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Abstract

This thesis is concerned with the development of algebraic techniques for the study of systems that com-
pute over infinite sequences of data called streams. We call the mathematical representation of systems
that take streams as input and produce streams as output siream transformers (STs) and we call the
implementations of STs stream processing systems (SPSs). Collectively, we call the study of STs and
SPSs stream processing.

Stream processing encompasses many classes of systems that are studied in Computer Science. For
example, dataflow systems, signal processing systems, reactive systems and synchronous concurrent al-
gorithms can all be formalized mathematically as STs. These classes of systems are broad and include
all traditional forms of sequential and parallel hardware and many specialized models of computation
including artificial neural networks and systolic architectures.

We identify and analyse the typically higher-order approaches to stream processing in the literature.
From this analysis we motivate an alternative approach to the specification of SPSs as §Ts based on
an essentially first-order equational representation. This technique is called Cartesian form specification.
More specifically, while STs are properly second-order objects we show that using Cartesian forms, the
second-order models needed to formalize STs are so weak that we may use and develop well-understood
first-order methods from computability theory and mathematical logic to reason about their properties.
Indeed, we show that by specifying STs equationally in Cartesian form as primitive recursive functions
we have the basis of a new, general purpose and mathematically sound theory of stream processing that
ernphasizes the formal specification and formal verification of STs. The main topics that we address in
the development of this theory are as follows.

We present a theoretically well-founded general purpose stream processing language ASTRAL ( Algebr-
aic Stream TRAnsformer Language) that supports the use of modular specification techniques for full
second-order STs.

We show how ASTRAL specifications can be given a Cartesian form semantics using the language
PREQ that is an equational characterization of the primitive recursive functions. In more detail, we
show that by compiling ASTRAL specifications into an equivalent Cartesian form in PREQ we can use
first-order equational logic with induction as a logical calculus to reason about STs. In particular, using
this calculus we identify a syntactic class of correctness statements for which the verification of ASTRAL
programimnes is decidable relative to this calculus.

We define an effective algorithm based on term re-writing techniques to implement this catculus and
hence to automatically verify a very broad class of STs including conventional hardware devices.

Finally, we analyse the properties of this abstract algorithm as a proof assistant and discuss various

techniques that have been adopted to develop software tools based on this algorithm.
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Time hike an ever rolling stream,
Bears all its sons away;
They fly forgotten, as a dream;
Dies at the opening day.

Psalm 90



Chapter 1

Introduction

Most people are other people.
Their thoughts are someone else’s opinions,

their lives a mimaicry,
their passions a quotation.

Oscar Wilde



1.1 Stream Transformers

For a large variety of modern applications computing devices are often required to have a continu-
ous mode of operation. However, from the perspective of ‘classical’ theoretical computer science
the formal analysis of the computation performed by such systems is not straightforward, as
most conventional mathematical models rely on a device’s termination to provide a meaningful
semantics. Moreover, modern electronic devices can be of great complexity at both the hardware
and software level, but most existing models of computation are low-level formalisms, and hence
have limited practical applications for the specification of complex systems.

For example, consider correctness; that is, the ability of a system to perform consistently
without errors. This is the most important property of so-called safety-critical systems such
as flight control systems (fly-by-wire systems) and medical monitoring equipment. In general,
correctness cannot be established by testing such systems, and hence correctness can only be
proved formally using appropriate mathematical analysis. Despite this fact, for a number of
reasons (see Chapter 8), at the moment theoretical computer science has had little ‘real-world’
success in establishing correctness, and has also had some notable failures (Cullyer [1985] - see
Stavridou [1993] for a discussion).

The development of more appropriate approaches to model ‘non-terminating systems’ is not
a new idea, and there is already a large diversity of techniques with many aims and objectives
(see Chapter 3). However, even though the origins of the study of non-terminating systems
can be traced back to at least the 1960s, with a few notable exceptions since that period this
research has been fragmented and pre-occupied with practical rather than theoretical issues. As
such, while there has been much interesting research and several specialized theories have been
developed, we argue that a general theory of such systems has not emerged in the literature; that
is, a theory that encompasses topics such as the scope and limits of stream-based computation, a
study of the computability of stream processing primitives and constructs, and the decidability
of the verification of a SPS relative to some abstract specification.

It is our aim in this thesis to develop the basis of a theory of stream processing that ad-
dresses these and other issues. In particular, our aim is the development of an algebraic theory of
non-terminating computation with an emphasis on formally establishing correctness. In order to
achieve this aim we will combine two ‘new’ techniques for representing non-terminating systems:
(1) we will specify non-terminating systems at a more abstract level than in existing research:
and (2) we will use an essentially first-order specification technique. More specifically:

(1) our analysis of non-terminating systems is based on the idea that at the conceptual level
they can be viewed as devices that receive infinite sequences as input and produce infinite se-
quences as output. An infinite sequence, that we refer to as a stream, is essentially a list of
elements ag, ay, a,, ... taken from some data set of interest A, and can be formalized mathemat-
ically as a function a : T — A, wherein T = N = {0,1,2,...} represents discrete time. We call
a system that takes n streams as input and produce m streams as output for some n,m > { a
stream transformer (ST) and characterize such a system as a functional

Q[T — A" = [T — A™.

As a general term we refer to the study of the theoretical and practical aspects of STs as stream



processing.

(2) our study of STs is based on an alternative specification technique that we call Cartesian
form specification. In particular, this is the reason that we refer to our work as algebraic as
a Cartesian form streamn transformer (CFST) can be represented using first-order specification
techniques. Indeed, we believe that it is one of the fundamental strengths and differences of the
analysis of STs that we present in this thesis that it is based on first-order methods, and hence
our techniques are both effective (readily implementable by software) and well-understood from
a theoretical perspective.

Our study of algebraic stream processing culminates in Theorem 18 in Chapter 7 that states
that a large and useful class of §T's, that encompass many conventional types of hardware and
software, can be verified formally and automatically using straightforward techniques. However,
as we will see, the proof of Theorem 18 requires several important intermediate results, one of
the most notable of which is Theorem 7. This latter result esiablishes the practical applicability
of CFSTs as a general purpose specification technique. We now introduce these ideas in more
detail.

