise about which function symbols are 
either first-order or weak second-order and are taken from a standard signature. Consequently, 
this clarifies which function symbols may derive their semantics using the basic techniques of 
universal algebra we have already developed, and which lunction symbols are properly second- 
order and must be eliminated to derive a first-order denotational semantics via PREQ. This 
fact is reflected in the following notation.

Notation 3 . When defining a term r  that may contain a second-order function symbol we will 
write

r  €  T Q T T h W ) ,

to indicate that r  is term of sort s £ S formed over symbols taken from the standard 5-sorted 
signature S, the 5 ’ X  (5 -  5 )+-indexed second-order signature S' and the 5-indexed collection of 
variable symbols X_. In particular, notice as a consequence of restricting higher-order signature 
definitions, S and S must be disjoint. Indeed, continuing the assumptions of previous chapters 
in the sequel we will always assume that _E is some 5-sorted signature, S' is some 5* x (5 — 5 )+- 
indexed second-order signature and A_ is some ¿-indexed collection of variable symbols such that 
E, E7 and X_ are a LI pair-wise disjoint and that none of them contain the distinguished function 
symbols F  and / ,  and /, and / tJ- for i , j  £ N+.

Also, throughout this chapter if it is not explicitly stated otherwise we make the assumption 
that any collections of variable symbols always contain the distinguished symbol T  of type n 
and do not contain the distinguished symbols ‘1/  for each i 6 N.

Finally, as a concession to conserving space, as with previous chapters we will only include 
the well-deflnedness arguments for our constructions when they are not straightforward.

6.2  T h e  A b str a c t  S y n ta x  o f  A S T R A L

We begin the development of the abstract mathematical syntax of Ah LRAL with the definition 
of the particular classes of terms that may be used in a specification. Example specification 
using a prototype BNF based on this abstract syntax can be found in Section (1.7.

.As we have indicated the abstract syntax of ASTRAL specifications is very similar in form 
to that of PREQ specifications. In particular, a full ASTRAL specification is constructed from 
several restricted specification in the same way that a PREQ specification is constructed from 
RPREQ specifications. However, unlike PREQ full ASTRAL specifications are constructed 
from two distinct types of restricted specifications: ASTRALt specifications and ASTRAL, 
specifications.

As with RPREQ specifications the formalization of these restricted classes of ASTRAL
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specifications is based on t he use of particular classes of terms. As such we begin with t hese 
definitions.

6.2.1 A S T R A L  T e rm s

As Theorem (i shows (see Section 4.4). in order to maintain control over the class of functions 
that we can specify in PREQ, it is necessary to control the combined use of primitive recursion 
and full A-abstraction. Therefore, as we will allow the use of AFSTs in ASTRAL, we must be 
careful to ensure that each ASTRAL specification only represents a primitive recursive ST, so 
that it can be compiled into PREQ to derive its semantics. In order to maintain this precise 
control we will define three classes of ASTRAL terms. Specifically, we will begin by defining 
two restricted classes of terms: type one ASTRAL terms and extended type one. ASTRAL terms, 
that we will use to define type one ASTRAL specifications (denoted ASTRAL!). Type one AS
TRAL specifications are used to define full ASTRAL specifications in essentially the same way 
as RPREQ specifications are used to construct PREQ specifications. In particular, type one 
ASTRAL terms are used in 'simple specifications’ and the basis case of'primitive recursive (typo 
one ASTRAL) specifications', and extended type one ASTRAL terms are used in the induction 
case of ' primitive recursive (type one ASTRAL) specifications .

Type one ASTRAL terms are also used in a third more general class of terms: type two 
ASTRAL terms. This third class of terms are used as the basic mechanism to provide a user- 
friendly syntax for the composition of AFSTs without expanding the class of STs that can be 
specified. Specifically, we use type one ASTRAL specifications -  defined using type one and 
extended type one ASTRAL terms -  together with type two ASTRAL specifications -  defined 
using type two ASTRAL terms -  to define type three ASTRAL specification. In particular, type 
three ASTRAL specifications are sufficient from a computability theoretic perspective to define 
every AFST that can be. compiled into an equivalent primitive recursive CFST in PREQ. How
ever, as a further consideration to the user, while full ASTRAL specification are based on type 
three ASTRAL specifications, we provide an extended syntax that is more suited to modular 
specification techniques. These ideas are now presented in more detail.

T ype  One A S T R A L  Term s. Type one ASTRAL terms are essentially first-order terms 
except that we include an additional induction case (Case (5)) that also allows second-order 
function symbols to be used in terms provided that that they appear in evaluated form. For 
example, if F is a second-order function symbol of type (u, v), for some u G A+ and for some 
e G Sfi then for appropriate terms t, of type u, for i — 1,. . . ,  |w|

L ( r , , . . . , r M)(0)

is permissible as a type one ASTRAL term.

Definition 76. We define the S-indexed collection of type one ASTRAL terms

A1’1 (T. W, A) = < A'RE.E7, A), | .« G S >
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wherein each A1' (X, V, X), is defined uniformly in .s 6 .V by induction on the structural com
plexity of a term r £ A1'(X. A'. V ), as follows:
Basis Cases.

(1) C onstan ts .  If
T — C

for some c £ S A for some s £ S then r  £ A1* (A, A', X_).,.

( 2) Variables. If

for some x £ A',, for some s £ 5 then r £ .A1 (A, id'. A')..

Induction .

(3) A lgebraic O perations. If
T = (T(r,, . . -,Tn)

for some o £ 1!,,, .,. for some w = ($ i- - -sn) £ 5 + and for some .s £ A, and for some 
r, £ AT‘(A, V, V).,, for i = 1....... n then r  £ Ar'(A, A7, X),.

(4) S tream  Variables. If
T = x (t ')

for some x £ V ,. for some _s £ S and for some r ' £ A1* (A, A', Afb. then r £ A1’1 (51, A', X_)s.

(5) T y p e  One R es tr ic ted  Functional Use. If

t = II,(ru . . . , r n)(r')

for some II £ A',lii:, for some u = (¿q •■•.?„) £ N+ and for some v £ 5+; for some 
i £ { 1,. . . ,  |r|}; for some r, such that for j  -  l , . . . , «  either tj = ay £ if sy £ (A -  S)  
or Tj £ AT‘( A. A7, X_)>, otherwise; and for some t ' £ AT,(S, S', A )t then r  £ ATl(A, A7, V)„i. 
Notice, that in our definition II, is properly (//),■; that is, i is considered as a separate 
syntactic token indicating which co-ordinate of II we wish to select and does not indicate 
that II, £ A7.

E x tended  T y p e  One A ST R A L  Term s. We now defining two further classes of terms. First, 
we define the class of extended type one ASTRAL terms. Essentially, the additional clause that 
is included in these terms is equivalent to the use of the special variable symbol Y, in IIPREQ 
specifications (see Definition SI); that is. it is the mechanism by which we specify primitive 
recursive AFSTs definitions.

Definition 77. For each X = {iq.. . . ,  yn} C A. and for each w £ S + we define the S-indexed 
collection of exit ruled type one ASTRAL terms

Ar>,:; VN.N . A) = < Ar" ^ ( A , x \  X),  | s £ S >
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wherein each ATl,?*,Ja(E, if ,  A.)» is defined uniformly in s 6 S' by induction on the structural 
complexity of a term r  £ Ar‘’'i’-(X, A ,X).<-

Essentially, for each X = { * /! , . . . ,  yri} C X_, for each w £ S_+ and for each ,s £ S we define 
Axi v ; X)., to be identical to A11 (Ad, A', A), with the exception of an additional induction
clause defined as follows:

(6) T y p e  Two R es tr ic ted  Functional Use. If

r  = . ., ,!/„)(/)

for some i £ { l , . . . , |w |}  then r  £ AA,K'-(S . A , A),Ui.

Thus, extended type one ASTRAL terms allow' us to use second-order stream transformers in 
terms, but they may only take variables as input and are evaluated at a fixed time L

T ype  Tw o A S T R A L  Term s. Finally, our third class of terms - type two ASTRAL terms 
~ provide the mechanism for the most general use of AFSTs that can be permitted without 
expanding the class of functions that may be specified. In particular, the induction case of 
type two ASTRAL terms allows us to apply a second-order function symbol to both type one 
and extended type one ASTRAL terms and hence provides a mechanism for the composition 
of AFSTs. For example, if G is of type (ji.r), for some u,v  £ F+; x t £ A u. for * = l , . . . , | u | ;  
F  is of type (,Sj s2 Fie )- for some Si,s2 € S and for some A £ 5 +; and tx and r2 are type one 
ASTRAL terms of sort .st and .s-_> respectively then

F(tx, t.,,G(x u . . - ,^|„|))

is a well-defined type two ASTRAL term.
Notice that this syntax provides a user-friendly method for working with AFSTs, in that 

AFSTs can be composed directly in vector-valued form. Indeed, the desire to work with terms 
of this form is the reason that we need the generality provided by the compiler C. In particular, 
in order to construct a PREQ specification that provides the necessary semantics for the term 
above we must compose tx and t-> with F\ but we must use vector-valued Cartesian composition 
to compose G with F as we must give F and G their semantics in Cartesian form.

The use of terms in the form above is especially useful in the context of formal hardware 
description, as in addition to allowing the specification of devices from smaller components, it 
also allows devices to be dependent on initial non-stream values (see Section 3.10 and for an 
example see Section 3.8.1 and Section 6.7.2).

Definition 78. Let X = {xx.........r„,} C A such that x{ £ AJi for some s, £ S  for i =
1, __ ,u > i. We define the 5 ‘ x ( 5 -  S)+-indexed collection of type two ASTRAL terms

Ar-(Ml, LAX) = < A1'2(A, A\ X)Uiii | u £ 5 \ l !  £ >

wherein each A1- (X, X7, X)tl „ is defined uniformly in (w,i>) by induction on the structural com
plexity of a term r £ Ar-’( A, A', X )U;1 as follows:
Basis.
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(1) S tream  Variables. If
T  =  X

for some x € X of type s E S_ then r  £ A'-( X, V, XR

Induction.

(2) C om position . If
r  = //(>!,.. . , r n)

for some H € for some w = y1 ■ ■ ■ yn 6 5 +, for some n < |u>|, for some e. e S_+ and
for some r, for ; = 1,. . ., n such that either

for some .s' = if 6 S or

for some ul 6 and for some z' = if £ 5 + then r £ A-(X, X', XRi...^^ wherein for 
i = 1,. . ., n we have

6.2 .2  A S T R A L  S p ec if ic a t io n s

Using the classes of terms defined in the previous section we now define three forms of restricted 
ASTRAL specifications that we use to define the full abstract ASTRAL syntax. We begin with 
type one AST RA L specifications that essentially provide a more natural syntax for the repre
sentation of RPREQ specifications in the context of stream based specification.

Type One ASTRAL Specifications

Definition 79. We define the S’ X  (5 -  5 )+-indexed family of type one ASTRAL specifications

(ambiguously denoted ASTRAL^ X, V, X))  by case analysis as follows: 

(1) Simple Specifications. If
<1> d-  F{xv, . . . .  xn)(t) — T

for some .r, € X ,  - for some s, £ 5 for i = € N and for some r  £ A1'1 (X, X', {a^,.. .,
.rri} ), for sonu' ,s £ S then T £ AS I RALRX. X', A_)j ,
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(2) Vector-Valued Simple Specifications. If

<I> '=f lrix ii ■ ■ •. W,)(0 = {r.1 1 * ' * 1

for some i \  G X_ , for some .$,• G A for i -  1,. . . ,  n G N and for some r; G Ar,(S, A', {.r,.......
for some .s' G 5 for j  = 1.......m > 1 then <1> G ASTRALt V n .

(3) P r im itiv e  R ecursive Specifications. If

(J) dej F ( x i . ----xn)(0) = r
F{xi, . . . , x n)(t + 1) = r'

for some x, G X  , for some G A for i = 1,. . ., n G N+; for some r  G A1'1 ( A, AJ', {a-1.......
i„ } )„  for some ,s G 5; and for some r 1 G ArAr >'- {.¡g , . •., then T G
ASTRALAS, V, V),

(4) Vector-V alued P r im itive  Recursive Specifications. If

de ! F (x ,..  . .,x„)( 0) = ( T i , . . . , r m)
<l) = F{xu . . . x x n){t + 1) =

for some x,- G A,,- for some .s, G 5 for i = 1,. . . ,  n G N+; for some r, G ATl (A, A', 
, for some G A; and for some rj G A1"1̂ 1' ' •• f„ ( v;, a\  {.ìg , . . . ,  x, 

J = > 1 thon <1> G ASTRALA^, V ,X ),,  v  .

{x i,. . .,
forJ J

T ype  Two A S T R A L  Specifications. To avoid the complications that the unrestricted 
combination of A-abstraction and primitive recursion can create, we cannot directly incorporate 
the composition of AFSTs into type one ASTRAL terms. As such we define two further classes 
of restricted ASTRAL specifications that we will use to construct full ASTRAL specifications. 
The first of these is type two ASTRAL specifications that allow the use of type two ASTRAL 
terms and hence the composition of STs.

Définition 80. We define the A+ x (5 -  A) + -inde.\ed family of type two ASTRAL specifications

ASTRALR A.Â7, _A) = < ASTRAL,(A, V, X_)u J u ,  r G S + >

wherein for each a G S ’ and for each r G A+ ASTRAL,(A, A', V)u „ (ambiguously denoted 
ASTRAL,(A, V, AD) is defined as follows:

for some x, G X  , for some *  G  A for I = 1, • ■ •, n G N+; and for some r  G AT*(£, A', { x , , . . . ,  x„}) 
of type ( in, r) for some w G A" and for some v G A then <I> G AS IRAL,(A, A , A_),, .,niiL.

Type T h ree  A S T R A L  Specifications. In the same way that we used total PRLQ spec
ifications as an intermediate stage between partial PREQ specifications and standard PREQ 
specifications, the definition of type three ASTRAL specifications and full ASTRAL specifica
tions ¡s again simply a c o n v e n i e n c e  in that it allows a more modular approach to be used in



system specification. In particular, type three ASTRAL specifications are constructed from a 
single type two ASTRAL specification and a number of type one ASTRAL specifications. The 
role that the type two specification plays is to choose a particular type one specifications as the 
semantics of the whole specification. This technique mirrors the way that we choose a particular 
RPREQ specification to represent the semantics of a whole PREQ specification. However, as the 
abstract syntax of ASTRAL only provides the basis of an implementation language, for math
ematical convenience this role of choosing a particular type one specification is also combined 
with the mechanism for composing AFSTs. Specifically, the type two ASTRAL specification 
within a type three ASTRAL specification either selects a single type one ASTRAL specifica
tion to be the semantics of the whole specification or selects a number of type one ASTRAL 
specifications composed together to be the semantics of the whole specification.

While from the perspective of computability a type three ASTRAL specification is a general 
purpose tool for the specification of primitive recursive STs, from the perspective of user-friendly 
specification it is rather limited. Therefore, in full ASTRAL specifications we allow several type 
two specifications to be used wherein only one determines the whole specification’s semantics. 
For example, suppose we wished to specify a system F that was naturally visualized as two sub
systems Fx and F2 wherein it is also natural to sub-divide iq into two further sub-sub-systems 
Ft l  and f q 2. If we restricted the user to type three ASTRAL specifications then they would 
have to specify F  as follows:

<h =<  >

wherein the type one ASTRAL specifications r/>u , and (p2 represent sub-systems Fu , Fl2 
and /q> respectively and the type two ASTRAL specification ip would be of the form

ip =  F ( x i , .. ., x n) =  F n ( F i i2( F i ii ( x i , . . . ,  x n) ))

for some approriate variables x, for i = 1, . . . ,  n > 1. However, using a full ASTRAL specification 
we can specify F as follows:

<]> = <  l/q, 4'2i (P\.,\ > ‘Pl,2i 4>2 >

wherein the type two ASTRAL specifications ipi and ip 2 would be of the form

4h =  F ( X i , .  . . , x n) =  F 2( F i ( x  j , . .  . , ! „ ) )  

and
ip2 — fq (x i ,. ■ •, x rl) -fi,2(P i , i (x i , . . . ,x n))

respectively. This more naturally reflects a modular approach to the specification based on the 
systems intuitive structure.

x\s we will show in the sequel the additional type two specifications in a full ASTRAL specifi
cation can be eliminated (using an inductive technique) by compiling full ASTRAL specifications 
into a type three ASTRAL specification. To complete the compilation procedure the resulting 
type three ASTRAL specification is compiled into PREQ to derive a semantics.

Finally, notice in the following definition we use a version of the lunction Inl'ermsOf (see 
Definition 49) adapted for use with ASTRAL specifications, although we leave the details of a 
formal definition of the necessary modifications to the reader.
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Definition 81. We define the 5* X (S_-5)+-indexed family of type, three ASTRAL specifications 

ASTRAL;i(s,2L) = < ASTRAL3(£, X)u,„ \u  £ S \ v £  S + > 

wherein for each u,v £ S_+ we define ASTRAL3( E, A ( a m b ig u o u s ly  denoted ASTRAL3(E. X_))
as follows: 
if

<£> = < fi, fil---- ,fin >

for some
C- £ ASTRAL2(E, {Fu . . Fn}, A)UiJ,

for some u £ S_\ for some v £ S_+ such that L) is of type (u‘,v ‘) for some ul £ Sf  and for some
d  € for i — 1....... n > 1; and for some

o, £ ASTRAL x. Fi+i. . . . ,  Fn} , X ) tliiV.

for i = 1,. . . , n such that

i (fi InTermsOf(< fix, ■ ■ fin >,>■, {Fx, • • •, Fn})

for i = 1, . .  . ,n  then <h £ ASTRAL3( £,

A S T R A L  Specifications

Definition 82. We define the 5 '  X (A -  5 )+-indexed family of ASTRAL specifications

ASTRAL(S, X)  = < ASTRAL(S, Xf)u,v | u £ S*,v £ S + >

wherein for each u £ Sf and for each v £ S + we define ASTRAL(E, X)Ul!i (ambiguously denoted 
ASTRAL(£, A.)) as follows: 
if

for some

<]> = < Ip, fix, . . ■ , fi,n, fil , ■ ■ ■ , fin >

fi £ ASTRAILE, {Fx,. . . ,  Fm+n} , X ) UiV_

for some u £ .S", for some jy £ .Ŝ  sudi that iy is of type (id, d )  for some id £ S_ and for some 
v‘ £ Sfi for i = 1, . .  ., m + n > 1; for some

for i = 1, . . .

fi, £ ASTRALES, {Fi , . . . ,  F ^ u Fi+1, . . . ,  Fm}, A )u.,„.

, m; and for some

( p i  £ AS rRALl ( 5.1 { Fm+1 ) • • • ) 1 ) F +1 , ■ • ■ , ffii + m } 1 Alu',!)'

for i = m + 1,. . . ,  rn -f n such that

i (f InTermsOf( < fix, ■ • • > 4Jm> 4>i> • • • ; 'fin >,i, {T r, - - -, T,n+n}) 

for i — l , .. , ,m  -f /1 then (L t  ASTRAL(£, AJu,«-
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The definition of ASTRAL specifications finalizes the first stage of our abstract specification 
language formulation. In order to complete the formulation, by defining a denotations] semantics 
for ASTRAL specifications, we require the compiler definitions that we make in the following 
section.

6.3  C o m p ilin g  A S T R A L  in to  P R E Q  S p ecifica tion s

As with the compiler that maps PREQ into PR, the compiler that maps ASTRAL into PREQ 
is defined in terms of several sub-compilers that map the various classes of terms and restricted 
classes of ASTRAL specifications we have defined.

6.3 .1  C o m p i l in g  A S T R A L  T e rm s

First, we show how to compile type one ASTRAL terms into strictly first-order terms that will be 
used in the construction of individual RPREQ specifications. Indeed, given the restricted form 
of type one ASTRAL terms this process is relatively straightforward. The main operation of 
this compiler is the replacement of terms involving functionals by equivalent terms in Cartesian 
form comprised of new weak-second order function symbols.

Definition 83. Let S7 C {Fi , . . . ,  Fn}, for sonie n £ N such that iq is of type (V ,  u'), for some 
ul £ 5 + and for some v! £ S_+ for i — 1,. . . ,  n. Furthermore, let S be defined such that for each 
w £ S_° and for each s £ S

( \X'3 (J {fi j}  if w = t u and there exists an G Lu,)tll
for some i £ {1, . . . ,  n}, for some v' = (.Sj • • ■ srn) £ S_+ 

such that s = sj, for some j  £ {1, . .  .m), and 
E otherwise.

For each ,s G S  we define
T (S,X ),

(ambiguously denoted ,\aT' ) uniformly in s £ S by induction on the structural complexity of a 
term r  £ A '(S ,  E ' ,A )3 as follows:
Basis Cases.

( 1) C onstan ts .  If r  = c for some c £ EA,3 for some .s £ S then

X
A  1 c.

( 2) Variables. If r  = x for some x £ X,  for some s £ S then

Induction .
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(3) Algebraic Operations, if r  = a(Ti, . . . ,  rm) for some a G S,UiJ, for some ¡0 = (.Si • • ■ sm ) G
S + , for some s G S  and for some rf G A1* ( T, X)', JQ,, for i = 1 , . . . ,  rn then

YA‘‘(>) = CT(.YAll( r i ) , . . . , x AT,(rm)).

(4) S tream  Variables. If r  = x ( t ' )  for some x G 2C, for some s G S and for some r' G
ATl( S ,£ \ X ) t  then

,\aT" (r ) = evaI,(,YATl( r ,) , i ) .

Well-Dejinedness. First, notice that by definition that S is standard and therefore e v a l G 
Also notice that by the unstated Induction Hypothesis that y ^ f r ' )  G T(È, AJt . 

Therefore as by hypothesis x G X ^ i t  is clear that eval,( yA ‘ (r '), x) G T(Ù, X),  as required.

(5) Type One Restricted Functional Use. If r  = ( F i ) j ( r i , .. . , r m)(r'), for some Ft G T'u ,,
for some u — (si ■ ■ • st) G S_+ and for some v G S+; for some i G for some
j  G {1,. . ., |y|}, for some rk such that for k = 1 , . . . ,  m either rk = xk G X_, wherein 
sk G { S - S )  or r fc G ATl( T, S', A)Sk otherwise; and for some t ' G A1"1 (S, T7, A)t then

X A T l  ( t )  =  Y 'A r i  ( r ' ) 1 3 / 1 .......................2 / m )

wherein for k = 1, . .  ., rn we have

\ x k if r k = xk; and
yk = < T

I\;a 1(tj.) otherwise.

Using the compiler ,\aT‘ it is now also straightforward to define a compiler that maps extended 
type one ASTRAL terms. The only additional mechanism that we need is to convert terms 
defined using type two restricted functional use. This is achieved by replacing these terms with 
the distinguished variable symbols Y] that has the required semantics when the resulting term 
is used in the induction case of a primitive recursive ItPREQ specification.

Definition 84. Let T7 and S be defined as in the previous definition. For each X =  {y1 C
A . for each w G 5 + and for each s G S  we define

: A r" x ^ ( s ,  s ' , 2 0 .  -  T ( S , J O *

(ambiguously denoted /YA1X|—)• wherein for each s' G S_

jA j 'U iA }  if s' = Wj_ for some i G { 1 ,. . . ,  \w\}, and 
I X_s, otherwise,

uniformly in ,s G S  by induction on the structural complexity of a term r  G AT,'X'^(S, S', V )3. 
Essentially is defined identically to x f  wAh the additional induction case as follows:

(6) Type Two Restricted Functional Use. If r  =  . . . ,  y n ) ( t )  for some i G (1, . .  ., |ir|}
then

Y . U X , H ( r )  =  y .
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As Cartesian composition is formalized at the level of PR schemes it is also necessary to 
compile type one ASTRAL terms and type two ASTRAL terms directly into PR. As such the 
schemes created by this compilation process can be combined using the compiler C into a single 
scheme and converted back into PREQ using the compiler CPfU',cC In more detail, recall from the 
previous section that from the perspective of computability type three ASTRAL specifications 
are sufficient to specify any AFST with an equivalent primitive recursive CFST. Also recall that 
a type three ASTRAL specification T is comprised of a single type two ASTRAL specification 
and k > 1 type one ASTRAL specifications; that is,

T  = <  tl\q> u  . . . .  (pk >  .

Therefore to compile a type three ASTRAL specification into PREQ our strategy is as follows:
(1) independently of R (that either selects a particular <R, as the semantics of T or a number 
<P}1,. . ., <pim for some j, € { 1 , . . . ,  k) for l = 1 , . . . ,  m G N+ composed together as the semantics 
of T) compile vp into k Cartesian form PREQ specifications <Iq wherein each <p> for i = 1 Ir
respectively is selected in turn as the semantics of (2) using the compiler CPR compile each 
$,• into an equivalent PR scheme a,; (3) using the schemes a v, . . . , a k compile T into a PREQ 
scheme using the compiler C. As such if E simply selects a particular type two specification 
4>j then we use <I>; as the semantics of T; otherwise if ip dictates that <pji , . .  ., composed 
together is the semantics of T then (essentially) we make

<f> = c pnE«(C{"« ...

the semantics of T wherein by definition the schemes nq,,.. . ,a_,m are equivalent to the type one 
ASTRAL specifications respectively and hence using C and <CPREQ is appropriate to
construct the single PREQ scheme <£ to represent dL

With this strategy in mind we now define the two compilers that we need to compile a type 
two ASTRAL specification into PR.

Definition 85. Let E7 be defined as in Definition 83 and let X = C X for some
x{ e X,, f o r  some s,- G 5 for i = l , . . . , m  > 1. For each S = {oq,. . . ,  a„} wherein a { € 
PR(S)t u. for i = 1 and for each s G S we define

(ambiguously denoted CaT‘c) uniformly in s G S  by induction on the structural complexity of a 
term r  G ATl(E, E7, X), as follows:
Basis Cases.

(1) C onstan ts . If r  = c, for some c G EA,3 for some s G S  then

c W3(r) = ^

(2) Variables. If r  = .r,-, for some .r, G X of type ,s,- G S then

e vTlQ(r) = U-1 5m.
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Induction.

(3) Algebraic O perations. If r  = cr(7i....... rm ), for some a G SW]J, for some w = (.s', • ■ - ,s'n ) G
S + and for some ,s G S; and for some r,- G A 'lE , X', A.).,; for i — 1 , . . in then

CAT,=(r) = a o <  C ^ V i ) .......CAT,;3(rm) > .

(4) S tream  Variables. If r  = £,-(r'), for some xt G X of type s', G (5 — S) and for some 
t ' G ATl ( £ ,  V, X ) t then

CAT,c(r) = e v a l ,  o < C ^ f r ' ) ,  l';’* > .

(5) T ype  One R es tr ic ted  Functional Use. If r  = (Iri)j(r1, . . . ,  rm)(r') for some 1} G E7,.^., 
for some u‘ = (s{<1 ■ • G 5 '  and for some v‘ £ S_+; for some i G {1,.. ., n}; for some
j  G {1,.. ., | r ‘|}; for some r, such that for l = either t, = x, G 2LStl, wherein
stJ G (S -  S) or r, G Ar‘(S, X', V).,,, otherwise; and for some t‘ G Ar>(S, E7, X)'t then

CATl3(r) = u ; '  0 a, 0 < <CAT,s( r /),CAT,s( n ) , . . . , C ATls(rm) > •

Definition 86. Let X' be defined as in Definition 83 and let X = {x!, . . . ,x ;}  C V such that 
x i € 2Cr, f°r some r{ G 5 for i = 1,. . . ,  / > 1. For each S = {ay,. . . ,  a„} wherein G PR(S)t U.|B, 
for i = 1,. . n and for each u G 5 ’ and for each v £ S_+ we define

x £ f5 :AT̂ (S ,E ',X )u.i, - P R ( E ) t

(ambiguously denoted y ^ '3) uniformly in (u,v) by induction on the structural complexity of a 
term r  G ATa(E, E7, X)U|„ as follows:
Basis Cases.

( l )  S tream  Variables. If r  = x, for some x G X of type s G S then

Xs,;°(t ) = cval>-

Induction.

( 2) Com position . If r  = F { tu .. . , r m) for some F{ G X'u.,„., for some u' = yl ■■■yn G S +, 
for some m < | îî‘| and for some vl G S_+; and for some r,- for j  = 1 , . . . ,  m such that either

Tj £ AT,(S, XGX)^

for some sj = ij G 5 or
Tj G A ^ X 7, X)u;,£,

for some u: G 5 ’ and for some = y7 6 A+ then
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w heroin
^  =  {7 1 , • • • , 7m}

and
T = {r/i,. . ., dm)

wherein for j  = l , . . . .  m we have

YAT‘3(r,-) if Tj G AT-’(X, T', X),lJi£i, and 
CATl3(r,-) otherwise

and

dj =
c if Tj G Ar-(X, S', X)UJ £J, and 
o otherwise.

Well-Definalness. First, notice that we have \ ^ ' s(tj) G PR(E)t«>,*j such that Tj G 
;VT2(S S7, X)ui .j for each j  G m}. Secondly, notice that by the well-definedness
of CaT,s we have <CAT‘s(r,) G PR(E)ri... r,,,r  Therefore as by definition d} -  c => ffi =
,̂Ar'J3  ̂ js Qf type ^  ui i vi^ for j  = 1,. . . ,  m  by the well-definedness of C we have

f S( r ) = C ' ( “ - ) G P m ) t

wherein for m we have

n - ' - r ,  if Tj G AT*(S,S ',X)s„ a n d  

uj 1 f h ^ ( S , ? , X ) flJ|i, otherwise

as required.

While the two previous compilers are sufficient to map the terms that occur on the right-hand- 
side of a equation in a type two ASTRAL specification into PR. To complete this compilation 
process we must also take into account the role played by the term on the left-hand-side of the 
equation and in particular the variables that occur in this term that are used to name particular 
co-ordinates of input.

In order to make sure that the PR scheme created from the term on the right-hand-side of 
an equation in a type two ASTRAL specification receives the correct input we use the compiler 
CA,J that follows. For example, if a type two ASTRAL specification is of the form

F  (  2-’  1 ,  • ■ • J X  n  )  —  T

for some 27 G 2Lr, for some /y G A then we use the set X = (x h . . .  ,x„} as an index when we 
compile t to create a scheme fiT — CAJ(r) that can be composed with a T = \ A‘- (7) as follows:

a = a T 0 fiT

to achieve a scheme with the desired semantics.
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Definition 87. For each X = {xt____ xm} for some x,- G , for some r,- G ¡9 for i = 1,. . . ,  in >
1, for each u G S_+ ami for each g G 5 + we define

C 'Z  :ATj(S,!7, l>R(S)ri...r„iU

(ambiguously denoted CaT2 ) uniformly in (u,v) by induction on the structural complexity of a 
term r  G AT-'(S, L ',X )Uit, as follows:
Basis Cases.

(1) S tream  Variables. If r  = x,- for some x* G X of sort ?y G A then

CAT2(r) = U p -r™.

Induction.

(2) C om position. If
t = II (ru . . . , r „ )

for some H G XT,,,, for some w = / /  ■■•(/" G i + for some n < |w| and for some v G A+; 
and for some r, for i = 1, . .  ., n such that either

r i G A ^ S . ^ X ) ,

for some ,$< = ?y1 G A or
r, e AT3(S)S7,X)u.i£.

for some u' G A+ and for some z' — ;/ G 5 + then

CaT’ (r ) = xp ir ( «  7 i , . . .,7n > )

wherein for i = 1,. . . ,  n we have

_ fCaT' (Ti) if n  G AT3(S ,S 7,X)u.i1., and
h [<  U(‘ " fm, • ■ •, UJ(1 ' r"' > otherwise.

6.3 .2  C om p ilin g  A S T R A L  Specifications

Using the compilers we have defined to compile ASTRAL terms we now define a number of 
compilers that map ASTRAL specifications into PR and PREQ, to realise our strategy for com
piling full ASTRAL specifications (via type three ASTRAL specifications) in PREQ.

T ype  One A S T R A L  Specifications. We begin by compiling type one ASTRAL speci
fications into RPRFQ specifications.
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Definition 88. Let V  and É be defined as in Definition 83. Also, let A'' = A_ U {5^,. . V î} 
wherein A, is of type of i — 1,. . . ,  |y|. For each u,v £ S_+ we define

\ : ^ n,A1-; : ASTRAL!(A, A7, X ) „ , v_  -  RPREQ(S, V')t

(ambiguously denoted yASTKALi ) by case analysis on the structure of a specification

T £ ASTRAL,(S, A7, X)u,„

as follows:

(1) Simple Specifications. If
<I> =; F (x t ,. „)(£) = r

for some € A,., for some € 5  for i = i , . . . ,  n and for some r  £ AA(E, T7, {.r1;. . . ,
for some ,s E S then

\ AV:RalR-I>) -  f ( t , x l , . . . 7xn) = x AT'(r).

(2) Vector-Valued Simple Specifications. If

<i> dU F ( x u . . . ,x n)(t) = (T,, . .  . , r m)

for some ay E A Jt, for some s,- E Fior i  = 1, . . . ,  n and for some r,- € A^QC, {ay,.. 
for some s' € S  for j  -  1 , . . . ,  ni > 1 then

^ A S T H A L . ^ )  dg  m , X l , . . . 7 X n ) = <  X Ar ' { T l ) , . . . 7 X ^ { T , n )  >  ■

(3) Primitive Recursive Specifications. If

^  d e j  F( X ! , . . . , X rl ) ( 0 ) — T

F { x u . . . , x n ) ( t + l )  =  T 1

for some x, € .Vv . for some s,- € 5 for i = 1 for some r  £ Ari(E, S', { x , , . . . ,  x„})
for some s £ 5 ; and for some r '  £ y;', {xt, . . .  ,x „})4 then

astrali/<j>\ A/ /(0; x' i5 • • ■, x n )  —  X A  ( T )

f ( t  + l , x l , . . . , x n) = xaT,{i‘... r “}li(r ').

(4) Vector-Valued Primitive Recursive Specifications. If

<tj A/ F (ay ,. . . ,  x„)(0) = (d , . . . ,  rItI)
F ( x ! , . . . , x n) ( t + 1) = ( r ( , . . . ,  r r'n )

for some ay £ A\,, 
xn})5- for some s'.

for some s, £ S for i = for some r;-jE ATl(S ,S ',
G 5 ; and for some r '  £ AT‘<*-...>]', {x,, . . . ,  xn

{xi> • • • •
for

j  = 1,. . . ,  m > 1 then
x  astral, ̂  dg

/((), Xt. . . . . At )
/ ( (  -f l ,X ! , . . . .T n)

< XAT’(r 0 ) • • • ’ XA ( An ) >
< XAT>R.... (r{),. . . ,  >
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T ype  Two A S T R A L  Specifications. We now show how to compile type two ASTRAL 
specifications into PR.EQ.

Definition 89. Let X' tie defined as in Definition S3. For each S = 
a, € P R( S ) t u > f o r  i = 1,. . . ,  n and for each u,u £ S_+ we define

\ Af RAL? : ASTRAL:(E ,!F ,A )u,„ -  PR EQ (S,A )t

{oq, . . ., a,,} wherein

U ,V

(ambiguously denoted YAbrRAL’ ) as follows: if

4> J= E(.e1 ,. . . ,  x rn) = r

for some x, £ A u, for i = 1---- ,m  > 1 and for some r  £ Ar-(S, E', X)„, for some w £ S '  and
for some v £ S_+ wherein X = {.iq.. . . .  xrn} then

ASTRAL (<{>) =
CPREQ( \ AT'>3(r) o ,\PRV( <  U'pCAli (t ) > ) )  if | w| > 0; and 

CPRhQ (A'^" J(r )) otherwd.se.

Well-Definedness. We consider the case where |w| > 0 and leave the case wdiere |ic| = 0 to the 
reader. First, notice that by the well-defmedness of CA 2 we have

CaT»  £ PR(S)„iU,

and hence by the well-defmeness of \ PR we have

7 = yprv( «  U i .C ^ l r )  » )  £ PR(E)tu ,tI„

Also notice that by the well-definedness of \ A' ui we have

X ^ ( r )  £ PR(S)tlUi„

and hence clearly 6 PR(X) with type ( tu, v). Therefore finally by the wclJ-definedness
of CPRLQ w'e have

xASTRAid(<{)) CPRi:Q ( rW3(r) 0 yprv(<  U i,C v" ( r )  » ) )  £ PREQ(S, A')t

as required.

T ype  T h ree  A S T R A L  Specifications. Using the three previous compilers we can now 
compile type three ASTRAL specifications into PREQ.

Definition 90. For each u £ S_+ and for each v £ 5 + we define

as follows: for each 

for some

^astra!, . A SfRA LaiE .A ),, • PR EQ( E. .V )t!i,

<f> = < F\ Oj,. • •, On > t  ASTRAL3(E, X ) u 

v £ ASTRAL2(S ,{ i;\ , . . . ,F „ } ,  X)Ui„
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for some u,v  £ ¿ + such that F) is of type ( u \ v l ) for some u1 £ 5 + , for some v' 6 S_+ for 
i = 1, . .  ., n > 1; and for some

Oi € AS I RALi(A, {/■ i , . . . ,  /',-+i, ■ ■., F,,}, A

for i = 1, . . . .  n such that

i £ InTermsOf(< ----on >. i, {Fu . . ., Fn})

for i = 1,. . ., n
x A S T R A L 3 ( ( & )  =  v e n e , : ( , , ;A S T R A L i

wherein S = {ah .. such that for i = 1,.. ., n

T  £ PRQDtu',^

is defined bv
l i ’R [ ,  , A STR A La, = C  R(< x AslRAL' ( Ái ) , - - - , \ A S T R A L ! (<¿>»), £ T * >)

wherein r : {1....... n} {1........ re} is the identity function on each k £ {1 } and ;/ :
{1,. . n} S_+ x 5 + is defined by

(VA- £ { ! , . . . ,  n}) 7}(k) = { t u k, v k).

Well-Dcfincdncss. Notice that by the well-definedness 0f yas1ral’ it suffices to show that 

«, = CPR(< e PR(S )t „,„.

for i = 1,. . ., n. In particular, notice by the well-definedness of -y-ASTRALl for each k £ {1 ,. . . ,  n] 
we have

y ASTRALl(d>*) e R P R E Q ( i \ r ) tuyuk

wherein is defined such that for each w £ S_" and for each s £ S

, (J{/■'.;} w = t u' an<l there exists an Ft £ N'u. t,.
for some i £ {1, . . . .  k — 1, k -f 1,. . . ,  a ) , 
for some v' = (/£ • • -sm) £ 5 + such that s — s} 
for some j  £ {1,. . .m}, and 

N otherwise~ W  , 3

and X! — X. U {iy....... Vj„*|} wherein Y} is of type vj of j  = 1, . . . , | - iA|. Therefore if for
z = 1, . . . .  n we can show that

<i>, = < x astral, ^  ) , . . . , \ ASTRAL,(^ ) ,^ » ? ,* >  G PREQ(E, A')t ,I. t,.

then by the well-dofinodness of TPR we will have

a, = CPH(d>,) £ PR (S)tu.,„.

v ‘

as required.
First, notice that by the definition of i and rj that <h, is standard. Therefore to complete our 

well-definedness argument it sufiicies to show that
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(1)
(Vi G {1-----, « } )  I InTormsOf(<f>i, F)

wherein

F = \ j  “  I
j = i

and

( 2)
(Vi  G n}) ( ^ V ( O ) A ( ^  = nR(i)).

The fact that ( 1) holds follows from the hypothesis that

i £ InTermsOf( < <pl,...,<pn {F,,. . ., Fn}).

The fact that (2) holds follows from the fact that i(i) = i for i = and the fact that
(t u‘, v') = 7](i) for i = 1,. . n by definition.

Com piling Full A ST R A L  Specifications. As promised to complete our compilation process 
we now show how the compilation of full ASTRAL specifications can be achived using the 
compiler that maps type three ASTRAL specifications into PREQ. In particular, the compiler 
definition is based on an iterative process that reduces the complexity of the full ASTRAL 
specification until it involves only one type two ASTRAL specification that can then be compiled 
directly into PREQ using yASTRAL3.