1.2 Thesis Overview

The research that we present in this thesis develops both practical and theoretical techniques
that are appropriate for the study of STs, and in particular for the formal specification and
formal verification of STs. In the remainder of this introduction we motivate the main issues
that will be the focus of our work, and briefly discuss the particular topics addressed in each
chapter. A more detailed introduction can be found at the end of Chapter 3 once we have had
the benefit of our mathematical preliminaries and a survey of the literature.

As our introduction suggests we see one of the main applications of our work as being the
development of techniques that are appropriate for specifying and verifying safety-critical sys-
tems, with a particular interest in safety-critical hardware. Furthermore, all of the techniques
that we develop are also appropriate for the many other types of stream processing systems
(SPSs) that can already be found in the literature: including dataflow systems, reactive systems,
certain classes of special purpose functional and logic programming languages and synchrenous
concurrent algorithms (SCAs). Indeed, it is the class of SCAs, that themselves encompasses
many types of computational models including: artificial neural networks, cellular automata
and coupled-map lattice dynamical systems, that will provide the starting point of our work.
Most specifically, because SCAs are also particularly appropriate for the formal study of hard-
ware as STs. A detailed discussion of SCA theory can be found in Thompson and Tucker
[1991].

Before we can motivate the reasons that we believe SCAs provide an appropriate starting
point to develop a theory of stream processing in the sense defined in the previous section, there
is a certain level of familiarity with specific mathematical concepts that the reader must have.
In particular, like the theory of SCAs, our theory of stream processing is based on ideas from
the theory of universal algebra. As such, we will present a brief, but sufficient introduction to
stgnatures, algebras and related concepts that can be used to formalize rigorously the abstract



notion of data types.

At this point the reader familiar with these concepts may be somewhat surprised, as uni-
versal algebra has been designed to formalize first-order specification. In contrast, the informal
description of STs that we have presented in our introduction clearly shows that STs receive
functions as input, and hence are propetly second-order objects. Despite this fact and even
though higher-order algebraic techniques exists (see for example Meinke [1992b]) we will show
that by adopting the method of Cartesian form specification, based on the work of B C Thomp-
son and J V Tucker (see Thompson [1987]), it is wholly appropriate to apply these first-order
techniques to the study of second-order systems. This is the reason that we refer to our methods
as ‘essentially first-order’. We will return to this point throughout this thesis.

1.2.1 Algebraic Preliminaries

In Chapter 2 we present our algebraic preliminaries. We also present the basic ideas behind
the theory of equational specification and term re-writing that will play a central role in our
work for the formal specification and formal verification of ST's respectively. All other necessary
preliminary definitions and further specific concepts based on the general ideas that we present
in Chapter 2 are developed in the first chapter in which they are used.

1.2.2 A Survey of Stream Processing

In Chapter 3 we carefully motivate the advantages that we believe our techniques have over
existing approaches to stream processing with a detailed literature survey. In particular, later
in Chapter 6 this literature survey will enable us to identify a clear correspondence between our
theoretical tools and their practical applications by highlighting some of the relevant features of
our formal specification and programming language ASTRAL.

We begin our literature survey with a brief historical perspective of the development of
stream processing since its origins in the 1960s. This is followed by a more detailed analysis of
cach specific area of research that can be identified. Wherever possible, as we are developing a
theory of stream processing, we are careful to separate theoretical and practical issues. More
specifically, we are careful to distinguish between language design and implementation issues,
and semantics and formal specification.

Most importantly we conclude Chapter 3 with a detailed discussion of SCAs and their theo-
retical and practical advantages. This enables us to set a specific agenda of research for the rest
of the thesis that is sufficient as the basis of a theory of stream processing in the sense defined
in our introduction.

1.2.3 Primitive Recursion

One of the issues that is of particular importance in developing theoretical tools in this thesis
is computability. Indeed, we base the semantics of the formal specification language ASTRAL
that we develop in Chapter 6 on an equational formulation of the class of primitive recursive
Junctions. In the same way that universal algebra precisely formalizes the concept of data, the
explicit use of primitive recursion provides a solid mathematical foundation for our methods

4



from the perspective of the class of functions that we may specify.

In Chapter 4 we present the language PR developed by B C Thompson in Thompson [1987]
that is one method of generalizing to an abstract algebraic setting the work of S Kleene (see
for example Cutland [1980]) that was concerned with primitive recursive computation over the
natural numbers. We also present several computability theoretic extensions of PR including the
language PR (see Tucker and Zucker [1988]) that over an appropriate algebra provides a gen-
eral model of computation equivalent to Turing machine computation on abstract structures.

PR and its extensions are functional languages that provide convenient mathematical tools
to establish certain facts, including the realization of Cartesian form specification as a practi-
cal technique. In more detail, by expressing STs in Cartesian form we will show that we may
formally reason about their properties using first-order techniques and hence exploit several
theoretical advantages over higher-order specification methods. However, when expressed in
Cartesian form it is not immediately obvious that STs are compositional and thus appears to
limit their potential as a practical specification tool. In particular, given two Cartesian form
stream transformers (CFSTs) b and ¢ it is not obvious that we may uniformly construct a CFST
f such that f = h o g, and so it is not clear that we may apply modular specification tech-
niques.

Chapter 4 is devoted to a detailed discussion of the problem of Cartesian composition includ-
ing its rigorous formalization as a mathematical problem (Theorem 7) and to the development
of an effective solution. Indeed, the proof of Theorem 7 is based on the correctness of a formal
compiler C that given two pPR schemes can construct a single uPR scheme with the required
semantics. For example, in the case of the uPR schemes o} and o, representing the functions h

and g above, the result of the compilation C(ay, ay) is a pPR scheme ¢ such that the semantics
of a; is the function f.

1.2.4 Primitive Recursive Equational Specification

Like a Turing machine the language PR (and its extensions) provide a useful tool for establishing
certain theoretical facts. However, PR also shares a further similarity with a Turing machine in
the sense that it is a very low-level specification method. To address this problem, in Chapter 5
we develop the equational language PREQ, also based on the technique of primitive recursive
specification, that provides a more appropriate syntax for the representation of large systems.
In particular, it is PREQ and not PR that we use as the semantics of our specification language
ASTRAL.

In developing PREQ), if we wish to use it as a tool for the formal verification of STs then
we must establish that PREQ does precisely capture the class of primitive recursive functions.
As part of our research, in Chapter & we prove this fact formally and in so doing also provide
a mechanism to constructively exploit the properties of the compiler C. In more detail, in
order to establish formally that PREQ captures the class of primitive recursive functions we use
two further formal compilers: the compiler C°**? that maps PR schemes into PREQ; and the
compiler C°'T that maps PREQ specification into PR.

The equivalence of PREQ with PR (that is, PREQ’s soundness and adequacy with respect
to the class of primitive recursive functions) is stated formally in Theorem 10 wherein CP® is



used to establish soundness, and C'*EQ is used to establish adequacy. [However, in addition,
as we wish to use the compilers C*™ and CPREQ as the basis of software tools, a large part of
Chapter 5 is also devoted to establishing the efliciency of our compilation techniques from the
perspective of the number of equations that are produced by C'®EQ . An important concept that
we use in this discussion is the formulation of a normal form representation for PR schemes.

The final section of Chapter 5 is devoted to establishing one further theoretical property of
PREQ specifications relative to their use for formal verification, but this time from the particular
perspective of automated reasoning; that is, we establish that when PREQ specifications are
orientated as left-to-right re-write rules they produce term re-writing systems (TRSs) that are
complete. Indeed, the construction of a complete TRS from a PREQ specification (Theorem 11)
forms a crucial part of the development of our automated verification techniques for STs in
Chapter 7.

1.2.5 ASTRAL

Having completed the first part of our research agenda, in Chapter 6 we are in a position to
begin the development of the specification language ASTRAL that is specifically tailored for the
representation of STs.

The first part of our development of ASTRAL is concerned with the formulation of its ab-
stract syntax and semantics. Specifically, rather than formulate an independent semantics for
ASTRAL we prefer to derive the meaning of an ASTRAL specification by compiling it into a
Cartesian form specification in PREQ. This enables ASTRAL to incorporate high-level language
features, but also to exploit the theoretical properties that are possessed by PREQ specifica-
tions. As such, it is necessary for us to design several further formal compilers. In particular,
to allow modular specification techniques to be applied we define a generalized version of the
Cartesian composition compiler C that we presented in Chapter 4. This new compiler is tailored
to accommodate practical as well as theoretical concerns and we discuss its actual implementa-
tion in Chapter 8.

The second part of the development of ASTRAL is concerned with practical issues relating
to the implementation of its abstract syntax. In more detail, we develop an implementation
of ASTRAL in a form that is suitable as a high-level, declarative programming and specifica-
tion language. However, rather than do this by formally presenting a BNF, we motivate our
implementation by the use of several small case studies. In particular, we use the numerous
stream processing primitives and operations that we present as part of our literature survey to
demonstrate the effectiveness of ASTRAL as a specification tool. For example, while ASTRAL
formally derives its semantics from a primitive recursive function, and hence does not provide
a general model of computation in the sense of a Turing machine, we show that in practice this
is not a limiting feature from the perspective of the class of systems that we can specify.

1.2.6 Automated Verification

As we indicated in the first part of this introduction, one of our main research aims is the formal
verification of a stream transformer’s correctness to provide appropriate theoretical tools for the
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verification of certain types of safety-critical systems.

In order to achieve this aim in Chapter 7 we begin with a discussion of the relationship
between using equational logic as a formal calculus and the intended semantics of an equational
specification; that is, we discuss the difference between loose semantics, and inilial semantics
that is typically the intended meaning of a formal specification (see Goguen [1988]). This dis-
cussion motivates the definition of a formal calculus FQWIL, based on the rules of equational
logic, but extended with induction, that is suitable for reasoning about the properties of PREQ
specification relative to their initial semantics.

Using EQWIL as a formal deduction system we show that by defining two functions (VER
and EVER), both based on term re-writing techniques, we can draw on our previous results
(in particular Theorem 11) to show that it is possible to fully automate deductions about the
correctness of STs using TRSs created from PREQ specifications.

More specifically, we show that it is possible to reduce deductions about the initial truth
of Cartesian form (weak second-order) equational correctness statements in weak second-order
systems of equations to deductions about the initial truth of first-order equations in strictly
first-order systems of equations. I'urthermore, by identifying certain syntactic classes of cor-
rectness statement we show that by specifying STs as ASTRAL programmes a very broad class
of hardware devices can be proved formally correct using completely automated software tools.
Indeed, continuing our use of constructive techniques we do this by using EVER to define a
further function AV that given two ASTRAL programmes can automatically decide if they can
be proved equivalent using the calculus EQWIL. The formal statement of AV’s properties is
given by Theorem 19 that is accompanied by a explanation of our theoretical results particular
practical implications. Moreover, Theorem 19 has important applications to the verification
of SCAs, including one useful result that shows that deciding the equivalence of two cellular
automata using the calculus EQWIL is decidable.

1.2.7 Implementing a Proof Tool for STs: a Case Study

To complete the demonstration of the the practical applications of our work, we conclude our
research with a discussion of the implementation of software tools based on some of the abstract
functions that we have defined. We do this with the use of a small case study: the RS-Flip-Flop
that is a commonly occurring hardware device.

The software that we have developed has concentrated on the implementation of two specific
functions: the generalized version of the compiler C and the function EVER, that are sufficient
to demonstrate the effectiveness of a full implementation of the function AV.

We present the high-level algorithms on which our implementations are based and demon-
strate both the practical and theoretical benefits that these algorithms provide. Specifically,
from the perspective of efficiency we show that it is possible to identify the first point at which
an automated verification can be aborted. Also, from a theoretical perspective we show that
without modifying the underlying formal calculus EQWIL on which our implementation is based,
it is possible to deduce existential as well as universal quantification on certain variables. This
has useful applications for the verification of hardware devices as it is often appropriate to prove
a device is correct relative to some specific initial configuration of the devices memory.



Finally, we discuss the steps necessary to implement a full implementation of AV and present
some techniques that would be sufficient to increase the performance of our prototype tools to

make them suitable to verify complex hardware devices such as modern microprocessors.



Chapter 2

Algebraic Preliminaries

How many things I have no need of!
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2.1 Overview

The mathematical framework that we will work within in this thesis is based on the theory of
abstract data types and more generally the theory of universal algebra. As such this chapter is
structured as follows:

In Section 2.2 we have some general preliminaries concerning our basic notation for defining
sets and functions.

In Section 2.3 we present an introduction to the fundamental algebraic concepts that will be
used throughout this thesis.

This is followed in Section 2.4 by some further algebraic preliminaries concerned specifically
with stream processing. In particular, we present a concise notation to classify the various types
of stream processing systems that we will encounter in Chapter 3.