Definition 91. For each u G 5 +, for each v G S_+ and for each

— A  t T  E 1 1 • • * i E m  i 1 ? * • • i *Pn  ^

for some
Q G A S T R A L 2( S ,  { F u  . . . ,  F m + n } ,  X _ ) u „

for some a G 5* and for some v G S_+, such that ig is of type (ul,v l) for some u' G 5* and for 
some c' g T  for i = 1.....m + n > 1; for some

V. G A S T R A L 2( S ,  { I ‘ \ ,  ■ ■ i, F i + 1 , . . F m } , X _ ) u \ v -

for i = 1,. . . ,  77i; and for some

o,  G A S  I R  A Li  ( Lj, { F n + i . . .  • 1 1  i —11 F + 1  > • ■ • F n + m  },  A_)ti*  ̂■ 

for i. ~ m -j- 1,. . ., in d- it such that

l (p 111 LemisOf(< Cg, . . . , (i’m, <p\, ■ ■ ■ ■, <Pn A 5 G {P1 > ■ • • . Fn + n }) 

for 7 = 1,. . ., 7/7 -f 77 we define

CAf RAL : ASTRA L(£,£)U.„ -  PREQ(S,
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(ambiguously denoted CAS1RAL) by induction on the value m £ W. 
Basis in = 0. Notice in this case that

<I> e A S T R A L 3( N , X )

and therefore we define CASIRAL by

( j - A S T R A L ^ j  ^ A S T R A L a ^ ^

Well- Definedness. This follows immediately by the well-definedness of ^ASTRALy 
Induction  in ~ k + 1 for some fixed k 6 IH. In this case we define CASTRAL by

C A S T R A L ( <  c . , ^ ............ ................................... »  =  ^ A S T H A L ^ . , ^

wherein
S = {«1, • • • , CVfc + n + 11 

such that for i = 1, . .  ., k + 1 we have

a, = e PR(CASTRAL(< V i ,  Vi, •••, tA-i, 'A + i- • • .,'<h + i ,Vu ■ • •,</>,-, >));

and for i = k -f 2....... k + n + 1 we have

a, = CFR(< x ASTRALl(<?i).......XASTRAL,(«^n), i >)

wherein t : {1,. . ., n + m} — {I....... n} is defined by

(Vj € {1 + tR}) i(j) = j  ~ m 

and i] : {1,. . ., n + m} —-• N+ x 5 + is defined by

(Vj G {1....... n -f m }) I)(j ) = ( t u h  v}).

Well-Definedncss. The well-defmedness in this case follows from the fact that by the Induction 
Hypothesis we have

CASTRAL(< Vi-u >) € PREQ(T,X ) tu\ v

for i = m + I,. . rn + n, and a similar argument to the well-definedness of ^as'1'ral3  ̂ aiuj ¡s 
therefore left to the reader.

6.4  T h e  S em a n tics  o f  A S T R A L

We are now’ in a position to define the deriotational semantics of AST RAL specifications using 
PREQ. Notice that because ASTRAL has no independent semantics we cannot verify semanti
cally the correctness of the compiler CASTRAL on which the semantics of ASTRAL relies as there 
is nothing to prove. Rather, we simply observe that this is by definition our intended semantics 
and that it is well-defined as the compiler CASTRAL is well-defined



Definition 92. Let ¿1 be any standard A-sorted S-algebra. We define the ,V + x (A — S ) + -indexed 
family of maps

U a = < I -C L : ASTRAL(^, A )u,„ -  [A" -  W] | a £ S + , v £  s + >

wherein for each a £ S_+ and for each v £ 5 +

ITa 1 ■■ AST1UL(S, X ) UiV_ -  [Au -  A-]

(ambiguously denoted [J.-i) is defined for each £  ASTIIAL( 2L)u,v as follows:

(V« € A11) (V/ € T) [<I>y «XO = [CASTRAL(<X)]ii(/, a).

This definition of the semantics of ASTRAL specifications completes the abstract formulation 
of our specification language for STs. In the following section we discuss the construction of a 
concrete syntax for an implementation of ASTRAL and present several example programmes.

6.5  Im p lem en tin g  A S T R A L

6.5.1 In trod u ction

As we have discussed in previous chapters, the development of the abstract syntax of ASTRAL 
has to a large extent been influenced by the underlying theoretical issues that we wished to 
address:

(1) Using primitive recursive functions (represented equationally) as a specification methodol
ogy.

(2) The reconciliation of a Cartesian form semantics with the need for more natural applicative 
form specifications.

With these aims now achieved, in this section we turn our attention to some of the practical 
issues that arise in the use of the abstract syntax and semantics of ASTRAL as a mathematically 
well-founded basis for a high-level specification and programming language. In particular, we 
present several examples of ASTRAL specification using a prototype BNF.

In the following section we begin by using ASTRAL to specify the stream processing prim
itives that we identified in our literature survey in Chapter 3, including a discussion of the 
computability theoretic issues that this raises. In particular, we will show that while ASTRAL 
relies on primitive recursive functions for the formalization of its semantics, from a practical per
spective it is still possible to specify systems that require least number search (see Section 4.4) 
by simulating their behaviour. In more detail, any actual implementation will have finite con- 
straints placed on the amount of memory that is available. Therefore, while some specifications 
may at the abstract level use least number search, when an actual programme representing such 
a specification is implemented this use of least number search can be effectively simulated by 
bounded hast number scorch that is a computationally conservative expansion of the primitive
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recursive functions. We explain this idea more fully in the sequel.
After the stream processing primitives we specify the RS-Flip-Flop (see Section 3.8.1) that 

we also use as a case study in the following chapter. However, we begin this chapter by moti
vating the prototype ASTRAL syntax. We do this by summarizing the underlying requirements 
that have shaped its development, and presenting the basic programming primtitives and their 
syntactic structure.

6.5.2 D e v e lo p in g  an  A S T R A L  I m p le m e n ta t io n

From the practical perspective their are several requirements that we wish to address in the 
design of an implementation of ASTRAL:

(1) As far as possible ASTRAL should provide a general purpose programming methodology 
with a syntax that is in keeping with the style of modern languages such as C, PASCAL 
and C+ + . In particular, we require an implementation of ASTRAL to incorporate the 
following:

(A) ASTRAL syntax will include features for the specification of hardware as stream 
transformers.

(B) ASTRAL will provide support for the definition of user-defined data-types and will 
allow' the definition and use of library function and project hies to support software 
re-use and modular programming techniques.

Indeed, as a specific example, ASTRAL will provide library functions to sup
port the use of the stream processing primitives and constructs that we identified in 
our literature survey in Chapter 3. In principle, this will enable specifications and 
implementations written in existing stream processing languages to be compiled into 
ASTRAL, and hence to be formally verified.

(2) While the abstract syntax of ASTRAL is declarative in style the implementation of AS
TRAL will incorporate features from imperative languages to aid in the design of certain 
systems and algorithms where an imperative approach is more natural (compare with 
Section 3.8.4). For example, ASTRAL will incorporate iteration in the form of ‘for’ and 
‘while’ loops (see Section 6.7).

(3) ASTRAL will provide strong support for the animation of specifications by efficient com
pilation into a suitable existing high-level language. In addition to the usefulness of this 
feature with respect to hardware verification -  as animation is often helpful to establish 
what it is we wish to prove about a piece of hardware -  efficient compilation of ASTRAL 
code is also required to make ASTRAL a viable general purpose programming language 
as per Requirement (1).

(4) The ASTRAL language will be incorporated into an ASTRAL environment to provide 
support for the formal verification of systems via their compilation into term re-writing 
systems (see Section 5.4).
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In addition to the practical problems that the development of such an implementation 
of ASTRAL will present, many of the issues that arise themselves create further theoretical 
problems that must be overcome. This is particularly the case with respect to incorporating user- 
defined data types and parameterization issues that arises out of the specification of families of 
hardware. Indeed, the development of a full implementation of ASTRAL goes beyond the scope 
of this thesis, although it has been the subject of collaborative work between the author and M N 
Summerlield (see Summerfield [1994]). However, at the time of writing this thesis, research into 
these practical issues is only at a stage where a prototype BNF for ASTRAL has been developed. 
Therefore, rather than present this BNF formally, as there is a strong similarity between the 
implementation of ASTRAL and abstract ASTRAL in Section G.6 we prefer to: ( 1) briefly discuss 
the general structure of ASTRAL; and (2) in Section G.7 demonstrate ASTRAL’s effectiveness as 
a specification language using some of the stream processing primitives we identified in Chapter 3 
and the RS-Flip-Flop as examples.

6.6 T h e G en era l S tru ctu re  o f  A S T R A L  P rogram m es

Our implementation of ASTRAL is based directly on full abstract ASTRAL specifications. 
Hence, ASTRAL is declarative wherein each programme is essentially a collection of type one 
and type two ASTRAL specifications. However, as our implementation is intended to be a 
general purpose high-level programming language, in addition ASTRAL programmes can also 
include: declarations of non-STs; and user-defined data types and user-defined constants; and 
‘abbreviations’ to reduce the size and syntactic complexity of programmes.

To provide the reader with an overall perspective of the structure of our implementation we 
now briefly discuss some of ASTRAL’s key features. Indeed, we re-iterate many of these points 
in more detail in the following section with the aid of our examples.

( l )  Signatures, Variables and Pre-Defined Data Types. It is not necessary to make an 
explicit definition of the signature and variables required to make definitions in the AS
TRAL implementation. Rather, this information is derived implicitly from each individual 
ST and function definition, although the user may explicitly define additional constants. 
Furthermore, reflecting the emphasis we place on the specification of hardware, the stan
dard constants and operations associated with the following pre-defined data types are 
always available to the user without the need for their explicit inclusion: bit, byte, bool, 
char, nat and int. In addition, for each of these data type (and for each user-defined 
data type -  see below), the associated array type, set type, stream type, stream of array 
type, stream of set type and the data type extended with the undefined element u are 
also available to the user without their explicit definition. For example: bitArray, bitSet, 
bitStream, bit Array Stream, u^bitArray, u.bitSet, u,-bitStream and u_bitArrayStream are al
ways available to the user. Notice, in particular that the real numbers are not supported 
as a pre-defined data type in ASTRAL, although they will be supported via a pre-defined 
library. This distinction is made for technical reasons concerning the formal verification 
of ASTRAL programmes as the real numbers are not finitely yeneratable (see Chapter 7).
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(2) Definitions. There arc six basic types of definition that may be made within each AS
TRAL programme: two forms of AFST definition; function definitions; user-defined data 
types; user-defined constants; and abbreviations. We discuss each of those definitions in 
more detail.

(A) Evaluated AFST Definitions. These definitions have the following basic structure: 

AFST-name(var-l : d-type-1,. .. ,vat-n : d.type.n ) r-typeA,... ,r_typc-m (t)

definition-body.

Evaluated AFST definitions are the the concrete representation of a type one ASTRAL 
specification (specifically indicated by the token '( t ) ’) and hence AFST .name can only be 
used in the definition body in evaluated form. (The structure of the body of AFST and 
function definitions is discussed below.) Sort names in the range of an AFST definition 
must be stream sorts.

(B) Un-Evaluated AFST Definitions. These definitions have the following basic struc
ture:

AFSTjiame(var.l  : d-type.J,.. . ,var-n : d.type.n ) rJype-1,. . . ¡rJype.m 

definition-body.

Un-evaluated AFST definitions are the concrete representation of type two ASTRAL spec
ification and hence AFST-name cannot be used in the function body. Again, sort names 
in the range of an AFST definition must be stream sorts.

(C) Function Definitions. These definitions have the following basic structure: 

function-name(var_/ : d.type.l, . .. ,var.n : dJype.n ) rJype-1,... ,rJype.m

definition-body.

This syntax is the concrete representation of a RPREQ specification and hence the func
tion may also have stream sorts in the domain and range if the user wishes. Indeed, notice 
that as far as the user is concerned the only syntactic distiction between un-evaluated 
AFST and function definitions is the range type of the defined function.

(D) User-Defined Type Definitions. User defined data types come in three basic 
forms: restrictions of pre-defined types, compound types and type unions:

(a) Type Restriction Definitions, lhese definitions must conform to one of the three 
following forms:
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type type-name isa pre-definedJype.name .
type type-name isa pre-defined-typejname ( constant-value to constant-value ). 
type type-name isa pre-defined-array-type-name [ constant-value ].

Examples:

type totals isa natArray .
type register isa nat ( 0 to 32 ) .
type lowercasechar isa char ( ”a” to ) .
type smallintarray isa intArray [ 5  ] .

(b) Compound Type Definitions. These definitions have the following form:

type type-name compsises 
component-type-list.

wherein a component-type-list is comprised of any one of the three basic type definitions 
except that the keyword type is omitted and a variable name replaces the user-defined type 
name. Example:

type employcetype comprises 
Name isa char Array [ 50 ].
Number isa nat ( 1 to tOO ).
PartTimc isa u-bool.

Thus employcetype is a compound type with three fields called Name, Number and Part- 
Time respectively. In particular, if as part of an AFST header definition we were to define 
the variable ‘Employee : employeetypc' as an input then the values of the components are 
accessed as follows: Employee.Name, Employee.Number and Employee.PartTime respec
tively.

(c) Union Type Definitions. These definitions have the following form: 

typeunion type-name isa type-name-list.

Example:

typeunion intchar isa int, char.

(D) User-Defined Constants Definitions. User-defined constants may be declared 
over both pre-defmed and user-defined data types. These definitions have the following 
basic structure:

const type const-name is const-vaLlist .
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Examples: (using the definitions of the user-defined types above) 

const nnt M A X  STR IN G -LE N  is 50 .
const smallintarray ZERO-SMALL J N T -A R R .IV is 0, 0, 0, 0, 0 . 
const employeetype NULL^JEMPLOYEE is 0, u .

(E) A b b rev ia tion  D efinitions. Practical experience with the specification of hardware 
has shown that there is a need for a mechanism for the definition of tokens that can 
be used as abbreviations for complex expressions that occur frequently. However, the 
specific mechanism in which this feature will be included into ASTRAL is at present 
under-developed, although we do include an simple example in the following section of 
how we envisage abbreviations will be used.

(3) A FS T  and  F unction  B ody D efinitions. There are four basic types of compound 
expressions that can be used in the body of AFST and function definitions: case state
ments., ifmatch statement, for . . .  statements and for .. . while . . .  statements. These are 
explained in the following section using our examples.

There are several further features of ASTRAL that we have not presented and discussed above as 
they are not easily motivated by a simple presentation of a BNF definition and some examples. 
These include template functions that can be used to define families of functions, input and 
output mechanisms, and libraries. Summerfield [1994] gives a more detailed presentation of the 
features of our prototype ASTRAL implementation and discusses these addition features.

6 .7  E x a m p le  A S T R A L  S pecification s

6.7 .1  E x istin g  S tream  P ro cessin g  P rim itives

We begin our example ASTRAL specifications by representing the various classes of stream 
processing primitives we identified in our literature survey in Chapter 3. Where appropriate we 
also include the corresponding abstract ASTRAL definition of a primitive. However, we will 
not formally define a compiler that generates abstract ASTRAL definitions from an ASTRAL 
programme (implementation) as, while this is essentially straightforward, their are still several 
subtle practical issues that must be resolved that go beyond the scope of this thesis. We mention 
each of this points in the sequel where appropriate.

In particular, one of the points that we aim to emphasise during our discussions, is that, 
while ASTRAL is restricted to the specification of primitive recursive functions, in practice 
ASTRAL is not limited in the sense of the class of actual systems, either hardware or software, 
that we can specify.

F unctional S tream  P rocessing  P rim itives. The reader should refer back to Section 3.4.1 
for a definition of the following primitives. Also, note that in the following definitions we will use 
the word ‘sort’ to indicate any valid basic type from our underlying signature F. Furthermore, we 
assume that any operations that are not explicitly defined are part of the underlying signature.
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In particular, we always assume that equality denoted eq is always available on any basic (non
stream) type.

( l )  Stream  C onstruction Operator. This can be defined in ASTRAL as follows:

cons (a : sort, s : sortStream) sortStream (t)

a if t = 0; 
s ( ’t).

D iscussion. First, notice that as we mentioned in the previous section, in the implemen
tation of ASTRAL there is no explicit information concerning the underlying signature 
and (local) variable set. Rather, this information is defined implicitly by the header asso
ciated with each function definition. In particular, in this case we have one function cons 
with type (sort sort, sort) and our variable set is comprised of two variables a and s of 
type sort and sort respectively.

Secondly, notice that the typing information at the end of the function header is post- 
fixed with Yt)’; that is, the functions range is post-fixed with ‘(t) \  This is to indicate 
that while in this case the function cons returns a stream we are actually specifying the 
function at some time t; that is, we are specifying cons in evaluated form. Indeed, this 
concrete syntax corresponds to an abstract definition of a type one ASTRAL specification. 
The use of l(t)' also implicitly indicates that that our (local) variable set is extended with 
the symbol t of type nat.

In general a function definition body (that follows the ‘= ’) is comprised of a group of 
expressions structured using various constructs and is terminated by a In the particular 
instance of cons we have a two-way case statement (if  ... then ... else clause), although 
multi-way case statements are also permitted. (The symbol ‘ can be used as a shorthand 
for ‘else’.)

The symbol is also a shorthand that may be pre- and post-fixed to any numerical 
expression to indicate the predecessor and successor respectively of the expressions value. 
For example, ’t is shorthand for pred(t), t ’ is shorthand for succ(t), t” is shorthand for 
succ(succ(t)) and so forth.
An Equivalent A bstract ASTRAL Specification. This concrete representation of 
cons corresponds to the following abstract ASTRAL definition: let X  D {a,s, t}  such that 
a, s and t are of type r, r and n respectively for some r £ (5 — S). We define

= < ip,<t> > e ASTR.AL(E,X)rjl,r

wherein
ip d= F(a,s) = cons(a,s)

and
<p dfJ cons(a, s)(t) = dcr(cqn(t, 0), a, s(prcd(t))).
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Notice in particular that dc (definition-by-cases) has allowed us to eliminate the cases 
statement and hence to convert a limited form of conditional equations to a ‘pure’ equa- 
tional representation (see Section 4.2.3). Also, notice that as we indicated in Section 0.2.2 
the role of the type two ASTRAL specification in this definition is simply to indicate that 
the functional cons is to be used as the semantics of the whole specification.

(2) C onca tenation . This can be defined in ASTRAL as follows: 

typeunion sortGenStream isa sort Array, sortS tream. 

concat($l : sortGenStream. s2 : sortGenStream) sortGenStream (t)

sl(t) if size(sl) < t;
s2(t - size(sl)).

size(s : sortGenStream) riat

array size (s) if isa.array(s);
MAX.NAT.

D iscussion. First, notice that because the stream concatenation operator relies on the 
more general notion of a stream (see Chapter 2), in order to simulate the operation of 
concat in ASTRAL we have defined a user-defined type sortGenStream that is the union 
of the array and stream type for the type sort. This is achieved by the definition

typeunion sortGenStream isa sort Array, sortStream.

(wherein is an abbreviation for the word "and’) that allows us to explicitly describe 
information about the underlying signature over which the function definitions that we 
make are defined. However, the order of definitions in ASTRAL is unimportant and hence 
this declaration could have appeared anywhere in the specification.

One difficulty that arises from the use of type unions for this purpose, is that we 
now require the operation isa.array that essentially allows us access to information about 
an expressions type; that is, that allows us to tell which basic type an expression has. 
While the use of such operations can be eliminated during the compilation into abstract 
ASTRAL using a similar coding technique to that discussed in Section 4.5.4 a detailed 
discussion of this process goes beyond the scope of this thesis.

Also, notice that the implementation of ASTRAL allows non-STs to be defined; that is, 
specifically in this case the function size. In practice, this is not a problem as the function 
size is (R)PREQ definable and hence can be considered to be part of the underlying 
signature. Again the details of compiling ASTRAL specifications that incorporate non-STs 
goes beyond the scope of this thesis (although, Chapter 7 and in particular the definition 
of the function AV (Definition 109) goes some way to showing how this process can be 
formalized).
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( 3 )  F i r s t  E l e m e n t  S e l e c t i o n .  T h i s  c a n  b e  d e f in ed  in A S T R A L  as  follows:

hd(s : sortStream) sort 

s(0).

D iscussion. As with the function size in the previous definition, the function hd is not 
strictly a stream transformer and hence cannot be defined in abstract ASTRAL However 
again in practice this is not a problem as hd is PREQ definable.

(4) F irs t E lem ent E lim ination . This can be defined in ASTRAL as follows: 

tl(s : sortStream) sortStream (t) 

s(t').

A n Equivalent A b strac t A STR A L Specification. Let X  D {,s} such that s is of type 
r for some r e  (5 -  S). We define

<i> = <  i),<p> e ASTRAL(S,20r,r

wherein
■4, df l  F(s) = tl(s)

and
4> d= tail(s) — s(succ(t)).

(5) Last E lem ent Selection. This can be defined in ASTRAL as follows:

typeunion sortGenStream isa sort Array, sortStream.

last(s : sortGenStream) usort

u if isastrcam(s); 
s(size(s)).

D iscussion. As with the operation concat the definition of last in ASTRAL requires the 
more general notion of a stream. Also, notice that to mirror the conceptual relationship 
between a finite sequence (a one-dimensional array) and a stream (an infinite sequence) 
that array evaluation is also represented as A f t ) ’ for some array a. FinaLly, notice that 
ASTRAL has an overloaded constant u associated with each type to represent an undefined 
value. This is why the range of the function last is u.sort. wherein assort D sort is sort 
extended with the additional element u.

(7) F ilte rin g . This can be defined in ASTRAL as follows:
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s(e) for e = t to MAX-NAT  
while not s(e) in S;

f i l t ( S  : s o r t S e t ,  s  : s o r t S t r c a m )  u s o r t S t r e a m  ( t)

D iscussion. First, and most importantly, notice that the mathematical definition of fill 
as presented in Section 3.7.2 implicitly requires the use of least number search. Indeed, 
it is a feature of unrestricted second-order equations that it is straightforward to implic
itly incorporate least number search and hence to specify partial functions. Therefore as 
ASTRAL’s semantics is derived using primitive recursive functions strictly speaking we 
cannot define filt using abstract ASTRAL.

However, by considering the fact that we are dealing with an implementation of AS
TRAL and that in turn any functional language must be implemented on a machine with 
finite constraints on memory it is possible in practice to define a simulation of the filtering 
operation. Moreover, we argue that this simulation is essentially indistinguishable from 
any implementation of a functional language representation of Jilt.

In more detail, we can specify a simulation of filt using the for ... while ... con
struct that is a feature of the ASTRAL implementation. The intended semantics of the 
filt simulation using the for ... while ... construct is as follows:

s(e) wherein e is the least value from the set
{f,. . . ,  MAXJXAT} such that s(e) £ S, and 

•u if no such e exists.

Essentially, the for ... while ... construct is a concrete representation of bounded least 
number search that is a computationally conservative expansion of the primitive recursive 
functions (see for example Cutland [1980] and also Section 4.4). Indeed, this simulation 
of filt (that is primitive recursive) can be represented in the abstract syntax of ASTRAL 
as follows:
A n E quivalent A b strac t A STR A L Specification. Let MAX^NAT  £ E^ „ and X  A
{5, ,s, t, z} such that S, s, t, x are of type p(r), r, n and n respectively for some r e ( S - S ) .  
We define

<5 =<  > G ASTRAL(E,20rr,r

wherein
f  F ( S , s ) = f i l t(S,  s),

4>x =f f i l t (S ,  s)(t) = Istft, S, s)( MAX-NAT)

and
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lst(x,S,s)(Q) = dc( in(s(x), 5), x, u)
lst(x, S, s)(t + 1) = dc( and(in(s(t + x + l), S),eqr(lst(x, S, s)(t). u)),

t + x l,
Istfx, S, s)(t)

)
Notice that the function 1st simulates the bounded least number search that vve require, 
although in this particular example at the abstract syntax level it does this inefficiently. A 
discussion of compilation techniques using more efficient methods again goes beyond the 
scope of this thesis.

(8) Poin tw ise  C hange. This can be defined in ASLRAL as follows: 

pc(s : sortStream, n : nat, x : type) typeStream (t) 

s(t) if t <> n;

R elationa l S tream  P rocessing  P rim itives. The definition of all the relation stream pro
cessing primitives identified in Section 3.7.3 are straightforward and are left to the reader.

LU C ID  P rim itiv es. We now specify some of the LUCID stream processing primitives 
we identified in Section 3.8.4. In particular, we specify the operators whenever, asn and upon 
and leave the operators first, next, fby and attime to the reader.

(5) W h en ev er. This can be defined in ASTRAL as follows: 

whenever(s : sortStream, b : boolStream) u^sortStream (t)

s(t) if b(t) = true;
whenever(s,b)(n) for n = t ’ to M A X -h A l  

while not b(n); 
u.

D iscussion. As with the functional primitive jilt the operator whenever implicitly requires 
the use of least number search and therefore the above definition is a primitive recursive 
simulation of whenever. However, as with jilt we argue that this simulation of whenever is 
indistinguishable from any implementation of the partial version of whenever.

We leave the definition of the abstract ASTRAL specification of whenever to the
reader.

(6) As Soon A s. This can be defined in ASTRAL as follows: 

asa(s : sortStream, b : boolStream) usortStream (t)
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s(n) for n = 0 to M AX.NAT  
while not. b(n);

D iscussion. Agian we are restricted to defining a primitive recursive approximation of 
asa. The definition of the abstract ASTRAL specification of asa is again left to the reader.

(T) U pon . This can be defined in ASTRAL as follows: 

upon(s : sortStrcam, b : boolStream) sortStream (t)

s(0) if match (.,.,0):
s(numofls(b)(t)-l) if match (.,(0)true,<>0);
s(numofts(b)(t)).

numofts(b : boolStream) natStrearn (t)

1 ifmatch ((0)true,0);
0 ifmatch ((0)false,)));
1 + numofts(b)(’t) ifmatch ((t)true,<>0);
numofts(b)('t).

D iscussion. The operator upon provides an example of the use of the ifmatch construct 
in ASTRAL that allows case statements to be presented in a more concise format.

The ifmatch construct can be used in place of the keyword if in a cases statement, 
and must be followed by a bracket-enclosed, comma separated list of the same length as 
the number of arguments in the domain of the function in which the ifmatch statement 
appears. For example, in the case of the definition of upon the list must be of length 
three, and in the case of nmnofts the list must be of length two (as t is considered to be 
an input). In addition, each elemenent of the fist must be a constant expression of the 
same type as the corresponding co-ordinate of the domain, with the exception of stream 
elements wherein if the expression is not a ‘don’t care’ then the expression must be of the 
same type as the evaluated corresponding co-ordinate of the domain (see below).

Within an ifmatch statement the tokens l(.)’ and ‘o ’ wherein V denotes any 
natural number expression, are used with the following meaning: the token ‘A may be read 
as ‘don’t care’ and will match with any value of an appropriate type; the token l(.)’ may 
be pre-fixed to any expression wherein the corresponding domain co-ordinate from the 
function that we are defining is a stream type; that is, this type of expression will match 
if, and onlv if the expression before the token ‘( . /  matches the corresponding stream 
co-ordinate evaluated at time -  see below for an example; and the token ‘O ’ pre-fixed 
before an expression can be read as ‘not a ’ and will cause the statement to match at that 
argument with any input that does not have that value.

Usiim the upon specification as our example the ifmatch statement above is equivalent 
to the following alternative AS1RAL programme.
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u p o n ( s  : s o r t S l r e a m ,  b : b o o lS tr e a m )  s o r tS t r c a m  ( t )

s(0) if t = 0;
s(t) if t <>  0 and b(l) = true; 
upon(s,b)(’t).

numofts(b : boolStream) natStream (t)

1 if b(t) — true, t = 0;
0 if b(t) = false, t = 0;
1 + numofts(b)('t) if b(t) — true, t <>  0; 
numofts(b)(’t).

A n Equivalent A b stra c t A STR A L Specification. Let X  D {s ,b ,t j  such that s, b 
and t are of type r, b and n respectively for some r G (S — S). We define

$  = <  y j , 4> >  £  A S T R A L ( E , X ) , b i!:

wherein
d= F(s , b) = upon(s, b)

upon(s,b){ 0) — (̂O)
upon(s,b)(t + 1) = dcT(b(Succ(t)),s(Succ(t)),upon(s,b)(t))

LU ST R E  P rim itiv es . These are very similar in form to the LUCID primitives and are again 
left to the reader.

ESTE R E L P rim itiv es. These are omitted.

ST R E A M  P rim itiv es  and  C o n stru c ts . We define all the STREAM primitives with excep
tion of £>, U s e l e c ,  sequential composition, C, fork and perm that as before are straightforward 
and left to the reader. However, notice with respect to the ‘feedback’ operator C th a t ASTRAL 
is restricted to primitive recursive feeedback. Also, for those primitives and constructs where 
we do give an ASTRAL specification of a STREAM primitive we leave the construction of an 
equivalent abstract ASTRAL specification to the reader.

(3) D is trib u tio n . This can be defined in ASTRAL as follows:

distr(b : boolStream, s : sortStrearn) sortStream sortStieam (t)
& xl  ”leasttrue(b,t) ”.
& x2 ”leastfalse(b,t)n.

(xl,x2).
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lea.sttrue(b : boolStream, n : nat) nat.

e for e = n to MA AL.YA T 
while not b(e); 

u.

leastfal.se(b : boolStream, n : nat) nat

e for e = n to MAX-NAT  
while b(e);

D iscussion. Notice that as with some previous primitives we are restricted to deJining a 
primitive recursive approximation of distr.

The definition of distr provides an example of a vector-valued function definition and 
also the use of (local) abbreviations. In particular, in ASTRAL the symbol l&' (not to be 
confused with the STREAM primitive '&') followed by two expressions, defines the first 
expression to be an abbreviation for the second expression. Indeed, the second expression 
can be enclosed within quotes to avoid any ambiquity during parsing. Also, unless placed 
between a function header and the following ‘= ’, as in the above definition, abbreviations 
have global scope. Essentially, if defined correctly then an abbreviation may be used as a 
variable of an appropriate type.

In addition, we also envisage that a full implementation of ASTRAL will allow more 
complicated abbreviations including ‘indexed’ familes of abbreviations and nested abbre
viations.

(a) P ara lle l C om position . This can be defined in ASTRAL as follows:

F(st : sort 1 Stream, s2 : sort,¿Stream) sortSStream sortfStream =
(G(sl),H(s2))

G(s : sort 1 Stream) sort3Stream(t) —

II(s : sortSStream) sortJ,Stream(t) —

D iscussion. In the above definition is used in the definitions of the functions G and 
II to represent any legal ASTRAL expressions. Furthermore, the types of the functions 
in the specification above are simply examples and could be of any type. Essentially, 
the use of what amounts to type-two ASTRAL specifications (function F in the above 
example) allows the possibility of parallel execution as the evaluation of G and II may
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be done independently. However, the exploitation of such parallelism will depend on the 
underlying architecture on which ASTRAL is implemented.

The definition of selected primitives for the STREAM languages concludes our simple AS
TRAL specification examples. In the following section we define the RS-Flip-Flop (see Sec
tion 3.8.1) that we will use as case study in Chapter 8.

6 .7 .2  S p ec ify in g  th e  R S -F lip -F lo p  in  A S T R A L

We now present a more complex example by defining the specification and an implementation 
of our running example the RS-Flip-Flop as ASTRAL programmes.

RSFlipFlopSpec(sl,s2 : boolStream) boolStream (t) 

true if t ~ 0;
false if t > 0, si (t) = true, s2(t) = false, 
true if t > 0, sl( t)  — false, s2(t) = true,
RSFlipFlopSpec(sl,sl)(t).

and

RSFUpFlopImp(sl,s2 : boolStream) boolStream boolStream 

OutSch (F Flop (true, false, InpSchfs l , s2))).

FFlop(bl,b2 : bool, sl,s2 : boolStream) boolStream boolStream (t)

(bl,b2) if t = 0;
(FFlopJ(bl,b2,sl,s2)(t) nor s2, si nor Fflop2(bl,b2,sl,s2)(t)).

OutSch(sl,s2 : boolStream) boolStream (l) 

st(t  * 2).

InpSch(sl,s2 : boolStream) boolStream boolStream (t)

(sl(t div 2), s2(t div 2)).
D iscussion. The ASTRAL programme to represent the implementation of the RS-FlipFlop 
provides the first example of the implicit use of Cartesian composition. In particular, notice 
that the function body of the definition of RSFlipFloplmp is essentially a composition of the 
three applicative stream transformers: OutSch -  representing an output scheduling function: 
Fflop -  represting the actual RS-FlipFlop device; and InpSch -  representing an input scheduling 
function. Therefore, as we can only specify the Cartesian forms of the ASTRAL representation 
in PREQ the formulation of a PREQ specification of the entire RS-FlipFlop implementation 
will require the use of the extended Cartesian composition compiler C (see Section 6.1.1).
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Chapter 7

A utom ated  Verification

It is a great ad.vaTi.tage of a system of philosophy to be substantially true.

George Santayana
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7.1 In tro d u ctio n

Recall in Section 3.10.4 that the fourth part of our research agenda was concerned with the 
investigation of automatic software tools for deciding the equality of two ASTRAL programmes 
under initial algebra semantics. More specifically, we promised that using Theorem 11 of Chap
ter 5 we can identify a syntactic sub-class of all decidable equational correctness statements 
relating ASTRAL programmes that can be verified automatically using first-order equational 
logic. In order to complete this task it is necessary for us to do the following:

(1) Identify a logical calculus that is sound with respect to the equality of STs using initial alge
bra semantics. For this purpose we define the calculus EQWIL that formalizes equational 
logic augmented with induction and case analysis as a proof system.

(2) Formulate an effective decision procedure for EQVVIL that can be used as the basis of our 
automated verification tools. For this purpose we define the related functions VER and 
EVER both based on term re-writing techniques.

(3) Reduce deductions about Cartesian form (weak second-order) equational correctness state
ments in weak second-order systems of equations to deductions about first-order equations 
in first-order systems of equations so that we may apply first-order techniques. For this 
purpose we define the function SubEvals that systematically eliminates occurrences of 
stream variables and replaces them with first-order terms.

We now discuss and motivate each of these points in more detail.

7 .1 .1  O v e rv ie w

In the literature software tools based on automated decision procedures are often synonymously 
referred to as either proof assistants or proof tools without (as far as we are aware) any rigorous 
definition of what these terras imply with respect to the software’s expected behaviour. From 
the perspective of our research, in order to clarify the results that we present, we find it is useful 
to begin this chapter by formalising these ideas. In particular, we find it useful to identify and 
classify the properties of four types of abstract device suitable to verify the equaLity of two STs:

(A) A proof assistant a device that implements a partial function that can perform deductions 
in a formal calculus, but that may either fail to find a proof of a hypothesis or fail to 
terminate even if a proof of the hypothesis exists.

(B) A total proof assistant: a device that implements a total function that can perform deduc
tions in a formal calculus; that is, a device that may fail to find a proof of a hypothesis 
even if a proof of the hypothesis exists, but always terminates.

(C) A proof tool: a device that implements a partial function that can perform deductions in a 
formal calculus and that can find a proof of a hypothesis if and only if such a proof exists. 
However, a proof tool may still fail to terminate if no proof of a hypothesis exists.
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(D) A total proof tool: a device that implements a total function that can perform deductions 
in a formal calculus; that is, a proof tool that can find a proof of a hypothesis if and only 
if such a proof exists and that always terminates.

We note at this point that it is implicit in the above definitions that both proof assistants and 
proof tools must always be sound with respect to some intended semantics (the initial semantics 
in the context of this chapter). However, even for total proof tools it should not be inferred from 
these definitions that we assume that these devices implement a complete proof system -  that is, 
the non-existence of the proof of a hypothesis in the lormal calculus that either a proof assistant 
or proof tool implements does not, in general, imply that the hypothesis is false. Indeed, as 
we mentioned in Section 3.10.4 unfortunately because of Godel’s incompleteness result and the 
negative result to Hilbert's tenth problem concerning the solution of Diophantine equations (see 
Davis et al. [1976]), in general it is impossible to design a sound and complete, total proof tool 
that will verify the equality of two primitive recursive functions under initial algebra semantics. 
In particular, as we have already pointed out, in the context of SCAs, that are a proper sub-class 
of the STs that are representable by ASTRAL programmes, this is because the solution to such a 
problem is equivalent to deciding the membership of a non-recursive, co-recursively enumerable 
set (see Thompson and Tucker [1994]).

Therefore, with respect to the use of EQWIL, that provides a powerful, but in general 
incomplete proof system, in this chapter we shall prove the following:

(I) There exists a general purpose total proof assistant that can verify the equality of two 
primitive recursive STs under initial algebra semantics.

(II) It is possible to identify non-trivial classes of correctness statements relating primitive 
recursive STs under initial algebra semantics for which there exists a total proof tool.

In particular, we will show that the function VER has these two properties for first-order systems 
of primitive recursive equations, and the function EVER has these two properties for systems 
of weak second-order primitive recursive equations.

In more detail, we will show that the functions VER and EVER behave as total proof tools 
in the context of first-order and weak second-order systems of primitive recursive equations 
respectively. Moreover, we will also show (Theorems 15 and 17) that we can identify syntactically 
four classes of correctness statements for which VER and EVER behave as total proof tools.

Informally, in the context of EVER (in increasing order of significance) these four classes 
of correctness statements are characterized as follows: (in the case of VER it is the same four 
classes of equations except restricted to strictly first-order equations)

(A ) Ground terms equations.

(B) Equations whose variables either range over finite carriers or whose variables range over 
stream carriers of the form [T -* A] wherein /I is a finite carrier.

(C ) Equations of the form
f( Xi l\ i • • • i In ) ■ C
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wherein x £ X n, c is some constant and the terms t{ for i = 1, . . n £ N contain variables
that either range over finite carriers or range over stream carriers of the form [T — ,4]
wherein ,4 is a finite carrier.

(D ) Equations of the form
/(a :,* !,...,* ,,) =

for some /  f  wherein x £ X n and for i = 1 £ N and for j  = [ £  N
respectively the terms i,- and t'- contain variables that either range over finite carriers or
range over stream carriers of the form [T —»■ .4] wherein A is a finite carrier.

Of these four types of equations notice that Class (D) captures the class of correctness statements 
that can be used to represent the equality of a very broad class of hardware devices when they 
are expressed as CFSTs. This is our main result and we will return to this point in Section 7.5.

7.1 .2  R eason in g  ab ou t W eak Second-O rder S ystem s

While BirkhofTs Theorem cannot, in general, be applied to higher-order systems of equations 
(see Meinke [1992b]), we now discuss how, in the context of weak second-order systems of equa
tions, it is possible to reasoning about the initial truth of equational statements by systematically 
eliminating occurences of the aval operator during a deduction.

First, we show that the provability of the initial truth of certain classes of first-order equa
tional correctness statements, relative to primitive recursive systems of equations, is decidable 
with respect to the calculus EQWIL (Theorem 15). We prove this using Birkhoff’s Theorem 
and Theorem 11 by demonstrating that VER can simulate deductions in EQWIL, and observing 
that EQWIL is sound with respect to the initial truth of first-order theories (Theorem 13).

Secondly, we show that EQWIL’s soundness is preserved with respect to the initial truth of 
weak second-order systems of equations (Lemma 50).

Finally, we show that relative to systems of Cartesian form equations, deciding the initial 
truth of an equational correctness statement e £ EQ(E, X)  using EQWIL can be reduced to 
deciding the initial truth of an equation e1 = (t = t1) £ EQ(E, A) wherein any stream variable 
x € A', for some s £ S that occurs in either term t or term t' must be part of a term of the form 
P = eval(r, x) for some r  £ T ( E, X). In particular, we show that by replacing each occurrence 
°f t] in e' with a new variable symbol ¡/ 6 A, we can derive a new strictly first-order equation e" 
such that the initial truth of e" implies the initial truth of e. Moreover, we show (Lemma 58) 
that this proof method can be implemented by combining the function VER (Definition99) with 
the function SubEvals (Definition 104) to give the function EVER (Definition 105). Therefore, 
we show that it is possible to generalize Theorem 15 concerning first-order systems of equations 
to Theorem 17 concerning weak second-order systems of equations. This process is summarized 
m the following diagram:
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R,t , t ' )  = tt '

Z
e q w il b f (t = t')

f > 4=4> EVER( R, r, r 1) = tt
SnbEvals

z 1
EQWIL— F (r = t') ,

z
I (S ,£ )  h  (r = r')

Figure 7.1: A Schematic Representation of our Proof Technique

Thus, we have a total proof tool (with respect to EQWIL) for reasoning about the correctness 
of a broad and useful class of systems, that is based on strictly first-order term re-writing 
techniques.

A more detailed overview of the rest of this chapter is as follows.
As the functions VER and EVER are based on term re-writing techniques we begin in 

Sections 7.1.3 and 7.1.4 by discussing the relationship between equational logic, term re-writing 
and truth in the initial model of a set of equations in more detail.