We conclude this chapter in Section 2.5 with a discussion of the work of Kahn [1974] that
has been used widely to provide a semantics for stream processing systems. An understanding
of Kahn’s method is useful as it clarifies some of the points that we raise in our literature survey
that follows in the next chapter. However, this section is not essential and can be omitted on a
first reading by the reader who is not familiar with the necessary concepts from domain theory
(see for example Stoltenberg-Hansen et al. [1994]).

2.2 General Preliminaries

We now define some general mathematical preliminaries that we will use throughout this thesis.

2.2.1 Set Notation

As is standard we use p(z) to denote the power set of z, and the operators |, —, and [ to denote

set-theoretic union, difference and intersection respectively. We denote the size (cardinality) of
a set = by |z|.

2.2.2 Functions

We denote the domain and range of a function f by dom(f) and ran(f) respectively.

We represent the fact that a function f is partial by writing f : A ~ B for some data sets
A and B. When f is a partial function we denote the fact that f is defined on some clement
z € dom(f) by f(z)| and the fact that f is undefined on some element z € dom(f) by f(z)1.
Furthermore, when the value z € dom(f) is either understood or unimportant we will simply
write f| and f1 respectively. We also use the symbols ‘|’ and ‘]’ on their own to mean ‘defined’
and ‘undefined’ respectively. Continuing the use of this notation we define

dom(f) |= U f(z)l.

redom(f)

Of course in general the properties f(z)| and f(z) 1 for some f and for some z € dom(f)
are undecidable. Therefore, if we do make use of a partial function as part of a definition we will
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always ensure that it is possible to decide whether {or each @ € dom(f) if f(x){. To this end we

often find it useful to use the set maplet notation to define a (partial) function. For example, if
f:N~N

is defined by

[

if n=2,
6 ifn=3
YyneN) f(n)= ’
( ) ™ 7 if n =4, and

otherwise

then we write
f={2+53 6,4+ T}.

Continuing the visualization of functions as sets of ‘maplet pairs’, for two functions f,g :
A ~ B for some data sets A and B we write:

fNeg=2
to mean that
(Vae 4)  (flo)l== g(a)1) A (g(a) l== fla)1);
and
f2y
to mean that
(Vae A) (g(a)l= f(a)] A(f(a) = g(a))).
Furthermore, if f(g = @ then we write h = f|J g to denote the function A : A ~ B defined by
f(a) if f(a)l,
(Va € A)  h(a) = < g(a) if g(a)!, and

T otherwise.

Finally, we write A = f[{ni,...,n¢}] for some n; € A for: = 1,...,k to mean the function
h: A~ B defined by

T otherwise

(Vae A)  hla) = {f(a) if a = n; for some i € {1,...,k} and f(a)}

and hence h is the restriction of f to the domain {ny,...,n.}.
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2.3 Algebraic Preliminaries

For the purposes of the first chapters of this thesis of a few basic concepts from the theory
of universal algebra are sufficient: sort sets, signatures, algebras, reducts, standard algebras,
terms and term evaluation. As such, the reader familiar with these ideas can move directly to
Section 2.4 on Page 19.

The reader requiring a more detailed introduction to the theory of universal algebra can
consult Goguen et al. [1978], Ehrig and Mahr [1985], Meseguer and Goguen [1985], Goguen
[1990], and most specifically for a presentation using the notation of this thesis Meinke and
Tucker [1992].

2.3.1 Sorts

A sort set is a finite set S = {s1,89,...,8,} wherein each s; € § fori = 1,...,n € N is called
either a sort name or a sort symbol, with the intention that it will be used to name a carrier
over which we may perform some computation (see Section 2.3.3). In particular, we say S is
standard if it contains the sort symbols n and b with the intention that these symbols name the
natural numbers and the Booleans respectively (see Sections 2.3.4 and 2.3.5).

We write w € 5* to indicate that w is a member of the set of all strings (also called words)
over S including the empty sequence A. We also define S* = S* — {A} to be the set of non-empty
words and S" for each n € N to be the set of all words of length n.

We denote the length of a word w by |w|. Thus, if w = A then |w| = 0 and if w € §" then
lw| = n.

Finally, we denote the ith sort of w by w;; that is, w = w, - - -wy,| for each w € §™.

2.3.2 Signatures

An S-sorted signature ¥ is an 5™ x S-indexed family
L=<, |lwesS,sesS>

of disjoint sets. The signature is finite when ¥, , is finite and non-empty for finitely many
(w,s) € 5" x §.

Each set ¥y ,, with typical member ‘c’, is called the set of constant symbols of sort s, and
each set £, , for any w € §*, with typical member ‘a’, is called the set of operator symbols of
type w — s. In particular, we sometimes write ¢ : w — s to indicate ¢ is a member of Y s

An S-sorted signature ¥ is standard if S is standard and the usual constants and operator
symbols associated with the carriers n and b (see Sections 2.3.4 and 2.3.5) occur in ¥. Finally,
a signature L is non-void if for each s € § we have |¥, ;| > 1. Indeed, for technical reasons (see
for example MacQueen and Sanella [1985]) in this thesis we always assume that every signature
without stream sorts is non-void. However, we do allow stream signatures (weak second-order

signatures) to be void, but only in their stream sorts (see Definition 2.4.2).

12



2.3.3 Algebras

Let ¥ be an S-sorted signature. An S-sorted L-algebra A (also called a X-structure) consists of
an S-indexed family
A=< A |s€e5>

of sets, where each set A, is called the carrier of sort s (also called the domain of sort s), and
a 5* x S-indexed family
A=< 8l jweS,seS>

defined such that

(1) for each s € S and each ¢ € Xy , there exists a constant ¢* € A,, and
(2) for each w € S+, for each s € S and for each o € X, , there exists a mapping o : A* —
A, € 4 wherein A¥ denotes the Cartesian product 4, x A,, X -+ x 4

w,s? Wlwl*

We define A™ for each n € N to be the set of all Cartesian products of length n made from
the carriers of A and use A* to denote |J,5; A™.

For notational convenience we sometimes informally and ambiguously denote an algebra with
n constants and m operations by A = (Aj¢q,...,¢n;04,...,0,). Finally, we write Alg(%) for
the class of all ¥-algebras, and if a property holds for each algebra A € Alg(X) then we say it
is uniformin A.