This discussion motivates the development of the calculus EQWIL in Section 7.2 that is 
based on equational logic. In particular, in Section 7.2.2 we define the key idea involved in the 
formal development of EQWIL; that is, the concept of a signature of constructors that can be 
used to finitely generate all members of the carriers of certain initial algebras, and that enables 
us to formalize the calculus EQWIL itself in Section 7.2.4.

While our main interest in this chapter is the study of the automated verification of STs, for 
generality we find it useful to begin exploring the properties of the calculus EQWIL in the context 
of strictly first-order systems of equations. In Section 7.3.1 we show that EQWIL is sound with 
respect to truth in the initial models of sets of first-order equations. We also present some 
bmited completeness results. In Section 7.3.2 we begin to explore the automation of EQWIL 
by defining the function VER that is suitable as the basis of both a general purpose total proof 
assistant, and total proof tool in the context of the four classes of correctness statements we 
discussed in the introduction. These results concerning VER are formalized in Section 7.3.2.

Using these general results as a basis, in Section 7.4 we focus our attention on the automation 
°f the calculus EQWIL in the context of the verification of STs. In Section 7.4.1 we first show 
that EQWIL is sound with respect to the initial semantics of weak second-order systems of 
equations. In Section 7.4.2 we discuss the limitations of VER with respect to stream algebras, 
but show how it can be extended to give the function EVER that is more appropriate as the 
basis of an automated theorem proving tool specifically for STs.

In Section 7.4.3 we complete the fourth part of our research agenda by showing how we may 
use EVER to specify a function AV that, in the context of STs specified as ASTRAL programmes, 
*s both a general purpose total proof assistant, and a total proof tool in the context of the four 
classes of correctness statement we have identified.

Finally, in Section 7.5 we discuss the implications of the theoretical results concerning the
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functions VER, EVER and AV in the context of SCAs (see Section 3.10) and in particular in the 
context of certain classes of hardware devices. This discussion clarifies how our technical results 
satisfy the claims we made in statements (A) and (B) in the introduction to this chapter.

7 .1 .3  E quational Logic, Term  R e-W ritin g  and In itia l Truth

Recall our discussion and definitions from Chapter 2 concerning term re-writing and TRSs.

Equational Logic. Equational logic is the simplest and most fundamental fragment of 
first-order logic. As pointed out in Meinke and Tucker [1992] the importance of equational logic 
stems from the large number of interesting equational theories that naturally arise in mathe
matics and computer science. Moreover, with particular reference to (automated) verification 
equational logic is appealing for the following two reasons:

(1) The Correspondence Theorem shows that any deduction from an equational theory E 
using the four rules of equational logic: rcflexivity, symmetry, transitivity and substitution 
may also be performed using a TRS constructed from E ; that is, that equational logic 
and term re-writing are equivalent in their proof-theoretic power. As a consequence the 
implementation of equational logic may be achieved via the comparatively straightforward 
implementation of a term re-writing engine.

(2) Birkhoff’s Soundness and Completeness Theorem for equational logic shows that we do 
not need a more powerful logic to reason about first-order equational theories. This fact 
follows as by the completeness of the equational calculus any equation that is provable by 
a more powerful logic must, also be provable by purely equational means.

As we will show, the combination of these two facts with some of the previous results of this 
thesis provides the basis for a straightforward verification methodology for STs.

Indeed, we begin by outlining a ‘naive’ automated verification technique based on these ideas, 
and by highlighting its flaw motivate the construction of the calculus EQWIL in Section 7.2.

Using T erm  R e-W riting  to  Verify STs. We have shown that a very broad class of 
STs and SPSs can be specified using essentially nothing more than first-order equations. In par
ticular, we have show that we can programme a ST in ASTRAL and can convert this programme 
into a complete, essentially first-order TRS. Therefore, given two ASTRAL programmes with 
°ne representing a ST specification and the other representing a corresponding implementation 
(possibly a SPS), if we can construct an equational correctness statement that relates these two 
Programmes then in order to automatically verify this correctness statement it appears at first 
that we need only do the following:

(A ) Initially we must implement the abstract compiler definitions that we have presented in 
the previous chapters thereby providing a mechanism for the automatic generation of a 
complete TRS from an ASTRAL programme. Indeed, in the sequel we will show formally 
that we may combine two ASTRAL programmes to produce a single TRS that captures 
the intended semantics of the STs represented by each programme.
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(B) Having generated the required TRS we can use these re-write rules to reduce both sides 
of the correctness statement to normal forms. (Notice that by virtue of the fact that the 
TILS is complete these normal forms are guaranteed to exist and must be unique.)

(C) Finally, on comparing the normal forms of these terms (that represent symbolically the 
results of the computation performed by the two STs), if the normal forms are the same 
(syntactically identical) then we may conclude that the implementation is correct.

Initial T ru th . While the verification method outlined above is both sound and complete, its 
completeness is with respect to truth in all models, that does not in general coincide with truth 
in the initial model. In more detail, as we have already mentioned in Section 3.10.4 the difficulty 
that we face with this method is that typically we require the verification of the correctness of any 
implementation of an ST to be in terms of its initial algebra semantics. Theorem 11 show us that 
the verification of an equational correctness statement that relates two ASTRAL programmes 
is decidable by virtue of the generation of a complete TRS. However, this decidability is with 
respect to the loose algebraic semantics (see Goguen [1988] and Goguen [1990]) that does not in 
general imply decidability with respect to the truth of the correctness statement in the initial 
model; that is, its initial truth. More specifically, validity (truth in all models) and initial truth 
coincide over closed equations (see Goguen and Meseguer [1982], MacQueen and Sanella [1985] 
and Heering [1986]), but if we consider open terms then in general the initial semantics of an 
equational theory and its loose semantics only coincide if the specification is oj-complete.

Unfortunately, the property of ̂ -completeness is only enjoyed by a small sub-set of equational 
theories (see Heering [1986]). In particular, primitive recursive equational specifications are not 
in general ui-complete, but the equational correctness statements relating ASTRAL programmes 
do in general require the use of open terms. As a consequence, while the verification method for 
STs that we have outlined is certainly useful, in general it is only appropriate with respect to 
loose and not initial semantics.

These limitations of equational logic are well-known, and therefore in order to address this 
Problem researchers have considered the following question: is it possible to enrich equational 
logic with further proof rules to capture the initial semantics of an equational theory? In the 
following section we discuss two solutions to this problem, and later show how we may adapt 
one method as the basis of the software tools for the verification of STs that we require.

^•1.4 E q u ation a l L ogic and Indu ction

While it is possible to enhance equational logic by the addition of further proof rules to give a 
sound and complete calculus that captures the initial semantics of an equational theory, unfortu
nately in general this requires the use of an infinitry deduction rule: the w-rule (see for example 
Weinke and Tucker [1992]). We use the word ‘unfortunately’ again as the w-rule requires an 
infinite number of premises to be discharged during a deduction and therefore is not suitable for
nnplementation.

However, one technique that can be used to (partially) address this problem is to augment 
e9uational logic with induction. While this does not have the power of the w-rule in the sense 
that it will allow us to capture the initial semantics of an arbitrary equational theory with a
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sound and complete calculus, vve can make use of the fact that equational logic plus induction is 
sound with respect to the initial semantics (see Goguen [1988] and Goguen [1990]). Moreover, 
what vve will demonstrate in this chapter is that despite the fact that equational logic and in
duction cannot in general provide a complete deduction system with respect to initial semantics; 
we can identify a syntactic class of correctness statements relating ASTRAL programmes and 
their implementations for which equational logic and induction is a decidable calculus and hence 
provides the basis for a total proof tool.

7.2 F orm alizing  P r im itiv e  R ecu rsive A rith m etic

In this section we present the underlying technical results of this chapter concerning a formal
ization of primitive recursive arithmetic over arbitrary first-order equations.

7.2.1 G eneral P relim in aries

We begin the section with some basic definitions and some results from the literature that we will 
require. To conserve space where either a result is straightforward or the result is well-known 
we will not give a proof, but will include a reference from which the result is taken or in which 
the interested reader can find a suitable proof.

Notation 4. We make the usual assumption that S, S' and E" are any non-void 5-sorted, 
¿’'-sorted and 5"-sorted signatures respectively and that X ,  X '  and X "  are any ¿'-indexed S'- 
indexed and 5"-indexed collection of variable symbols respectively such that S and X ,  S ' and 
X '  and S" and X "  are pair-wise disjoint. In addition, the symbols A, A! and A" always denote 
any 5-sorted E-algebra, any S'-sorted E'-algebra and any ¿’"-sorted S"-algebra respectively.

Recall the definition of terms from Section 2.3.9. In the sequel in order to make our definitions 
effective we will need to place an ordering on the sub-terms of a term that share a particular 
Property of interest. More specifically, we will need to identify the left-most sub-term of a term 
that has some property of interest. This idea is made more rigorous in the following definition.

Definition 93. Let P  C T ( E ,X ) and let r  G T (E ,X ) .  We define the left-most, sub-term of r 
satisfying P  by induction on on the structural complexity of t as follows;

If either r  = c G EA]J or r = i  6 for some s £ S then if P(r)  then: r  is the left-most 
sub-term of r  satisfying P; otherwise r  has no left-most sub-term satisfying P .

If r = a ( r j ,. . . ,  r|u,|), for some a G Eu,^, for some w £ S + and for some s £ S; and for some 
ri £ T ( E, AT) ,̂ for i = 1,. . . ,  M  then: if P (r)  then r  is the left-most sub-term of r  satisfying P; 
otherwise if P (r,) for some i £ { 1 ,. . . ,  M )  then the left-most sub-term of r  satisfying P  is the 
smallest value i £ {1,. . . ,  |ui|} such that P (r;); otherwise r  has no left-most sub-term satisfying 
P.

For example, if r  = / ( 0,x, 1 ,y) then x is the left most variable ofr .

Lemma 34. (see M einke and  Tucker [1992].) Let E  C EQ{S,A”) be any system of 
equations. If e £ EQ{ E) then

Alg(E, E)\= e <=> /(S, E) \= e.
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L em m a 35. Let E  C EQ(E,X)  be any system of equations and let R be any complete TRS  
equivalent to E. If e = ( r  =  r ')  £ EQ(E,X)  then

(XFr (t ) = NFn{r')) Alg(E,E)  f= e.

In particular, notice that by Lemma 3f if e £ EQ(E) then

(NFr (t ) = NFr {t ')) «=> /(E, E) b  e.

L em m a 36. (T he  C o n stan ts  Lem m a -
be some constant of sort s such that x  $ £• 
defined such that E' = E. I f  ( r  = r ')  £ EQ{

G oguen [1987].) Let E C EQ(S,A ') and let x  
Also let S' = E U {*} and let E' C EQ(E',X) be 

S ', X ),' for some s' £ S then

E' h ( r  = r') <=> E  h (r[x/ar] = r'[x/a:])

wherein x £ A", zs some variable that does not occur in r or r ' .

Lemma 37. (B e rg s tra  an d  T ucker [1987].) Let E C S', let E  C EQ(E, X )  and E'  C
EQ{El\X) be defined such that E  C E ' . I f  A = I(E,E),  A'  £ Atg(E',E'), A '|s = A and 
/(E ', £ ') |s =  /(S , £ )  then A' = /(S ', £ ') .

7.2 .2  S ign atu res o f C on stru ctors

We introduce the idea of a signature that may be used to finitely generate (inductively generate) 
a representative of each member of the carrier of an algebra. The reader can consult Meinke 
and Tucker [1992] and Goguen [1987] for more details.

D efinition 94. Let A be any algebra such that A, < |N| for each s 6 5. Also let F C E be 
defined for each s £ 5 as follows: If \A,\ = n, for some n, £ N+ and A, = { a , . ! , - , «.,»,} 
then T, = {c, c!n ,} wherein c,ti £ EAi, for i = 1 , . . . ,  n, £ N+ is some constant such that
cX = a,y, otherwise if"|A,l = |N| and A, = then r ,  = wherein
b, £ S A j and g, £ E , , are some constant and some unary operation respectively such that 
bf = ¡ ^ and the function g\ : A. -  A,  for each i £ N+ is defined by gfibf) = a, ,  wherein

i(hA) = i r f W  if i = 1, and
5 } otherwise.

If there e x i s t s  a V defined as above then we either say that T is inductive for A or that F 
is a signature of constructors for A or just a signature of constructors if A is understood or 

unimportant.
Example 19. If A is a standard algebra with no carriers other than N and B then r  = {F„ = 
{{0}, {Succ}}, r b = { t i f f ] }  is inductive for A.
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Note that in the sequel for convenience ive will we write Fn — (0, 5* nee} to mean I n 
{{0}, {5'iicc}} and more generally T3 = {b3,g,} to mean Tn = {{hs}, {<73}}.

Discussion. We note that this is not the most general definition of a signature of construc
tors found in the literature (see Goguen [1988]). However, in the context of primitive recursive 
equations, in particular primitive recursive equations when used to specify hardware, we find it 
convenient to use this more restrictive definition. Moreover, the results that we present easily 
generalize to the use of a more general signature of constructors for countably infinite carriers.

It is also important to note that the initial model of every equational theory with either 
finite or countably infinite carriers has at least one minimal and finite signature of constructors 
(see Goguen [1988]) and hence inductively generating the members of the carriers of an algebra 
is a general purpose technique.

Finally, in the sequel we will need to generalize the use of signatures of constructors to alge
bras wherein some carriers are not countable (stream carriers are not in general countable). In 
particular, if an algebra has an uncoutable carrier then we will use the convention that for each 
s € S  such that |A3] > |N| we have T3 = 0 .  Thus, for any stream algebra A we have = 0  for 
each s e S .

7 .2 .3  U sin g  S ign atu res o f C onstructors to Id en tify  C lasses o f E quations

We now identify two classes of equations CEorFC C E Q (£ ,X ) and ComTllS C T R S (£ ,A ) x 
E Q (S ,X ) that will play a significant role in the sequel. The first class is the union of all closed 
equations extended with equations whose variables range over finite carriers. The second class is 
the same as the first class, but also extended with equations that when orientated as left-to-right 
re-write rules form a complete TRS R' when adjoined to some given TRS R.

Definition 95. For each £ , for each F C £  and for each X  we define the predicate

CEorFCs 'r ’X c  EQ(E,A')

(ambiguously denoted CEorFC) as follows: for each e G E Q (£,A ) the predicate CEorFC(e) 
holds if and only if either

(1) e G EQ(£); that is, e is a closed equation; or

(2) e £ EQ(£, {aii,.. . , x n}) for some a G  X tt, for some Sj G S  such that for each i = 1 , . . . ,  n G
N+ we have l \  = {c3 i i l } for some constants c3tJ G £*,,. for j  = 1 , . . . ,« , ,  G N+; 
that is, e is defined over variables that range over finite carriers.

Definition 96. For each £ , for each T C £  and for each X  we define the predicate

ComTRSs,r,A C TRS(£, A') x EQ(£, X )

(ambiguously denoted ComTRS) as follows: for each R C TRS(£, X )  and for each 
e =  ( r  = r ') G EQ(£, A') the predicate ComTRS(E,e) holds if and only if either



(1) CEorFC'(e) holds; or

(2)  e = ( r  = t ‘ )  e EQ(S, {xq,. .  . ,x n}), for some x, G X , t ,  for some s, G S’ fort = l , . . . , n €  N+
such that i j  is the left-most variable of r  and 1 Sl = {hs^iPs,} for some fo, G and loi
some gSl G S 3liSl; and the TRS R! defined by

R' = RU { r '}

is complete wherein r' is formed by orienting e' as a left-to-right re-write rule; and e' is 
any equation defined by

e' = e [ x \ l x ] [ x i l  P i ] \ = 2

wherein x is some constant of sort 5! such that * g S and p, G T ( Z " ,X ) , , t for some 
S" C E U {x} are defined such that p{ 2  X for 1 = L • • • >71 ■

E xam ple 20. Let S, F and .4 be defined as in Example 19 and let x be some constant of type 
it such that y ^ S If tn is some closed term of sort n and tb is some closed term of sort b then

(1) CEorFC(no2(or(x, y)) = ¿t>) holds because both x and y are of type b and Tb = {tt,ff}.

(2) CEorFC(add(x, 0) = x )  does not hold because x is of type n and Fn = {O^ucc}. However, 
if the TRS R  is defined by R = {add(0,x) >-> x,add{Succ(x), y) ^  Succ(add(x,y)} then 
ComTRS(72, add(x, 0) = x) holds because R' = R U {add(x, 0) >-+ x} is complete.

We now present two key results concerning the predicate ComTRS and sets of primitive 
recursive equations. Indeed, while for convenience we present them in ‘reverse’ order, the first 
result is the basis of our proof of Statement (B) in the introduction. The second result is the 
basis of our proof of Statement (A).

Lem m a 38. Let T C S  such that Fn =  {0,5ucc}. Also, let <F G PREQ(£,K),  let R  = 
TRCON(^)  C TRS(T,' X) wherein S ’ is as defined in Definition 66. I f f  is one of the functions 
symbols of type ( n u ^ )  Appearing in R, for some u G £ + and for some s G 5 ; and c G S A>3 then

C o m T R S ( R j { x , t u . . . , t H ) = c)

holds for any variable x G Au and for any terms L G T (S",A ')U. such that tt 2  X for i = 
1) •. ., |u| wherein S" 3 S' U {x}-

Lem m a 39. Let V C E such that r n = {0,5«cc}. Also let 'F G PREQ{S,A J, let R = 
TRCONlfiF) C TRS(X ',X) wherein S' is defined as in Definition 66. I f  f  and g are two of 
the functi0ns~symboutftype (n u , s )  and (n u ' , s ) respectively for some u,u> G £ + and for some 
s G S appearing in R such that f  ^  g then

ComTRS{R, / (* , tu . . . ,  i|„|) = g{x i t[, • • •, «(„«i))

holds for any variable x G A„ and for any terms t, G T{S " ,A )Ui such that t,■ 2  X f or 1 = 
l , . . . , |u |  and for any terms G T( S",X )«; such that 2  x for j  = 1....... M  wherein S" D
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We prove Lemma 39 using the following result from Knuth and Bendix [1970] and leave the 
similar proof of Lemma 38 to the reader.
T heorem  12. Let R be any strongly normalizing TRS. I f  all the critical pairs of R are conver

gent then R is complete.
P ro o f o f L em m a 39. Notice that by hypothesis the left-most variable x of /( :r, tx, . . . ,  ) is
of type n and I'n = {0, S’ucc}. Therefore we must show that

R' = R  U { /}

wherein
r' = ( f i x i r ii • • • 5 r |u|) ^  s(Xi r u • • • i V l) )

is complete for any terms i, G T(S", A')u. such that £,• 2  X for i = 1 , . . . ,  |u| and for any terms
t'j G T(S", X )u- such that 2 X for j  = 1, • • ■. I “'I wherein S" 2 S' U {x>-

First, notice that by the definition of TRCON the only rules in R  of the form

/ ( « !,•••> K|u| + l) ^  P

and
g(K[ , .. .,Ac[y,|+1) ^  p'

for some k,- € T (E ',X ) for i = l , . . . , |w | + 1 and for some p € T ( £ ',X ); and for some k- G 
T (E '7 X) for j  = I ,. . . ,  |u'| + 1 and for some p' G T(E', X) must be of the form

r x = /(0,Xi, • • • W|u|) ^ Pi

and

and

and

f 2 =  / ( S U C C ( X ) ,  X f ,  . . .  , X | u | )  ^  P 2  

r{ = / ( 0,a :i,...,a : |u(|) ^  77Ì

2̂rl) = f  (Succ(x^, x , x

r . . .  ^ v  fnr i —1 .. |u|, for some variables x ■ G X , for j  — 1, . . . ,  |u |, andlor some variables x, G A_u, tor i -  1, •••) i J J .
r 1 1 s- T tv '  Y) Notice now that R  is complete by lhcorem 11 and sotor some terms pi , t|2, b i , 1 1—’ .
¡. is by definition strongly normalising. As a conseqnenc.t clearly R  rs strongly normatang as 
9 ( X , P „ . . Is a normal form nnder IS for any *  €  T ( E , f i  for .  =  1 . . .  , . | «  | .  Therefore
as we cannot by definition make a critical pair with divergent normal forms from any of the 
rules in R  (as R  is complete) the only potential critical pairs are either r, and r or r ,  and r . 
Hence, as by observation it ,s clear that we cannot make a critical pair from cither r, and f  or 

r 2 and r‘ R' is complete by Theorem 12.

r, . . . .  • caytmfinns also have one further useful property with respectSystems of primitive recursive equations aisu v
to particular terms:



Lem m a 40. Let L C D  such that Tn = {0,Succ}. Also let V £ RRECfifi, 2 0 , let R -  
TRCOX('fl) C TRS(X', X) wherein X' is as defined in Definition 66. If f  and g are two of 
the functions~symbols~of “type (n u , s ) and (« « ',* ) respectively for some u,u' € S + and for some 
i  G 5 appearing in R such that f  9 then

R' = R U { f ( 0 Ju - - - , t \ u \ )  ^  <7(0,i'i,...,'v |)}

is strongly normalizing for any terms L G T{S_, AJu, for i 
t'i G for j  = 1 , . . . ,  K l wherein S" 2 S'.

P roof. Similar to the proof of Lemma 39

l , . . . , |u |  and for any terms

□

7 .2 .4  F orm alizin g  P r im itiv e  R ecu rsive  A rith m etic

We now define a formal calculus that extends equational logic with additional rules for induction 
and cases analysis. In the context of systems of equations that are primitive recursive this 
calculus is essentially a formalization of primitive recursive arithmetic and, as far as we are 
aware, in the context of reasoning about STs is new.

Definition 97. For each P C S  and for each E  C EQ(£, X )  we define the calculus EQWILr,£ 
(FQuational calculus With Inductive Logic -  pronounced ‘equal’) uniformly in E  to be the four 
rules of many-sorted equational logic over E:

R ule (i) -  R eflexivity . If r G T(S, X ), for some s G S  then

EQWILr,fi b r  = r

Rule (ii) — S y m m etry . If r , r '  £ T (S ,X )s for some s G S  then

EQWILr 'i': h r - = t' 
EQWILr,£ h r '  = r

Rule (iii) -  T ran sitiv ity . If r, r ', r" G T ( 5, X )3 for some s G S  then

EQWILr,i; h r = r' EQWILr,£ b r ' = r" 
EQWILr,/i) b r  = T"

Rule (iv) -  Substitution
s, .s' € S if y C r  or y C

. For any terms r , r '  € T ( E ,X ) ,  and t , f  £ T ( E , X ) . ,  for some 
t' for some y £ X, '  then

EQWILr £  b t  = t ‘ EQWIL1̂  b t = t'
E Q W IL ^ h  r[y/t} =

e x t e n d e d  w i t h  t h e  fo l lo w in g  tw o a d d i t i o n a l  ru les :



R ule (v) -  Case A nalysis. For any terms r , r '  G T(E, A'), for some s G 5 if y C r  or y C r ' 
for some variable ij G Aj' for some s G S , and F,/ {ci, • • • , for some constants 
Ci G S A,,' for i = G N+ then

EQWILr,B F r[y/c,-,i] = • ■•EQWILr,c F r{y/cs>tn>l] = t '[ij/ c,v , J
" -  ! EQWlLr ’B F t  = t '.

R ule (vi) -  Induc tion . For any terms r, r ' € T ( E , X ) S for some s G 5 if y C r  or y C r ' 
for some variable y G A ,' for some s1 € S  and F,/ =  {¿V,P,'} for some b,* G S a,,' and ior 
some <7,/ G £,<,,< then

EQWILr g F r[y/ba.] = r'[y/ò,,] EQWILr ’£' F 
’ E Q W IL ^ F  r  = r '  ~ ~

T'h/gAx)]

wherein
E r = E li {r[y/X} = r ’[y{X]} 6 EQ(E', X), 

X is some constant of sort s' such that x S, and S ' = S U {x}-

We conclude this section with some basic definitions and three basic results about the struc
ture of proofs in EQWIL that we will require in the sequel.

le m m a  41. I f  Y Ç.E and E  Ç EQ(E,X) and e G EQ(E) then

EQ\VllF,B F e 4=> E  h e.

D efinition 98. Let T C E, let E  C EQ (S,X ) and let e,e' G EQ(E,X).

(1) Let EQWILr '£ F e. We say that e! is a sub-consequence of e if e' is one of the premises 
of one of the applications of Rules (i) through (vi) used at any stage in the proof used to