2.3.4 Natural Numbers

Although we have already used the symbol N informally, we now give a more formal algebraic
definition.

We use the distinguished sort symbol n to name the set N = {0,1,2,...} of natural numbers.
We also ambiguously use N to denote the single-sorted algebra of natural numbers defined by
N = (N;0; suce) wherein ‘0’ (zero) and ‘succ’ (successor) have their usual interpretations. For
historical reasons we will also use T' to denote the natural numbers when they are being used to
measure time (see Section 2.4). Finally, we use N* to denote N — {0}.

2.3.5 Booleans

We use the distinguished sort symbol b to name the set B = {tt, [/} of Boolean truth val-
ues. We also ambiguously use B to denote the single-sorted algebra of Booleans defined by
B = (B, t¢, ffy not, and, or), wherein ‘{’ (true), ‘ff (false), ‘not’, ‘and’ and ‘or’ have their usual
interpretations.

2.3.6 Reducts

Given a S-algebra A, we can form a new algebra B from A by ‘forgetting’ some of A’s opetra-
tions.

Formally, let A be an S-sorted E-algebra and let Q be an 5’-sorted signature with §' C §
and @ C ¥; that is, let Q,, C £, , for each w € (5")* and for each s € §'. We define the
Q-reduct of A to be the S'-sorted Q-algebra B whose carriers are a sub-set of the carriers of
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B

A and cach of whose operations o* A

is defined by o8 = ¢, In symbols, we write B = Ay to

indicate that B is a reduct of A.

2.3.7 Standard Algebras

For any S-sorted ¥ algebra A we define A to be standard if both of the algebras N and B are
reducts of A.

Standard algebras play a central role in this thesis in the sense that for our purposes, in
general, a standard algebra containing only the natural numbers and the Booleans is the smallest
algebra over which we wish to ‘compute’.

2.3.8 Variables

Let S be any sort set. We define an S-indexed family of varichle symbols by
X=<X,|seS>

wherein X, for each s € S is either a finite (possible empty) or countable infinite collection of

variable symbols of sort s.

2.3.9 Terms

Let ¥ be any S-sorted signature and let X be an S-indexed family of variable symbols such that
Y and X are pairwise disjoint; that is, such that for each w € §* and for each 5,5’ € § we have
Yy s N X, = @ so that there is no confusion between symbols.

For each s € S we define T(X, X'), the set of terms of sort s uniformly in s € S by induction
on the structural complexity of a term t as follows:
Basis Cases

(1) If t = ¢ for some ¢ € T, , for some s € S then t € T(T, X),.
(2) If t = z for some z € X, for some s € S then z € T(Z, X),.

Induction

(3)Ift=o(ty,...,t,) for some o € &, ,, for some w = s, ---s, € 5+, for some s € S and for
some t; € T(X,X),, fori=1,...,n then t € T(%, X),.

We denote the S-indexed family of terms T(¥, X) defined by
TE,X)=<T(E,X),]se§>.

If a term ¢ € T(Z, X), for some s € § is defined without the use of variable symbols; that
Is, if ¢ is defined without the use of Case (2) of the inductive definition above then we say that
t is either a closed term or a ground term. In particular, we write ¢t € (%), to indicate that ¢

is a closed term and gather together all closed terms into an S-indexed family in the same way
as above:

T(2) =< T(E),|s €85> .
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If ¢t is not a closed term then we say that it is an open term indicating that it contains at
least one variable symbol.

For two terms t and ¢ we say that t s a sub-term of ' denoted t C ¢ if either t =t or ¢
occurs as part of #. For example, if t = add(z,y) and t' = mult(add(z,y),z) then ¢ Ct C V'
and z C ¢/, but z € t.

In the sequel we will find it necessary to replace sub-terms of a term 7 with other terms. For
example, given the terms ¢ and ¢’ as defined above we might wish to replace the variable z with
the term ¢ to derive the term mult(add(z,y), add(z,y)). In order to denote such a replacement
we will use the following notation: given terms 7, n and p we will write

[n/p]

to indicate the term 7 with all sub-terms # replaced by p. Thus, ¢'[2/t] with ¢ and ¢’ as defined

above is mult(edd(z,y), add(z,y)). If 7 is not a sub-term of v then we define 7[n/p] to be simply
T itself.

Finally, in Chapter 7 we will also find it useful to extended this notation by replacing a set of
sub-terms of a term relative to some indexing in the following way: for some term 7 and terms
n; and p; for i =1,...,n € Nt we will write

i/ pilit
to mean

(((rm/pi D2/ pa]) - - )n/ pn])

wherein the bracketing is simply for clarity to indicate the order in which we assume the replace-
ments take place as this may be significant in the case that either n; C n;, for some 7,k € {1,...n}
such that j < k, or 1; C p; for some j,k € {1,...n} such that j > k.

2.3.10 Term Evaluation

Given an algebra A and a function 7: X — A a term evaluation map is an S-indexed family of
functions

Vi=< V. T(8,X),— A, |s€ 85>

that interprets every term as an element in the carriers of A. In particular, a term evaluation
map V] : T(X,X), — A, (ambiguously denoted V7) is defined uniformly in s € § by induction
on the structural complexity of a term ¢ as follows:

Basis Cases

(1) If t = ¢, for some ¢ € £, , and for some s € S then
V(t) = ¢t
(2) If t = z, for some z € X, and for some s € S then

Vi(t) = n(t).
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Induction

(3) If t = o(ty,...,t,), for some 0 € ¥, ,, for some w = 5,---5, € S*, for some s € § and for
some t; € T(L, X),, fori=1,...,n then

V(1) = cAVI(E), ..., VI(E)).

Term evaluation maps will play a significant role in the formulation of a denotational semantics
for the specification language PREQ in Chapter 5.

2.3.11 Equations

Using terms we are now able to formally define the concept of an equation and systems of
equations.

Let ¥ be any S-sorted signature and let X be an S-indexed family of variable symbols such
that ¥ and X are pairwise disjoint. We define EQ(X, X), the set of equations of sort s such
that e € EQ(X, X), if, and only if e is an expression of the form

t=1t

for some t,t € T(%, X ),. Similarly to terms, we also gather together equations into an S-indexed
family EQ(Z, X') defined by

EQ(S, X) =< EQ(S, X), [s€ § >

and draw a distinction between closed and open equations; that is, if e = (¢ = t') for some
t,t' € T(X), then e is a closed equation denoted e € EQ(X),. Otherwise, if e = (¢ = t') for some
t,t' € T(X, X), such that either ¢t € T(L), or t’ & T(X), then e is an open equation. Again, we
gather together closed equations into an S-indexed family

EQ(E) =< EQ(X),|s€ S >.