deduce e.
For example, if P was the following proof

FOWILr,/; F And{ft,ff) = f f  EQWiLr KF A ^ l L c l  
~~~ EQWILr 'fi F And{x,ff) = f f

from some appropriate system of equations E then both And(t t j f )  = j f  and And(f f f f )  = f f  
are sub-consequences of And(x,ff) — ff-

(2) Let P be the proof EQWILr,i? F e and e‘ be a sub-consequence of e. We say that P' 
is a sub-proof of P if P' is the part of P  used to deduce e'\ that is, if P' is the proof 
EQWILr,'B' F e' wherein E' is either E  or some system of equations such that E' D E  as

defined in Rule (vi).

(3) Let P  be the proof EQWILr,£ F e. If there exists a sub-consequence e' of e with corre
sponding sub-proof P' such that E  F e', but P' includes either an application of Rule (v) 
or an application of Rule (vi) then we say that P has a trivial deduction. Thus, P has 
a trivial deduction if e' is provable by using equational logic, but P' has used either case
analysis or induction to prove e .
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Lemma 42. Let T C S and let E C EQ(T,,X). If P is the proof EQWILv'e 1- e and P has 
trivial deductions then there exists a proof P’ of EQWILr'E h e with no trivial deductions.

Lemma 43. Let I 'C  S and let E C EQ(X,,A ). If P is the proof EQlVILr'E I- e and P contains 
k non-trivial deductions then there exists a proof P' of EQWILF e (- e with these k non-trivial 
deduction as the last k steps of P ' .

Proof. By induction on the number k with a sub-induction in the basis case (k = 1) on the 
number of rules / applied after the application of either Rule (v) or Rule (vi). In turn the sub
induction basis case (Z = 1) requires a case analysis on the last rule of P: symmetry; transitivity 
and substitution.

□

7.3 T h e  S o u n d n ess, C o m p leten ess  and D ec id ab ility  o f  E Q W IL

7.3.1 S ou n d n ess and C om p leten ess

We begin with three results concerning the soundness and completeness of EQWIL. However, 
notice that as a consequence of the limitations of any formal calculus with respect to initial 
algebra semantics, tills completeness result is only concerned with closed equations and equations 
whose variables range over Unite carriers.

T heorem  13. (E Q W IL  Soundness.) Let A be any algebra such that there exists F C  E that 
is inductive for A and let E  C EQ(fE, A ). If A = /(£, E) then for any e £ EQ(fh, A ), for some 
s £ 5

EQ\VILt'e h e = »  / (£ ,£ )  h  e.

Proof. While equational logic and induction is not typically presented as a formal calculus, the 
fact that equational logic with induction is sound with respect to the initial algebra semantics 
of an equational theory is well-known (see for example Goguen [1988]). Indeed, the proof of 
soundness is straightforward making use of Lemma 36 and therefore is omitted.

T heorem  14 (E Q W IL  C om pleteness.) Let /I be any algebra such that there exists F C L 
that is inductive for A and let E  C EQ(Z,X) .  If A -  /(£ , E) then for any e £ EQ(S, X ) ,  for 
some s £ S such that CEorFCfe) holds

HE, E) \= e => EQWILr 'E h e.

Proof. Wc proceed by induction on the number of variables t e N  appearing inn.  
Basis n = 0. First, notice that by hypothesis we have e e IQM  and hence

I ( E) \= e => Alg(S, E)  t= e
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by Lemma 34. Also notice that by the completeness of equationa! logic we have

Alg(E,T) [= e = >  E h e.

Therefore by Lemma 41 we have
E \ - e = >  EQWILr ’B h e

as required.
In d u c tio n  H ypo thesis . Let V C S. Assume for any system of equations E  C EQ(S, A') and 
for any equation e' G EQ(E,AT),< for some s' G S'  such that e' is defined over k' variables for 
some fixed k’ G N; and such that CEorFC(e') holds then

I ( E ,£ ) M ' EQWILr '£ h e'.

Induction S tep . Let T C S. We must show that for any system of equations E C EQ(E, X )  
and for any equation e" € E Q (S ,A >  for some s" G 5" such that e" is defined over k' + 1 
variables; and such that CEorFC(e") holds then

I ( S , £ ) b e ' , = > E Q WILr 'i i h e".

We proceed as follows: choose any variable y = x{ € {xu . . .  , x k,+l} wherein x} G X tj for 
some s- G 5" for j  = 1 + 1 are the variables over which e" is defined. Notice that
as by hypothesis CEorFC(e") holds it must be the case that I \, = { c , „ i , f o r  some 
n, t G N+.

Now consider the equations Ci, • • defined by
ei = e"[y/ct ,ti\

for l = 1,. . . ,  n3t. First, notice that clearly by the hypothesis on F we have

I(S ,£ )  \= e" => 1= e‘
for l = l , . . . , n s . Secondly, notice that as each equation e, is defined over k' variables and 
CEorFC(e,) holds by the Induction Hypothesis with e' = e, for l = 1 , . . . ,  nti that

I(S,T)|=<4=4>EQ W ILr '£ Fe,.

Therefore, combining these two facts with Rule (v) of EQWILr 'c we have that

I(E, E)  f= e" = >  EQWILr,£ h e"

<rs required.
□

Corollary 3. Let A be any algebra such that there exists F C S  that is inductive for A and let 
E C EQ(E,, X) .  I f  A = /(E, E) then for any e G EQ(H,X),  for some s G S  such that CEorFC{e)

holds
/(E, E)\= e <=> EQWILr 'E F e.

Proof. Immediate from Theorem 13 and from Iheorem 14.
□

237



7.3 .2  D ecid a b ility

Recall the four classes of equations that we identified in the introduction. We now consider the 
automation of the deductions necessary to prove such equations. In particular, in the context 
of strictly first-order systems of primitive recursive equations we define a function VER that we 
can use to automate the deduction of such equations using the calculus EQWIL.

D efinition 99. For each S, for each E C U ,  for each A and for each s £ S we define 

V ER f’r,x : T R S(S,X ) x r ( S ,X ) ,  x T (E ,X ), B 

(ambiguously denoted VERr ) as follows:

(VR G T R S (E ,X ))(V r,r' G T (S ,X ),)

RED(R, r, r')
i = n'i
A VERA^Wc^U'biAhJ)

VER r ( R ,r ,r ')  = ¡=1

B i A B 2

if r , r '  G T(E)

if t, t' £ T ( s > i ^ i ,  • • • , £ * } ) *

and r „  = {cSlil, .. and
if t  , t '  £ T (£ , {xl7. . 
and TJt = {bSi,gSl}

wherein
flj = V E R ^ r ^ / f c J . r W ^ ] )

and
B2 = VER^ (-ftV[x1/0 iXYO]>r W<7*,(x)])»

a:,- £ A’’,, for some s,- G S  for i — 1,. . . ,  n G N+ are the variables over which r  and r ' are defined 
such that either x^ is the left-most variable of r  if r  G T(E, A') or ;cl is the left-most variable 
of r ' otherwise; x  is some constant of type S! such that x  S; R' = RU { t [ x i/y] i-> t ' [ x i / x } } ' ,  

and
REDf ,A : TR S(E,X ) x T(E), x T(S), -  B

(ambiguously denoted RED) is defined for each R C TRS(E, A) and for each f,i ' G T (E )s by

RED(JE,M')
It If NEn (t) = NFR(t'), 
f f  otherwise.

The following lemma is implicit in our use of VER in the sequel.

L em m a 44. Let T C E and let t,t' G T ( E,A”). If R C TRS(E,X") is complete then

RED{R,t,t ' )  [ .
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Effectively S im ulating  D eductions in EQ W IL. We now present a number of results 
concerning the use of VER to simulate deduction using EQWIL.

D efinition 100. Let E C U  and let R C TRS(S, A ). If e = (r = t') G EQ(N, A') and

VERr (i2, t, t') |

the we say that either e is weakly decidable with respect to R or just weakly decidable if 11 is 
either understood or unimportant.

L em m a 45. Let E C S  and let E  C EQ{E, A ). Also let R C TRS{S, AT) be equivalent to E. if  
e = (t = r ')  G £Q(S, A') then

VERF(R,t , t ') = t t=> E Q W Il I ’E E e.

P roof. Obvious from the definition of VER.
□

L em m a 46. Let E C S  and let E  C EQ (S ,X )  such that there exists a complete TRS R equiv
alent to E. If e = ( r  = r ')  G EQ(Yf) then

EQWILF'e h e VERv( R , t , t ') = tt.

P roof. Notice that as e G EQ(E) we have

EQWlLr ,J E e <=> E  E e

by Lemma 41. Furthermore,

VERr ( R, r, r') = RED(fi!,r,r') =
tt if NFfi(r) = NF;i(r '), and 
f f  otherwise.

Therefore, it is clear that the lemma holds by the Correspondence Theorem and the hypothesis 
that R  is complete.

□

L em m a 47. Let E C S  and let E  C EQ(£ , A”) such that there exists a complete TRS R equiv
alent to E. If e -  (r = t ') G EQ(S, A') is defined such that CEorFC(e) holds then

EQWILr’E E e <=> VERv( R , t , t‘) = tt.



Proof. By induction on the number of variables x, G As, lor some ,s,- G S for / = 1 ,.. ., k G N 
appearing in e. Notice in the following proof that by Lemma 43 we may assume, without loss 
of generality, that an application of Rule (v) in a proof EQWIL ,E F e occurs as the last proof 
step.
Basis k = 0. This case follows immediately by Lemma 46.
In d u c tio n  H ypo thesis . If e‘ — (t = t') G EQ(S,Ar) is some equation such that CEorFC(e') 
holds and e' is defined over k1 variables for some fixed k' G N then

EQ\\TLr,£ h e ' «  VER r (R,t , t ' )  = tt.

In d u c tio n  S tep . We must show that if e" = (r = r') G EQ(£, AT) is some equation such that 
CEorFC(e") holds and e" is defined over k = k' + 1 variables then

EQWIL r,£? F e" <=> VER r (R, r, r )  = tt.

First, notice that as by hypothesis CEorFC(e") holds in this case VERr (I2, r, r') is defined
by

j=n>i
VERr (I?, r, r1) — f \  VERr (I2, r[xx/c3lJ], r '[x i/c5l,j])

; = i
wherein aq G X 3l for some ^  G S’ is either the left-most variable of r if r G T ( E, A”) or x x is the 
left-most variable of r' otherwise. Also notice that as CEorFC(e") = >  CEorFQrfaq/cj,,.,-] = 
r'[x1/c JlJ-]) for j  = 1,. . . ,  n3l and the number of variables occurring in r[xxlc3uj\ — r'[xxlc ,uj} 
is k \  by the Induction Hypothesis we have

EQWILr,£ F r[xx/c ,uj\ = r'[xx/c3lJ] <=> VERr (R, r[xx/c3l j], r'[xx/c3l J )  = tt

for j  -  1 , . . . ,  n3l. Therefore, as VEllr (72, r, r') is defined in this case by

;=m,
VERr ( R , r , r ' ) -  / \  VERr(R, r'[xx/cSl

j = i

that is clearly equivalent to an application of Rule (v) of EQWIL1 'E we have

EQWILr,£ F e" VERr (tf, r, r') = tt.

as required.
□

C oro llary  4. Let F C E and let E  C EQ(T>,X) be some system of equations such that there 
exists a complete TRS R. equivalent to E. Also let F be inductive for some algebra A such that 
A = I(E,E).  I f  e = (t = r ')  G X )  is some equation such that CEorFC(e) holds then

/ ( £ ,£ )  ¡= e <=> VERr{R,r ,T l) = tt.
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Proof. Immediate from Corollary 3 and Lemma -17.
□

The following result formalizes the idea that we may automate deductions in first-order 
systems of primitive recursive equations to prove equations that satisfy the ComTRS predicate. 
However, for later convenience when we use this result we phrase the premises of the lemma in 
a different, but equivalent form using only the predicate CEorFC.

Lem m a 48. Let 1 'C S  and let E C EQCE, X )  sack that there exists a complete TRS R equiv
alent to E. Also, let e = (r  = t ') £ EQCE, X )  be defined such that r £ T(E, yY) wherein x £ X,  
for some s £ S is the left-most variable of r . If either F3 = {c3il, . . . ,  cs for some c,j  £ EA 3 
and CEorFC(e[x/c, j ]) holds for j  = 1,. . . ,n 3 £ N+ or F, = {b,,g3} for some b, £ EA3 and for 
some g, £ E3|3 and CEorFC(e[x/b,)) holds and CEorFC(e[x /  g,(x)}) holds and

R = RU {t [x / x \ ^  r'[xlx)}

wherein x  R some constant of type s such that y S is complete then

EQWILv'e VERt{R , t , t ') = tt.

P roof. We consider the two cases:
(1) F3 = {c3 l , . . . ,  c3i„,} for some constants c,j  £ S for j  = 1 , . . . ,  ns.
(2) F3 = {b5,g,} for some constant b, £ S A>3 and for some algebraic operation g, £ EJ|3.

Again notice that by Lemma 43 we may assume without loss of generality that any application
of either Rule(v) or Rule (vi) occurs as the last step of a deduction.
Sub-C ase (1) T3 = {c3il, . . . ,  c3i„,} for some constants c3J- £ S for j  = 1, . . . , n 3.. This case 
follows immediately by Lemma 47.
Sub-C ase (2) F3 = {bs,g,} for some constant b, £ EAi3 and for some algebraic operation 
gs £ S 3 3. In this case

VERr ( E ,r ,r ')  = B,  A B 2

wherein
Bi = VER ̂ (R,T[x/b,],T'[x/b,})

and
Bn = V ER ^/F , 7"[̂ /£73 (x)]»T'lx I 5»(x)])

wherein
R' = R  U {r[z/y] ^  r'[x/x]}.

First, notice that as by hypothesis CEorFC(r[x/63] = T'{x/bf\) holds and R  is complete, by 
Lemma 47 we have

EQW7ILr,£’ h r{x/b,\ = r'[x /63] VERr ( R , T[x/bs\ = Tfx/b,}) = tt
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and hence B x = tt <=^ EQWILr 'B h r[x/bs} = T'[x/b,].
Also notice that as by hypothesis CEorFC(r[x/£i3( y)] = holds and R' is complete

by hypothesis we have

EQWILr -fi' h T[xlg,{X)\ = ^[x/gfix)}  «=> VERr ( /f \  r[x/gs(x )] = r'[x/ga(x)}) = U 

wherein
E' = E  U {r[x/y] = r'[a:/x]}

and hence B 2 = tt <=> EQWILr,jS h rlx/gfix)}  = t '\x/gfix)]- Therefore as VERr 'B(.ft, r, t ') = 
B x A Bo in this case, that is clearly equivalent to an application of Rule (vi) of EQWILr,£ , we 
have

EQWILr "B E e VERr (i2, r, t1) = tt

as required.
□

7 .3 .3  S im u la tin g  D ed u ctio n s in P r im itiv e  R ecu rsive A r ith m etic

We are now in a position to state formally the first of our main results concerning the use of the 
calculus EQWIL in the context of primitive recursive arithmetic.

Lem m a 49. Let r  C S' be defined by En = {0,Succ}, Tb = {tt,ff}. Also, let <I> G PREQ(S, A'), 
let R = TRCON{<[>) C TRS(S', A") wherein E' is defined as in Definition 66. I f  f  and g are two 
of the functions symbols of type (n u , s ) and (n u ' , s )  respectively for some u,u'  E 5 + and for 
some s G S appearing in R such that f  g then

/ ( x , i i , . . . , i |u|) g(x, tx, . . . ,  t̂ u,^

is weakly decidable for any variable x E X n, for any terms i,- E T(S, Ar)Ui for i — 1 , . . . ,  |u| and 
for any terms £'• E T (E ,A ')U' for j  = l , . . . , |u ' | .

P roof. By the definition of VER using Lemma 39 and Lemma 40
□

Notice in particular that Lemma 49 states that VER is appropriate as a total proof assistant 
in the context of primitive recursive equations. However, while Lemma 49 is a useful fact from 
the perspective of automated verification it is limited result in the sense that Lemma 49 does 
not mean that

VERr (iZ, f ( x , t u . . . ,  tH ) ,g(x , t [ , . . . ,  *(„,,)) = f f

implies
EQWILr,'B \f f ( x , ¿ H ) = g(x, ifu(|))

wherein E = EQCON($) C EQ(E', X).
As we have already stated, while in general we cannot define a total proof tool for systems 

of primitive recursive equations, with respect to the four classes of equations we identified in 
the introduction, initial truth is decidable with respect to EQWIL using VER. This statement 
is formalized in the following theorem.
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T h eo rem  15. Let <i> G PREQ(E, X) ,  let R = TRCON(fy) C 77?5(S', A') and let

E = EQCON($) C EQ(S', A')

wherein E' ¿5 defined as in Definition 66. Also, let F C S' be defined such that Fn = {0, Slice}, 
Fb = {tt, ff} and let e = (t — t1 ) £ EQ( S ', A ). If  e satisfies either

( A )  r, r ' G T (S '); or

(B )  r , r '  G T (E ',A ) and if x G AS /or some sort s e S occurs in e then F, = {c3il, . . . ,  c.,in>} 
for some constants c, j  G S,\,3 for j  = 1 ,. . .  ,n , G N+; or

( C )  r  = a(x, tu .. ., rn) and r ' = c wherein o G S' ¿s some algebraic operation, c G S' ¿s
any constant, x G A”n ami /or i = 1 , . . . , n  if y C r, wherein y G AS /or some s G 5
is some variable then y x and F, = {c,^ ,.. ., c , rii} /or some constants c, j G S A , for 
j  = 1,. . n, G N+; or

(D / r  = o/x, r 1;. . . ,  rn) and t’ — o'(x, r{, . . . ,  r'm) wherein a, o' G S' arc some algebraic 
operations such that o o' , x G AS, and for i = 1,. . . ,  n G N and for j  = 1 ,.. ., m  G N if
either y C tv or y C rj wherein y G A, for some s G S is some variable then x /  y and
IS = {c4il, .. ., for some constants csJ G S A|5 for 1 = 1,.. . ,n,  G N+

then EQWILF’e h e is decidable.

Proof. We consider each particular set of hypothesis in turn.
Case (A ) Notice that in this case CEorFC(e) holds. Therefore, by Lemma 47 we have that 
EQWILr,B I- e is decidable by virtue of the fact that VERr (i?, r, r ') = tt <=> EQWIL1'’̂  L e. 
Case (B ) Again notice that in this case CEorFC(e) holds. Therefore, by the same argument 
as Case (A) we have that EQWILr ’£ F e is decidable as required.
Case (C) First, notice that by Lemma 38 we have that ComTRS(R, e) holds and hence

R' = R  U [t [x / x ] r-> c}

is complete for any constant x  °f sort 5 such that X ^ S'. Therefore, as by hypothesis for each 
y C t wherein y G A, for some s G S is some variable such that y x and T, = {cM, .. .,c,,„,} 
for some constants cSJ G S A|J for j  = l , . . . , n ,  G N+ by definition CEorFC(e[x/0]) holds, and 
CEorFC(e[x/5ucc(x)] holds and hence by Lemma 48

EQWILr,£ t- e <i=> VER(R, r,c ) = tt; 

that is, EQWILr,£ F e is decidable as required.
Case (D ) This case follows by a similar argument to Case (C) using the fact that ComTRS(72, e) 
holds by Lemma 39 and hence

R ‘  = R  U {r[x/x] t— r ' [ x l x } }

is complete for any constant \  °f sort 5 such that x & S'.
□
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Discussion. Notice that for each of the class of terms above Theorem 15 states that VER. 
is suitable as a total proof assistant; that is, with respect to EQWIL the function VER can 
find a proof of a hypothesis if and only if such a proof exists. While at an abstract level it is 
relatively straightforward to visual the class of terms that are identified by Cases (A) to (D) of 
Theorem 15, the practical use of this result is not so clear. Therefore, in Section 7.5 we return 
to this point when we identify one of the practical implications of this result.

Finally, one fact that it is important to re-iterate at this point is that EQWIL is not complete 
with respect to initial truth and hence in general even with respect to the classes of equations 
identified in Theorem 15

VEll1 (if, r \  r ')  = f f M  I(S, E ) £ ( t  = t');

that is, even though VER behaves as a total proof tool for EQWIL for such equations, because 
EQWIL cannot be complete it may be the case that e is true in the initial model, but e is not 
provable by EQWIL. However, in the case that CEorFC(e) holds we do have provability if and 
only if I(E, E)  j= e; that is,

Corollary 5 .  Let r  C E be defined such that Tn = {0,5ucc}, Fb = {tt,fj}. Also let d> G 
PREQ(Z,X) ,  let R = TRCON(<t>) C TRS(Z ' ,X) and let E = EQCON{<$>) C EQ{S ',X ) wherein 
S' is defined as in Definition 66, and T is inductive for some algebra A such that A = /(E ',/? '). 
If e = (r  = r') £ EQ{ S ', A”) is some term such that CEorFCfe) holds then

/(S ', E') |= e <=}► VERF{R, t , t’) = tt.

Proof. Immediate by Theorem 15 and by Lemma 47.
□

In the following section we will show how we may use and generalize these results in the 
context of reasoning about STs, by relaxing our requirement that variables range over finite 
carrier to the requirement that variables may also range over streams of the form [/’ —► A] 
wherein A is a finite carrier.

7.4  T h e  A u to m a te d  V erification  o f  ST s

Drawing on results developed in previous chapters we now examine the use of the calculus 
EQWIL to reason about initial truth in stream algebras. In particular we develop a function 
AV to verify the equality of two STs using an extended version of the function VER (EVER), 
and identify certain classes of STs, including a broad class of hardware devices, for which AV is 
a total proof tool.
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7.4 .1  U sin g  E Q W IL  to  R eason  A b ou t Stream  A lgebras

Recall the discussion following Definition 94 concerning the use of signatures of constructors in 
the context of stream algebras. In particular, recall that for any carrier /I such that |/1| > 2 
the function space [T .4] is uncountable, and hence we cannot find a finite F to inductively 
generate the set of all streams over A. However, we can make use of the following positive 
result.

L em m a 50. Let E  C EQ(Yl,X) and let E_ C EQ(11, X). If  F C  S is inductive for some algebra 
A such that A £  /(S, E) then for any e £ EQ{T,,X_)

EQWILr 'K h e = *  / (£ ,£ )  h  e.

Lemma 50 provides the theoretical basis for the development of the function AV that we will 
use to verify the correctness of STs specified in ASTRAL.

7 .4 .2  E x ten d in g  V E R

Notice that Lemma 50 guarantees the soundness of VER with respect to stream algebras. How
ever, while VER remains an useful tool in this context it is not as effective in its capabilities as 
we would like as the following example demonstrates.

Exam ple 21.
tions E  defined

Given the following (informally presented) system of primitive recursive equa-
by

And{x , y)

f f  if x = / / a n d  ?/ = //, 
f f  if x = tt and y = ff, 
f f  if x — f f  and y — tt, and
tt otherwise,

notice that clearly
EQWILr,fi h And(eval(0,X),ff) = ff.

However, notice that for any F D Fb = {tt,ff} that

VERr (E, And(eval(0, X),ff), ff) = f f

wherein R is the TRS created by orientating E  as left-to-right re-write rules and X  is some 
stream variable of sort b. Therefore, even by moving from first-order equations to weak second- 
order equations we lose some of the properties of VER that we identified in the previous section. 
While in this simple example it is possible to modify E  to give E1 such that I(S ,E ')  = I(E ,E ) 
and to generate a complete TRS R' equivalent to E'  so that

VER v(Rl,And(eval(Q,X),ff),ff) = tt
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we cannot in general expect this to be the case as the problem of finding such an E' is essentially 
equivalent to finding an u.’-complete specification (see Example 22). Moreover, as in the sequel 
we are interested in working with equational specifications that are automatically created from 
ASTRAL programmes, wherever possible we do not wish to place further restrictions upon the 
form of equations we must work with to guarantee the effectiveness of our verification techniques. 
As a consequence, in the context of stream algebras and their defining equations we prefer to 
modify the function VER to give the function EVER that is a more appropriate as the basis of 
a verification tool.

The formulation of EVER requires some further preliminary definitions. We begin by refor
mulating the predicates CEorFC and ComTRS in the context of stream algebras.

Definition 101. For each S- for each T C E and for each X_ we define the predicate

CEorFC-’1"’— C EQ(S, X)

(ambiguously denoted CEorFC) as follows: for each e 6 EQ(E, V) the predicate CEorFC(e) 
holds if and only if either

(1) e G EQ(E); that is, e is a closed term (notice that this implies that e G EQ(E)); or

(2) e G EQ(E, {xl5.. ., xn}) for some ay € X,. f°r some G 5 such that for each ! = l , . . . , n £  
N+ either F3, = {c5iii , . . . ,  c5i,n,.} for some constants c,tj G SAiJi for j  = 1,. . . , n 3j G N or 
r jf = 0 and IV, = {cr„i, •• .,c r>i„ri} for some constants csJ G S A,ri for j  = 1 , . . . , n rj G N 
wherein r;- = ¿y; that is, e is defined over variables that either range over finite carriers or 
that range over streams whose co-domains are finite carriers.

Definition 102. For each E, for each T C S and for each X_ we define the predicate

ComTRS- ’r '— C TRS(S, X)  x EQ(E,X)

(ambiguously denoted ComTRS) as follows: for each R  C TRS(E,X ) and for each e = (r  = 
T') £ EQ (E ,X ) the predicate ComTRS(i2,e) holds if and only if either

(1) CEorFC(e) holds; or

(2) e = (r  = t ‘ )  G EQ(E, {xl5. . . ,  £„}) for some x{ G 2L, for some s{ G 5 for i = 1 , . . . ,  n G N+
wherein is the left-most variable of r  such that TSt = {b3l,gSl} for some b3l G EA,3l and 
for some g3l G and the TRS R! defined by

R! = R U {r'}

is complete wherein r' is formed by orienting eJ as a left-to-right re-write rule; and e' G 
EQ(EV., 20  is any equation defined by

e' = e[*i/x][*»/Pi]!=?

wherein E" C E U {\}, \' is some constant of sort Si such that y ^ E and the terms 
Pi G X_)3> are defined such that p,- 2 X f°r = 1 . ,n.
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Lemma 51. Let F C  S, let R C  77f5(E, X) and let e = (r = r ')  e EQ(S,X). If  ~ CEorFCU) 
holds, but ComTRS(R,e) holds then ComTRS( R. e) holds.

Proof. Immediate from Lemmata 38 and 39.
□

To define EVER we require the following two sub-functions. The first sub-function enables 
us to count sub-terms of the form eval(t,x) for some t £ T (£ , X )n and for some x £ X., for 
some s £ 5. The second sub-function allows us to replace sub-terms of the form eval(t,y) with 
a new variable symbol x.

Definition 103. For each V and for each X we define

AnyEvalss,A" : T(S, X) -  B

(ambiguously denoted AnyEvals) for each r  £ T(S, A_) by AnyEvals(r) = tt if and only if there 
exist a term t ]  =  c v c i I s ( t , y) C r  for some s £ 5 and for some y £  Xj •

Definition 104. For each V , for each T C S and for each A" we define

SubEvalss ,r’A' : T(E, X) x T (S ,X ) -  T (£ ,X ) x T (S ,X )

(ambiguously denoted SubEvals1) by

(Vi, t' £ T(S, X))

J  ( f ,  ¿ ' )  if AnyEvals(i) = AnyEvals ( f ' )  =  ff
SubEvals (£, t ) = <

I SubEvals1 (r, r ') otherwise

wherein r  = ¿[77/ar] and r ' = ¿'[77/x] wherein if AnyEvals(f) = tt then 77 is the left-most sub-term 
of t such that 77 = eval,(p, y) otherwise 77 is the left-most sub-term of t' such that 77 = evals(p, y) 
for some p £ 7’(S, X)„ and for some y £ Xa  and x £ X, is some variable such that x % t and 
x % t'.

Lemma 52. Let L C D  and let E  C EQ(El,X_). For any equation e = (t = V) £ EQ{S, X)

£QIF/Xr 'E h e '= >  £’QIF/Lr '£ h e

wherein e' = ( r  = r ')  and
r, r ') = SubEvalJ (t , t1).

Proof. By induction on the number & £ of occurrences of a term 77 = eval,(p, y) such 
that either 77 C t or 77 C t'. We sketch a proof. The key step is to observe in the case wherein 
k =  1 that as equational logic is a sub-logic of EQWIL if we can prove e' then e is provable by 
<tn application of the substitution rule as follows:

t\qlx] =  t ' [ T ] j x \  1? = 77 
t[x/7?] = t>[x/i]].

□
Indeed, this fact is the basis for the definition of an extended version of the function VEIL
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Definition 105. For each E, for each F C S, for each X  and for each s G S  we define 

EV Ellf,r"v : TRS(S, A) x T ( ^ X ) ,  x T(S, A), B 

(ambiguously denoted EVER1 ) as follows:

(VR G TRS(E, A)) (Vr, t ' G T (£ ,X )t )

EVERr (R, r, r ') = 1

ERED ( R , t , t ' )  if t, t' e T(S) or

for each a; G Aa for some s £ S  
such that either x C r  or x C r '

r ,  = 0

/ \  EVER^(R, f [^ i/c j11x]) r /[a:i/cJlii]) if r , r '  € T(S, {xl5. . . ,  !„}),
1=1

fli A B 2
and r si = {cSlii , . . . ,  c3i n<i }; and
if r , r '€ T ( S ,  {a^........ar„}),
and r 4l = {bai,gSl}

wherein
B, = EVER^ (R, T[xi/b,x], r /[ i1/ 6JJ)

B 2 = E V E R r(R V [W 0 » ,(x )]ir , [®1/& 1(x)D
and a:,- G A',, for some s,- £ i  for i = G N+ are the variables over which r  and r '
are defined wherein either x x is the left-most variable such that x v C t  and Fai ^  0  if such a 
variable exists or aq is the left-most variable such that x x C r' and r ai ^  0  otherwise; y is some 
constant of type sx such that x E; R' = R U {̂ [-X'i / x] r '[ ii/x ]} ; and for each E, for each
r c S ,  for each A' and for each s £ S  we define

EREDs,r,A : TRS(S, X)  x T(S, A ), x T(S, X )a B

(ambiguously denoted EREDr ) for each R, r  and t' as above by

on  ooP/ r> f  RED(R, t , t ') if AnyEvals(NF/i(r)) = AnyEvals(NF/i(r '))  = JJ
( it, 7", 7" ) —  \

|E V E R r (R, t, t1) otherwise 

wherein = SubEvalsr (NFfi(r), NFfl(r ')).

D iscussion. Notice that using this extended definition of VER given E  and R  as defined in 
Example 21 that

EVERr (R, And(eval(0, X),f f), ff) = tt

and hence in general the class of weak second-order equations for which EVER can simulate 
EQWIL is strictly larger than the class of weak second-order equations for which VER can 
simulate EQWIL.

We now use Lemma 52 to establish formally that EVER is both terminating and sound with 
respect to the calculus EQWIL.



T he Soundness o f E V E R . We begin by defining two functions that enable us to identify 
and count the number of non-stream variables and stream variables respectively that occur in 
equations and terms.

Definition 106. For each E and for each X. we define NonStrVarsEW : T( S, V) — p(A') and 
NumNonStrVars-'— : T(E, V) -+ N (ambiguously denoted NonStrVars and NumNonStrVars 
respectively) by

(Vr G T (E ,20)  NonStrVars(r) = {x G A" | x C r} 

and
(Vr G T ( E, V)) NumNonStrVars(r) = |NonStrVars(r)|.

We also ambiguously define NumNonStrVars : EQ(E, A.) ~  N by

(Ve = (r  = r ')  G EQ(E, V))

NumNonStrVars(e) = |NonStrVars(r) U NonStrVars(r/)|.

Thus, NumNonStrVars counts the number of distinct non-stream variables that occur in 
either a term or an equation.

Definition 107. For each S and for each X_ we define StrVars£W ; T(E, X_) P(K ~ X )  and 
NumStrVars-'— : T ( S, V) —>■ N (ambiguously denoted StrVars and NumStrVars respectively) 
by

(Vr 6 T (E ,X )) StrVars(r) = {x G (X_ -  X )  \ x C r} 

and
(Vr G T(E, V)) NumStrVars(r) = |StrVars(r)|.

We also ambiguously define NumStrVars : EQ(E, X )  — N by

(Ve = ( r  = r ')  € EQ(E, V)) NumStrVars(e) = |StrVars(r) U StrVars(r,)|.

Thus, NumStrVars counts the number of distinct stream variables that occur in either a 
term or an equation.

Using the function NumStrVars we now define an important concept that we will require in 
the sequel.

Definition 108. Let R C T1LS(E, X).  If for each r  G T(S, A_)

NumStrVars(r) > NumStrVars(NFfi(r))

then we say that R is stream variable reducing.

The identification of TRSs that are stream variable reducing allows us to identify certain 
classes of equations for which VER and EVER have the same behaviour and hence conveniently 
enable us to make use of some of the results of the previous section.
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Lem m a 53. Let F C S and let R  C TRS{'5±,Xf) be some TRS that is st ream variable reducing. 
If e = ( r  = t ') e EQ{E,2L) and NumStrVars{e) = 0 then

EVERF(R, t , r ')  = VERr ( R, r, r').

P roof. Immediate from the definition of EVERr and the hypothesis that R  is stream variable 
reducing.

□

Lem m a 54. Let F C E and let R  C TRS{S, AJ be some TRS that is stream variable reducing. 
If e = ( r  = t ') 6 E Q i^ X f )  and NumStrVars(e) = 1 and NumNonStrVars(e) = 0 then

EVER1\ R , t , t ') = VERr (R, r, r').

P roo f. By induction on the number k € N of occurrences of x £ X in e! = (NF/{(r) = NFfi(r ')). 
The key step is the basis case wherein k = 0 that follows by Lemma 53. Again we leave the 
details of a full proof to the reader.

□
L em m a 55. Let F C E, let E  C EQ( E, X) and let R C TRS(S, X) be some TRS that is stream 
variable reducing and that is equivalent to E. Also let e = (r  = r ')  6 EQ(]L, X). If  e is weakly 
decidable and NumStrVars(e) = 1 then

EVERr (R, r, r')[

and
EVERv(R, r, r') = EQWILr’B h e.

P roof. By induction on the number k = NumNonStrVars(e).
The key step is again the basis case that requires a sub-induction on the number / G N of 
occurrences of sub-terms of the form eval(9,x) in the normal forms of r  and r ' produced during 
the iteration of the process of defining

EVERr (i2, r, r ')  = EVERr (R, t, f )

wherein
( f , 0  = SubEvalsr (NFn(r), NFR(r')).

(Notice that / is guaranteed to be finite by the hypothesis that R  is stream variable reducing.) 
The basis case of this sub-induction follows by Lemma 53 and by Lemma 45. As before we leave 
the details of a full proof to the reader.

□
We are now in a position to establish the termination and soundness of EVER, with respect 

to systems of primitive recursive equations defined over stream signatures.
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Lemma 56. If R = TRCON(<t>) for some <f> € PREQ(E,X) then R is stream variable reducing.

P roof. Immediate by Lemma 7, Theorem 10 and the definition of TRCON.
□

Theorem  16. Let T C S, let $ E PREQ(E, A.) and let E = EQC'OE(<$). Also let R = 
TRCON(<]>). I f  the equation e = (r  = r') £ EQ(E.Af) is weakly decidable then

EVERr (R,T,r ')  |

and
EVERr(R, t , t1) = tt => EQ WILr'E h e.

Proof. By induction on the number k = NumNonStrVars(e) + NumStrVars(e). We consider 
two basis cases:
Basis k = 0. This case follows immediately by Lemma 56, and by Lemma 45.
Basis k — 1. There are two sub-cases two consider:
(1) N um N onS trV ars(e) = 1.
(2) N um S trV ars(e) = 1.
Sub-C ase ( 1) N um N onS trV ars(e) = 1. As by hypothesis NumStrVars(e) = 0 again this 
case follows immediately by Lemma 56 and by Lemma 45.
Sub-C ase (2) N um StrV ars(e) = 1. This case follows by Lemma 56 and by Lemma 55.

If NumNonStrVars(e) > 0 then the rest of the proof now follows by a routine application 
of the Induction Hypothesis and by Lemma 56. If NumNonStrVars(e) = 0 the the rest of the 
proof follows by Lemma 45. Again the details are omitted.

□
Decidability. Using the predicates CEorFC and ComTRS we now extend the results of 
Section 7.3.2.

Lemma 57. Let T C S, let E  C EQ{fI,Xf) and let R C T7?5(S, X)  be a complete TRS that is 
equivalent to E and that is stream variable reducing.

If e = (r  = r ')  £ EQ(^,X_) is some equation such that CEorFC(e) holds then

EQWlLr'B b e = >  EVERr (R,T,T') = tt.

P roo f. By induction on the number k = NumNonStrVars(e) + NumStrVars(e). We consider 
two basis cases.
Basis C ase ( 1) k = 0. This case is obvious as by Lemma 41

EQWILr 'E E F  e

and by definition
EVER r ( R ,T , r )  = RED ( R , t , t ').
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Basis Case (2) k = 1. We now consider two sub-cases:
(1) N um S trV ars(e) = 0.
(2) N um N onS trV ars(e) = 0.
Sub-C ase (1) N um StrV ars(c) = 0. First, notice that as by hypothesis NumStrVars(e) = 0 
by Lemma 53

EVERr (/e ,r ,r ')  = \ E R r(R, r, r').

Also notice that if NumStrVars(e) = 0 then by definition CEorPC(e) = >  CEorFC(e). Therefore 
by Lemma 47 we have

EQWILr,'E F e EVERr (/2, r, t ') = tt

as required.
Sub-C ase (2) N um N onS trV ars(e) = 0. Let x £ X_L for some s £ S be the variable such 
that either x C r  or x C t ' . We now proceed by sub-induction on the number n £ N of the 
applications of Rule (v) in EQWILr,A F e. (Notice that we cannot have used Rule (vi) by the 
hypothesis that CEorFCfe) holds.)
Sub-Basis ti — 0. In this case

EQWILr,B F e => E h c

and
E h e = >  NFw(r) = NFR{r') 

by the hypothesis that R  is complete, and

NF*(r) = NFr(t ') = >  RED(i2, r, r') = tt

by the definition of RED. Therefore, as by hypothesis NumNonStrVars(e) = 0 we have

EVERr (R, r, r') = RED(i7, r ,r ')

and hence
EQWILr '£ F e =► EVERr (E, r, r')

as required.
Sub-Induction Flypothesis. Assume for any e' — {t — t') £ EQ(I1, A_) that if

NumNonStrVars(c') = 0,

CEorFCie'l holds and EQWILr,B F e' using n' applications of Rule (v) for some fixed n' £ N 
that

EQWILr "B F e' => EVERr (r, t, t') = tt.

Sub-Induction Step. Let c" = (6 = O') £ EQ(E, X_), let CEorFCfe") hold and let 
EQWIL1 ,b F e" using n = n' + 1 applications of Rule (v). Notice that as by hypothesis 
NumNonStrVars(e") = 0 if we have used an application of Rule (v) to show EQWIL1 ,E F e" 
then it must be the case that we have shown

EQWILr,B F r] = (/>,/>')
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for some equation ?/ £ EQ(E,AD such that either

eval(K, x) C p

and we have used Rule (v) to deduce that

EQWILr "E E T][eval{K,x)/y\

for some y £ X  such that y docs not occur in 77 and deduced c" using substitution as follows:

EQWILr,£; E r][eval(K,x)/y} eval(n,x) = eval(n,x)
EQWIL1 ,B E e".

Also notice that by Lemma 42 without loss of generality we may assume that in the proof 
EQWILr,£: E e" there are no trivial deduction and hence any applications of Rules (i) to (iv) 
of EQWIL were applied before Rule (v) was applied. Therefore, as by hypothesis EQWILr "B E 
t][eval(K, x)/y] in n' applications of Rule (v) and by hypothesis R is stream variable reducing x is 
the only stream variable that can occur in r}[eval(n, x)/y}. Thus, if x does occur in r/[eval(K, x)/y] 
then by the Sub-Induction Hypothesis

EQVVILr,'E E T)[eval(n,x)/y] => EVERr (.R, p[eval(K,x)/y], p'[eval{K, x)/y}) = It

and if x does not occur in 1 i[eval(n,x)/y\ then by definition NumStrVars(77[ei;a/(K,x)/7/]) = 0 
and by Case (1) we also have that

EQWILr 'E E 7][evnl(K,x)/y] => EVERr (R, p[eval(K, x)/y],p'{eval(K,x)/y]) = tt. 

Consequently, as by definition in this case

EVERr (f2 ,M ') = EVER r (fC M ')

wherein (6,6') = SubEvalsr (NFfi(0), NF^i^')), since R is complete by hypothesis wc have

6 = 6' = p[eval(n,x)/y} = p'[eval(K,x)/y]

and hence
EQWILr 'E E e" =t> EVERr (R, 9,6') = tt

as required.
The rest of the proof now follows by a routine application of the Induction Hypothesis using 

a similar argument to that in Lemma 47.
□

Using Lemma 57 as promised we can now generalize Lemma 48 and Theorem 15 to the 
context of stream algebras.
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Lemma 58. Let P C S , let E C EQ(11,20 and i(-t R Q TRS(F, X_) be a complete TRS that 
is equivalent to E and that is stream variable reducing. Also, let e = (r = r ')  £ EQ(F,JC) he 
some equation such that t £ T(S, X_) wherein x £ -V, for some s £ S is the left-most variable 
occurring in t . If either F, = {c5|1, . . . ,  cSi„,} for some c3] £ S A|i and CEorFC(e[x / c. ]) 
holds for j  = 1 £ N+ or r a = {b,,g,} for some bs £ S A 3 and for some g, £ S Si, and
CEorFQ e[x/b.]) holds and CEorFC(e\x/q3(x)}) holds and

R  =  R U  {r[x / x ]  ^  r ' [ x l x ] }

wherein x is some constant of type s such that x  £  is complete then

EQ\VIIF'e h e <=> EVERr(R ,T ,T') = tt.

Proof. Similar to the proof of Lemma 48.
□

Theorem  17. Let <i> £ PREQ( S ,X ), let R = TRC0N(<J>) Ç TRS(£i,X) and let

E  = EQC0N($)  ç  EQ(E',X)

wherein S ' is defined as in Definition 67. Also, let T Ç S' be defined such that Tn = {0, 5wcc}, 
Fb = {tt,ff\  and let e = ( r  = r ')  £ EQ(Ef,X_). I f  e satisfies one of the following conditions: 
either

( A )  t , t ' £ T (S '); or

(B )  r, r' £ T (S ',2 0  an(i if x £ X* f or some sort s £ 5 occurs in e then either F, = 
{c^x,. . . ,  cJ rlj} for some constants c, j  £ SA|i for j  = 1 , . . . ,  n, £ N+ or s — r for some 
r £ S and Fr = {cr, i , . . . ,  cri„r} for some constants crJ £ S A,r for j  = 1,. . . ,  nr £ N+; or

(C )  t = o{x , Tx, . . . ,  r„) and r '  = c wherein a £ S' is some algebraic operation, c £ S is aril/