Extending the use of our term replacement notation defined above, in the sequel for some
equation e = (¢t = t') and for some terms 7 and 7/ we will write e[r/7'] to mean the equation
tr/r') = [/

For the purposes of this thesis we define a system of equations E = {ey,es,...,¢,} to be
a finite set such that e; € EQ(X,X) for i = 1,...,n € N* and write £ C EQ(X, X). For
example, if ¥ is some standard signature and X 2 {a} wherein z is of sort b then the system
of equations E* C EQ(X, X) defining the standard operations of the Boolean algebra is defined
by: EB = {not(tt) = [f,not(ff) = tt,and(tt,z) = z,and(z, tt) = z,and(z, ff) = ff,and(ff,z) =
[or(tt,z) = tt,or(z, tt) = tt,or(ff,z) = z,or(z, ff) = z}.
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2.3.12 Term Re-Writing Systems

The concepts of term re-writing and term re-writing systems (TRSs) will play a fundamental
role in Chapter 7 and 8 wherein we automate the process of making formal deductions about
the correctness of SPSs relative to a specification. However, while term re-writing is based on
straightforward ideas it is a complex area of research with many subtleties. Therefore in this
section we present an informal overview of the key ideas underlying the subject that will be
sufficient to understand the theorems presented in Chapter 7. The reader that does not find
this brief and informal account sufficient is directed to Dershowitz and Jouannaud [1990] and
Klint [1993] for more detailed introductions.

Essentially, a TRS is a system of equations £ C EQ(X,.X) wherein cach ¢ = (¢t = ¢') € E
is orientated into what is referred to as a re-write rule, denoted ¢ — ¢’ indicating that for the
purpose of deduction we will only use an equality in one direction. However, we may include
either of the re-write rules ¢t — ¢’ and ¢ — ¢ or both in a TRS if we wish. In particular, we
write TRS(X, X), to denote the set of all sets R constructed from each set £ C EQ(X, X), in
this way; that is, R C TRS(X, X), if, and only if there exists a corresponding £ C EQ(Z, X),
such that for each e = (¢t = t') € E we have either t +— t' € R,or ' — t € R,ort — t' € R
and t' +— t € R. We also gather each TRS(X, X), for each s € § into an S-indexed family
TRS(Z, X).

The motivation for working with a TRS rather than a system of equations is that it provides
a mechanism by which we may automate equational deduction. In more detail, Birkhoff’s
Soundness and Completeness Theorem (see for example Meinke and Tucker [1992)) shows (1)
that any equation that can be proved using equational logic is valid — soundness; and (2) that
any equation that is valid can be proved by equational logic — completeness (see Chapter 7).
This result is very useful from the perspective of formal verification as it shows, in a precise
mathematical sense, that for reasoning about equations the formal deduction system provided
by equational logic is ideal. However, from the particular perspective of automated verification
it is not straightforward to implement equational logic directly to provide the basis of verification
tools, and so this has stimulated research into term re-writing.

More specifically, it is the combination of Birkhoff’s Theorem with a further fundamental
result — the Correspondence Theorem (see for example Klop [1992]) — that has stimulated term
re-writing research. In particular, the Correspondence Theorem shows that if we form a TRS
from a system of equations E by orienting each equation as both a left-to-right and right-to-left
re-write rule then the set of equations that were deducible from E using equational logic is
precisely the set of equations that is deducible from R using term re-writing. Therefore, term
re-writing is equivalent in its proof theoretic strength to equational logic, and in addition from
the perspective of implementation is more straightforward.

Given a term ¢ and a TRS R containing a rule 7 = (17— p), term re-writing is based on the
principle of re-writing t to some equivalent 7 using r (written either ¢t —, 7 or just t —p 7 if the
rule used from R is either understood or unimportant) relative to some appropriate substitution.
For example, if ¢ is the term and(tt, ff), R is defined by orienting each equation in E® (as defined
above) into a left-to-right re-write rule, and the rule r taken from R is and(tt,z) — z then
t —, [f with the substitution = ff. Thus informally, a substitution is nothing more than an
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instantiation of the variables in 1 that makes n syntactically identical to a (part of) term ¢, and
the result of re-writing with this substitution is ¢ (with that part) replaced with p under the
same substitution of variables.

It is clear how given a TRS R C TRS(X, X) the process of automatically re-writing a term
can be readily implemented. In particular, we can decide if an equation e = (¢ = ¢') € EQ(Z, X)
is valid by repeatedly re-writing ¢t and ¢’ with rules from R (written t —+p 7 and 7/ ——pg ')
and testing to see if 7 = /. Iowever, this technique now raises several points. First, recall
that in general to make an equivalent TRS R from a system of equations £ the Correspondence
Theorem required that we had to add a re-write rule to R made by orienting each e € I as both
a left-to-right and right-to-left re-write rule. Specifically, in general a TRS R may either have
two rules of the form r; = (9 — p) and 7, = {(p — ) or two rules of the form r| = (5 — p’)
and 7, = (7'~ p”) and so it not clear that: (1) re-writing a term is a terminating procedure;
and (2) re-writing a term has a unique result. We will show ibat it is straightforward to deduce
that a TRS created from a PREQ specification has precisely these two properties and hence is
ideal for automated reasoning.

The basic term re-writing concepts that we have discussed are made precise in the following
definitions, that also include some further terminology we will use in the sequel.

Let R C TRS(X, X) be any TRS and let ¢t € T(E, X) be any term.

Definition 1. The term t is a normal form under R if there is no rule r € R such that ¢t —, 7;
that is, if it is not a reducible expression (redez) under R.

Definition 2. R is weakly terminating (also called weakly normalizing) if for each term ¢ there
exists a normal form v such that t ——p v.

Definition 3. R is strongly terminating (also called strongly normalizing) if for each term ¢ the
rules of R cannot be used to re-write ¢ an infinite number of times.

Definition 4. R is confluent (also called Church-Rosser) if for each term ¢ if ¢ ——p5 7 and
t ——p 7' for some terms 7,7’ then 7 —-p p and 7 —— 5 p for some term pu.

Definition 5. I is complete if R is both strongly terminating and confluent.

Definition 6. R is left-linear if for each rule r = (n +— p) € R each variable ¢ € X occurs at
most once in 7.

Definition 7. R is overlapping if there exist two rules r = (5 — p),»' = (#/ — p') € R
(including the case where » = r’) such that there exist ground-term substitutions ¢ and ¢’ that

make ¢(n) a proper sub-term of ¢’(n'), and the outermost function symbol of ¢(n) occurs as part
of n'.

Definition 8. R is orthogonat if it is left-linear and non-overlapping.

18



2.4 Streams, Stream Transformers and Stream Processing

We now formalize algebraically the three most fundamental concepts in the context of our
research: streams, stream algebras and stream transformers. This also enables us to give a
rigorous definition to the ideas of stream processing systems and stream processing. In particular,
we classify the types of stream processing systems that can be found in the literature to allow
us to use a concise notation in our literature survey in Chapter 3.

2.4.1 Clocks

A clockis any algebra isomorphic to the natural numbers; that is, any algebra that is identical up
to a re-naming of constants and operations in the underlying signature. We will denote a clock
by T = (T;0; succ) and use the distinguished sort symbol t to name the set 7" = {0,1,2,...}.
As such, because N and T are essentially the same algebra in the sequel we will sometimes use
N and T interchangeably and similarly n and t.

2.4.2 Streams and Stream Algebras
Let A be any standard S-sorted ¥-algebra. For each s € § we denote a stream of sort s by
[T — Al,.

A typical member a € [T — A], is a function a : T — A, such that for each ¢t € T the tth
element of a is written a(t). We will denote the set of all streams over algebra A by [T — AJ;
that is,

[T — A] = {{T — 4], | s € §).

In addition, we denote an arbitrary Cartesian product of stream carriers of length n € N from
A by [T — A]*. When we wish to be specific about the type of each member of a Cartesian
product of stream carriers we will write [1" — A]* for some u = s, ---s, € St to denote

[T — Al,, x -+ x [T — Al,,.

We define § = S U {s]|s € §} with the intention that s names the set [T — AJ,.
We define the S-sorted signature

L=<, Jves,ses>
wherein for each w € §” and for each s € §

YusU{eval,} fw=ts;
- Lus otherwise.

We define A to be the S-sorted X-algebra wherein for each s € §, A, = A,, A, =T — 4],
and evald: T x [T — A], — A, is defined by

(VteT)(Vae [T — A],) evaldt,a) = a(t).
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2.4.3 Cartesian Products in Stream Algebras

Often when working with stream algebras we will assume that the elements of a Cartesian
product ¢ = (ai,...,a,) for some n € N can be taken from both stream and non-stream
carriers. To avold any confusion in later sections we now clarify the use of our notation when
working with vectors in stream algebras.

For any standard algebra A the algebra A comprises sets of ‘ordinary’ data A, = A, and
sets of stream data A, = [T — A], for each s € §. Furthermore, we will see Cartesian products
of data sets over A oc—curring in three ways. I'irst, for w € §* the Cartesian product A" is just
A" by the definition of A; that is, A" is a product of ordinary data sets only. Secondly, again
for w € S, we define

[T — A = [T — Ay, x - x [T — Ay,
representing a product of stream data sets only. We also use A* to denote [T — A]*. Finally,
we will see mixtures of ordinary and stream data sets in a Cartesian product such as A" for
w e St. For example, if w = 5, 8, 83 € §” then

A" = A, x [T — A],, x A

33

2.4.4 Stream Transformers

Let A be any S-sorted algebra. If
F T — A" x A - [T — A}’ x AY

is some function for some u,v, 2,y € §* such that |u| + |v| > 1 then we say that F' is a stream
transformer. In particular, initially we will be interested in stream transformers of the form

F [T — AP — [T — A

for some u,v € ST that is, stream transformers with no non-stream input and no non-stream
output. However, in Chapter 4 we will make our theoretical tools sufficiently general to model
the extended forms of STs that we will encounter.

2.4.5 Stream Processing

For the purposes of our work we define stream processing to be the study of stream transformers.
Given that much stream related research is concerned with distributed processing we feel that
this definition is appropriate as it encompasses both the theoretical and practical aspects of
the field; that is, the theoretical study of STs as abstract functions and also of their (network)
implementations. The distinction between abstract STs and their network implementations is
made precise in the following section.
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2.4.6 Stream Processing Systems

As we have already outlined, within computer science STs are typically implemented and studied
as systems composed of a collection of separate, but communicating processes that receive stream
data as input and produce stream data as output. In order to emphasize the distinction between
STs in abstract and their implementations we will refer to networks comprised of a collection of
separate processing elements as stream processing systems (SPSs).

A typical SPS with n input streams (sources), m output streams (sinks), and k processing
elements (usually called filters) is a distributed processing system 6 with functionality

0:[T — A]* — [T — A]’

for some u,v € St for some S-sorted algebra A. SPSs are naturally visualized using a directed
graph as shown in Figure 2.1 — the reason for the particular annotation on this SPS is made
clear in Section 2.5.

X8

Figure 2.1: A Stream Processing System
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2.4.7 Classifying SPSs

Because so much of the stream processing research in the literature is concerned with SPSs it is
useful to be able to identify the different types of SPSs concisely. In particular, we will classify
SPSs by the following three main characteristics:

(1) Either synchronous or asynchronous filters.
(2) Either deterministic or non-deterministic filters.
(3) Either uni-directional or bi-directional channels.

Furthermore, we will use the following shorthand notation to denote SPSs that are designed to
model networks with specific combinations of these properties: ¢§v-SPS, wherein ¢ € {S, A},
6 € {D,N},and v € {U, B}. For example, using this classification a synchronous, deterministic
SPS with unidirectional channels is denoted SDU-SPS, and an asynchronous, non-deterministic
SPS with bidirectional channels is denoted ANB-SPS.

2.5 Kahn’s Work

2.5.1 Domain Theory

To understand the traditional approach to formalizing the semantics of SPSs the reader will
need to be familiar with the following basic concepts from the theory of domains: complete
partial orders (CPOs), monotonicity, continuity and least fized points. In particular, the primary
theoretical result from domain theory of interest is this section is the following theorem:

Theorem 1. Kleene’s First Recursion Theorem. Let A and B be any CPOs. If the

functional

F:(A~ B)— (A~ B)
is monotone then F' has a least fized point.