constant, x £ A"n and /or i = 1 , . . . ,  n if y C r,- wherein y £ X, for some s e S is some 
variable such that y x then either F, = , cjrif} for some constants cSij £ S AiJ for
j  — 1, . .  ., ns £ N+ or s — r for some r £ S and Tr = {cril, . . . ,  crnr} for some constants 
crJ £ S'Ar. for j  = l , . . . , n r £ N+; or

(D)  T  -  o(x, ru .. ,,r„ ) and r' = cr'(x, r[ , . . . ,  r'm) wherein a, o' £ S' are some algebraic 
operations such that a o ' , x £ A n and for i — 1, . . . ,  n £ N and for j  = 1, . . . ,  m £ N if 
either y C or y C t - wherein y £ A', for some s £ S is some variable such that x ji y then 
either F3 = {c3 l, . . . ,  c, for some constants c3g £ S^ 3 for l = 1, . . . ,  n3 £ N+ s = r for 
some r £ S and Fr = {cril, -. •, cr,n„} for some constants crJ £ S ^ r for j  = 1, . . . ,  nr £ N+

then EQWIlF’B h e is decidable.

Proof. Similar to the proof of Theorem 15 using Lemma 57 in the place of Lemma 47 and 
Lemma 58 in the place of Lemma 48.

□
In addition to the use of Theorem 17 in the following we also present a discussion of its 

practical implications in Section 7.5.
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7 .4 .3  A T otal P r o o f A ssista n t and Total P ro o f Tool For STs

Using Lemma 58 and Theorem 17 as our theoretical basis we now define the function AV that 
has very useful properties in the context of the verification of STs.

AV as a Total Proof Assistant. In the following definition the PREQ specification 'L 
allows us to deal with the definition of additional algebraic operations not defined in E, and 
Cartesian form stream transformer definitions. The motivation for the inclusion of $ was dis
cussed in Section 6.6 and an example can be found in Section 6.7.1 after the definition of the 
concatenation operator.

D efin ition  109. Let »L £ PR EQ (S,20  and let S' = S U A  be the extended signature of T as 
defined in Definition 50. Also let P C S'. For each u,u'  £ S_+ and for each v £ S+ we define

AVu%r, „ : ASTRAL(S1,2QU,„ x A S T R A L ^, X )u-,„ B

(ambiguously denoted AV't,r ) as follows: for each <L £ ASTRAL(5F, A )Ui„ and for each £ 
ASTRAL(Xf, X_)n',v such that $ and $ ' do not share any symbols other than those in Ff and A

*=M
AV*'r ($ ,$ ')  = A  EVERr (R*-* '-Vi,r;)

«=i

wherein
£*•*'■* = TRCONiJS*-*'’* = {E'p 1+) 1(F “>' y  t$)))

wherein
E* = XASTRAL($),

_ .̂ASTRAL̂

and for i = 1,. .. |l>|
Ti = fi (x,X 1, . . . ,X |U|)

and

II 'TT H c

wherein /„• and are the symbols from £*•*'•* (and hence £*■*'•*) representing the co-ordinate 
function of the Cartesian forms of the functions F and G represented by and respectively, 
and x £ X t and Xj £ JL ,  for J = 1, • • •, M and x\ £ X u,. for l = 1, . . . ,  |«'| are some distinct 
variable symbols.

W ell-D efinedness, T erm ination and Soundness. We first show that AV is well-defined. 
The termination properties of AV are considered in Lemma 59. Theorem 18 shows that AV is 
sound with respect to the semantics of ASTRAL programmes.

W ell-D efinedness. First, notice that by the well-definedness of xASTRAL we have yastral($) 
€ PREQ(E', .Y)t „ „ and ya s tu a l($ ') £ PREQQT, A )tu ',„. Also, notice that as by hypothesis 
<f> and do not share any symbols other than those in 57 and V and by the fact that XASTRAL
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does not introduce any function symbols common to E ,p — \/AS1 RAL(<1>) and E 'i>< = xASTRAL(<i>/), 
by the well-definedness of 1+j it is clear that E^A A = E* (+) fiE*'  1+J jVfr) ¡s well-defined 
as a PREQ(IF, A )tUi„ specification. Therefore, by the well-definedness of TRCON we have 
R^A'n  g  T11S(AF, X_) and hence by the well-definedness of EVER it is clear that AV^1' is 
well-defined as required.

Lem m a 59. / /T ,  F, <I> and <&' are defined as above then

Proof. First, notice that by Lemma 49 e,- = (r, = r[) for j  = 1 , . . . ,  |n| is weakly decidable with 
respect to R^A1.* _ Also notice that R * i s  stream variable reducing by Lemma 56. Therefore 
by Theorem 16

VER V ' 11'V „ r 'H

for j  = 1 ,.. ., |u|. Consequently it is clear that AV*’1̂ !?, $ ') is a total function as required.
□

T heorem  18. (T h e AV Soundness T heorem .) Let T £ PREQfiff, X )  and let S' =
wherein JF is defined as in Definition 50. Also let A = I(T,\ E) wherein E  = EQCONfify)^ and 
let r  C S' be inductive for A.

If <i> £ ASTRAIfifif,  Xflu.v and T' £ ASTRA.L(fifi, Xf)u> „ are defined such that 4> and T' do 
not share any symbols other than those in Yf_ and X_ then

Proof. Let , R* A' ’,t, fi and §i for i = l , . . . , | u |  be defined as in Definition 109 and
let E = EQCON(£’<lvl>,i'li) C EQ(FV,X_). First, notice that (using R to denote R^A',*} by 
Lemma 49 e{ = r,- = t[ for j  = 1, . . . ,  |u| is weakly decidable with respect to R. Also notice that 
K, is stream variable reducing by Lemma 56. Therefore by Theorem 16

EVERr (R, r„ r/) = tt = >  EQWILr -E h /,(x , x u . . . ,  xH ) = gfix, x [ , . . . ,  x[u,,).

for j  = 1,. . . ,  |?;|. Also notice that as by definition fif C Tfi, E  C E, T C S' is inductive for A 
and A = I(S ', E) by Lemma 50 we have

EQWIL ’ P / i ( r , Xj, . . . ,  X|u|) — ^¿(r, Xj, . . . ,  ai|u,|)

I( E", E) f= /¿(x, Xi, . . . ,  X|„|) — <7i(x, Xj, . . . ,  X|u1).

Moreover, as I(XV, E )|^  = I(£ ', E) by Lemma 37 we have A — I(S^, E) and hence

A [= / ,(x ,x 1, . . . , x H ) = gi(x,x'1, . . . , x \ u,l).
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Recall now that by hypothesis for j  = l , . . . , | u |  the symbols /, and <7, are the function sym
bols representing the co-ordinate functions of the Cartesian forms of F  and G respectively. 
Consequently,

i |= fi (x, x 1, . . . ,  :C|U|) — (ji (x , x x,. . ., x |tI,|). 

for i = 1,. . . ,  | ?;| implies that

A\= F(xu . . . . x lul)(x) = G ( x \ , . . . ,x \ull)(x);

that is,
(ia  € Au) (ia' G A“') ( i t  G T) F±(a)(t) = G±(a)(t). 

However, by hypothesis F— ~ and G— = and therefore we have

as required.
□

D iscussion. Notice that it is the combination of Lemma 59 and Theorem 18 that establish 
formally that AV is indeed a general purpose proof assistant in the context of primitive recursive 
STs. However, as we promised we can also show formally that in the context of restricted, but 
still useful classes of correctness statements AV is also a total proof tool. The implications of 
these results are discussed in the following section.

AV as a Total P roof Tool.

N o ta tio n  5 . Let tP, JT and L be defined as above. Also let E  = EQ C O N ^) and let

E * ’*''* = (iU’ l i M ^ 'W i ’*')))•

We write
T-. n * ,*  ',4»

EQWILr c h <h = $ ' 

to mean formally that for i = 1, • • •, |l |

EQ WIL ’ b /: (Vi 2,’l) • • ■ 1 21|u| ) — 9i (-C) x 1, . . . , 2." | u, | )

wherein /,• and g{ are the symbols from E*'*’'* representing the co-ordinate function of the 
Cartesian forms of the functions F  and G represented by and d?' respectively and x 6 and 
xi € X Uj for j  = 1 , . . . ,  |u| and x\ G X_u‘. for / = 1, . . . ,  |u'| are some distinct variable symbols.

T heo rem  19. Let $  G PREQ('D,X), let S ' = S U V  wherein is defined in Definition 50 and 
let L C S'. Also let E = EQCON(^), let

£*■*'■* =
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and for i — 1,. . . ,  |w| let fi and Qi be the function symbols from E representing the co-ordinate 
functions of the Cartesian forms of $ and <£>' respectively. If <f> G ASTRAL(Tf,  X )u,„ and 

G A S I  RAL(Yf, 2L)u' , v  are defined such that <I> and T' do not share any symbols other than 
those in SI and X_ and Xj G X_u. for j  = 1 , . . |?r| and x\ G X_u, for l = 1,. . |u'| are defined
as in Notation 5 and the equations

f i (x , X\ , . .  ., £|u|) — !)i{x5 ; • • •, i | u,|)

for i = 1 , . . |u| satisfy any of the criteria in Cases (A) to (D) of Theorem 17 then

= tt <=> EQWILr ‘E* h  $ =

Proof. First, notice that by Theorem 18 we immediately have

AV*-r (<fr,$') = tt = >  EQWILr,E*'V * F $ = $ ' 

and therefore it is sufficient to show the converse. This follows immediately by Theorem 17.
□

7.5 D iscu ssion : V erify ing  S C A s and H ardw are

Recall from Section 3.10 that by definition every SCA can be represented by a primitive recursive 
function. Also, recall that SCAs encompass several broad and useful classes of computational 
systems that are used in computer science including: artificial neural networks; cellular au
tomata; dynamical systems and of course a large class of hardware that is one of our main 
interests. As such the implications of the fact that VER, EVER and AV behave (at worst) as 
total proof assistants in the context of primitive recursive sets of equations is clear. However, 
the forms of Theorems 15 and 17, and Theorem 19 that depends on Theorem 17 are by necessity 
technical in nature. Therefore, it is not immediately obvious what the specific practical implica
tions of the abstract functions VER, EVER and AV may be in the context of their use as total 
proof tools. As such, in this final section we discuss how we may make use of these functions’ 
properties in the context of SCAs and more specifically in the context of hardware devices when 
expressed as STs.

7 .5 .1  H ardw are: th e  P ractica l Im p lica tion s of T h eorem  19

In highlighting the practical implications of Theorem 19 we focus on the case that the ST to be 
verified satisfies the criteria in Case (D) of Theorem 17.

Essentially what Case (D) states is that if we only consider hardware devices with finite state 
and that only receive control signals (streams) whose point-wise values are taken from a finite 
set then, relative to using equational logic and induction as a proof technique, the equivalence 
of a device’s implementation and its specification under initial algebra semantics is decidable.

From a practical perspective the class of hardware devices that satisfy these two criteria



are very broad and include all standard microprocessors and most other basic hardware devices 
including our running example the RS-Flip-Flop (see Section 8.4.1). Indeed, we would imag
ine that the only hardware devices that do not satisfy these criteria would be either analogue 
devices or devices with analogue components. Therefore, it would appear that Theorem 19, 
implemented using the function AV, provides the most straightforward and general purpose 
method of verifying hardware represented as an ST that we can reasonably expect. More specif
ically, if for no other reason then we believe the implications of this result justify the approach 
to stream processing that we advocate in this thesis.

Of course having made such a strong statement we must be careful to quantify it. In par
ticular, we ourselves admit that even theoretical results specifically tailored for their practical 
implications do not necessarily guarantee that they will provide usable software tools. Indeed, 
ns we discuss in Section 8.5 it by no means trivial to design a practical implementation of AV 
that is suitable for use on devices of ‘real world’ complexity. Rather, what we claim is that the 
function AV provides a sound theoretical basis for automated verification tools in the sense that 
in principle it reduces the problem of verifying hardware to developing a usable implementation 
of the function AV.

7 .5 .2  T h e P ractica l Im p lica tion s o f T h eorem  15

To conclude this chapter we highlight one practical implication of Theorem 15 outside of the 
context of hardware devices.

C ellu lar A u to m ata . The abstract computational devices known as cellular automata (see 
von Neumann [1966] and Codd [1968]) are finding increasing use in non-linear science applica
tions (see Farmer et al. [1989] and Gutowitz [1990]) including the study of chaotic and biological 
systems. Of the four types of computational device that we have mentioned that are encom
passed by SCAs the class of cellular automata are distinct in the sense that most examples that 
are found in the literature are based on what is referred to as closed computation in Thompson 
and Tucker [1994]; that is, apart from a ‘clock tick’ and some preset initial values (initial state) 
they do not require any input to generate their output.

More formally, a typical cellular automaton can be specified as a function of the form

C : T x A u -> ,411;

that is, as an SCA without stream inputs, wherein u £ S + codes the device’s initial state, and 
also codes any subsequent states that are computed from the current time and the current state 
as described in Section 3.9.3. Moreover, and most importantly in the context of this chapter, a 
cellular automaton’s state (,4U) is by definition comprised of a finite number of configurations 
and hence can be formalized as elements from finite carriers.

Therefore, an equational correctness statement relating the equality of two cellular automata 
is of precisely the form to satisfy Case (D) of Theorem 15 and so we can deduce the following 
useful fact.

C oro llary  6. Let A be some standard S-sorted b-algebra, let X  be some S-indexed collection 
of variable symbols such that S and X  are pairwise disjoint, and let I ' C S  be inductive for A.
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Also let <5 £ PREQ(H, X )  wherein <i> includes the definition of two cellular automata represented 
by the function symbols C and C' both of type ( t upu) for some u £ S + .

If E — EQCON(<$), A ~ and x £ At and z i £ A"u> for i = l , . . . , | n |  arc some
distinct variable symbols then if we wish to show that

/(A , Ê j C(x,xq, . . . ,X| ti|) E (T*, x i , . . . ,  x | u j

then equational logic and induction provide a decidable calculus.

Proof. We prove the case where |u| = 1; that is, where u — s £ S and leave the case where 
|u| > 1 to the reader.

First, notice that under the hypothesis that F C S is inductive for A and that A = I(E, E) 
by Theorem 13

EQWILr,E h C ( x , x x, .. . , xH ) = C '(x ,xx, .. . , xM)

I(A, E'j 1= C (x , x ̂ C (x,x^, . .  .,Xju|).

Therefore, as by hypothesis C and C' represent cellular automata the equation C(x, x x, . . . ,  X|u|) = 
C ' ( x , x x, ■ • .  , X | U| )  is precisely of the form to satisfy Case (D) of Theorem 15 and hence

I ( S ,  Ê j C ( x , X^, • • •, Xju|) Ef ( x ,  X^, . . . ,  X|u|)

is decidable in the sense defined above as required.
□
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C hapter 8

Im plem enting a P roof Tool for STs: 
a Case Study

Machines are worshiped, because they are beautiful, and valued because 
they confer power; they are hated because they are hideous, and loathed

because they impose slavery.

Bertrand Russell

261



8.1 O verv iew

In this chapter we discuss the implementation of the function AV and its application to a small 
case study: the RS-Flip-Flop, that we have used as our running example. This provides an 
opportunity to demonstrate AV’s effectiveness as a total proof tool.

8 .1 .1  S im u la tin g  a Full Im p lem en ta tion

Recall that the definition of AV requires the development of several large and complex pieces of 
software that include: an ASTRAL parser, a PREQ parser, and a PR parser. Moreover, as we 
will discuss later, there are several practical considerations that at present limit the capabilities 
of a full implementation of AV. As a consequence, what we describe in this chapter essentially 
amounts to the development of two of the necessary constituents of AV: the function EVER 
and the compiler C, the combination of which is sufficient to demonstrate the effectiveness of a 
complete and efficient implementation.

After some general comments regarding the development of the software, in Section 8.2 we 
begin a more detailed discussion with a description of the input that must be supplied to the 
implementation of EVER. This is followed in Section 8.3 by a description of the three phases 
of the software’s operation. In Section 8.4 we discuss the implementation of the compiler C.

We conclude the chapter with an indication of the practical difficulties that we face in 
designing an efficient implementation of AV suitable for the verification of large systems, and 
suggests some methods that can be used to overcome these problems.

8 .1 .2  G eneral C om m en ts

The implementation of the function EVER and the compiler C has been developed on a SUN 
SPARC station 2 running UNIX version 4.1.3 under Open Windows version 4.1.1.

This software has been programmed using the Sun cc C compiler and the Berkeley C Shell 
programming language. The combination of these two applications has provided a fast proto
typing environment and has made possible the re-use of previously developed software as we 
will describe. A schematic representation of our implementation is shown in Figure 8.1.

8.2  In p u t

The correct operation of the implementation of EVER relies on the user providing the following 
input to the system:

(1) An equational specification E  that when orientated as left-to-right re-write rules forms a 
complete TRS.

(2) A description of the signature of constructors F.

(3) An equation of the form f { t x, . . . ,  tn) = g(t[,.. .,t'm) wherein /  and g are function symbols 
occurring in E  and and tj are some terms of interest for i = i , . . . , n  6 N and for 
j  — 1 , . . . ,  m  £ N respectively.



We now discuss each of these requirements in more detail using our case study the RS-Flip-Flop 
as an example.

8 .2 .1  Im p le m e n tin g  an  E q u a tio n a l S p ec ific a tio n  L an g u ag e

The development and implementation of a concrete language for the representation of equational 
specifications forms an integral part of any implementation of EVER. As at the time of writing 
no implementation of a PREQ parser exists the particular language that we have used for this 
purpose is based directly on the language EQ that has been implemented by the author as part 
of a previous project (see Stephens [1991]). The relevant features of EQ with respect to the 
implementation of EVER are as follows:

(A ) EQ provides a general purpose syntax suitable for the presentation of weak second-order 
equational specification and hence for the specification of primitive recursive equational 
specifications in Cartesian form. In particular, EQ is suitable as a target language for an 
implementation of the ASTRAL compiler ya s t r a l .

(B ) We can compile EQ specifications into an equivalent TRS suitable for input into a first- 
order version of the ATLASsystem (see Hearn [1994]) that provides an efficient and flexible 
implementation of a first-order term re-writing engine.

(C ) The combination of EQ and ATLAS provides an implementation of essentially all of 
the constituent functions of EVER with the exception of some very low-level operations. 
Moreover, these low-level operations performed by EVER that are not implemented by 
EQ and ATLAS can be readily programmed using C shell script. While this reduces 
the efficiency of the overall system it is adequate as a demonstration prototype and has 
considerable reduced development time.

E xam ple EQ P ro g ram m e. The RS-Flip-Flop specification can be represented in Cartesian 
form in EQ as follows: (notice in the discussion that follows because we are using the syntax 
of actual implementation languages that both ‘Eval’ and ‘evaF are used to represent the basic 
stream operation eval and should not be confused with the actual function Eval discussed in 
Section 4.5.6.

SIGNATURE OF RSFlipFlop IS 
SORTS

nat, bool, _bool 
END_S0RTS 
OPERATORS

FFlopSpec : nat * _bool * _bool -> bool ;
END_0PERAT0RS

END.SIGNATURE
equations
VAR T : nat ;
VARS SI, S2 : _bool ;
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VARS XI, X2 : bool ;
FFlopSpec( 0, SI, S2 ) = False ;
FFlopSpec( Succ( T ), SI, S2 ) =

True
IF And (Eq-fbool}(Eval(T,S1) .False) ,Eq-Cbool>(Eval(T,S2) .True)) ,

False
IF And(Eq-Cbool}(Eval(T,Sl) .True) , Eq{bool}-(Eval(T,S2) .False)) ,

False
IF And(Eq-fbool}(Eval(T,Sl).True),Eq{bool}(Eval(T,S2).True)),

FFlopSpec( T, SI, S2 )
OTHERWISE ;

END_EqUATIONS

Using an example EQ programme we can also highlight three more specific features that are 
relevant to our discussion.

(D ) Aside from its use as part of key words, the underscore is prefixed to an existing sort 
name in EQ to denote a stream carrier.

(E ) Although we have explicitly included a sort declaration section in our example, EQ provides 
features to automatically include corresponding stream sorts for each sort declared and also 
allows the usual constants and operations associated with a particular sort to be included 
automatically. For example, the operation ‘Eval' is automatically included for each sort 
as is lEq' (equality), ‘O’, ‘Succ’, ‘True’ and ‘False’. However, as EQ was not intended to 
be a direct user-interface notation, notice that some of these operations must be postfixed 
with sort information ‘{sort}’ as EQ does not allow overloading.

(F ) Notice that EQ provides the facility to specify functions using case statements. These case 
statements are eliminated using definition-by-cases when an EQ specification is compiled 
into re-write rules (see Sections -1.2.3 and 6.7.1). In particular, notice that each case 
statement must include an ‘otherwise clause’ and hence EQ is strictly limited to proper 
equational specification; that is, this facility is nothing more than a syntactical convenience.

As we will see in later examples, EQ also provides the facility for local variable name declaration 
that allows the equations section to be divided in a modular fashion. This feature makes EQ a 
good target language for ASTRAL specifications that also use local variables (sec Section 6.7). 
Indeed, we note in passing that our practical experience suggests that local variable declaration 
and Features (E) and (F) are very convenient from the perspective of the user and would be 
included in an implementation of the language PREQ.

8.2 .2  D escr ib in g  T and S p ecify in g  th e E quation  to  be V erified

In the development of a prototype of EVER in order that we may supply the necessary infor- 
niation concerning the signature of constructors E we have found it useful to slightly modify the 
original implementation of EQ to derive the language VEQ. In particular, a VEQ programme is
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an EQ programme followed by an additional section containing a description of F together with 
the details of the equation that we wish to verify. For example, in the previous EQ programme if 
we had also included the equations representing the RS-FlipTTop implementation in Eartesiau 
form then the VEQ programme necessary to verify the correctness of this implementation is the 
EQ programme itself followed by this additional section.

VERIFY
S0RT_INF0

nat : INFINITE : {O.Succ} ; 
bool : FINITE : {True.False} ;

END_S0RT_INF0 
VAR T : nat ;
VARS SI, S2 : _bool ;
VARS XI, X2 : bool ;
FFlopImp( T. SI, S2, XI, X2 ) = FFlopSpecC T, SI, S2 ) ;

END.VERIFY
As the language VEQ is not intended to be a direct user-interface language and given the 
straightforward nature of this additional section we simply note at this point that our choice of 
syntax is sufficient to code both the structure of any T and any equation e that are appropriate 
for use with the abstract function EVER.

8.3 T h e  O p eration  o f  th e  E V E R  Im p lem en ta tio n

With the three necessary user inputs supplied to our software using a VEQ specification, the 
operation of the EVER implementation is fully automatic and behaves either as a total proof 
assistant or as a total proof tool depending on the syntactic structure of the equation e to be 
verified (see Section 7.1).

The implementation’s operation is divided into essentially three modes of operation:
(1) Generating the Necessary Input for the ATLAS System.
(2) Sim ulating an EVER Deduction.
(3) A utom atically T ypesetting a P roof in TjrpC.
We describe each of these system modes in more detail.

8 .3 .1  G en era tin g  th e  N ecessary  Input for th e  A TLAS S ystem

The generation of the necessary input to the ATLAS system is carried out by the VEQ com
piler and is basically an ‘information generation phase’ that is further sub-divided into several 
operations. However, most of these sub-functions are simply to create files to provide typing 
information and lists of name substitutions to eliminate name-mangled identifiers during proof 
generation (Mode (3)). Therefore, we will only discuss the most important operations performed 
during this mode of execution omitting unimportant details.

The VEQ compiler first analyses the structure of the equation e to be verified. More specifi
cally, it identifies the distinct variables occurring in e and produces a number of files as output.
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These files hold particular sub-sets of the set of all equations derivable by all possible ground- 
term substitutions of all variables in e using appropriate members of F. For example, in the 
context of the RS-Flip-Flop the VEQ compiler produces eight equations to be input to ATLAS:

ff lop im p( 0 ,c s l 5 , c s 2 5 . t r u e . t r u e )  = ff lo p sp ec (0 ,c s l5 ,c s2 5 )  
ff lop im p( 0 ,c s l5 ,c s 2 5 . f a l s e , t r u e )  = f f lo p s p e c (0 ,c s l5 , cs25) 
f f lo p im p (0 ,c s l5 ,c s 2 5 , t ru e , f a ls e )  = f f lo p sp ec (0 ,c s l5 ,c s2 5 )  
f f lo p im p (0 ,c s l5 ,c s 2 5 , f a l s e , f a l s e )  = ff lo p sp ec (0 ,c s l5 ,c s2 5 )  
f f lo p im p (s u c c (c t5 ) ,c s l5 ,c s 2 5 , t ru e , t ru e )  = f f lo p sp e c (su c c (c t5 ) ,c s l5 ,c s2 5 )  
f f lo p im p (s u c c (c t5 ) ,c s l5 ,c s 2 5 , f a ls e , t r u e )  = f f lo p sp e c (su c c (c t5 ) ,c s l5 ,c s2 5 )  
f f lo p im p (su c c (c t5 ) , c s 1 5 , c s 2 5 . t r u e . f a ls e )  = f f lo p sp e c (su c c (c t5 ) ,c s l5 ,c s2 5 )  
f f lo p im p (su c c (c t5 ) , c s l 5 , c s 2 5 . f a l s e . f a l s e )  = f f lo p sp e c (su c c (c t5 ) ,c s l5 ,c s2 5 )

wherein these equations are divided into two files containing the first and last four equations 
respectively. We now explain the significance of these sub-sets in more detail.

C om plim en ta ry  Sub-sets. Notice that in the equations above created to verify the RS- 
Flip-Flop the variable T  of sort nat has been replaced in the first four equations by 0 and in the 
last four equations by succ(ct5) wherein ct5 is a name-mangled implementation of the constant 
A- (Indeed, we note in passing that the constant ct5 along with any other new constants is also 
automatically added to the original signature when the equations from the VEQ specification 
are converted into a TRS.) These particular substitutions of the variable T  are a direct result of 
the description of the structure of T in the verify section of the VEQ programme, that specifies 
that nat is to be interpreted by a countably infinite carrier (N is this particular example).

The consequence of this fact is that (in the context of the RS-Flip-Flop) as there is only one 
variable of type nat (variable T) we derive what we refer to as two complementary sub-sets of 
equations; that is, the first and last four equations form two complimentary sub-sets because 
equation e, differs from e,+1 for i -  1,.. .,3 by one substitution that essentially constitute differ
ent cases in a proof by case analysis; and e.- differs from ei+4 for i = 1 , . . . ,  4 by one substitution 
that essentially constitute the basis case and an induction case of a proof by induction. Thus, 
we have divided the eight equations generated by VEQ into two sub-sets representing the basis 
case and induction case of a proof by induction respectively, and both steps in this proof require 
four specific cases to be analysed. Indeed, for this reason in the sequel we will refer to the basis 
sub-set and the induction sub-set of two complimentary sub-sets of equations with the obvious 
meaning. In addition, the specific pair of equations from a basis sub-set and an induction sub-set 
that differ by only one substitution are referred to as a specific complement.

More generally, outside of the context of our case study, if aq £ X St for some s,- £ 5 for 
i = l , . . . , m  are the number of distinct variables (from left-to-right) occurring in an equa
tion e and I  = {/j,...,/*.} C { l , . . . , m}  is defined such that for each j  £ { 1 , we 
have lj £ I  <=> r„ .  = {b„.,g„ } for some constant b,^ and for some unary operation g„. 
then VEQ will create \1\ pairs of complimentary sub-sets. In particular, if Cf. and Cj. are 
the basis sub-set and inductive sub-set respectively of the /; th complimentary sub-sets then 
Cq D C,°i+i and Cf D C/)+l for j  = 1. For example, if the equation to be ‘verified’
Were Add{x, y ) = Mul t (y, x)  and T is defined as in our case study then VEQ would create 4
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e q u a t io n s :

d  d= Add(0,0) = Mult(0,0), 

e2 a— Add(0,Succ{x?)) = Mult(Succ(x2),0), 

e3 d= Add(Succ(xi),0) = Mult(0, Succ(xi)) 

and
e4 d= Add(Succ(xi)i Succ(xi)) — Mult(Succ(x2 ), Suc.c(xi))

that are divided into two pairs of complementary sub-sets: C f  = {e^eo}, C f  = {e2}, C{ — 
{e3, e4} and Cl  = {e4}.

In general, the creation of the entire set of ground-term instantiations of the variables in the 
equation e to be verified is equivalent to an ‘un-winding’ of the recursive abstract definition of 
EVER, that itself implements the successive applications of Rules (v) and (vi) in the calculus 
EQWIL. Moreover, the identification the complementary sub-sets of these equations, has several 
important practical implications:

(1) First, from the perspective of efficiency, if we use ATLAS to re-write both sides of each 
equation in the smallest basis sub-set C^  first, and no common normal forms are found, 
then we already know our proof has failed -  as the basis case of a necessary induction 
has failed. We return to this point in our algorithmic description of the operation of our 
implementation of EVER (see Section 8.3.2).

(2) Secondly, the identification of the individual cases in complementary sub-sets enables us 
to present a proof based on our our formal deduction that is structured in a more natural 
semantic style (also see Section 8.3.2).

(3) Thirdly, as we will discuss in detail in Section 8.3.4 we can use complementary sub-sets to 
infer existential quantification over variables defined over finite carriers.

(4) Finally, we note that the verification of the individual cases in complementary sub-sets 
can be performed completely independently and hence makes the application of parallel 
techniques during a verification very straightforward. We return to this point in the final 
section of this chapter.

The T otal N u m b er o f Equations C rea ted  by VEQ . Returning to our case study, notice 
that as bool is to be interpreted by a finite carrier with two elements (B in this case), the variables 
X 1 and A'2 have been replaced by combinations of the constants true and false. However, also 
notice that throughout the eight equations the stream variables 5T and S 2 of type _bool have been 
replaced with the name-mangled constants csl5 and cs25 respectively. This is a consequence of 
the fact that (mirroring our theoretical assumption that r ,  = 0  for each s £ S  -  see Sction 7.2.2) 
the implementation assumes that J)ool is to be interpreted by an uncountable carrier ([T —► B]) 
nnd hence cannot be finitely generated. In particular, this is the reason that we have 8 = 23 
equations to be passed to ATLAS and not 32 = 24 5 equations as we would have had, for example,
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if 51 and 52 were of type bool. Indeed, in general for some quation e the number of equations 
ne G N to be verified that are passed by VEQ to A1 LAS is

n e =  | r , j  x  | r „ j  x

wherein if as before x{ G A",, for some s{ € 5 for i = 1, . . . ,  m are the number of distinct variables
occurring in e then {A___, i k} C {1,.. ., m)  are the indexes of the variables such that E ^  /  0
for each j  G {1....... A;}. In particular, the replacement of the stream variables 51 and 52 with
constants in our case study is simply to ensure every equation created is defined using ground 
terms. This is to avoid possible complications that can arise with open terms during the term 
re-writing process.

We also mention in passing that the change in case of the function and constant names in 
the equations generated from the original VEQ specification is to accommodate the naming 
conventions supported by ATLAS.

Having created all the necessary information concerning the syntactic structure of e and the 
complementary sub-sets, the implementation begins its second phase of operation that simulates 
the operation of EVER.

8.3 .2  S im u la tin g  a E V E R  D ed u ction : an O verview

The specific way in which EVER is simulated using ATLAS has been strongly influenced by the 
desire to automatically generate a readable proof. In particular, the mechanism by which the 
abstract functions VER and EVER verify the correctness of an equation is quite different from 
the standard proof techniques that would typically be applied in a verification done ‘by hand’. 
Therefore, the implementation of EVER has been structured so that it reflects more closely the 
structure of a deduction in the calculus EQWIL with the intention that this will give a more 
naturally structured output (proof).

In more detail, by generating all possible ground-term instantiations of the equation to be 
verified and by further identifying all complimentary sub-sets of these equations, it is possible 
to generate a number of separate proof scores representing particular deductions about individ
ual ground-term equations; that is, within each complementary sub-set each specific equation 
represents a particular case of a proof by case analysis; and each pair of complementary sub-sets 
represents the basis case and induction step of a proof by induction. Therefore, each individ
ual proof score that is generated by verifying a particular ground-term equation can be linked 
together to form a overall proof structured in a more semantic style. Most specifically, a proof 
that is very close in structure to a proof done ‘by hand’ in that it mirrors an essentially semantic 
use of the deduction rules of EQWIL.

We argue that the advantage of this approach is that such a proof is much more readily 
accessible to human (and machine) verification. Moreover, while the theorems of the previous 
chapter guarantee the correctness of the abstract functions VER and EVER, there is no such 
guarantee of correctness for our implementation. Therefore, we can significantly increase our 
confidence in an automatic verification if we have available a readable proof score of the de
duction. Indeed, we argue that the generation of such a readable proof provides the maximum
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degree of confidence that can be reasonably expected from any implementation of such tools 
that have not themselves been formally verified.

8 .3 .3  A n A lg o r ith m ic  D escrip tion  o f  th e  E V E R  Im p lem en tation

Essentially, the software that implements EVER consists of a number of C shell scripts that take 
their input from the files created by VEQ: the files containing all the pairs of complimentary 
sub-sets of the equations created by VEQ; a file containing the TRS created from the original 
EQ specification that is suitable as input to ATLAS; and several files containing information 
concerning variable typing and any identifier re-naming that has been necessary. At a very high 
level the operation of the this software is as follows.

Let C,D and C{ for j  = 1 be the pairs of complementary sub-sets as defined in Sec
tion 8.3.1, recalling in particular that D and C[. D C/j+i for j  £ {1,...,L - — 1} and 
hence by removing an equation from C(.+i (say) that we are also removing an equation from C{.. 
Also, let R  be the TRS created by VEQ in a format that is suitable as input to ATLAS.
b e g i n

(A ) Set j  = '2k + 1.

(B )

(a) Set j  = j  -  1.
(b ) If j  =  0 then typeset a proof and STOP.

(c)
(I) If j  > k then set C -  C®_k.
(II) If j  < k then set C = Cfr

(C ) Split each equation in C into two terms (the left-hand-side and the right-hand-side) and 
use ATLAS to reduce both terms to their normal forms using R. Store these normal forms 
along with the corresponding reduction sequences output by ATLAS.

( D )

(a) If all the normal forms from Step (C) are the same then GOTO Step (B).
(b ) For each equation 77 = (r  = r ')  in C without matching normal forms do:

(I) If there does not exists a term t = eval,(Q,X) for some s £ S  such that either 
t C r  or t C t' then remove the equation r\ from C and remove y;'s specific 
compliment from C”s complimentary set (see the following example).

(II) If there does exists a term t = evals{0,X)  for some s £ S such that either t C r  
or t  C t '  then

(i) Replace each of the terms t with a new variable symbol not occurring in r/ 
to make a new equation to be verified rf .

(ii) Make a copy of the VEQ programme with the verify section modified by 
changing e to tj1 adding the information about the new variable symbols as
appropriate.
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(iii) Recursively call EVER with the new specification as defined above and 
record whether EVER was successful in proving this new equation.

(iv) For each equation r] whose recursive call to EVER was not successful remove 
r) from C and remove 77’s specific compliment from C ’s complimentary set.

(c) If C = 0  then output a diagnostic indicating that the verification has failed and 
STOP.

(d ) If 1 < j  < k then for each equation in C add an appropriate re-write to R representing 
the corresponding induction hypothesis for the ‘basis case’ that has just been proved 
(again see the following example).

(E ) GOTO Step (B).

END

E xam ple 22. We continue our use of the RS-Flip-Flop as a case study. In particular, we 
use the full VEQ specification representing both the Flip-Flop specification and the Flip-Flop 
implementation (that unfortunately cannot be included as it is too long). A discussion of how 
the equations representing the Flip-Flop implementation were generated can be found in the 
next section.

Recall that in this case the equation e to be verified is

FFlopImpC T, SI, S2, XI, X2 ) = FFlopSpecC T, SI, S2 ).

Therefore, in this particular case we have m = 5, {x i , . . . , xm} = {T, S i ,  S2, XL, -V‘2}, k = 1, 
I  =  { j j  = {l}, C f  =  {e1;. . . , e4} and C{ = {e5, - - - , e8} wherein e< for i = 1,...,8  are the 
equations generated by VEQ as defined previously in Section 8.3.1. Notice in the following 
description of the operation of EVER that the system automatically deduces that the Flip-Flop 
implementation is only correct if the values of variables XI and X2 are tt and f f  respectively; 
that is, our implementation automatically deduces an appropriate existential quantification on 
these variables.

(1) At Step (A) we set j  = 2k + 1 = 3.

(2) At Step (B.c.I) we set C = C? = { e^ .- .+ .Q .

(3) At Step (C) we generate eight normal forms -  the normal forms of the left- and right-hand- 
sides of equations ex,. . . ,  e4 that we will denote n/7,- and n/r,- for i — 1, . . . ,  4.

n/li = false, n f r x = true; 
n f U = false, n f r 2 = true; 
n/l3 = false, n/r;! = false 
and
n/Z4 = false, nfr .x = false.

We also generate the eight corresponding reduction sequences.



(4) As nflx /  nfrx and nfl2 ^  nfr2 Step (D.a) fails.

(5) As none of the normal forms contain an occurrences of eval during the first and second 
iteration of Step (D.b) at (I) we set C = C? = {e3,e4} and C[ = {e7,e8} respectively. 
Notice that this means that only certain instantiations of variables gave matching normal 
forms and hence our resulting correctness statement will contain existential quantification 
on the variables XI and X2.

(6) At Step (D.e) we add the following re-write rules to R : 
fflopimp(ct5,csl5,cs25,false,true) -> fflopspec(ctS,csl5,cs25)
and
fflopimp(ct5,cslS,cs25,false,false) -> fflopspec(ct5,csl5,cs25)

(T) At Step (B.a) we set j  = 1.

(8) At Step (B.c.II) we set C = C{ = {e7,e8}-

(9) At Step (C) we generate four normal forms -  the normal forms of the left- and right-hand- 
sides of equations e7,e8 that we will denote nfU and n/r, for i e {7,8}:

n f l 7 = n f l $ ~  
dc{

and(eq(eval(ct5, cslb),  f  alse), eq(eval{ctb, cs2b),true)),
true,
dc(

and(eq(eval(ctb, cslb), true), eq(eval(ctb, cs2b), false)),
false,
dc(

and(eq(eval(ctb, «15), true), eq(eval(ctb, «25), true)), 
false,
f66cl(mult{ctb, succ(succ{0))),cslb, «25, «15, «25, false, true)

)
)

);

n / r s =
not(

or(
eval(ctb, «15), 
not{ 

or(
fmcl{mult{ctb,  succ{succ{Q))), cslb, cs‘2b, cslb, cs25, false, true),

eval(ctb, «25)
)



)
)

and

nfry =
notf

or(
eval(c¿5, cs 15), 
not( 

or(
f66cl(mult(ct5, succ(succ{'0))), c\sl5, cs25, csl5, cs25, false, false), 
eval(ct5, cs‘25)

)

We also generate the four corresponding reduction sequences.
Stepping back from our case study for one moment, at this point we wish to re

emphasize an important point that we made in Section 7.4.2, and more specifically the 
point we made in Example 21 concerning the relative effectiveness of VER and EVER and 
w’-complete specifications. Notice that in the terms nfr7 and n/r8 there are sub-terms of 
the form

or( f66cl(mult(ct5,succ(succ(0))), csl5, cs25, csl5, cs25, false, true), eval(ct5, cs25))

and

or(x,y)  = <

or(f66cl(mult(ct5, succ(succ( 0))), csl5, cs 25, csl5, cs25, false, false), eval(ct5, cs25))

respectively. In particular, notice that even with the boolean operation or defined as 
follows: /

V if x =  ff, 
x if y -  ff, 
tt if x — tt and 
tt if y = tt

that both the above sub-terms are irreducible without the use of the abstract function 
SubEvals.

Now returning to our case study.

(10) As nfl7 ft nfr7 and nfl& nfr& Step (D.a) fails.

(11) As both pairs of normal forms contain occurrences of eval at Step (D.b.II) we recursively 
apply EVER to the two equations i~jy and 772 defined respectively as follows:
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and(eq(x, false), eq(y, true)),
true,
dc(

and(eq(x, true), eq(y, false)),
false,
dc{

and(eq(x, true), eq(y, true)), 
false,
fC)6cl(mult(ct5, succ(succ( 0))), cs 15, «25, «15, cs 25, false, true)

)

not(
or(

x,
not(

or( f  66cl( mult{ctb, succ(succ(0))), «15, «25, «15, «25, false, true), y)
)

)

and

dc(
and(eq(x, false), eq(y, true)),
true,
dc(

and(eq(x, true), eq(y, false)),
false,
dc(

and(eq(x, true), eq(y, true)), 
false,
f66cl(mult(ct5, szicc(succ( 0))), «15, «25, «15, «25, false, true)

)
)

)

not{
or{

x,
not(
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)
)

)•

Therefore, we now have two sub-verification to perform: that is, we now need to verify the 
following two equations:

n f l 7[ e v a l ( c t 5 , c s l 5 ) / j ; ] [ a v a l ( c t 5 , c s 2 5 ) / ! / ]  =  n f  r 7[ e v a l  ( c t S  , c s l S ) / i - ] [ a v a l  ( c t 5  , c s 2 5 ) /y ]

and nfl8[eval(ct5,csl5)/j7][eval(ctS,cs2S)/j/] = nfrs[eval (ctS , csl5)/r][eval (ct5, cs25)/j/]

wherein x  and y are new free variables. Both of these sub-verifications essentially require 
a proof by case analysis wherein there are four cases (as we have two variables x and y 
of type bool in each equation). The first sub-proof is successful the second is not. Notice 
that this means that if the value of variable T is non-zero then the only instantiation of 
variables XI and X2 for which the Flip-Flop implementation is correct is XI = tru e  and

X2 = false.
(12) Based on failure of the first sub-verification, at Step (D.II.iv) we remove equation e8 from 

C = C[ and equation e4 from C f leaving C = C[ = {e3} and C f  = {e7}. This indicates 
that our proof has been successful in that at least one pair of specific complements from 
each complimentary sub-set has given matching normal forms.

(13) At Step (B.b) we are now in a position to deduce the appropriate quantification for our 
correctness statement and hence typeset a proof. This process is explained in the following

sections.

or (  f 6Gc A(  m u l t ( c t o ,  s u c c ( silcc( 0 ) ) ) , c s 15,  c s ‘25 , c s l 5 ,  cs'25, f a l s e ,  f a l s e ) , y )

D iscussion. To conclude this section we wish to re-emphasize at this point that in the 
context of equations specifications created from AV programmes, the abstract algorithm we have 
presented above mirrors the theoretical properties of EVER in that its deductive properties are 
at worst equivalent to a total proof assistant. Moreover, at best it also behaves as a total proof 
tool, as using the RS-Flip-Flop as a case study demonstrates. This is because the correctness 
statement relating the Cartesian form of the RS-Flip-Flop’s specification and the Cartesian 
form of its implementation give rise to an equation that satisfies Case (D) of Theorem 17 (see

Section 7.5).

8 .3 .4  D ed u cin g  E x isten tia l Q uantification

Using the method we outlined in Section 8.3.2 the final mode of operation of our implementation 
(Mode 3) is the automatic generation of a ‘semantic style’ proof based on a successful formal

deduction carried out in Mode (2).
While this aspect of our implementation is quite challenging from a programming perspective 

there is only one sub-operation performed in this mode that is of any theoretical interest: the 
mechanism by which we may automatically deduce the appropriate existential quantification on 
variables ranging over finite carriers. Therefore, we limit our discussion to this aspect of the
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final stage of automatic verification. An abridged version of the proof created by our software 
during the verification of RS-Flip-Flop can be found in Appendix C
E x isten tia l Q uantification . Taking our case study as a specific example, strictly speaking 
our implementation of EVER is not correct. More precisely, to achieve a successful proof notice 
that our abstract algorithm does not require that every equation in a basis and induction sub
set need be proved. Rather the algorithm requires that at least one equation in each basis and 
induction sub-set can be proved. Essentially, this relaxation of the manner in which the abstract 
function EVER makes a deduction amounts to extending the implicit universal quantification 
on each variable to both universal and existential quantification on variables that range over 
finite carriers.

In the context of hardware, allowing existential quantification is very useful as it is often 
appropriate to deduce that a piece of hardware is correct relative to some particular initial values 
that are preset before the device begins to receive input. Indeed, this is true of the RS-Flip-Flop 
and of many other pieces of hardware that can be expressed as SCAs (see Section 3.10).

The reason we have not implemented existential quantification at a theoretical level is that 
if it is allowed as part of the underlying calculus then the four standard rules of equational logic 
are no longer sound (see Meinke and Tucker [1992]). While this problem can be overcome by ap
propriately modifying the basic rules of deduction, this complicates the correspondence between 
the deductions carried out in this calculus and the deductions carried out by term re-writing 
using a TRS created from our specifications. However, by deducing existential quantification 
‘externally’ we avoid this technical difficulty as our implementation is still based on standard 
equational logic.

Therefore, it remains for us to explain how we may deduce the appropriate existential quan
tification when all of the ground-term equations created by VEQ do not give matching normal 
forms. For convenience in the explanation that follows we will use the term ‘quantification’ to 
mean ‘existential quantification’ where this does not create any ambiguity.

An A lgo rithm . Recall the definitions and examples of Section 8.2.1. In particular, recall the 
definition of variables x,- for i = 1 , . . . , m  from equation e and the number of combinations of 
ground-term substitutions n„ that are derivable from e. Now let X = {xL, ..

First, the deduction of the correct quantification on a variable x G X requires that we place 
some ordering on the members of X. However, this ordering is not significant from the perspec
tive of the quantification in the correctness statement that will be produced in the sense that 
changing this ordering may produce a different quantification, but all possible quantifications 
will be equivalent. More formally, all possible quantifications that can be produced relative to 
our choice of ordering will share the same prenex normal form representation (see for example 
Mendelson [1987]). Therefore, rather than simply make this ordering relative to each variable’s 
first, occurrence loft-to-right in c we find it more convenient to use essentially this order, but treat 
stream variables and non-stream variables separately; that is, each variable is ordered as per 
its first occurrence loft-to-right in e, but we first examine non-stream variables, making stream 
variables ‘least significant’. Now let ( ju  ■ ■ ■ > jm) bo the permutation of the indexes ( l , . . . , m)  
°f the variables X as per this ordering. I or example, if e is the correctness statement for the



RS-Flip-Flop then X = {xq.-.^xs} = {T, S\, S2, Xi, X 2} , but the ordering we impose on these 
variables is T, X x, X 2, S k, S2 and hence (ji, ■ ■ - ,js) = (1,4, 5, 2,3).

Secondly, we need to know precisely which ground-term substitutions have been made for 
each variable in X and which of these substitutions produced matching normal forms. In particu
lar, we need to know all the combinations of ground-term equations that were generated by VEQ 
and which of these combinations produced matching normal forms. Now let Q = (c,-,i , . . . ,  qijm) 
for i = 1, . .  ., ne wherein ?> jfc is the particular substitution made for variable x k in equation e, for 
k = 1 ,.. ., m by the VEQ compiler and let M  = {ml5. . . ,  mp} C { 1 ,. . . ,  n,e} be the the indexes 
of these substitutions that gave matching normal forms. For example, again using the cor
rectness statement e of the RS-Flip-Flop as an example, we have Ci = (0,csl5,cs25,true,true), 
C, = (0,csl5,cs25, false,true), .. ., Q  = (succ(ct5),csl5,cs25,false,false) and M  = {3,7}.

In general, given Q  for i = 1,. . . ,  m, the permutation ( j \ , .. . , j k) and M  = {m ,, . . . ,  mnJ  the 
algorithm to deduce the appropriate quantification Q, € {V, 3} for variable xjt for i = 1, . . . ,  m 
is as follows:
BEGIN

(A) Let i = 1, and let S =

(B)

(a) IfS  = ^ = " '{ c mjl>1} then Q, = V.
(b) If S C  = then Q, = 3.

(C) Let S =

(D) If ji < m then

(a) For each j  G {1____ \M\} such that there exists a G S let

r-=|.u|
Kj = U I s u c h  t h a t

i = l

(b) Let S = rij- = iU|

(E) Let i = i + 1.

(F) If i < m then GOTO Step (B).

e n d
Discussion. Ignoring the special case ji = 1, essentially for each i — the algorithm
deduces the appropriate quantification Qi by checking each substitution of variable Xj,_l that 
gave matching normal forms in the verification to see which substitutions of variable Xj( oc
curred with that substitution -  this is done by constructing the sets % . If all of the possible 
substitutions of variable x;i occurred with each substitution of variable then we conclude 
that Q,■ = V -  this will be the case if n j= iW| otherwise if only some of the
possible substitutions of variable x;i occurred with each substitution of variable then we 
conclude that Q, = 3.
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Exam ple 23. Again using the RS-Flip-Flop we show how the algorithm correctly deduces the 
quantification Q x = V. Q2 — 3 and Q3 = 3 for variables T  A  ̂ and X 2 respectively.

( 1) At Step (A) we set S = Uj=i j , } = {0, succ(cl5)}.

( 2) At Step (B.b) we set Q x = V.

(3)  At Step (C) S is unchanged.

(4) As (m,j, = i3,i = 0 € S and = C7,i = sucr.(ct5) £ S at Step (I).a) we create two 
sets: Ej and E 2 defined respectively as follows: Ei = true because $mij 2 = ?3 4 = true and 
Cm.j, = C.3,1 = 0 and R? = true because <;m2:]2 = c7,4 = true and <rm2;i = c7il = succ(ct5).

(5) At Step (D.b) we set S = {true}.

(6 ) At Step (B.b) we set Q2 = 3.

(7) At Step (C) S is unchanged.

(8 ) As ?miij3 = 3̂,4 = true £ S and ?m3ij2 = C7i4 = true £ S at Step (D.a) we create two sets: 
R, and R 2 defined respectively as follows: R 4 = false because cmiJ-3 = c3,5 = false and

= C3,4 = true and R 2 = false because ?m2,j3 = ?7,s = false and <;m2j 2 = c7,4 = true.

(9) At Step (D.b) we set S = {false}.

( 10) At Step (B.b) we set Q3 = 3.

Thus, the implementation has deduced that the appropriate quantification for the correctness 
statement is:

(VT)(3X1 )(3X2)(VS1)(VS2) FFlopImp( T, SI, S2, XI, X2 ) = FFlopSpec( T, SI, S2 ).

E xam ple  24. As a final example let us also use the RS-Flip-Flop, but assume now that the 
specification has been changed so that M  = {3,4, 7,8}; that is, so that the initial values of 
the boolean pair (A'^AA) = (false, false) also gives a correct implementation. We show how 
the algorithm correctly deduces the quantification Q1 = V and Q2 — V for variables T  and A"; 
respectively.

( 1) At Step (A) we set S = Uj' = i {fm,,;,} = {0, succ(cto)}.

( 2) At Step (B.b) we set Q x = V.

(3) At Step (C) S is unchanged.

(4) As cmi ;i = c3ii = 0 6 S, = 0 £ S, = <T7,i = succ(ct5) £ S qmtih =
C« ! = succ(ct5) £ S at Step (D.a) we create four sets: R i , . . . , R 4 defined respectively 
as follows: R : = R 2 — [true, false} because <muj2 = C3,4 = true and cmi = (m3>jl = 0 
and S,„2j2 — s41-1 = false and Cm,j, = Wjj, -  0; and R3 = R4 = {true, false} because 
imjj, = i7i4 = true and = im.j. = succ(ct5) and = <,8,4 = false and Cmjjq =
W ji = succ(ct5).
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(5) At Step (D.b) we set S = {true, false}.

(6 ) At Step (B.b) we set Q-, = V.

Thus, the implementation has deduced that the appropriate quantification for the correctness 
statement is:

(VT)(VX1)(3X2)(VS1)(VS2) FFlopImpC T, SI, S2, XI, X2 ) = FFlopSpec( T, SI, S2 ).

This concludes our explanation of the implementation of EVER. We now discuss the imple
mentation of the Cartesian composition compiler C.

8.4  Im p lem en tin g  th e  C artesian  C o m p o sitio n  C om p iler

8.4.1 O verv iew

RecaLl that the definition of the compiler yas1ral from ASTRAL into PREQ makes use of the 
generalized Cartesian composition compiler C. Therefore, from the perspective of implementa
tion, the compiler y a s t r a l  makes use of PR as an intermediate representation. As a consequence 
and as highlighted by the RS-Elip-Flop as a case study, while an implementation of EVER does 
not directly rely on the implementation of the compiler C, a demonstration of its effectiveness 
as a total proof assistant and total proof tool does. In more detail, if we wish to specify the RS- 
Flip-Flop implementation in EQ in Cartesian form then this requires composing the Cartesian 
forms of the RS-Flip-Flop itself and its pre- and post-processing schedules (see Section 6.7.2). 
This raises two practical problems: ( 1) the theory to effect Cartesian composition is stated in 
terms of PR schemes and not equations; and (2) at present there is no compiler from EQ into 
an implementation of PR. In order to overcome this difficulty we proceed as follows.

(A) First, we specify the RS-Flip-Flop and it pre- and post-processing schedules as CFSTs in 
PR as three separate schemes.

(B) Secondly, we combine these schemes into a single equivalent scheme using the implemen
tation of C.

(C) Thirdly, we convert this single scheme into an equivalent EQ scheme using a PR to EQ 
compiler that already exists (see Stephens [1991]).

(D) Finally, we combine the EQ programme representing the RS-Flip-Flop and the EQ pro
gramme representing the RS-Flip-Flop specification to produce the necessary VEQ pro
gramme that we have already discussed and used in the previous sections.

Discussion. One important point that we wish to make at this stage is that this is not an 
ad hoc method used in the context of a single example. Rather, this process mirrors the opera
tions that will eventually be performed automatically as part of the AV implementation in the 
following sense: that an ASTRAL programme representing the RS-Flip-Flop’s implementation
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would create the required PR representation (that we have created by hand) automatically be
fore creating the corresponding EQ (PREQ) specification (see Section 6.3.1). Therefore, this 
technique provides an effective test to demonstrate the implementation of EVER as it mirrors 
any eventual implementation of AV's use of the function EVER as a sub-programme.

Therefore, to complete this chapter we again use our case study the IIS-Flip-Flop to explain 
each of the four steps above more precisely.

8.4 .2  Im p le m e n t in g  C artesian C om p osition

In a similar fashion to the way we found it convenient to use the implementation of the language 
EQ to represent PREQ programmes, the implementation of the compiler C is also based on soft
ware previously developed by the author. In particular, the implementation of the compiler C is 
based on a PR parser and a PR to EQ compiler that was developed as part of the same project 
in which EQ was developed (see Stephens [1991]). Indeed, the implementation of the language 
PR is very similar in some respects to EQ and hence we will not describe all the details of the 
implementation’s syntax and grammar. Rather, as before we will concentrate on the features of 
the language that are relevant to its use in the context of this thesis.

The programme that is used to represent the three components of the RS-Flip-Flop imple
mentation is essentially three PR programmes presented as a single specification as follows:

SORTS 
bool ;

OPERATORS 
2 : -> nat ;
Norfbool]- : bool bool -> bool ;

PROGRAMS

<
Evalpbool} o 
<
Mult{nat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] >;
U<nat _bool _bool, 2 >

> ;
Eval{bool3- o 
<
Mult{nat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] >;
U<nat _bool _bool, 3 >

>
>

< ~ ( 2 = 3 )

*( < U< _bool _bool bool bool, 3 >; 
U< _bool _bool bool bool, 4 >
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>.
<
o(
Nor{bool},
<
o(
Eval{bool},
<
U< nat _bool _bool bool bool bool bool, 1 >;
U< nat _bool _bool bool bool bool bool, 2 >

>
);
U< nat _bool _bool bool bool bool bool, 7 >

>
);
o(
Nor{bool},
<
U< nat _bool _bool bool bool bool bool, 6 >; 
o( Eval{bool},

<
U< nat _bool _bool bool bool bool bool, 1 >; 
U< nat _bool _bool bool bool bool bool, 3 >

>
)

>
)

>
)

< - ( 2 = 3 )

Eval{bool} o 
<
Div-Cnat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] > 
U<nat _bool _bool, 2 >

> ;
Eval{bool> o 
<
Div{nat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] > 
U<nat _bool _bool, 3 >
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>

>

Discussion.

(A) First, notice that in the Programmes Section each of the basic operations and each of 
the function building tools are implemented in a straightforward way. However, two small 
points that we wish to make are that: (a) as formally PR uses an infinite signature, 
constants are postfixed with an expression of the form ‘ wherein ‘.’ represents the 
constants particular domain in the context in which it is being used; and (b) for convenience 
during parsing the symbol V is used to separate schemes in vectorizations and is also used 
as the programme terminator.

(B) Secondly, notice that as we indicated in this particular case the Programme Section is
divided into three schemes: that represent the post-scheduling function, the
Flip-Flop itself and the pre-scheduling function respectively. In particular, notice that 
these schemes are separated by two expressions of the form ‘<-(2  = 3 ) ’. This indicates 
that each of the schemes are to be treated as CFSTs and that we want to generate a 
single PR scheme representing the result. More specifically, this syntax indicates the 
vector-valued Cartesian composition of scheme q3 with co-ordinates two and three of a 2 
‘simultaneously’ with the vector-valued Cartesian composition of a 2 with co-ordinates two 
and three of scheme a!. The informal use of the word ‘simultaneous’ in this context 
simply means that the order in which the Cartesian compositions are to be performed 
is not important relative to the semantics of the resulting scheme. However, it can be 
very important from the perspective of efficiency relative to the size of the scheme that 
is created, although unfortunately a discussion of this topic goes beyond the scope of this 
thesis (see Point (C) below).

We also note in passing that for convenience during the design of our software the 
implementation of C is also capable of performing Cartesian composition using just specific 
co-ordinates of schemes that may be ‘applied out of sequence’. For example, considering 
the schemes cv2 and a 3 in isolation for a moment, if we had separated schemes a 2 and 
»3 with the expression ‘<-( 3, 2 ) ’ then this would have created the scheme representing 
the ‘simultaneous’ single-valued Cartesian composition of co-ordinate one of a 2 with co
ordinate three of a 2's domain and co-ordinate two of q3 with co-ordinate two of tt2’a 
domain.

(C) As the operation performed by the compiler C is highly technical the schemes that it 
creates are generally very large and highly complex even if the schemes supplied as input 
are straightforward. This fact combined with the inefficiency of the prototype implemen
tation of 6’ means that using the general Cartesian composition method of the compiler C 
(on which C. is based) we cannot, for reasons of the memory required, generate the single 
scheme representing the RS-Flip-Flop from the programme above.
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However, we can observe that the generality, and hence the complexity, of the com
piler C is not necessary for any of the examples (of hardware) that we have encountered a,s 
part of our work. More specifically, we have designed a formal function that can test PR 
schema to see if the full generality of the compiler C is required to perform the necessary 
Cartesian composition, and incorporated this function into our implementation of C. As 
such if the full generality of the compiler C is is not required to perform the Cartesian 
composition of two schemes then we can apply a much more efficient version of Cartesian 
composition that can be more readily implemented.

Unfortunately, due to considerations of the space needed to present these ideas for
mally, they will not be included in this thesis. However, as a practical indication of the 
increase in efficiency gained relative to the size of Pll scheme created by the efficient C 
compiler (and hence the number of equations created when this scheme is compiled into 
EQ) we note that: the single PR scheme created by this efficient compilation method 
to represent the RS-Flip-flop when it is only composed with its pre-scheduling function 
(the Cartesian composition of schemes a 2 and a3 above) is a scheme composed of 4 of 
constants, 10 of algebraic operations, 27 of projections, 15 compositions, 17 vectorizations 
and 1 primitive recursion; whereas the direct implementation of C creates a scheme com
posed of 21 of constants, 50 of algebraic operations, 233 of projections, 77 compositions, 
79 vectorizations and 1 primitive recursion. Hence, in this specific example the efficient 
implementation of C is capable of creating a scheme that requires only 8% of the memory 
required by the general method.

8.4 .3  C om p ilin g  PR into EQ

The PR to EQ compiler that we have made use of is based on the compilation technique presented 
in Thompson and Tucker [1991] (see Section 5.2) and hence also suffers from some limitations 
from the perspective of efficiency. However, in the context of the RS-Flip-Flop this is not a 
major problem.

We conclude this chapter with some further comments on the development of a full imple
mentation of AV, but this time from the perspective of the overall efficiency of the software 
relative to its speed and memory use.

8.5  D es ig n in g  an E ffective Im p lem en ta tio n  o f  A V

In the particular context of this chapter we have chosen the RS-Flip-Flop as a case study as our 
experimentation with larger case studies, including the PDP8 (see Harman and Tucker [1993]), 
has shown that while our implementation of AV can in principle verify the correctness of many 
classes of hardware device automatically, developing an implementation of practical use is by no 
means straightforward. For example, our work with the PDP8 has shown that there arc in excess 
of 102,000,000 individual cases that need to be checked to complete a verification! Moreover, 
based on our smaller case studies we estimate that the time and memory necessary to complete 
this verification using the current implementation of AV is approximately 3,000 years and 5,000 
giga-bytes of storage respectively!
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While this may at first appear to make the theoretical verification methods that we have 
presented in the previous chapter intractable for all but trivial examples, we note that ex
perimentation with executing our current implementation on alternative hardware has already 
shown that an immediate increase of between one and two orders-of-magnitude in the speed with 
which a formal verification may be completed is possible. We also state that it is reasonable to 
expect a further increase of one order-of-magnitude in speed by improving the efficiency of the 
implementation of our abstract algorithms. In particular, it is reasonable to expect an increase 
of one order-of-magnitude in speed by eliminating the use of interpreted code (see Figure 8.1). 
Therefore, as in principle we can imagine that an amount of memory in the order of 5,000 
giga-bytes could be made available with current technology, let us explore hypothetically the 
practical steps necessary to make our implementation of AV usable. However, to be realistic in 
our assumptions let us first take into consideration that a typical modern microprocessor will be 
of significantly greater complexity than the PDP8, perhaps requiring between ten times and one 
hundred times as many cases need to be tested (say). Hence, let us examine hypothetically the 
steps necessary to achieve an increase in speed of between five and six orders-of-magnitude in 
the combined performance of the current software and underlying hardware to derive an effective 
implementation of AV.

First, recall that by incorporating the two improvements to our software we have suggested 
above we concluded that we will immediately obtain between two and three orders-of-magnitude 
increase in the speed with which a verification is performed. Secondly, also recall that every case 
within a complimentary sub-set can be verified completely separately and hence we may readily 
perform each mode of operation of our software in parallel (see Section 8.3.1). Consequently, 
consider the situation where we perform our verification on the latest version of the connection 
machine (see Hillis [1985]) that has already been constructed and is essentially equivalent to a 
parallel connection of in excess of 64,000 machines that are each between one and two orders-of- 
magnitude faster than the machine on which our current implementation of AV was developed 
(see Section 8.1.2). Based on our conjectures the connection machine would make the formal 
verification of a current ‘real-world’ device possible in approximately four hours. Moreover, even 
if this speed-up was slowed by two orders-of-magnitude due to data transfer overheads and other 
considerations the verification of a ‘real-world’ device would still be possible in two-and-a-half 
weeks. Therefore, since this period of time is significantly less than the design phase of a modern 
microprocessor (see Stavridou [1993]) we conclude that the development of a practical imple
mentation of AV is certainly not out of the question within the near future.

This chapter completes the development of the research agenda that we set in Chapter 3. As 
such we now conclude this thesis with some general observations on the work we have presented.



Specialized I’R Specification 
for Representing STs 

Composed in Cartesian Form

Generalized Cartesian Composition 
Compiler [Written in C]

I’REQ Specification and Correctness Statement

TRS Structural Information

Mode 1

First-Order Version of 
A T L A S  [Written in C  by D Ilearn]

EVER Implementation 
[Written in C  Shell]

Mode 2

—̂  Diagnostics

Quantification Deduction 

[Writtem in C Shell]

Proof Typesetter 
[Written in C Shell]

Structural Information

Proof Typeset in TeX

Mode 3

1 unire• 8.1: A Schematic Representation of the A V Implementation



C hapter 9

C oncluding Remarks

Accuracy is the enemy of pedagogy.

Richard Feynman

Obviousness is the enemy of correctness.

Bertrand Russell



9.1 T h es is  O verv iew

This thesis has presented the basis of an alternative and essentially first-order theory of stream 
processing based on algebraic techniques. In particular, this theory has developed and extended 
ideas taken from the theory of synchronous concurrent algorithms and generali/,ed recursion 
theory based on the work of B C Thompson, J V Tucker and J I Zucker. Our main motivation 
has been: (1) the development of a user-friendly specification language for STs with a straight
forward denotational semantics; and (2) the development of theoretical and practical tools for 
the automated verification of STs when expressed in this language. More specifically, the devel
opment of tools that are suitable for the automated verification of safety-critical hardware, but 
not limited to this application.

In Chapter 3 we identified what we believe are the weaknesses of existing approaches to 
stream processing. In particular, we highlighted weaknesses from the perspective of the applica
tion of automated verification techniques for STs. Moreover, we set an agenda of research that 
was sufficient to address each of the problems we identified.

In Chapter 4 we presented an effective solution to the first of our research problems that 
demonstrated formally the practical applicability of our alternative method of specifying STs in 
Cartesian form. We also analysed the scope and limits of Cartesian form computation.

In Chapter 5 we designed an abstract equational specification language PREQ based on 
the class of primitive recursive functions, and showed formally that it has desirable properties 
from both a practical and theoretical perspective. In more detail, we showed that PREQ can 
be given a straightforward denotational semantics using algebraic techniques; and that PREQ 
specifications can be easily converted into complete term re-writing systems.

In Chapter G we presented our formal specification language ASTRAL designed specifically 
for STs and showed that the semantics of ASTRAL can be derived using Cartesian form spec
ification in PREQ. We also presented a prototype implementation of ASTRAL and discussed 
its features as a high-level programming language.

In Chapter 7 we demonstrated that by using equational logic as the basis of our formal ver
ification techniques it is possible to identify non-trivial classes of STs that can be automatically 
proved correct using term re-writing techniques. In particular, we showed that in principle the 
correctness (in the initial model) of a broad class of hardware devices can be verified completely 
automatically.

Finally, in Chapter 8 we discussed the implementation of some of the theoretical tools that 
we have presented. We concluded the chapter by discussing certain techniques that are appro
priate to increase the efficiency of our prototype software to make it suitable for the verification 
of complex modern electronic devices such a micro-processors.

9.2 F urther W ork

fi-here are two obvious areas of the work that we have presented that require further research, 
these are: (in order of presentation)
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9.2.1 A S T R A L

We believe the language ASTRAL has much potential as the basis of a usable high-level pro- 
<Tramnnn<T language. However, in order for AS 1 RAL to reach its full potential m this inspect 
the following aspects of the implementation of ASTRAL need to be investigated more fully:

( 1) From the perspective of the specification of hardware ASTRAL’s BNF can be improved 
using further case studies as examples. In particular, we need to identify any additional 
primitives that would be useful for the specification of hardware devices. Some specific 
areas where ASTRAL is underdeveloped in this respect where mentioned in Section 6.7.

( 2) The specification of a formal compiler from the BNF into abstract ASTRAL specifications 
is required. In particular, from the perspective of automated verification, to avoid the need 
to check every case individually an investigation of efficient techniques to simulate least 
number search with bounded least number search is required. One possible method might, 
be partial automatic ^-enrichment of the resulting specification (see fleering [1986]).

(3) The formulation of a compiler from abstract ASTRAL specifications into a high-level 
programming language is required, with an emphasis on the generation of efficient code to 
allow the noil-symbolic simulation and testing of programmes.

9 .2 .2  A u to m a te d  Verification

The investigation of techniques to provide a usable implementation of our automated proof tool 
AV based on the suggestions in Section 8.5 needs further investigation. Three specific areas of 
research in this respect are:

(1) The investigation of parallel programming techniques for which AV is particularly suited.

(2) Techniques for identifying which abstract functions in an ASTRAL specification have 
caused a formal verification to fail. In general, this is by no means obvious as the automated 
verification is achieved using equations which in some cases may have no straightforward 
resemblance to the specification from which they were generated. 3

(3) An investigation of term graph re-writing techniques (see Sleep [1994]). Those appear to 
be particularly appropriate for primitive recursive specifications and could significantly 
improve the efficiency of our verification techniques.



A p p en d ix  A

P roof o f Theorem  9

In this first appendix we prove formally Theorem 9, concerning the correctness of the compiler 
C, that we used to prove Theorem 8 in Chapter 4.

A .l  In term ed ia te  L em m ata

To prove Theorem 9 we use the following results whose proofs we defer until Section A.3.

L em m a 60. Let .4 be any standard S-sorted '¡L-algebra, let s 6 S , let f> be some w/u-permutation 
for some, w, u 6 5 + stick that I i,w f- 0 , let p, r € I i,w, and let f3 £ for some z £ S f .

(1) If r — p then
(Vi € T)(^a{p/b} e Aw[p/;})

lEvalw’*'p]A(t ,e!jW-p'z'r{al , . . . ,a p_11ap+1, . . . , a H , 6)) = [/3JA(i,b)

and

(2) If r p then
(Vi £ T) (Va{p/b} £ / T {p/i})

|E  ralu " |,i (t , 9'-'mlP’ ’ ( i , ■ • ■ ■, (ip—i . *̂p+11 • • • i | > ) — cveil—(i , arf

Lem m a 61. Let A be any standard S-sorted 12-algebra. For each s £ S, for each tu/y-permutation 
F for some y ,x  £ S + such that I s- W ^  0 , for each p £ I 3-<w, for each 7 £ pPR{S)x>x, for some 
x , z ‘ £ S + for each ,j £ /¿Ptf(£)t f ,, for some z £ Sf and for each 7 ' £ f iPR(S)yiX if

(A) for each j  I - r we hare that
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( a m b i g u o u s l y  d e n o t e d  F f " 3)  sa t i s f i e s

(Va{p/b} £ ^ {p/i}) F?‘'l3(a{p/b}) = ( h ' U M a h )

wherein

and

L(a{p/b}) = K (i), • • - a^ P)-D -[^1-4(6), o ^ (p)+1), ■ •

(B) for each j  £ I - ,x we have that

(again ambiguously denoted Ffi'3) satisfies

(Va{p/b} £ A!u{p/Z]) Ifi>'^(a{p/b}) = . . .  ,ap_u

for some r £ l~,w such that

(L(a{p/b}))-{r) = ( b ' k  iL (a{p/b})))j

ap+ 17 • • • 1 a\w\,b)

then if we define 

then

(1) if i (f I - F  then

(\fa{p/b} £ ^ {;,/'r})

and

Fi',P = (F7k . . . , < / )

,p
,l3( a { P / b} ) ) ) . =  ( l7  0 7 ']U ( k a {p A } ) ) ) .

2) if i £ I i,x then
(Va{p/b} e

= « t," ’|,'J,r' ( a . ....... o 6)

/or some r' £ sjzc/j that

( A a { p / b}))fir') = (fr 0 i l A { L [ a { p / b } ) ) y .
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L em m a 62. Let .-1 be any standard S-sorted Xl-algebra, let s £ S , let <f) be a w/w'-sort permu
tation over 5 for some w such that P-,w ^  0  and let p G I ^ w. Also, let 6 G PR{^)W, u, for some 
v1 G S +, let 3 G PR(fi)t ;,, for some z G S + and let P : /lu'{p/i} -  Aw‘ be defined by

(Va{p/b} (= A w{p/::}) P(a{p/b}) = ( a ^ i ) , . . . ,  % ^ (p1_i), [£]U(6), S(*(P)+iv ■ • • ’

For each a{p/b} G Au’̂ ' ^  and for each a1 = (a\ , . . . ,  G /I1“ if

x = (Yi, • • •, \> 'i )  e A

is defined by

X,
i51" 'p'; ’r,((il r  • ■, ap_i, flp+i, ■ • -, a|l0|, 6) 

for some r, G / i!" /or Z = 1,. . |u/|

2/  i 0 / - ,IU , mid 
otherwise

P = (/>!)■••) /V 'l) £ A1“ '1

¿s defined by

Pi
if j  £ I l 'w , and 
otherwise

for some x3 G A L such that Xj = (iJ(a{/>/6}))-(rj) f or J = • • •> M  then

(1) for each l </ I - ,v

and

(2) for each l G I - v

( l O ^ ’̂ U x ) ) ,  = 6^w‘p-’'<‘(au . . . , a p. 1,ap+ll. . . , a w , 6) 

for some, ep G F' w for i = l , . . . , |w ' |  such that (P(a{p/b}))^{lll) = (P{a{p/b}))l for j  =

For convenience we now re-state the theorem.

Theorem 9. Let .-1 be any standard S-sorted Xd-algehi a. Lot each s G S , for each ?/;, u G 
such that fi 0 , for each w/  u-permutation 6, for each p G I-'w, for each a G /iPtf(S)Ui„ for 
some v G S +, for each 3 G iiPR(A)m,, for some z G Sf and for each i =  1,. . . ,  \v\:
( l )  if i l - ,v then if ice define

¡-a,y,i?,w.p . * {p/~} _. a■ el —
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( a m b i g u o u s l y  d e n o t e d  F f J )  by

pa ,0 ,<t> ,UJ ,p =  (|  C ( a , p ) l ± )u

«kro-« ,:  = (;-!/=■ '" + then

(Va{p/i) 6 d ” 1''- '1) F T ^Mp / b} )  = ( |a l A !>>})))^

wherein

is defined by

P { ( i { p / b }) — ( a <p( 1)’ ■ • • > a <p(j>-1)) I^l-4(^)i l)j • • •, a (̂|u|))i

wherein p = o(p); otherwise 
(2) if i £ i--1' ¿/¡en if we define

(again ambiguously denoted Ffi'*3) by

F t * - ' * *  =  ( ( W « . / 3 ) k k ....... . ( H « .  f>)W,

wherein j i<x = j, os defined above and j i k = + 1 for k — 2, . . . ,  then

( M p / b } e A w{p/:}) F?^(a{p/b}) = 6 ^ ^ < rf i h T . - , a p_l ,ap+u. . . , a lwl,b)

for some r £ such that

( P ( a { p / m « f) = (M A(P (a{P/b})))i.

A .2 P r o o f  o f  T h eo rem  9

P ro o f  o f  T h eo rem  9. By induction on the structural complexity of the scheme a £ p Pll( E)u v 
uniformly in (u, v).
Basis Cases. We have three cases to consider:

( l )  C o n s ta n t  Functions. In this case a = cu for some c £ EA,3' for any s' £ S.
Since in this case s’ £ S  it is sufficient to show that

F i ,i3(a{p/b}) =  H n ( P ( a { p / 6 } ) ) -

This is obvious as O^'“’'p(c'‘) =
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(2) A lgebraic  O perations. In this case a = a for some a £ Su for any s' € S . Again 
since s' £ 5  as with the previous case it is sufficient to show that

F r P(a{p/b}) = [a U n a { p / b } ) ) .

We have two sub-cases to consider:
(a) a 7̂  eval, and
(b) a — eval,.

Sub-case (a) a 7̂  eval,. We calculate as follows:
L.H.S.

F?’h\a{p /b} )  = {C(a.p)l±(a{p/b}) 

by the definition of F"'d with the hypothesis that v £ S

= lQ0’w’p( a ) U I n i t ^ ^ ( a { p / b } ) )

by the definition of C

by hypothesis on o and

= {a]A( I n i t ^ ( a { p / b } ) )  

the definition of 0

-  ■ ■ - i «¿(M))

by the definition of I  nit with the hypothesis that a 7̂  eval, and 

lienee that I s-" = 0

= M d p (a{p/b}))

by the definition of F since as I L,U = 0  it must be the case that 4>{p) = 0. 

Sub-case (b) a = eval,. We calculate as follows 
L.H.S.

= [C (a ,^)ld(a{p/6})

by the definition of F ° ,i3 with the hypothesis that ju| = 1

by the definition of C

= l E o a l ^ - n 6 . ( I n i t ^ p(a{p/b}))
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b y  h y p o t h e s i s  on  a  a n d  t h e  d e f in i t io n  o f  0

= l E v a l ' : ^ q M J ^ ’P^r(au . . . , a p_u av+u. . . , a w J>))

by the definition of I nit for some t = and for some r = <¡>{2) £ We now
have two sub-sub-cases to consider:

(I) r = p, and

( I I )  r ^ p .

Sub-sub-C ase (I) r — p.

{Eua l^ :'p]±{t,0i 'ul’F’zx{al , . . . ,  ap+l, . . . ,  aH ,b)) = [01 ¿(Z, M

by Lemma 60

= [0 U&XO

bv the definition of ?

= [eua/J^Z, [/%([)))

by definition

= W  A(P(a{p/b}))

by hypothesis on a , the fact that t = a^i), r = p = d>(2) and by the definition of 

P.
Sub-Sub-case (II)  r p.

17f veil™' ' ,p] 4 (Z, G~'m,p'~,r((ii , ■ • • j ap-1? ap+i > ■ ■ ■ > a M > ^)) ~  [ e , ar)

by Lemma 60

= Iak(-P(a{p/&}))

by hypothesis on «, the fact that t = am , r = <p{2) and by the definition of P.

(3) P ro jec t io n  Functions. In this case « = Vuk for any u £ S+ and for any k € {1...... ju|},
and consequently we have two sub-cases to consider.
(a) k (f J-'u and
(b) k £ /!•“.
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Sub-case (a) k /*■“. Since k £ I s-'u and |w| = ('«¿t = 1 it is sufficient to show that

F ^ ( a { p / b } ) = l a } A(P(a{p/b})).

We calculate as follows:
L.H.S.

F i J (a{p/b}) = lC(a,8)}±(a{p/b}) 

by the definition of with the hypothesis that v G S

by the definition of C

= [U t L'W',lu,l)W ni t^ (a{p /b} ) )

by hypothesis on a and the definition of 0

= [u i;-.'ei;!.l i+i k ( /ni^ ,*’,tp(a W 6}))

by the definition of A and k' wherein for j  — 1, . . . ,  |u|,

_ i uj if j i /s,u;
; | «S’3 (-r) otherwise

by the definition of I  nit wherein for j  = 1, . . . ,  |u|

IJ j =  <
; ap_i, ap+i , .. ., a|u,|, /;) otherwise

=  }Jk

since by definition y, is of type c, for i — 1, . . )u|, and \ykJ = 1 since k $  / i,u

=  a>p(k)

by the hypothesis that k I L‘U-

= i[Ufclii(a^(11’ • • • ’ a^(?(p)-i)’ a >̂(?(p)+i)> • • • i «0(H))

by hypothesis on k and the definition of |.]A

= [«k(./J(«{/V^}))

by hypothesis on n and by the definition of P.
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Sub-case (b) k t  / 1,u. Since k G / iU and |n| = |ut | = 1 it is sufficient to show that 

F ^ ( a { p / b } )  = 0l,w'p'z'r(al , ap+l, . . . ,  «H , 6)

for some r € / i,u; such that

(P(a{p/b}))-(r) = l a y P f a ^ / i } ) ) .

We calculate as follows:
L.H.S.

/T'"(aOV^}) = (([C(a,,3)ya{p/6})); , I,. . . ,([C(a,/?)L(a{p/6}));.i j i i^ P(i)|)

by the definition of with the hypothesis that \v\ = 1

= (([^(a,.^)lA(a{p/6}))i,-- ■!(lC(a,/?)J4_(a{p/6}))|i i -,pW1)

again by the hypothesis that |v| = 1

( (l§^ '“’p(a)}±( I n i t ^ ^ ( a { p / b } ) ) )

by the definition of C

_ ( ([Ujb< ( ’ ^ • • • i Ufc'+j6i’('u',’>,(i)|Ja_(^n2t‘'i,‘ 'i ’p(a{p/6})))l i . . .  t
dU*/ ( ’ \  ■ • ■, ^k ’+ i i ^ ’p(^\lA(Init4>'z'l 'p{a{pJb})))^61,u,,p̂ -)l )

by hypothesis on a and the definition of 0

= |U|ci • c'kdl+l’ • • • ’ Uhi - clll\i-\si^'r(z)\+ilA(ln it4,'~'i,p(a{p/b})) 

by the definition of A and k' wherein for j  -  1, . . . ,  |u|,

, if j # P ' ul
6s'w''(z) otherwise

= i UPi -Ce“!,| + 1’ ■ • ■ ’ U|ddrdm<5i’“'p(~0l + llAdl> • • •> V\u\) 

by the definition of I  nit wherein for j  -  1, . . . ,  |w|

Vi =
«»(j) >f j £ I 3lU,
d!iVJ‘p-Zi'MP (a i , . . . ,  cip_i, flp+i, • • • ,a|uj|,6) otherwise

= >Jk
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since by definition ?y, is of type c, for i = 1,. . ., |n|, and |7/t [ = j ¿ . .r*( --)|

as k 6 I - w by hypothesis

= .. . ,a p_1,ap+l, .. . , a H , b)

again by the hypothesis that k G I-'u- 
It now remains to show that

{P (a {p /b } ) )^m  = [a]d (P(a{p/6})).

We calculate as follows:

{P{a{p lb} ) )^ (k)) = (P(a{p/b}))k

by Lemma 3

-  [ULfJU/V{p/i>})

by the definition of [.Ja

= [o]AP(a{p/&})

by hypothesis.

Induc tion  H ypo thesis . Assume for any scheme a1 £ pPR{~t)u<iVi of a for any v!, v1 G A+ of 
less structural complexity than a such that w D u' that for each w/u'-permutation <f>'

(A) if i ¡G r~’v‘ then

i^a{p/b} G A -{p/;}) F f^ (a {p /b } )  =

wherein

P'ia{p/b}) = (/V(i), ■ • • ■ ’ -’VCIu'd);

and

(II) if i G I-'v> then

(V«{/>/6|  G A“'{p/f}) F?'J {a{p/b}) = 6i ’w’p’z’r(al , . . .  ,ap_1,ap+1, . . .  ,aM ,b)

for some r G such that

(P'(a{p/b}))^(r) = ( I « l a( H « { p /M)));-
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Induc tion  S tep . We must show for any scheme a" £ pP  R{JP)u" ,v" of a  for any u", v" £ S + 
such that w D u" that for each w / (¿"-permutation 0"

(A) if i I-'v" then

( M p / b }  e A'v{p/Z]) F°"-l3(a{p/b}) = ( W M P " ( a { p / b } ) ) )
' i

wherein

P"(a{p/b})  = (a«"(i)i • ■ •, V'tWCrO-D’ l 3U(b), V(T>)+i)> • • •, a^ou»,));

arid

(B) if i £ I-'v" then

( V«{p/6} € Aw{p/‘' }) F?"’(,(a{p/b}) = B ^ ' r(au . . ., ap_u ap+u fl|tl)|, ft)

for some r £ I 1,w such that

( n « < w » » w >  = ( K k ( i>"(«{p/‘ })))i-

We have four cases to consider:

(4) V ectorization. In this case a =< on ,. . . ,  am > for some a,- £ ¿¿PP(E)U 3> for any s, ç S 
for i = I , . . ., m.
This case follows directly from m applications of the Induction Hypothesis and is left to 
the reader.

(5) C om position . In this case a = a-> o a x for some a t 6 /¿?iJ(E)u,ui and for some 
«•> 6 /¿PP(E)ti> for any u, a', v £ 5 +.
We calculate as follows:
L.II.S.

F ' J(a{p„b}) = iC(a,P)}A(a{p/b})

by the definition of F a>0

= lOfi-w'p(a)}A(fnit4,';’!-’p{a{p/b}) 

by the definition of C

= iCW” 'PM k  o [0^ ' p( a i ) U /m t * '^ ( a { p / f t} )
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b y  h y p o t h e s i s  o n  a  a n d  t h e  d e f in i t io n  o f  C

= [0,i'"'p( a 2)k ( [C (a l l^ ( a { p / 6}))) 

by the definition of C

= lOJ'w-p( ^ - ) U F ai’0(a{p/b})

by the definition of F a u 3 . Now by the Induction Hypothesis with a' = a 1, y = u 
and P' = P, we have for each i £ /-■“

F r^ (a {p /b } )  = la iU l \ a { p / b } ) )

and for eacli i G I L,U

F r^ (a{p /b} )  = 0 ^ ^ ' ( a l , . . . , a p„l ,ap+l, . . . , a H ,b)

for some r G I L,W such that

(P(a{p/b}))7p(r) = ( [a iU (P (a{p /6}))),,

Therefore by Lemma 61 with 7 = o 2, x = u', x' = v, 7 ' = op, y = u, tp = and L = 
have for each i 0 l 1,v

( [ 0 '3'" 'p( a 2) ] a ^ " /3(« { p /^ } ) ) i =  (l<*Una{p/b})))t
and for each i G I - v that

( | 0 J 'T- i' ( a 2)lAT«1̂ (a{/V^}))i = ^ ™ ,r'(a i , . . . , a p_1)ap+1, . . . , a w ,6) 

for some r' G F-,w such that

( F(a{p/b}))-^r,) = ([«^^(«{p/ft}))).-

as required.

(6) P r im it iv e  R ecursion . In this case a = *(07, 02) f°r some ap G f-iPR('P,)u v and for
a 2 €  P P  R {  T ) t u v . v

We calculate as follows:
L.H.S.

Fa J {n{p/b}) -  lC(a,i3)]±(a{p/b})) 

by the definition of /,a ’̂

IO" P n ) : Ai l n i P > ’ i:i<i{p/b}))

&  =  <P

P  we

some
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b y  t h e  d e f in i t io n  o f  C

by hypothesis on a and the definition of 0

by the definition of I n i t 9'z't 'p wherein for i = 1, . . | u|

_  f a<?b) ^  i £ I-'u, and
.. . ,a p_1,ap+1, . . . , a H , 6) if i e P--u.

R.H.S.

{a\AP{a{p/b}))  = [*(o;i,a2)JA(a0(i), . . •, f/5Jn(6), «,K,i+1), .. , , a 0(|u|))

by hypothesis on a and by the definition of P wherein q = cf>(p). We now proceed by 
sub-induction on the value of yi = a$(i) = k 6 N.
Sub-Basis k  =  0.
L.H.S. H O ), • • •, J/|u|)

= I 0 ' 3'w'p (c* l ) h ( ! h , . . - , y \ u \ )

by the definition of [.]^ with the hypothesis that yx — 0

= W ' w'p{& i) iAIn i^ ' ' z'L'P{ax,---,ap_u ap+u . . . , a H , 6)) 

by the definition of I  nit wherein u1 = u2 ■ ■ - tij„| and is the w /u ’-replacement

defined by

(V/ € |a |}) <?'(/) = <?(/+ 1).

= F°"*(a{p/b})

by the definition of F a iJ . Notice now by the Induction Hypothesis with a ' = and 
v' = v we have for i = 1, . . |w| that

F f l J {a{p/b})i = ([aiJa(^'(a{/V&})))|.

if i (i I-" and

F r ' J{a{p/b})i = 9s_,u> i P< i > ■ l p —  11 ^ p + i  i i a\wb b)
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if i £ I L'V for some r £ I L'W such that

P'{a{p/b} k ' {r) = [“ i l ^ V i p / i D V

Therefore to complete the proof in this sub-basis case it remains to show that

[«1 \ d P ’( a { p l b } ) )  = a 2 ) U i° ’ a ^ - k  • • ■» a0(i - i ) ! i / % ( H  a « }+i), ■ ■ •, a^iui))-

We calculate as follows:

[a ila_(T> (<3.{/J/6})) = a <p(2)i ■ ■ ■ i a 4>{q-1)) a</>(i;+i)i ■ • ., ez<̂ (|u|))

by definition

=  k i J k ^ W C 1) ’ ' ' ' 1 fi<p'(q'-ip k k ( k  a 0'(<i' +  l )i • • ■ i l0'(|u|))

wherein </' = <p'(p) since by definition we have </>'(/) = d>(/ -f 1)

for / = 1, . .  •, |u'|

= ffoiU(-P'(a{p/6}))

by definition as required.
Sub-Induction Hypothesis. Assume that if a0(1) = y{ -  k for some fixed k £ N then 
for each i £ I~'v that

( l 0 ^ ^ p( a ) U ^ i i ^ ' l ’P(a{p/b})))i = ([aJd (P(a{p/f,}))). 

and for each i £ I- ,v that

( W 3'w'pi a ) U  I m t * ^ { a { p / b } ) ) ) t = e > - ^ ( a u . . . ,  ap. u ap+l, . .  ., aH ,b) 

for some r £ I - ,w such that

P'{a{p/b})j(r) = | o i k ( P /(a{p/6})),-.

Sub-Induction Step.
L.H.S. H O 0^ w’p(a2))jA(k + 1, y2, . . . ,  i/N )

= [0^ ^ p(a 2) k ( k, i/2 ) , y\u\,lO0-w'p(a)]±{k, 2/2, • • •, 2/,u|))

by the definition of f - k

= fO'3.“-.i*(Ck3)liL(A-, i/o,. . . ,  ¿/|U|, y'M)

by the Sub-induction Hypothesis wherein for j  = l , . . . , | v |

(/ _ i (N d(k«{p /M )))J if j  I i , v , and
'J} |# n uw,.'.r(a1,.. ., ap_i, ap+i , .. ., a(u,|, b) if  j  6  1 ^
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for  s o n ic  r £  I - ' w su c h  t h a t

P(a{p/l>Yk‘(r )
Recall now that by definition for j  — 2 , . . .

[«il4(^(a{p/6}))j. 

I «'I we have

%
(iip(j) if j  i  and

. . , a p_1,a p+1,. . . , a H , 6 ) if j  £

and also that
a0Ü) if j  #  P, and

0(0(j)) IL(&) if J = P-
Therefore by Lemma 62 if we take S = a 2, w' = tu '  v, v' = v,

x  — (&,  1/2 , • • • >yiu-| ,yi , • • • , y \v|) € A a  ^  '*■’

and __
( (T') ^0(2)' ■ • • , ^0(9—1), ®0(9 + l),  • • • , ®0(|u|),

(1^1 A_{ ^0(2) > • • ■ > — 1) ! ! / % ( * ) )  ^■4>(q+l)i ■ ■ ■ , ^0(|u|)))l;
P = S ;

( I Q ] a ( a 0 (2 )j ■ • • , a 0(9-i)> I/5]a(^)» « 0 (9 + 1 ), ■ • •, a<KM)))|W )
then we have for each / I L,V

( f 0 3'u,'p( « 2 ) k ( * b  1/2 , • ■ •,  2/ M ,  1/i, • • •, 2/h )),  =  ( [ a 2y / > ) ) ,

and for each / £ I- ,v

j
U ’P( ^ 2) ! a (^ , D 2 , • ■ • , P|u'|, Pl, ■ • • , i/|t)|))( —  ̂ ’ ,P' (« 1,• • •, flp-l, flp+l, ■ • • , 6)

for some r' £ / - ,a' such that

P(a{p/b})#  r-) = [a2]a(p)j.

Therefore to complete the Sub-Induction step and to complete the proof of this case it 
remains to show that

N y ' / 7) = H U (T (a{ p /6})).

We calculate as follows:
R .H .S .
H h T i f l i /V M ) )

=  k  T  1 ,  « 0 ( 2 ) ,  • • • ,  « 0 ( 9 - 1 ) ,  « 0 ( 9 + 1 ) ,  • ■ • ,  o ^ d u ) ) )

by the definition of P

JfVo J,\ ( ( «0(2)1 • • • , «0(9 — l)i ’ «0(9 + 1), • • ■ , «0(|u|),
( iA’J+.(«0(2)> ■ • • 1 a0(9-l)> I ß U b ) ,  «0(9 + 1)» • • • > «0(|u|)))l,

( ! « 3 i L f « 0 ( 2 ) ! • ■ - , 0 0 / 9 - 1 ) ,  [ / 3 J + ( 6 ) ,  « 0 ( 9 + 1 ) ,  • • • > « 0 ( M ) ) ) h  )
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b y  h y p o t h e s i s  o n  a  a n d  by  t h e  d e f in i t io n  o f  [ , J A

= I«2ln(p)

by the definition of p.

(7) M inim alization . In this case a = p(a') for some a' € pPB.(T,)nu h.
Again this case follows directly from an application of the Induction Hypothesis and is left 
to the reader.

□

A .3 D eferred  P ro o fs  o f  In term ed ia te  L em m ata

Proof o f Lemma 60.
I  Evaie-V'PjJt, 0 ^ ^ 3'r(au . . . ,  av_u ap + 1 , . . . ,  aM ))

= l E v a l ^ ’FjA( t , k , V u b,V2)

by the definition of 9 wherein k = Ai’“'(r), Vi = (au .. and

V'2 = n ^ + > - ,ui“i(ap+1, . . . , a w )

= {switch^1 ' l,s,Al (!>) o < Unr ,f3i,. . .  >]n(L k, V\, b, V2)

by the definition of Eval wherein x

&

eval, o < U lx,U'+2 >
p o  < u r , q x2, . . . , u ^ l+l

eval, o < >

; ¿itW-p(z) and for j  = 1, . . . ,  \I^W

if  1 <  J  <  A f » ;
>  if j  =  A f " ( p ) ;  

i f A r ( p ) < i < i / ^ i ,

= Switch^  ',5,Al (p\ k ,  k, Vi, b, Vi),. . . ,  [/3|/i.“|Ja_(i, k, V̂ , b, VA))

by the definition of

= { ( 3 k ] A ( t , k , \ - \ , b , V 2 )

by the definition of Switch. We now have two cases to consider:

(1) r = p\ that is, k = Afu (r) = Af w(p)-

(2) r ^  ;;; that is, k = Xj'tL (r) yf Ay' (p) and



Case (1) r = p.

= 1/3 O < r r t r  I T  t iU\ i Uk+2 • , k  + p B 1 > ] U ( L  k ,  f ' l ^ h  f 2 )

by hypothesis on k

by the definition of

Case (2) r 7̂  p- We now have a further two sub-cases to consider.

Sub-case (a) r < p; that is, k < A'J,w(p).

I k l a . k  k, Vx, b, Vo) — \evals 0 < Ul ,^¿+2 k, Ip, b, V2)

by hypothesis on k

= [eua/

by the definition of | . ] a and by hypothesis on k

= Ieua/slA(i,a r )

by the fact that k = A ^ O )  and by the definition of Vx = IP--“ 1 ' w”- ' ( a u .. . , a p_1). 

Sub-case (b) r > p: that is, k > Xj’w(p). This case is similar to Sub-case (a) and is 

omitted.

□
P ro o f  of L em m a Gl. Bv induction on the structural complexity of the scheme a € PR(S)Xi„

uniformly in (t/,x).
Basis Cases.

(1) C o n s tan t  Functions. In this case 7 = c\, for some c G S A,3, for some s' £ S and for some 
y € 5 +. Notice that in this case as 1  = s '6 5 that it is sufficient to show that

We calculate as follows:
L.H.S.

" p( 7 ) l , i ( / r7,;J( a { p / ^ } ) )  =  i c!/l ;i ( T 7,'J( a { p / b } ) )
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b y  h y p o t h e s i s  o n  7  a n d  b y  t h e  d e f in i t io n  o f  0

by the hypothesis on F 7 ^

k k  0 b ' U M a { p / b } ) )

-  lc’j 0 7 l A(L(a{p/b}))

by the definition of [.J^ as required.

(2) A lgebraic opera tions. In this case 7 = a for some a £ for some y £ 5 + and for 
some s' £ S. We consider two sub-cases:
(A) a = eval,i, and
(B) a /  eval,i.
We prove Sub-case (A) and leave Sub-case (B) to the reader.
Sub-Case  (A) a = evals>. Notice that in this sub-case that y = t s and x = s' and 
therefore it is sufficient to show that:

[0^'“ ,p(7)IA(([7lA(£(a{p/h})))i, 6i ’w'p'1'r(a1, .. ., ap_u ap+u .. . , a H , 6)) =

l 7 k ( ( l 7 'k ( x (ak / 6})))i>([7 'k(^(a {p/6})))2)

wherein
(L(a{p/b})^r) = ([7 'k)(Z(a{p/h})))2.

We calculate as follows:
L.H.S.
I0 /3'tt,'r ( 7 ) k ( ( k ' y  ̂ (« { p /k )) )^  6l -w-p’z'r{au ■ ■ ■ , ap-i, S+ i,  ■ • ■, aw , b)) =

[ E v n r  ,z,pk ( ( l 7 ,k ( £'(a {i,/ ft})))i* 8i 'w’p’z-r{au . . . ,  ap. u ap+l, aH , 6))

by the definition of Eval  and by hypothesis on 7 .
R .H .S .
[7 k ( ( i7 ,k(^(«{p/6})))i»(i7 ,k(^(a{p/6})))2) =

[eua/3ik ( ( l 7 'k ( i (a W 6})))i’ ( i (a {P/6} )k r))

by hypothesis on 7 ' and {L(a{p/b}))^r) respectively. The fact that 
fE  ualw"’'I>J^((f')'l\^(L(a{p/b})))i.i0-’ ,i>’ ’ (a i i . . . ,  np_i, np+i, - • ■, h)) =

^ ^ / , J k ( i 7 k ( ^ ( « { p / 6> ) ) ) k i ( k p / k ) ) ^ ) )

follows immediately by Lemma 60.

(3) P ro jec t io n  Functions. In this case 7 = Uj for some y £ S_+ and for some j  £ {1, . . . ,  \y\}. 
We consider two sub-cases:
(A ) ijj — and
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( B )  ÌJ j /  A
Sub-Case  (A) y; = 5. In this sub-case as x = tjj = s it is sufficient to show that

such that
{L{a{p/b})-^ r) = ([7 'k)(^(a{p/6})))i.

This is straightforward and is left to the reader.
Sub-Case  (B) yj ^  s. In this sub-case as x = yj 7= s it is sufficient to show that

i0^“’p(7 )k (^7' '3(a{p/6})) = [7 0 7'k(£(a{p/&})).

Again this is straightforward and is left to the reader.

Induc tion  H ypothesis . For each s G S, for each ¡n/y-permutation ip' for some 5 +
such that I-'w ^  0 ,  for each p G I - ,w, for each 7 G //PR(S)?iF< for some x ,x '  G S + for each 
P G /iPR(E)t ~m for some : g 5 ’ and for each p  G if 7 is of less structural complexity
than 7 then

(A) for each j  I we have

(Vfi{P/b} e k u{i,/i} ) F f ' ß(a {p /b} )= ( lY U L '(a{p /b} ) ) )^

wherein

L{a{p/b}) — ( 1 )7 ■ ■ ■ 1 k ]a(^)) a0'(0(p)+i)> • • • 1 ati'(|y|));

and

(B) for each j  G I1’1 we have

for some r G such that

(L'(a{p/b} )k (F) = (lï'ÎA.(L'(a{p/b} )))j

then

( 1) if i d  l--x' then

(Vfi{p/i»} g A,u{r/: ( l Oß-v,'p( l ) U ^ ' ß( a { p ß } ) ) ) i = ([7 0 Tlki 'Wp/fc}))) .

and
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(2) if i £ I - ,x‘ then
(\/a{p/b} £

( l O ^ - p( 7 ) k ( ^ ( « { p / * } ) ) ) .  =  0 ^ ^ - ' ( a 1 , . . . , a p _ 1 , a .

for some f '  £ I - ,w such that

(■L \ a { p l b } ) ) ^ y ( r )  =  ( [ 7  o 7v] d_(X, ( a { p / 6 } ) ) )

■p-ii ap+1) • • •,  alwi,b)

As with previous proofs the vectorization and minimalization cases follow easily from the Induc
tion Hypothesis and are left to the reader. Therefore we only consider composition and primitive 
recursion.

(5) Com position . In this case 7 = 72 ° 7i for some 7l € PR(E)XiX for some x £ S + and for 
some 70 £ PR(N)i,y We calculate as follows:
L.H.S.
[0/i'“ 'p( 7 ) k ( F7' J («{p/6}))

= i0 /3’“ 'p(72)k ( I0 '3'"'p( 7 i ) k ( ^ ' ' ' 3(«{p/&}))) 

by hypothesis on 7 and by the definition of 0

= iO^“ '"(72) k ( [ ^ ,“ '"(7i)k(iO;5,”'’'>(T,) k ( / ^ ' 2'iP(a{p/fi})))) 

by the definition of 0

= i 0 ^ k 7 2) k ( I 0 ^ ' P(7i o I ' M ^ ’̂ M p / b } ) ) )

by the definition of 0

-  ! 0 ^ k 7 2) k ( ^ 7lO7' ^ W 6 } ) ) .

by the definition of F 7l°7'^. Notice now by the Induction Hypothesis with $  = <*>, 
7 = 7! o 7 ', x = y, x' = x, and L' = L

I0'i'“ k 7 2) k ( ^ 71 °7' 'V O V k ) )  = (<k • • • A i )

wherein for i = 1, . .  ., \y\

( [ 7 2  0 7i 0 7/k ( / '(°{P/6}))< if * £ and
| 0».«'-p.V(a i t . . . >a|u,,,6) if i G /¿»

such that
M a { p / b} ) « r ‘) = (f72 0 7i 0 l ' l d L (a { p / b} ) \

as required.



(6 ) P rim itiv e  R ecursion . In this case 7  = *(0 7 , a 2) for some 07 £ and for some
ow € PR(S) t r -/x-,x/ for some x" £ S_+. We proceed by case analysis on the value of

F l ’i(a{p/b}) = k £ N.

(Notice that x = t x " .)
C ase (A ) k = 0. We calculate as follows:
L .H .S.

\P,U,P I*{lu l2  ) ) k ( P 7,,'5(a{p/ò}))

by hypothesis on 7

by tile definition of [.Ja_, the definition of 0 and the hypothesis that

Ff^ ( a { p fb } )  = 0

= l 0 p'w-p( 7 i M F ^ ( a { p / b } ) )

wherein S = <  U i , . . Ufr', > o 7 '. The proof is now easily completed in this case by an 
application of the Induction Hypothesis with 7  = 71 and 7 1 = 6. The details are left to 
the reader.
C ase (A ) k = k' -f 1 for som e k' £ N. We calculate as follows:
L .H .S .

) U ^ ' ‘?(a{P/b}))

by hypothesis on 7

[ (W -U y U k l ....... < d ( « { p / i } ) . - . .

by the definition of |.]A, the definition of 0  and the hypothesis that

r ? ' " \«{p/b}) = k’

wherein S' = <  otfred 0 U[ ,  U2, ■ • - , > 0 7 '  and aprej  is the primitive recursive
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scheme representing the predecessor function

= l 0 ^ w'Ph 2 ) U i r5'J ( a { p / b } ) , F ^ s'^(a{p/b})

bv definition

wherein 6" = < U[ o . . ., o S', Uf 0 7 0  S', . . .  .U*x,| o 7 o S' >. As with Sub-case 
(A) the proof in this sub-case is now easily completed by an application of the Induction 
Hypothesis with 7 = 77 and 7* = S". The details are again left to the reader.

□
P ro o f  o f L em m a 62. By induction on the structural complexity of the scheme 8 £ ¿¿PR( 
Uniformly in ( w', v1). We prove the basis case wherein S is a projection function and the induction 
case wherein 6 is defined by primitive recursion and leave the other cases that are either similar 
or straightforward to the reader.
Basis Cases.

(3) P ro jec tio n  Functions. In this case S = UJ for some x £ S_+ and for some j  £ { 1 ,. . . ,  | i |) .  
We have two sub-cases to consider:
(A ) Xj = s, and
(B ) Xj #  fi.
We prove Sub-case (A) and leave Sub-case (B) to the reader.
Sub-C ase (A ) Xj = ¡s.
L .H .S.

,p(^)la(w) = I< *■ ’ \  > 1a(x)

by the definition of 0

= [< u ;? -""1....... >]A(x)

by the definition of A wherein for i = 1,. . . ,  |x|,

c, =
Xj if i £ / i,r ;
S-’w’p(z ) otherwise

and j '  = \r,i ■ • • Cj-_! | + 1 

= Xj

as \  t A

— o~’ 3 C & 1? • • • t 11 dp+i •> * ■ * > ĵu<i 1 ^)

by the definition of \  with the hypothesis that j  £ 1-' .
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In d u c tio n  H ypo thesis . Let A be any standard 5-sorted E-algebra, let s £ S, let <j) be 
a ui/u/'-sort permutation over S_ for some w such that I-'w -fi. 0  and let p £ I~-w. Also, let 
S' £ PR(S)„« for some w", v" £ 5 + be any scheme of less structural complexity than <5, let 
¡3 £ P R ( S ) t f o r  some z £ S + and let P : Au,{p/i] -  A” " be defined by

(Va{p/b) £ A“'{p/''}) P(a{p/b}) = (a*u ), . . . ,  a , ^ ^ ,  ¡/3]A(b), « ^ )+l), . . . ,  a*<W)).

For each a{p/b) £ A“ ^ "^  and for each a" = (a" , . . . ,  a”w„|) £ A“ if

v / \  fzX -  lA.ii • ■ • > A> " | I  i l

is defined by

a- if i I -'w", and
0i-w’P’2’r'(a i , . . . ,  ap_i, oP+i, • • ■ i « M ib) otherwise 

for some r, £ I ’-'w for i = 1, • • •, K ' |  and

p' =  (pi, • • -i Pm i ) € A|tu 1

is defined by
, a'! if j  $ I - ‘w' , and

p = <
1 Xj otherwise

for some x.j £ such that xj = (P (a { p /6 } ))-^  for j  = 1,. . Ire"! then 

(1) for each / g I-'v

and
i

(2 ) for each / £ I s- v"

X'j) , = 0W '" ‘"i«n  • • • i « r-n  «P+i , • • •, «M >*)

for some </; £ I - ’w for i = 1 , . . . , K I  such that (P(a{p/b}))-M  = (P{a{p/b}))l for j  = 
1 , . . . , )  m"|.

In d u c tio n  S tep .

(7) P rim itiv e  R ecursion. In this case 6  = *(^i, «̂2) f°r some 61 £ /iPR(E)u\u' for some 
u' £ S_+ and for some So € /¿PR(E.)t» 'v‘,v’- (Notice that w = t v/.) We proceed by sub- 
induction on the value of \ i  = pi = k t  N.
Sub-basis k = 0.
L .II.S .

[ O ^ k ^ U x )  = {0'5-“'-p( ii ) ld.( .\2 ,...,x ^ l)
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= (di....... d\v'\)

by the Induction Hypothesis with S' = 6, w" = u', v" = v', = (y ., , . . . ,
p‘ -  (p 2, - - - ,P m ) wherein fo r ; = l , . . . , |u ' |

d _  i f j e / iv ',
J | ^ “ 'P’*''«'(a1, . . . , a p_1,«p+1, . . . , a H ,h) if j  G 

for some q ' G I L,W such that

(P(a{p/b}))-(q,) = ([¿i]iL(/»2,.--,p|u,'|))j.

Therefore in this sub-basis it remains to show that

by  t h e  d e f i n i t i o n  o f  0 , t h e  de f i n i t ion  o f  |[.]A a n d  t h e  h y p o t h e s i s  o n  y'i

This is obvious.
Sub-Induction Hypothesis. Assume that for any fixed value k  6 N that if X i  

then for each l £ I - ‘v
a o p>w-p(6)Mx))i  = ([%(/>)),

and for eacli / G ILV

( I 0 ^ w’p ( S M x ) ) !  = 0i 'u™ " ( a 1,. • a ^ u ap+u . . .  ,a w ,6)

for some q "  G I - ,w such that

(P(a{p/6}))^?,) = ( [% (p ) ;.

Sub-Induction.
L.H.S.

[o ̂ ' ,p( i ) y x H o ^ p( y y ^ f '

by the definition of 0, the definition of [,JA and the hypothesis on Xi

= |^ ^ '“ 'P((52)1a(A;, ,\2> • • •; X|u/'|, di, ■ ■ ■, d|n'|)

by the Sub-Induction Hypothesis wherein j  =  1, . . \v '

[%(*>) if 
0!_,w,p,-,? (dj, . . . , ilp_ 1, Up + 1, • ■ • , fl|u)|, ¿) if j  G I ~ ’V ,

tu'l) and

Pi = k
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for some q" (E such that

(P(a{p/b}))-{r) = ([%(/>)),

— {d\---- - ^m )

by the Induction Hypothesis with S' = ¿2, w" = t u'v\  v" = v', y' ^  (k,x->, ■ ■., y(u, 
d\v' |) and p' = {k, p2, . . ., p\w,\. ([¿]n(p))i. • • •, M n(p))|« '|) wherein for j  = 1 ,__ |

d, _  i[^ 2 y * ,/> 2 ,---.P M ,(i^yp ))i,---,[< 5y (/)))i„ 'i) if j e  r^v\
J _. . ,a |lu|,6) • if j  £

for some q'" £ I 1,w such that

(P( a{p/b} = t Pit ■ • ■ t P\w'\t (I^]n.(p))i > ■ • •, [^ln_(p))|^'| ))j.

Therefore to complete the proof it remains to show that

2ja_(k) Pit tP\w‘\t d ^ y p ) ) ! ,  • • •, (%(/>))ij'i) = i% (/)).

Again, this is obvious.



A p p en d ix  B

P roof of Lemma 27 and Lemma 28

We now prove formally Lemma 27 and Lemma 28 that we used to prove the soundness and ade
quacy of PR.EQ in Chapter 5. As the proofs of both lemmata require several further intermediate 
results concerning the correctness the various sub-compilers of CPR and CPUBQ respectively, we 
also state and prove these additional lemmata as appropriate. The reader should refer back to 
Chapter 5 for the definitions of the compilers that these results concern.

B . l  P r o o f  o f  L em m a 27

To prove Lemma 27 we require the following five intermediate results.

B .1 .1  I n te r m e d ia te  L e m m a ta

Let C r be defined as in Definition 57 on Page 155.

Lemma 63. If  »
<1 =.-< (pu  . . . ,  4>u u s > € PREQ(E,X)

and x  = C A' wherein x { 6 A'5, for i = 1, • • .n > 1 are distinct variables then for
each r G 7’(E ,X ), for any s € S

(Vfl = G A51"5’-) K*(a)(T) = tC jiXiil...JniJ( r ) lA(a).

P roof. Uniformly in s G S by simultaneous induction on the structural complexity of the term 
r  G T (E ,X )„
Basis Cases.

(1) C o n stan ts . In this case r = c, for some c G S A,s for some s G S. 
L .H .S.

L>(<j)(r ) -  c
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b v  t h e  d e f i n i t i o n  o f  V

i,i(w )

by the definition of |.],i

,(r )]u(a)

by the definition of CT.

(2) V ariables. In this case r  = x, for some x{ G X, for some s G S. 
L .H .S.

V„z(iì)(t ) =  r 'x ( a ) ( .x i )

by the definition of V

= di

bv the definition of v

= [ u r " 3in (« )

by the definition of |.],i

tc j , ¿Si t S  ̂* ■ S fi j 3

by the definition of CT.

In d u c tio n  H ypo thesis . Assume for all r  G T (S ,X )3 for some s e S  that for each term 
T ' G T (S ,X h , f°r some .s' G 5 of less structural complexity than r  that

(V« G -V 1 J") I/i/S(a)(T ) =  [Ci>ix , i ( r ) l n ( (i)-

Induc tion .

(3) A lgebraic operations. In this case r  = ff(rl9. . . ,Tk) for some a G Ew_, for any u; G 5+ 
and for any s G S, and for some r, G T (S ,X ),; for i = 1 , . . . ,  k = M  such that ^  • • - s', = 
w.
R .H .S .

[ C j r ,  ,( r ) l ,t(«) = b °  < CT(n )> ---.C r (T*) > ii(a )  

by the definition o f t 1’ with the hypothesis that r  G T(X,X)
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and hence that a £ E

= fT'l(i<CVi)In(«), • • ■, lCir (r,)l,i(a)

by the definition of |.]A

= .. .,K s(a)(r*))

by k applications of the induction hypothesis

bv definition.

□
L em m a 64. If

such that for each

<]> =<  <fi\ f, m <r> G PREQCS, X )

i £ P = {i l(j) | j  e InTermsOj($, C, F} 

wherein F = {/,j|P | d,e G M} and ¿(£) = ? we have

fC™)it, .(.)(< <P\, ■ ■ mi{i) >)Ia = t< > ]A

and X = { x t , . . .  , x n} C X  wherein x{ £ X }, for i = 1 , . . . ,  n > 1 are distinct variable symbols 
then for each t £ i ’(S ",X ), for some s £ S wherein

r  = s u ( i - U { / ^ - - / . , r a } )
>63*

(Vn = € /P 1'"5”) Vuz(a)(r) = [C j|Xi<l...iiii,( r ) IA(a).

Proof. We proceed by induction on the structural complexity of the term r  uniformly in s. 
Basis. We have two cases to consider:

(1) r  — c,; and

(2) r = x 6 A ,.
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Notice that in both these cases that r G T(T,,X)S and hence by Lemma 63 we have

as required.
In d u c tio n  H y p o thesis . Assume for any r  G T(E",X ), for some s G S  that for each scheme 
t '  g T(!C",X).,- for some s' G S  of less structural complexity than r  that

(3) A lgebraic o p era tio n s. In this case r  = c r ^ , . . . ,  rk) for some a G for some w G S+ 
and for some s G S, and for some r,- G T (E ',X )5< for i = sucjl
s[ ■ ■ ■ s'k = it?. We have two sub-cases to consider:

(a) a G S; and

(b) <7 = G H.

S ub-C ase (a) a G £. This sub-sub-case follows by essentially the same argument as 
Case (3) of Lemma 63 and is omitted.

Sub-C ase (b) a = fjj> G H.
R.H.S.

b>(a)(r) = [C A

Induction.

r r (r)|.,(a ) o C PR( ^ 0 )) o

Ĉ Cr-jb) > ]A(a)

by the definition of CT with the hypothesis a = f j j ,

IC T ( n ) ] A( a ) ,

[CT(r ,) i t(a ))) )^

bv the definition of [ . |A

= ( l C PR( 4 0 ))ii(
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by  k  a p p l i c a t i o n s  o f  t h e  I n d u c t i o n  H y p o t h e s i s

Vuz(a

by the definition of CPR

y

= (j<

f  1/ a )  (  D  )  r

V>(a)(7*)))

by hypothesis as j  £ IP by the definition of H

by definition

= h>(a)(r)

by definition.

□

Let C‘ be defined as in Definition 58 on Page 157.

Lem m a 65. Let 4> £ PREQ(Z.X).  I f *  € RPREQ(V, X ) tu,v for some u = 0>i ■•■*,„,) and 
some v -  ( s' s' ) £ 9+ wherein S' is the common signature o /$  as defined as in Definition 50
and X = {xx MX|u|, i ,S , ........ Y|„|} Q X  wherein x ( 6 X Si for i = l , . . . , |n | ,  t £ X n> and
y  € Jv  ( j Qr l- ^  “ ’ |y| are distinct distinguished variable symbols then for each r £ T(E, X)a

for some s £ S

{'in £  T) { ia  — ( a i , . .  - ,an

Proof. Uy induction on the sm.cu.ral complexity of the term r uniformly in a e S 

Basis.
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(1) Constants. In this case r = cs for some c £ j for some s £ S.
L.H .S.

bv the definition of V

[<?]..,(n, a))

by the definition of [.]A

(r)lA(n,a,[0]A(n,a))

by the definition of Co.

(2) Variables. In this case r  = x for some x £ X wherein x is of type s for some s £ S  We 
now have three sub-cases to consider:

(a) x = t.

(b) x = Xi for some i £ {1,. . . ,  |u|}.

(c) x = Yj for some j  £ {1,. . |u|}.

Sub-C ase (a) x — t.
L.H .S.

V

by the definition of V and by hypothesis on r

= n

by the definition of v

by the definition of [.],t

= ICS.x.u.w.tMLK I0ja(n, a)

by the definition of C7.

Sub-C ase (b) x — ;r, for some i £ { 1 ,..., |«|}- 
L .H .S.
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bv  t h e  d e f in i t i o n  o f  V  a n d  by  h y p o t h e s i s  o n  r

bv the definition of v

= [u?+7 ],i(n ,a, [(p]yl(n,n))

by the definition of |.}a

by the definition of C7.
S ub-C ase  (c) x = Yj for some ji 6 { 1 ,..., | i;|}. 

L .H .S.

I j/z(u,n,[0]A(n,a))(t”) (a,n,I</>]j4(n,a))(yj )

by the definition of V and by hypothesis on r

= (i^ In(« ,a))i

bv the definition of v

= l U f ^ + o l n K a J ^ K a ) )

by the definition of

i'C'J.x,«,«, ¡j(T)Lt(n ia , I<̂ >]n(ti, ft))

by the definition of C7.

Induction H ypo thesis . Assume for any scheme r  G T(E, X) ,  for some 3 € S that for each 
scheme r ' € T(Z, X) , '  for some s' € S of less structural complexity than r  that

Id = iCS1x.u1v1.'(r ')lA (n ,a ,M A (n ,a)).

Induction.

(3) Algebraic Operations. In this case r -- ■ ■ ■, 7*) for some a G for some w G and
for some .s G S, and for some 77 € r ( Y ,  X),' for i = 1 , . . .  , k  = |to| such that s[ ■ ■ ■ sJ. = w.

R .H .S .

[no < C7(m ).....C 7 ( r k ) > l t ( n , a , [ f l A ( n , a ) )



b y  t h e  d e f i n i t io n  o f  ( 5  a n d  t h e  h y p o t h e s i s  t h a t  r  6  T ( S , X )  a n d  h e n c e  t h a t

=  a A(l<  C V i ) l a ( n ,  a ,  I M U K  “ ) ) • ■ • , [ <  C T (>* ) J ^  ( re, a , U j A(n, a)))

by the definition of f.3.4

~  CT (  ( n , a ) ) ( ' r l  )  j  ■ • • > ^ ' v^(a, n, [ i f i ]A ( n , a ) ) ( 7 " i  ) )

by k applications of the Induction Hypothesis

fvv z (a,n,[<i>]A ( n , a ) ) ( T )

by the definition of V.

This concludes the Induction Step and concludes the proof.

□
L em m a 66. Let <p £ RPREQ{E \X )tUi„ for some u = (s1 ■ ■ -st„|), u = (si • • -s[M) £ S + wherein 
S' is the common signature of $  as defined as in Definition 50 and X =  { 2̂ , . . . ,  Yi, yj |) C

X wherein x, £ A',, for i = 1 ,. . .  |u|, t £ X a, and 1} £ A".,- for j  = 1 , . . . ,  |v \ are distinct distin
guished variable symbols. If

<f> =<  o u . . . ,<pui -g \c>ePREQ{E , * ) '™ - '  

is defined such that for each

i £ P -  I j  € InTermsOj{$,<;,F} C

wherein F = { f d e j d , e €  N} and i(k) = ? we have

i<C™),,.(.>(< d > u -  ■ - ^ h P n ’P i i )  > ) h  =  l <  < l > u - ■ ■, 4>h P  T ,  L ( i )  > ] a

then for each r £ T (S ",X ), for some s £ S wherein

E" = S 'U (H  = U{/<
<e r

(Vn £ T) (Va = (a1, . . . , « n) £ Au) bi/*(a,n,[<p],i(n,a))(r ) = i<P$,x,u,v,j(r )]U(ra) a, f0],i(n, a)).

Proof. By induction on the structural complexity of the term r  £ T(S",X), uniformly in s. 
Basis. We have two cases to consider:

(1) r = c for some c £ S A s; and

(2) r  = x for some x £ X; that is, x £ A', for some 3 £ {¿i, • ■ •, -SM> t, s [ , ..
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Notice that in both these cases that r  € T(T,,X)S and therefore by Lemma 65 we have 

V s ( a , r . , [ * ] „ ( n , a ) ) ( 0  =  i ^ . X  , u .v . . ( r  ) ] U  K  M 4 » -  « ) )

as required.
In d u c tio n  H ypo thesis . Assume for any term r  6 T (E",X ), for some s G S  that for each 
term r ' G r(E".X ),< for some s' G 5 of less structural complexity than r  that

=  [ C l x , u , ^ ' ( r ' ) I - ‘ ( n ’ a * I M U K a ) ) -

Ind u c tio n .

(3) Algebraic Operations. In this case r  = o{ry, . . . ,  r ,)  for some a G E" for some w G 5+ and 
for some s G 5, and for some r, G T (S",X )s« for i = 1,. . . ,  fc = M  such that s'/ • • • s'/ = w. 
We have two sub-cases to consider:

(a ) a G E; and

(b ) a  = U y  G H.

Sub-case (a) a G S.
R .H .S .
[CF(r)],t(n,a,[0]U(n,a))

= [ffo < CJr(rl ),.. . ,C !r(rt ) 

by the definition of C5 and the hypothesis that cr G S

= cr'l(j[Cir(i-1)J>i(n,a, «)) • • - » (^)]A(n,a, | [^]A(n,a)))

by the definition of [.],i

by k applications of the Induction Hypothesis

by the definition of V .
Sub-case (b) a  =  f p y  6 H..
R .H .S .
i(CfT(7')],t(?G«- Id>l,i(n-«))

=  o Q PH(/Pi(P))o <Cir(r1) , . . . ,Cir(r4) > l ^ ( n , a, [ $ l yl(n,a))

by the definition of C1 and the hypothesis that a G P 

= (iC tP 111 (o, , , , , ) ] ( f€" ( r , )] ,1 (n , rt. [<?]A( n , a) ) . . . ,  [C?(rk)]A(n , a , [<f>]A(n , a)))) ;



—  ( I C f i  ( O t {p)  ) | . . l  (  V  ¡/x (a ,n , [<?]A ( n , a ) ) (  T 1 ) ’ ‘  • • » ^  ‘' H  a ,n,[<f>]A ( n  , a ) )  (  T ^  ) ) )

by A' applications of the Induction Hypothesis

= itll(p) ( < Oi, . ■ ■ , d>!, ¿, !], l(p) >)],i(Kz(a,n,[̂ ]A(n,a))(D), • • • , /̂i'z(aln,[<p]A(n,a))(7'lc ))) ,

by the definition of CPR

=  ( [ ^  d*l i • • • i <Pl i fo 1 {P) '>Jn ( T\ ), . . . , («.a)) ( 7"jt ))) ,

by hypothesis as p £ P by the definition of H

=  /p !;,'( l'i/^lu,n,[<?],»(»,u))(r l )i • ■ • >

by definition

— I ('i (a,nl[i]A(n,a))(7') 

by definition of V.

by  t h e  d e f in i t io n  o f

□
Let <C*PH be defined as in Definition 59 on Page 158.

L em m a 67. Let $ = <  J?;c > G PREQ(P,,X). I f  <f> e RPREQ(Y,, X ) u v for some
w> v € 5 + t/ien

(Vo, = o„) e /H) [<?lt(a) = [Q ™  (¿)]U(a).

P roof. Uniformly in (u,v)  by case analysis on the structural complexity of the scheme 
4> € R.PREQ(£, A'). We have four cases to consider:

( l )  G enera l Specifications. In this case

(p d=l f ( Xr, . . . , Xn) = T

for some distinct x, £ X3, for i =  l , . . . , n >  1 and for some r  e T(X,X) ,  for any s £ S  
wherein X = {.r l , . .  ., xn }.
L .H .S.

)]..,(«) = V>(a)(r)

by t h e  d e f i n i t i o n  o f  | . ] , i

= [<S,
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bv  L e m m a  63

= IQ.P
PR 
3 1 ' • ' * ,3(<?)]U(«)

by the definition of

(2) V ector-V alued G enera l Specifications. In this case

(pd= / ( x i , . . . ,x „ )  = < >

for some distinct x, G A',, for i = 1 , . . . ,  n > 1 and for some Tj G T(S, {xl f . . . ,  ar„})4- for 
any s' G S for j  = 1 , . . . ,  k > 1. This case is similar to Case (1) in that it follows by k
applications of Lemma 63 and is omitted.

(3) P rim itiv e  R ecursive Specifications. In this case

(p d=  / ( 0 ,Xi ,  . ■ . ,Xn) = Tu

f ( t  +  l ,X l ,  . . . , Xn) = T2

for some distinct x t G A'.,, for i = L , - . - , n >  1 and for some n  G T(E ,X) ,  and for some 
r ., G r ( S ,X ) ,  for any s € S  wherein X = {xu . . . ,x„} ,  X' = X U { i,y}  and t G V n and 
Y  g are distinguished variable symbols distinct from x,- for i — 1 , . . . ,  n.
Notice that as u -  t Si ■ ■ -sn and therefore a = (au a2, . . . ,  Consequently, we
proceed by induction on the value of tti G using a to represent <i2, . . . ,  Oi+|Jl...Sn|.

B asis, «i = 0.
L.H.S.

I^],i(0, a1) = 

by the definition of ¡.J^

— In/~(al)(̂ ”l)

by Lemma 63

by the definition of C*PR

= K L _____(f’) h ( o y )

by the definition of 
In d u c tio n  H y p o t h e s i s .

Assume for some fixed value n G At that

sO ) l , t K « ' ) -



Induction Step. W e  m u s t  s h o w  t h a t

|..l( n +  i) a>) — IQ-,X,S1 s(<?)1a(« + 1, a')-

R .H .S .

I Q PtR ( ó ) I , ( n  +  l , a ' )  =  i* (CIT L>)ii(n + l ,a ')

bv the definition of C*PR

= iCir (r2) U n ,a , ,H < ir (Ti),C?r(T2) ) ^ ( n ,a /))

bv the definition of |.],4

=  [C T( r 2)]..1( n , n ' , [ Q puRJ ( ^ ) L 1( n , a ' ) )

bv the definition of C*PR

= iCT(r2)ii(n , a,  !<p],i(n, a'))

by the Induction Hypothesis

by Lemma 65

=  l<Ì>ÌA(n +  l ,a )

by definition.

(4) V ector-V alued  P rim itive R ecursive Specifications. In this case

0  — / ( 0 , a n , . . . , ^  ,1) • * *7 m ,
f ( l  +  l , x l t . . . , x„)  = <  r 3 i l , . . . , T 3 i m  >

istinct n  6 X„ for i = 1 , . . . ,«  > 1, for some r U G T(S, { z j , a n d  for 
: T {r / X u , ' ,. l Xn, t ,Y l , . . - ,Ym})s‘ for any s' 6 S for j  =  l , . . . , m >  1 wherein

£ X,> are distinguished variable symbols distinct from x,

for some dist 
some r L>i3 6 T (£ , {- 
t £ A'„ and y\ € A\ 
for 1 — 1....... n.
This case is a simple generalization of Case(3) that follows by essentially the same argument 

and is omitted.

□
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We are now in a position to prove Lemma 27. For convenience we first re-state the lemma. 

L em m a 27. I f
<f» =< 6 P R E Q (E ,X )UiV

for some a, v G S + then
(Va G .4“) [<FMa) = [C™(<L)J,t (a).

B .1 .2  P r o o f  o f  L em m a  27

Proof. By induction uniformly in (u, v) on the size

q = |InTermsOf($,?,F)| G N

wherein F = { fp q | p, q G N}.
Basis q = 0.. Notice that since by hypothesis q = 0 we have i  g  DefOver(0o F) for i  = 1 ,. . . ,  m 
and hence G RPREQ(S, W)u,t . We calculate as follows:

I$]U(a) = [^ 1 a(«)

bv definition

by Lemma 67

= [ct™ , «<)],,(<■)

= [ C ^ W i U “)

by definition.
Induction H yp oth esis . Assume for each $ ' G PREQ(E, for some u',v' G S+ such
that

|InTermsOf(<E', c', F)| < k

for some fixed k G N that

(Va' G A'1) [ * ! > ' )  = [CPR($')]A(a')-

Induction S tep . We must show that for each G PREQ(£, X ) u„y , for some u \  v" g 5+ 
such that

|IiiTennsOf($",?",F)| = k + l

(Wi" e .4““) !*"],(<.") =

W, calculate by reducing each side of U* equality to a common Urn.
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by definition.
R.H.S.

[CPR(i>")],i(a") = IQ™

by definition.
We now proceed by case analysis on the structural complexity of <p"„ £ RPREQ(S', A') 

wherein by definition S ' = S U H wherein

ter

wherein
P = [ j  6 InTermsOf(<f>, c", F)}.

We have four cases to consider:

( l )  General Specifications. In this case

</><" d~ ¡{X1,-••,&«) = T

for some distinct x, € X , t for i = 1 , . . . ,  n > 1 and for some r £ T(E',X) ,  for any s £ S  
wherein X = {xl5. . . ,  xn}.
L.H.S.

m ,  i K )  = V ^ all)(r)

by definition.
Notice now that as by hypothesis

q = |InTermsOf($", Q  F" )\ = k + l

it must be the case that DefOver(<£"„, F") 2  M  for some p £ { l , . . . ,m }  therefore by 
Lemma 23 for each j  € InTermsOf($", F) we have

jInTermsOf(<h", j,  F)| < q < k

Therefore by the induction hypothesis for each i £ P = {V'_1(j) \ j  £ InTermsOf($", <p', F)} 
we have

fCPRi < o " ,.. •, rj"; i"(i) >)J,i = [< <j>",. . . ,  0 " ; ¿"; q"] ¿"(¿) 

and therefore by Lemma 64

W i(a")(r) = I<Lit"1x",3l...3„,3( r ) |A(a")

and

[C l.

by d e f i n i t i o n  o f  C PR as r e q u i r e d .



(2 )  V ector-V alued G eneral Specifications. In tins case

(pc" ~ f  11 ■ ■ ■ 1 7 ■ • ■ ) Tm >

for some distinct x, £ A'.,, for i = 1---- , n >  1 and for some Tj £ T (Y ' ,X )S, for any s'- £ S
for j  — 1 , . . . ,  rn > 1 wherein X = {x: , . . . ,  xn}.
This case is a simple generalization of Case (1) in that it can he reduced to showiim that 
for each £ T (S ', X),, for some £ 5 for i -  1 ,.. ., k that

(Va £ A ' 1 - ' " )  ( V ^ ^ i r V ^ ( a ) { r k ) )  = J< €T (r l ) , .. . >]..l (a)

and is omitted.

(3) P rim itive  R ecursive Specifications. In this case

(p”„ / ( 0 ,x l5. = n ;
f ( t  +  l,X i, . ■ - ,xn) = To

for some distinct x,- £ X St for i — 1 ,.. . ,n  > 0 and for some rj £ T(E ', X), and for some 
r2 £ T( S ', X'), for any s £ S  wherein X = {xt , . . . ,  x„} and X' = {x1;. . . ,  xn, t, F} wherein 
t £ A'n and Y  £ V, are distinguished variable symbols distinct from x{ for i ~  1 ,.. . , 7l. 
We proceed by sub-induction on the value r = a'( £ An using b to represent a'.;,.. .,a". 
Sub-B asis, r = 0.
L.H.S.

[ ^ » ] a(0,6) =

by definition of [.J,

= ic: (b )1a(6)

essentially the same argument as in Case (1)

by definition of PR

= [C pr(#»)Ja(0,6)

by definition of C*PR-
S u b -In d u c tio n  H ypothesis . Assume for some fixed value r £ N that

S u b -Induction . We must show that

[o "» ]A (r+ l^ ) = [C‘PR« » )  U r + 1,6).
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L.H.S.
I<rV'IU(r+ 1,6) -  K ^ i b . r . l ^ U i r . b ) ) ^ )

by the definition of
Notice again that as by hypothesis

q = |InTerm sO f($V ",F")| = k +  1

it must be the case that DefOver(0''„, F ') D {p} for some p £ therefore by
Lemma 23 for each j  £ InTerms0f(4>", F)we have

|InTermsOf(<h",j,F)| < q < k

Therefore by the induction hypothesis for each i £ P = 
we have

i L" 1U) I j  € InTermsOf(<l>", y", F)}

[CPR(< >)jA = [< r"; v"; >],

and therefore by Lemma 66

by the Sub-induction Hypothesis

(i-2)ÌA{r,b,{<p"„]A(r,b))

(pìJlUC'-, 6, K ^ O i ) ,  (C?r(ro)|A(r', 6))

by the definition of C PR and by hypothesis on </>",

K c£ „ ,(r L),C^,,x, +■ 1,6)

bv the definition of PR

= I C PR( ^ )In(r + i,6)

by the definition of C ™  and by hypothesis oa as required.

(4) Vector-Valued Prim itive Recursive Specifications. In this case

p", % i i v - i n )  = <  >;

f ( t  + 1, X i ,  ■ ■ • , Xn) =< r 2,lf • • • I r2,m >

v  f o r  i  =  1 , . .  . ,n  >  0, for some r u  € T('S',X)^. and for some 
for some distinct x € - d > i wherein X = and

vV %  , 7 /  v  ’ y  ) wherein t € X„ and Yj € X,- for j  = 1,. ■ •, d are distinguished = A U {i, h ,  • ■••'»if . , n>
variable symbols distinct from £, or
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This case is a simple generalization of Case (3) in that it can be reduced to an induction 
wherein the basis case requires that we show

(V6 G Au- ui“"i) L>(f,)Oii(i)) = ([<CT(rlil)] ,t,.. |<Ci1'(7-I ,

and an induction case that requires that we show for each r G N

b) ) , . . . ,  b[<j>“„}A(r, b)))

and is therefore omitted.

□

B .2  P r o o f  o f  L em m a 28

To prove the Lemma 28 we require the following nine intermediate results.

B-2.1 In term ed ia te  L em m ata

Let C*PREQ be defined as in Definition 61 on Page 162.

Lem m a 68. Let X = {xi,.
a  G P/?D(L )tiil, for some v G

..,X|U|} for some u €  S + wherein G n,- for i =  l , . . . , | u | .  If  
S + and <p = Q ^ i S ( a ) e T(S ’X) ^  f or some » 6 {1, • • - , M} then

(Vn = (au .. . ,a ]u|) G cP1) H U (a) = V„z(a)(<t>).

Proof. By induction on the structural complexity of the scheme a  uniformly in (u, v).

( l )  C o n stan t Functions. In this case a = cw for some c G S a.j for some ru G and for 
some s G S  and hence n — 1.
R .H .S .

L>(a)(0) = L>(a) ( 0

by hypothesis on a and by the definition of C PREQ

bv t h e  d e f in i t io n  o f  V

bv  t h e  d e f in i t io n  o f

= N i ( a )
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(2) Algebraic Operations. In th i s  case  a  =  a  for  s o m e  a  G for  s o m e  w  G 5 +  a n d  for
s o m e  s  G S .  A g a i n  n o t i c e  t h a t  n  =  1.

R.H.S.

^  v ~( a ) (  0  )  f  vz( a ) (  & (a  11 ■ ■ • 1 % I u I )  )

by hypothesis on a  and by the definition of C*PREQ

=  Cr" ' ( i / X ( i l ) ( - E l ) i  • • • > ZyX'i ( a ) ( a;|u|))

by the definition of V

= v A(a i , . . . , a |U|)

by the definition of u

-  I«ln(a)

by the definition of f.jn-

(3) P ro jec tio n  Functions. In this case a  = b, for some w G S + and for some i with 
1 < i < | w|. As with Cases (1) and (2) notice that in this case n = 1.

R.H.S.

bv hypothesis on a and by the definition of C*PREQ

= ^ u{a){Xi)

bv the definition of V

= «.•

by t h e  d e f i n i t io n  o f  v

= W -t(a)

by  t h e  d e f i n i t i o n  o f



Induction Hypothesis. Assume for any scheme a £ PR,£>(E)U „ for some u,v  G A+ that for 
any scheme a' G PR D(S )U-,V,- for some v!,v' G S+ of less structural complexity than a  that for
some X' = {x'j,----x'[u,{} wherein x) G AA; for j  = l , . . . , |a ' j  that if f t  = for some
hG {1,. . then

(Va' G Au ) [a 'ln i« ') -  Vux>,a,Jf t) .

Induction.

(4) V ecto riza tion . In this case a  = <  a i , .. ■, > wherein a,- G PRm(E)tl for some u G S +
and for some .s, G 5" for i = 1 , . . m > 1. This case follows easily by m applications of the 
Induction Hypothesis and is omitted.

(5) C om position . In this case a — a 2 o a i wherein an G P R ( b ) u  w and a 2 G P R ( Y ) W V  

for some u, y, w G A+. Again this case follows easily by the Induction Hypothesis and the 
definition of CbPREQ and is omitted.

□
Lemma 69. Let X = {2 7 ,..., xM, t, Yu . . . ,  Y\v\} for some u,v  G S + such that x< G X u, for 
1 = 1 , . . . ,  |u | and Yj G X Vj for j  = 1 , . . . ,  |v| are distinguished variable sxjmbols and t G X t is a 
distinguished variables symbol, and let "j G PR(S)tu,,v for some w G S +. If  a  G PRn{S )tuuu< 
for some v' G 5 + and <? = Lftittu?,v',n{a ) € T/E, X)v̂  /or some n G {1,. . . ,  |u'|} then

(Vk G r)(V a  = («!,...,«[»[) 6 4 “) (Va' = « , • • • ,  a(H ) G A w)

{la]A{kj a,{''l]A(k ,a ) ) )n = ^v1-{a,kl[j]A(k,a'))(<t>)-

Proof. By ¡„duction on the structural complexity of the scheme o uniformly in (t u v, v').

(1) Constant Functions. In this case a = c‘” • for some c e  S v  for some s e S and lienee 
11 = 1.
R.H.S.

l,v the definition of C pnEQ and by the hypothesis on o

bv  t h e  d e f i n i t io n  o f  V

by t h e  d e f in i t io n  o f

[** a( M ,  Ì7]U(A'X))
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R .H .S .

( 2 ) A l g e b r a i c  O p e r a t i o n s .  In th i s  case  a  — a  for  s o m e  a  £  for  s o m e  s £  S .  A g a in

n o t i c e  t h a t  n =  1 .

 ̂ _  l'»'2(a,*,[7ly*(*.a'))(or(̂ > ^1) ‘ ’ ' ’ *!«!> " ’ • ) ^¡u|))

by the definition of <C*PREQ and by the hypothesis on a

= a A( i / ( i ) ^ X( * i ) , - - - ^ X(:rN ) , ^ ( Y 1) , . . . , ux(Yh )) 

by the definition of V

— a (fc, aj, . . . ,  aju| , a , . . . ,  f[7j.-i(fc, a')) )
1 '  h i

by the definition of v 

by the definition of

(3) P ro jec tio n  F unctions. In this case a — U,tu ’' for some i with 1 < i < |t u v|. Again as 
with Case (1) and Case (2) in this case n -  1. We have three sub-cases to consider:

( a )  i =  1 ,

(b ) 1 < i < |u| + l, and
(c) i > j«| -f 1.

Sub-C ase (a) i = 1.

R .H .S .

bv the definition of <C*PREQ and by the hypothesis on a

= v'{a,k, [7Li(^,a'))(t)

bv the definition of V

= k

by the definition of u

IU iul A(£ ,a ,[7JA(A;,a'))

by t h e  d e f in i t io n  o f  [ . J ,p
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Sub-C ase (b) 1 < i < |»| + 1. 

R .H .S .

by the definition of C PREQ and by the hypothesis on a  wherein j  = i ~ l 

by the definition of V

= Clj

by the definition of v

= fU ̂ iUk,a,lyUk,a'))

by the definition of [.]A

= [ U r vh ( k , a , l y ] A(k,a'))

by the definition of j.

Sub-C ase (c) i > |«| + 1- 

R .H .S .

«'))(<£) -  K v .* ,bH (i,a'))(^j)

by the definition of C PREQ and by the hypothesis on a  wherein j  = i -  ( |u | + ^

by the definition of V

bv the definition of u

bv the definition of t-Jn

by t h e  d e f in i t io n  ol J-

';+M + iL i(M ,[7 ]U 0 ,a ') )

= iu r A ( k , a ,  [ 7 ] , i ( f c , a ' ) )
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In d u c tio n  H ypo thesis . Assume for any scheme a  G PRd (S )u m  
for any scheme o ' £ PR£ ( 5 )t „ for some v" E 5+ of less structural 
if <,b' =  € r(E ,X )„ ; for some n £ {1,. then

- for some n' E S + that 
complexity than a that

(Vfc G T)  (Va = (ai, • ■ •, aM) G Au) (Va' =  ( a [ , . . . ,  a^ ,) G Aw) 

[a ]U(T'- ai Î7Îa(̂ m a )) — )•

Induction.

(4) V ecto risa tion . In this case a —< a i v - A m  > wherein at G PR(X)tu v 3i for some 
•s, G S  for i = 1.. • ., m > 1. This case follows easily by m  applications of the Induction 
Hypothesis and is omitted.

(5) C om position . In this case a = Qi 0 a i where on G PR (X) t u v w, and q2 G PR('£)wi v„ 
for some w' G 5 +. Again this case follows easily by the Induction Hypothesis and the 
definition of C*PREQ and is omitted.

Let C°FREQ be defined as in Definition 62 on Page 163.

Lem m a 70. Let n G N let a G PR(S )Ul„ for some u ,v  G S + and let = Q P̂ EQ(a) G 
RPREQ(X' X) wherein S ' is defined as in Definition 50. I f  either NPPRSS(a)  = 0 or for each 
i = l ,VPP RSS (a ) and for each j  = 1 , . . . ,\CoDom(PPRSR(a,i))\ the function symbol 

f f i r '  *  defi.ml over A hj 0 ]-.). Ikon

(Va G Au) [a]U(a) =

P roof. By case analysis on the structural complexity of the scheme a  uniformly in (u, v). We 
have six cases to consider:
Basis Cases.

_  T, 0 m this case a = cw for some c  £ S A s for some s £ S  and for some(1) Constant Functions. In tins case a

U) £ 5+_ \Ve proceed as follows:

R.H.S.

fo jU (a )  =  l / ( z i > - - - ’ z w )  =  C xP^ Qi ( C nR E ( a ) ) i i ( fl)

bv the definition of C PREQ wherein X = {x , , . . . ,  xH }

= u ( x it ■ • ■ > -r iu,i) ~

C /OP I i. £7by the definition of C
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by the definition of |.][,v

= c.4

by Lemma 68 and by the hypothesis on a

= N ,t(« )

by hypothesis on a and by the definition of

(2) Algebraic Operations. In this case a =  a for some a £  S tll s for some w £  S + and for 
some s £ S. This case is similar to Case (T) and is omitted.

(3) Projection Functions. In this case a = Uj" for some w £  S + and for some i with 
1 < i < |u'|. Again this case is similar to Case (1) and is omitted.

Induction.

(4) Vectorisation. In this case a  =<  a ! , .. ., a r n > wherein a,- e P/£(S)UiJ| for some u £  S + 
and for some .s,- 6 S  for i — 1 , . . . ,  m > 1. As with Cases (2) and (3) this case follows by a 
similar argument to Case (1) and is omitted.

(5) Composition. In this case a  -  a 2 o  a r where a x € /Lff(E)u,u, and q2 € P R { T > ) W<V for 
some u. v, w £ S +. Again, as with Cases (2), (3) and (4) this case follows by a similar 
argument to Case (1) and is omitted.

(6) Simultaneous Primitive Recursion. In this case a = * (a i ,a 2) where £  PR{S )u „ 
and a 2 £ P /i(S )n u for some u, v £ S +. We proceed by induction on the value of £ N. 
For simplicity we will assume that |u[ = 1 and leave the simple generalization of the case 
where |ij > 1 to the reader.
Basis, «j = 0 ( using a' to represent a2, . . . ,  nH ).
R.II.S.

io ].,(().«') = l W x u . . . , x M ) = C ?™ Ql (C™B(al ))

f{ t  + C x \i ■ ■ ■ - £|u|) = C^'.t u^,t/,i(<CllRt (o2))]^(0, a1)

by hypothesis on a and by the definition of

= V>la<)(Q puRS ( C ^ nE(«i)))

bv the definition of [.],t

= (iC!:nE(ai)1.4(a')) i

bv Lemma 68

= (i(<>l)].4(a,))1
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by Lemma 22 as we h a v e  N P R S S ( C PIIb ( q 2)) =  0

and hence by Lemma 21 CPRE(a 2) £ PRiJ(S)

= [a ]A(0,a')

by the definition of
In d u c tio n  H ypo thesis . Assume for some fixed value k £ N that

[a]..,(A:, a ' )  =  a').

Ind u c tio n . We must show that

[° ]U (fc  +  1 ,< 0  =  +  1, a')-

R .H .S .

+  I a O  =  1 / ( 0 .  Xi, . . . ,  Z |u|)  =  Q ; ^ « , <i ( C PRfc' ( a 1))

f ( t  +  1, , X|u |) =  C ^ / j t ,J^ il,i l (CjJR E ( a 2 ) ) ] j.j(A.’ +  1, a')

bv hypothesis on a and by the definition of C°PREQ

by the definition of f.J.4

bv the Induction Hypothesis

= (¡C™°(a2) U a \ k , l a U k , a ' ) ) ) i 

by Lemma 69 with 7 = a as by Lemma 21 CPRE(a 2) £ PR D(E)

= (i«2l,i(a/^b[«la(A ;,a')))1

bv Lemma 22 as we have NPRSS(CpnE(cv2)) = 0

and hence by Lemma 21 C1Ri'(o:2) £ f5R-£>(£) 

~ T 1 At )

by the definition of J.J..1 as required.
This concludes Case (6) and concludes the proof.
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Let C*PHEQ be defined as in Definition 63 on Page 164.
□

L em m a 71. If a £ PR('P)UV for some u, v £ S + such that I\ PPRSS(a) — 0 then for each
e £ W+

4, = C : Z EQ(a ) e PREQ(T,, X ) uv.

P roof. Notice that by the well-definedness of <C*PREQ we immediately have <t> £ FREQ, (S, A')„ v 
and therefore it is sufficient to show that 4? is totally-defined.

As by hypothesis NPPRSS(a) = 0 by Lemma 13 we have NPPRSS'(a) = 0 and hence

;=/=l
U  InTermsOf(<]?, j, S' -  E) = 0
j = i

and therefore the fact that is totally-defined is immediate by definition. 

Let CVPREQ be defined as in Definition 64 on Page 164.
□

L em m a 72. Let
$ = < o u ...,<?l > e P R E Q ( Z , X ) ‘umv-‘^ i

for some u, v £ S + be standard. If for some e £ {2,.. .,/}  we have

InTermsOfQ, e, F) f]{e + 1, = 0

wherein
F = {fi,P I q<p e N}

(we denote this property by P ‘( ^ ) )  then if we define <i>e by

<f*e =< d>!,. . .,<pe; //;?/; 1 >

wherein

and
n' = r,[{ 1........«.■}]

then <1>" satisfies the following:

(a)
We have

<t>7 £ PREQ(Z,Xyuf i ‘‘E.fi

<l>" is totally-defined and standard, and
0> )



(c)

For any ^-algebra A

1*1.1 = M a .

Proof. Omitted. 

L em m a 73. Let
□

$ =< > € P R E Q { ' £ , X ) ^ t-’>-1

for some m > l and for some u, v G S +. if  for some j  G {'2,. . . ,  m} we have 

( a)
(■ = U  ^  j  + 1 •— 2 ,.. ., rn ^  m -  ( j  -  1)},

and

(h)
n = {j  ^  («*, l'l ) J  + 1 ^  (u2, v 2), . . . ,  j  + / -  I k  («', u')} 

wherein ( id, id ) is the type of (pi for i = 1 , . . . ,  l

(we denote this property by QJ(<P)J then if we define by

AVII-0.

wherein for k = 1 , . . . .  /
<?!■ -  ¿ >t [ / / , p / / ( i - j ) + i , p ] * = j " j

l ' = { l H

and

iisiiir->

CN1

r/ = {1 (u 1,u 1),2 •— (u2,-y2), 1) ^  ( u ^ v 1)}

then the following hold: 

( 1 )  lie  have
* jl € PREQ(Z ,X)U'V,

(2)  <I>;1 is totally-defined and standard, and

(3) For any F-algebra .1
i*Li =

Proof. Omitted.
□
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Lemma 74. I f

<!> =<  > G PREQ(T,, X  )„ „

/or some / > 2 and for some u, r £ 5’+ sne/i that for each k = 2 ,.. ., /

!=/
( (J  InTermsOj{$, i, ¥)) P|{fc} = 0
j = a:

where
F = { /?|P ! e N}

(/rr; denote this property by Qt/L),) then for d — 2 , . . . , /  If we define <I> 

wherein
// = { '  * l , d +  l - »  2, — (t/ — 1)},

r/' = { d -  (*/d, 1 -  («d+1, r d+1),

wherein for j  = d___, / - ( ( / -  1) (V,  ¡P) type of <ps then the following hold:

( 0

^  £ PIlEQ('2,X)u<iV<-

(2)

[< (p\ , . .  .,<f>r,d >J,t =

Proof. Omitted.

Lem m a 75. If

for some ex £ PR{ E),,,, /o r .some u, v £ 5 + then for each d £ {2, . . . , /}

[< o , ....... Oud > ] , = ¡C jPREQ(PPIiSS (a ,d -  1))1.,.

P roof. First, notice that by Lemma 26 on Page 165 for i = 2 , . . . , /  we have

o, = € ;PREQ(P PIlS S(a,i -  1)).

Also, notice that as holds (see Lemma /•!) we have

(1) J< 0 \ , . ■ • <i>i \ d >JA =

□



(->) = [(< ^)‘U]a

wherein

( 'i>  ̂)‘ii = <  oi,c>'i+1,...,<?; >

= < Odifii.pl f(q-d)¥l.p]q = d'Od + \[fq,pl f( q-d i + l ,p)l = d ) • ■ • > Ol[fq ,P / /( q - d) + l ,P >
by definition. Furthermore, by Lemma 26 we have

c v p r e q  ( P P l l S S ( a !  d _  1 } )  = <  ^  . . . ? 0 «  >

wherein /" = NPPRSS( PPRSS( a), d — 1) + 1, <t>” = C^1 req(PPRSS(q , <l~ I)) and for k = 2 ,..

d>" = C*PREQ (PPRSS( PPRSS(a, d -  1 ) ,k  -  1)

= C*PREQ(PPRSS(a, d + k — 2)

by Lemma 16; that is, in [<C'rPREQ(PPRSS(a, d -  l))],i we have

/ ¿  = ([P P R S S (a ,rf+ * -2 )JA)4

for k = 1 ,.. ., /" and for q = 1,. . . ,  ¡t/"(A.')|.
Finally, notice that, P ‘" ( { $ d)Jl) holds (see Lemma 72) and therefore we have

Cl) K ^ V 1],.

but _ _

is
C rPREQ(PPRSS( a , d -  1))

and hence by Equations ( F), (2) and (3) we have

} < o :....... o,; d >JA = |CvpaEQ(PPRSS(a, d -  1))J.,

a.s required.

B .2 .2  P r o o f o f  L em m a 28

We are now in a position to prove Lemma 28. For convenience we first re-state the lemma.

Lemma 28. For rack a € PR( for some u, v € 5+ if  <f> = CPREQ(a) then

(Va 6 W') [a]A =

In a d d i t i o n ,  n o t i c e  t h a t  by  d e f in i t io n  Q J(<bd ) ho ld s  ( see  L e m m a  73)  a n d  t h e r e f o r e

Proof. By induction on the number n = NPPRSS(a). 
Oasis Cases. Wo consider two basis cases:



(1)  n =  0.; and

(2) « = 1..

Basis C ase (1).
R.H.S.

[CPREQ(a)].,(a) =  [C rPRKQ(a)].,(a)

by the definition of CPREQ

= i < q PREQ(a) >].,(«)

bv Lemma 2G

= I C f REQ(«)! a(a)

by the definition of j[.J,t

= IMU(«)

by Lemma 20 as by liypothesis NPRSS(a) = 0 and hence by Lemma 13 NPPRSS'(o) 
Basis C ase (2).

ICPRKQ(a)].,(a) = [ C r REQ(«)l-t(«) 

bv the definition of CPREQ

= [< CtPnEQ( a ) . q FREQ(PPR SS(a,l)) >}A(a)

bv Lemma 2(5

= i € f REV ) M a )

bv the definition of i .1,1-
Notice now that by Lemma 20 CVPREQ(«) is standard and therefore

q PREV )G R P R E Q (S ',-V )

\vh• ■ rein

and bv the definition

i f  = L'U {/:>,i} U { f 2 , 2 }  U ■ • ■ U {A>,|v«(i)|} 

,]A for j  = 1 ,---- ii7" (2)|

/->, = ( ¡< a ," lEQ(M .C?|,|Ui‘i ( a ) ;2 > l ,0 /

3 ( 0



f l , ]  =  / r " l l ) + l , j

and by Lemma 13 we have NPPRSS'(a) = 1. Therefore, if we can show that

A lso  n o t i c e  t h a t  b y  L e m m a  17 w e h a v e  r a ( l )  =  1 a n d  h e n c e

[< C f ,REQ( a ) ,C PREQ(a);2  >1, = [PPRSS'(a, 1)].,

then by Lemma 70 we have
[CTREV ) ] a  = [«la

as required. We calculate as follows:

[< C?PREQ( a ) ,C PREQ(a);2  >jA = [C fPREQ(PPRSS(a, 1 ))^

by Lemma 75

= |(0I>REQ(ppRSS(a, 1))],,

by the definition of CFREQ

= [P PRSS(a, 1 )|A

by Case (1) as by hypothesis NPPRSS(a) = 1 and hence by

Lemma 15 we have NPPRSS(PPRSS(a, 1)) = 0

= [PPRSS(o:, r “(l))ln

bv Lemma 17

= [PPRSS'(a, l)J /t

by Definition 43.
In d u c tio n  H y p o thesis . Assume for some scheme a' £ PR(X)U>/ for any u', v' £ S + such 
that NPPRSS(o') < k for some fixed k £ N that

(Vn' £ Au ) {a 'h  = [C ,REQ(a ') i t .

Ind u c tio n . We must show that for some scheme a" £ PR(S)U»,„» for any u", v" £ S + such 
that NPPRSS(a") = k +  1 that

( V « " € . - P " )  K l . 4 =  I C P R E Q ( a , , ) L , .

We proceeil as follows:
IU I .S .

!c ,,nKQ(o")!..,(n) = i c r ,lKQ(-")l.t(«)

311



b v  t h e  d e f in i t io n  o f  C PREQ

= [ < C " EQ( « " ) , c p,lEQ(PPRSS(nM ) ) , . . . , q j f ) ( i . p i lSs(,,",t. + ! „ > ] , ( „ )

bv Lemma 26

= IC^PREQ(a")|.,(«)

by the definition of [.]A.
Notice again that by Lemma 26

C f REQ(a") e RPREQ(S",A')

wherein

s "  = s U { / 2l,}L J {/v }U "-U {/2 .i^ (2 ) i}  

U ^ }  U  • • • U ' t / 3 . l n /I(3)|}

I J { a + j , i }  U ^ <:+ 2'2  ̂ U  ■ ■ ' U i ^ - + 2.i’)fl('t +2)i }

and by the definition of I.],t for i — 2 ,.. . ,k  + 2 and for j  = 1 , . . |??/?(¿)| we have

f t  = (l<  C?[,HEQ( a ) ,C PnEQ( P P R S S ( a , l ) ) , . . . ,q ! ; f Q(P P R S S (a,*+  1)); *>],*) .

In addition notice that

{ra" ( I )+  1 ... ., r a"(NPPRSS'(a")) + 1} C {2,. . . ,  NPPRSS(a") +  I = k + 2} 

and hence ,,
i = ¿ = NPl’RSS'(a.");=|r>*(r '» ( i )+ l) l

E  E  t U.,}=  E  E
,=1 ;=1 1=1 j - 1

therefore bv the definition of f.J,t for i = 1,. . NPPRSS (a ) and for j  = 1,. . \q,{(rn (¿) -f- 1)| 
we have

/; i„(i)+ij = (f< Ct,,HBQ(«). q PREQ(PPRSS(a, 1)) , . . . ,  CK“**(PPRSS(«, *+!)); r"" (i)+ l >JH)

Consequently, if we can show that for i — 1 , . . . ,  NI I RSS (a )

I< C;PRKQ( o ) , a 1>Ri;Q(P l>RSS(a, I)).......e kll f Q(n n iS S ( a ,k + l)y ,r a"(i) >],, = fPPRSS,(«",t)I.

t h e n  b y  L e m m a  7 0  w e  h a v e

l C , P R E Q ( a " ) U « " )  = K l a K )



as required. We calculate as follows.
{ < <̂ PREQ( a ) , q PREQ( P P R S S ( a , l ) ) , . . . ,q P f <3(PPRSS(a,A + l ) ) ; r “"(0  >]A

=  | c 7 P n E Q ( P P R S S ( t t ,\ r “ " ) ) ) J , l

by Lemma 75

= [CPREQ(PPRSS(a", r“”)))]A

by the definition of CPREQ. Notice now that as by definition ra (z) 6 { 1 ,... 
Lemma 15 we have

NPPRSS(PPRSS(a",ra"(i))) < NPPRSS(a") = k +  1;

that is,
NPPRSS(PPRSS(q", ra"(i))) < k.

Therefore,

|C PREQ(P P R S S (aV Q"(0))la  = iPPRSS(W ',r“"(i))Lt

by the Induction Hypothesis

= |PPR SS '(a",01a

by Definition 43 as required.

, NPPRSS(o")} by

□
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A ppendix C

A n A bridged Version of the  
R S-F lip-F lop  Verification

We now present the theorem and an abridged version of the proof that was generated by our 
implementation of AV (see Chapter 8) as part of the automatic verification of the RS-FLip-Flop 
in particular, notice the existential quantification on the ‘initial’ boolean values 6, and 6-,

We have used the symbol ‘y ’ to indicate where parts of the proof have been omitted -  the 
full proof is approximately one-hundred-and-fifty pages long.
T heo rem . Let E be the given system of equations, [f A is some S_-sorted ff-algebra such that 
d = /(£ , E) then

P roof. By induction on n i- 
B asis. «[ = OA
We calculate by case analysis on the values of b\ and b2. There is one Sub-case to consider:

(Vn-i 6 Anat) (36, G A bo°l) (3b3 € d b°o1) (Vi?, e  A ^ )  (Vi?2 G d — ) 

fflopspe<A{nu B 2, B i ) = f f lo p im p t^n x> B u b3 ,bf).

6, = true— and b2 = fa lse—.
C alcu la ting  for Sub-case 1.1. 6, — true— and b2 — fa lse—.
L.H.S.
fjlopsper—(0 —. U2. i f )
= false A.

as I f .

R .II.S .
f]lopimpt—(O'1-, ¡j; . / alst - .  true-)
=  / 1 7 d c l  

• . . t n i (  —



. . . true—), flS4có*{0—, B2, B x, false*, true*-), f l 8 AcG*(0 *  B2, Bu false*,

. . . true*), f  ! ''4r7 '( O'. Bn,  , fa lse—, true—))

by applying fjlopimp l*{nx\2 *, sòl i l  2—, s62xl2—, 61x12—, 62x12—) = ...
.. ./17Grl—(/184cl—(nxl2—. sb lx llA  sb2xV2A blxl2 *, b2 x l 2*), f m c 2*{nxV2 *, s61xl2^-, «62*124-, 61xl:

.. .flS-lc3*(rixl2* sb lxl2 *, sb2xl2*, blxl2A 02x12*), /184c4*{nxl2* sbtxL2 *, sb2 x l 2 *, b lx l2 *  62* 12*

. . . /18-lc5—(nx 12—, $61x12—, s62xl2^-, 61x124-, b2xV2*), /184c6^{nxl2^-, s61x!2^-, «62x124,, 61x124-, 62x1 *>*

.. ./184c7-(nxl2^, ;61x 124-, s62x 124-, 61x124., 62x124-)) with: nxl2^ as 0̂ -, «61 x 124. as Bn 
sb2x\2* as B \ , 61x12—as false— and 62x12— as true—.
A
V
= fa lse*

by applying f2c l*{s bl xo2*,  «62x524, sbix52* sb4x52* 61x524, 62x524) = 61x524 with- 
s61xo2— as B 2, «62x52— as Bi ,  s63x52—as B 2, «64x52— as B x, 61x52—as 
f a l s e *  and 62x52— as t rue—.

Induction Hypothesis .  Assume for all nx that:

jJlopspec*( nx, Bn, B y) -  jjlopimpl*(nx, Bn, B x, false*,  true-).

Induction  Step.  We must now show that:

JJlopspx'Asucchi m).  Bn,  By) = jjlopimp l*{succ*{nx), Bn, B y, fa lse-,  true*-).

Calculat ing for Sub-case 2.1. bx — true—and bn _ false—.
L.H.S.
JJlopspt A (succ4{ nx). Bn, B y)
= <lc*{and*{cq*(e.val*{nx, B2), false*-), eq*{eval*{nx, Bx), trueA)), true*-, . . .
.. .dc*{and*(cq*{eval*{nx. Bn), true*-), eq*(eval*{nx, Bx), false*)), fa lse*  .. 
. . .  dc*{ a nd*( eq*{eval*{ nx, B 2 )Jrue*), eq*{e val*{ n x, Bx), true*)), false*, . . .  
■ ■ ■ JJlopspec*( n j , Bn, B x))))

by applying jJlopspcc*[succ*(tx). s ll4 , s2l*)  = dc*(and*(eq* ( e v a l * ( t Y , s l l * ) , . . .

f a l se* ) ,  e<i*(evai*(ti, s2 \*) ,  true*)),  true*,  d<A{and*{eq*{eval*{tx, s l l * ) ,  true*),  eq*{cval*(t i ,  s2lA)

. . . fa lse* )) ,  fa lse* ,dc*{a,ulAf<lA (evai*{t l , s \A ) , t rue* ) , eq* (e va i* ( t .Y , s2 l* ) , t rue* ) ) ,  fa ls e* ,  . . .

. . .jjh>pspcc*{ti, s i  l A  «21*)))) with: t t as n t . s \ \ *  as B2 and s21- as B x.

2*, l/2xl 

*), • ■.
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A
V
= dc*fand*(eq*{eval*{nx, B 2), false*-), eq*{eval*(nx, B x), true*-)), true*-, .
. .. dc*-{and*{eq*{eval*(nx, B2), true*-), eq*{eval*(nx, Bx), false*-)), false*-, 
. . .dc*(and*(eq*{eval*{nx, B 2), true*-), eq*{eval*{nx, B x), true*-)), false*-, . 
.. . J6Qcl*{mult2*{nx,succ*{succ*(0*))), B 2, B x, B2, Bx, false*-, true*-))))

by applying dc*(false*, x7, y7) -  y7 with: x 7 as succ*(succ*(0—)) and y7 

as rnult2 *(nx. succ*{succ*(0—))).

R .H .S .
fjlopimpl*{succ*{nx), Bn, B x, false—, . . .
.. . true*-)
= fll()<:l*ffl$4c\*{succ*-(nx), B 2. B x, false*-, true*-), fl84c'2*{succ*{nx), i?2, . . .
. .. B x, false*, true*), f  I84c3*{succ*{nx), B2, B x, false*, true*), . . .
. . .  f l 8 -M*isucrA{nx), B2, B x, false*, true*), fl84c7,*{succ*(nx), B 2, B x, .. .
. .. false*-, true*-), /184c6=±{s«cc^>i), B2, B x, fa lse*  true*), fl84c7*{succ*{nx), . ..
. . . B 2 , B X, false*, true*))

by applying fjlopimpl*(nxl2 *, 1 x 12—, sb'2 x l 2 *, b 1x 1 2*, b2 x l 2*) = ...
. . . / I 7 6 ‘c l —( / 1 8 4 c l —(nxl2—, sblxl2* sb2x\2*, blxV2* b2xV2*), fl84c2*{nxl2*, «61x12—, sb2 x l 2* ,b lx l2 *, 62x12

. / 184c.'i—(nxV2*,sblxl2* sb‘2 x 12 *-, A! , .  10/1 A O - 10/

. . . /184c5—(nx 12—, sblxl2* s62x!2* blx l2* b2x12*), fl84c6*{nxL2*-, sblxl2* sb2x!2*, blxl2*, b2xl2*

■. . fl8-lc7*(nxl2*, sblxl2*, sb2xl2*, 61x12—, 62x12—)) with: nx!2*  as succ*-(nx), sblxl2* as B2 

«62x12— as Bx, 61x12— as false* and 62x12— as true*.
A
V

= not*{or*{ eval*{ n x. B 2), not*(or*{f()6 cl*( mult2*{nl ,succ*{succ*(Q*-))), [12, .. . 
. . . Bx,B 2, I f ,  false*, true*), eval*(n1, B x)))))

by applying dc*( false*, x7, y7) = y- with: x 7 as succ*(nx) and y7 as 
711 •

Wo now proceed by case analysis on the values of eval*(nx, B2) and eval*(nx, B x). There 
are lour Sub-sub-cases to consider:
Sub-sub-case 2.1.1. eval*(nx,B 2) = i n l a n d  eval*{nx, B x) = true*.
S ub-sub-case 2.1.2. eval*(nx, B2) = fa lse*  and eval*(nx, B x) = true*.
Sub-sub-case 2.1.3. cval*( nx, B2) = true*  and eval*(nx, B x) = false*.
Sub-sub-case 2.1.4. eval* (n x, Bn) = fa lse*  and eval:-{nx, B  i) = false*.
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C alcu lating  for Sub-sub-case 2.1.1. eva l* im . Bo) = true*- and evalAin B ) = true* 
L .H .S ’
dc*{and*(eq*(true*, false*), eq*{true*, . . .
.. . true*)), true*, dc*(and*{eq*(true*, true*), . . .
.. . eq*(true*, false*)), false*. . ..
.. . dc*{and*{eq*( true*, true*), eq*(true*, .. .
.. . true*)), false*, /66c 1 ^  mult'2 *( rii, . . .
. . .  succ*{succ* (0—))), Bo, B i , Bo, . . .
.. . Bx. false*, true*))))
A
V
= de*{ false*, true*, dc*{ false*, false*, false*))

by applying dc*(truc*, Xg, yg) = Xg with: xg as false* and yg as 
f6i)cl*(mult'2*(ni, succ*(succ*(0*))), Bo, B x, Bo, , false*, true*).

= dc*[false.*, false*, fa lse—)

by applying dc*{ false*. xg, yg) = yg with: Xg as true* and yg as 
dc*(false*, false*, false*).

— fa lse*

by applying dc*(false*, xg, yg) = yg with: xg as false* and yg as 
false*.

R .H .S
not*(or*{true*, . . .
.. . not*(or*( fC)6 cl*(m ult2 *(ni, . . .
. . . succ*{succ*(0—))). Bo, B\. Bo, . . .  
. . . / / ,  false*, true*), true*))))
= not*(true*)

by applying or*[trac*, x.x) = true* with: x.\ ;is not*(or*(fQGcl*(niulV2 *(nx, .. . 
■ ■ .succ-*(succ*(0*))), Bo, Bx, Bo, Bx, false*, true*), true*)).

= fa lse*

by applying not*(truc*) = false* .

C alcu lating  for Sub-sub-case 2.1.2. eval*(n{, Bo) = fa lse*  and cval*{nu Bx) — true*. 
L .II.S
dc~{and*(eq*( f  alse*. false*). cq*(tr uc*, . . .
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. . . true—)), true—, demand—(eq*( fa lse- ,  true—), . . .
■ . . eq*(true—, false,—)), fa lse—, . ..
■ . . demand—(eq*{f alse*, true*), eq*(true*, . ..
■ . . true—)), fa lse—, f 6 6 cl*(m ult2 *{ni, . . .
. . .  succ*{succ*( 0^))), B n ,  B ^  B n ,  . . .
. . . B i , false.—, true—))))
A
V

= dc*{truc*. true-, dc*{ false*, fa lse - ,  dc*{and*(f aise-, true-), fa lse-,
■ . . f 6 lu:l*(mult2 *(ni,succ*isucc*(0 *))), B n ,  B U B 2 , B y, f  alse*, true*-))))

by applying and*( false*, xA) = false— with: x-4 as false—.

= dc*{truc*, true-, dc*{ false*, fa lse-,  dc*{ false*, false*-, f6()cl*(mult2*{nl ,
. . .  succ-*{succ*{0*))), Bn, B^ B2, B i , false*, true*))))

by applying and*(falso*, x4) = false* with: £ 4  as true*.

dc*(truc*, true*, dc*(false*, false*, . ..
.. . dc*( false*, false*, f 6 Qcl*( mult‘2 *(ni, . . .  
. .. succ*{succ*( 0—))), Bn, Bi, Bn, ■ ■ ■
■.. Bi, fa lse*  true*})))
= true*

by applying dc*(true*, xg, !/s) = ¿’s with: x8 as true* and ys as
d c * ( f a l s e - f a l s e * .  dc*( fa lsc*,  fa lse* ,  f66cl*{mul t2*(ni ,  succ*(s)icc -̂(O—))), Bn, Bi ,  Bn, Bi  
■ ■ . fa l s e* ,  true*))).

R .H .S
not*(or*{ false*, . . .
■ ■. not*(or*( f  rnult'2 *{ni, . ..
• • . .succ-(succ*(()—))), Bn, Bx, Bn, ■ ■ ■
■ ■ ■ B x, false*, true*), true*))))
-  not*(or*(false*, not*(truc*)))

by applying or*(x.i, true*) — true.* with: x.\ as f6Gcl*(niult‘2*(ni,. ..
■ ■ ■ succ*(succ*(()*))),  Bn, B i , Bn, B i . fa l se* ,  true*).

~ iiot*( nol*( trut —))

•>.v applying ,,r*( false*. xA) = x.t with: x., as not*(true*).
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=  n o t —( f a l s e —)

by applying not—(true—) = false— .

= t r u e —

by applying not—(false—) = true— .

C alcu la ting  for Sub-sub-case 2.1.3. eval*[nx, B2) = true*  and eval*(nx B t ) = 
L.H .S
demand—(eq*(true—, fa lse—), eq*{ false*,  . . .
■.. tr ue—)), true—, demand—(eq—(true—, true—), . . .
• ■ • eq—(fa lse—, fa lse—)), fa lse—, . . .
. . .  demand—(cq*(truc*, true—), eq*(false*, . . .
■. . true—)), fa lse—, f66cl*{mult2*(nx, . . .
■.. succ*(succ*{0* ))), B2, B i , B 2, ■ ■ ■
■ .. B x, fa lse—, true—))))
A
V
= dc*{an d*( fa lse—, false*), true-, dc*(true*, falseA dc*{and*(true*, falseé), false*-, 
■.. f 6 6 c l*(m ult2 *{nx,succ*{succ*(0 * ))) ,B 2, B X,B 2, B x, false*-, true*-))))

by applying and—(true—, true—) = true— .

= dc*{ fa lse—, true—, dc*(true*, fa lse—, dc*(and*(true*, false—), false*-,
■ ■ . f  6 6 c lA  mult2 *f nx, succ*(succ*( 0—))), B2, B x, B2, B x, fa lse—, true—))))

by applying and—(false—, r 4) = false— with: x4 as false-.

= dc*{ false*,  true*-, dc*(true*, fa lse - ,  dc*{ false*, false-,  fñ6cl*(mult2*(n1
• • ■ succ*{succ*(Q*))), B2, B i , B2, B x, false*, true*-))))

by applying and*(x.u false*-) = false— with: x4 as true—.

dc*(f  alse*, true*, dc*ftrue—, false*,  . . .
■ ■ . dc*( fa lse*  false*,  f£Qc\*(mult2*(nx, . . .
• • .succ*(succ*(0—))), B2, B i , B2, . . .
■ ■ ■ B x, false*,  true*))))
-  dc*{ false*, true*, false*)

by applying dc*(truc*, xs, y*) = with: x8 as false* and y8 as
de*(fal.<,(•*. falte*, fñGel*{mull2*(ni, succ*(succ* (0—))), B2, Bx, B2, B\, false*, . ..
■ ■ - true*)).
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= fa lse*

l)y applying dc*( false*, z$, ys) = ys with: x$ as true*- and ya as 
falseA

R .H .S
not*{or*(true—, . ..
. .. not*(or*( f  6 6 cl*(mult'2 * (n i , . ..
. . .  succ*{ succ*( 0—))), Bn, B i , Bn, ■ ■ ■
. . . B x, fa lse*, true*-), fa lse—))))
= not*(true*)

by applying or—(true—, x.j) = true* with: x4 as notA(or—(/66cl—(mu/f2—(ti[ 
. . . succ* (sue A  (0—))), Bn, B\, Bn, B \, false*, true*), false*)).

= fa lse*

by applying not*(true*) = false* .

C alcu la ting  for Sub-sub-case 2.1.4. eval*[rn, Bn) = fa lse*  and eval*{nu B {) = false  
L.H.S
dc*{and*(eq*{ f  alse*, false*), eq*{ false*, . . .
■ . . true*)), true*, dc*(and*(eq*(false*, true*), . . .
■ ■ • C(l~iIalse*, false*)), false*, . . .
. . . dc*(and*(eq*( false*, true*), eq*[false*, . . .
■. .tr  u(A)), f  alse*, /G6c 1 ̂  m ult2 *{ nx, . . .
. . .  succ*{succ*(0*))), Bn, B \ , Bn, . . .
■ • . /?), false*, true*))))
A
V

= dc*{ false*, false*, f  6 6 c l*( m u l t l ^ ih ,  succ*(succ*(0 *))), B n ,  B U B 2 , B U  . . .  

. . . false*, true*))

by applying dc*(false*, xg, Us) — .Vs with: xg as false— and t/g as
dr*( false*, false*. f6i)c\*(inulr2*{n1 ,succ*(succ*(0*))), Bn, By, Bn, By, false* , ...
■ . . true*)).

= f f i t lcA iu iu l tA in^suec+isucc^O*)))^ - , ,  By, Bn, Bx, false*, true*)

by applying dc*( false*, xg. t/g) = !/s with: xg as false— and t/g as 
fMc\*(mulr2 *(n], sucr*(sucA(0 *))), ¡h, By, Bn, By, false* true*).
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R .H .S
not—(or^{ fa lse—, .. .
■ . . not—( o r - \ f 6 6 rA ^ m u ll 2 ^{ny, . . .
■ . . s u c c ^ s u c c ^ f 0—))), Bn, B i . Bn, . . .
■ ■ . B y , fa lse—, true—), fa lse—))))
= not—( not—(or—( f  6 6 c l-{ m ult‘2—(n l , succ^succ^Q -))) , Bn, B y , Bn, By. 
. .. fa lse—, true—), fa lse—)))

by applying o r ± ( f a l s c ± , x 4) = x 4 with: as no t±(o r±( f%c\±( mul t2±(n i ,
. . . succ—(succ—(0—))), Bn, B i, Bn, B i , / alse—, true—), fa lsc—)).

= not—(not—(f m c l H  mult2+{ iiy, succ±(succ^0±))), Bn, By, Bn, By, false  
.. . true—)))

by applying or^fx4, fa l se—) = x 4 with: x4 as f 6 6 c l —(mult'2—(n y , . ..
.. . succ—(.succ—(0—))), Bn, By, Bn, By , fa ls e—,true—).

= /6()cl^ (mult2^-( n \ , succ^{succ^{Q—))), Bn, By, Bn, By, fa lse—, true—)

by applying not—(not—(x4)) = x4 with: x.j as /66cl— (rnult‘2—(ny, . ..
. .. succ—(succ—(0—))), Bn, By, Bn, By, fa l se—, true—).
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