For the reader not conversant with these ideas an introduction to domain theory can be
found in Stoy [1977], Scott [1982], Plotkin [1983], and Stoltenberg-Hansen et al. [1994].

2.5.2 Kahn’s Work and the First Recursion Theorem

In 1974 G Kahn published what has become an influential paper in the stream processing liter-
ature (see Kahn [1974]), wherein he introduced a simple parallel language for representing SPSs
in an ALGOL like style. In particular, it is the generality of the method Kahn introduced to
provide a semantics for this language that has enabled his techniques to be used as a language
independent denotational semantic model for both SDU-SPSs and some ADU-SPSs (see Sec-
tion 3.3.3). Indeed, Kahn’s method has been widely adopted by researchers as a semantic model
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for many types of SPSs.

In this section we discuss Kahn’s method in some detail in order that we may clarify certain
points in later sections when we compare and contrasts existing techniques with Cartesian form
specification. Therefore, as we indicated previously, this section can be omitted on a first read-
ing.

Kahn’s Motivation.  The language that Kahn described in Kahn {1974] was designed to
represent fixed, idealized, asynchronous networks of processes communicating by what Kahn
called ‘FIFO queues’. Kahn invited the reader to visualize such networks as a set of generalized
Turing machines (see for example Hopcroft and Uliman {1979]) each with its own work tape,
and connected via one-way ‘communication tapes’.

Kahn’s interest in such a language was not motivated by the development of a user-friendly
programming methodology for describing ADU-SPSs. Rather, Kahn was interested in how to
prove formally properties of programmes written in such a language. In particular, properties
of the networks that this language could describe including computational properties such as
termination and non-termination.

A Syntax for Kahn SPSs.  Before it was possible to formalize the semantics of Kahn’s
language he needed to formalize both the syntax and the semantics of the abstract networks he
wished to describe, and indeed it is this element of Kahn’s work that has been widely adopted
by other researchers.

Specifically, Kahn formalised a SPS as a directed graph using the following basic assump-
tions: (1) arcs are divided into two sets: input and output arcs that are not allowed to either
branch or merge (see Section 3.10); and (2) the ith output arc comes from the ¢th node. How-
ever, for the purposes of our explanation of Kahn’s work we will adopt a slightly more general
framework, although for ease of exposition we will still assume that nodes only have one output
arc. In particular, following the style of Kahn, if a node N; representing a ‘process’ P; hasn > 1
outputs then we will assume that N; = (N{,..., N}) wherein Nj“ for j =1,...,nis a sub-node
occupying the same position as N*.

A Semantics for Kahn SPSs.  Kahn observed that the (possibly infinite) sequences of

data from some data type D passing along the arcs of SPSs (referred to as either queues or
histories), could be formalized mathematically as the set

D* =T — D] | J D™
neN

that is, the union of all infinite and finite sequences. (This is the generalized notion of streams
that we refer to in the sequel.) Moreover, Kahn also noticed that by associating the usual partial
ordering with D* that D is a CPO. More specifically, Kahn observed that it is possible to view
a network NV with n € N input arcs and m € N output arcs as computing a functional

FY . (D“)* — (D*)™.
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In addition, with the assumption that each node in cur graph representing a processes computes
a continuous function the functional I is itself continuous and hence it is possible to apply the
First Recursion Theorem to show that the least fixed point of the functional F'V is the required
semantics of the network N.

In fact Kahn showed that this technique can also be applied to formalize the semantics of
the language that he introduced for describing SPSs. He achieved this as follows.

Kahn SPSs as Systems of Equations. Let P be a programme over some continuons
S-sorted algebra A implicitly describing some ADU-SPS N. I'urthermore, let the network N
consist of P = (Py,..., P;) processing elements, [ = ([,,..., ;) inputs arcs of sort 3]( € 5 for
j=1,...,0and O = (Oy,...,0) other arcs of sort s € § (either output or internal) for
§=1,...,k for some k,l € N*; wherein associated with each P; for 1 = 1,...,k we have:

(1) A function

3,1

A, w AW . w
FUAY ) A A

for some s; € S and for some s;, € S forp=1,...,n; € N* and

(2) Three architecture indicators:
= (rl,..., 1) € {I,0}",

77i = (7717' . '777i;.) € {11 sy max(k,l)}"‘,
and
x:{1,...,k} = {1,...,k}
defined such that for g =1,...,n; € Nt

b {I if the gth input to process ¢ is from an input arc, and
q

O if the qth input to process ¢ is from an internal arc;

; v if the gth input to process ¢ is from I, for some v € {1,...,{}, and
Ny = . . ..
w if the gth input to process 1 is from O,, for some w € {1,...,k};

and for each n € {1,...,k}
x(n) = m <= P,’s output is arc O,,.

Finally, let a = (ay,...,4) € (A‘{”"{)“’ be the input to programme P.

Constructing Equations to Formalize P. Kahn’s method is now to construct a system
of equations Ep(L U, Xp) wherein F = {fi,..., fi} such that (by,...,b,,) is a solution to the
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system of equations Ep(S UF, Xp) if an only if F'¥(ay,..
he defined Fp(X UF, Xp) as follows:

EP(E U IFa 4'YP) = {

—
I
=l

—

J:[I :ah

-L'? = f,\/(l)(Yl,]a .-

I? = fx(k)(Yk,la .

wherein forz=1,...,kand for g =1,...,n;

Yij=1,
wherein

T = TJX“)
and

n =,

Gay = (by,..

. b)) To achieve this

'v}/l,nl)»

oY)}

Example 1. Tollowing the example given in Kahn [1974], from the program describing the SPS

shown in Figure 2.1 we derive the following:
P = (Ply ..

I'= (L),

O = (04,0y),
JA=fiAxA— A,
3 =g A= A,

f=g:A4— A4,
S =
A =hy: AX A— A,

fsAZkl?A‘*A,

=k A

hi:Ax A— A,

-7P7):(PllaplzaP22)7Pf7P23’Pf7P24)’

=) =1"=) =),
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M= (e ) = = (70, ) = (0,0),
= (nsm) = 0" = (0], m) = (3,5),
= () =1"= (1)) = (),

= () =n"=(n) = (1),

and
={l~1,2—~4,3~3,4— 25— 7,6 6,7~ 5};
and

E[J(EU {flv"'7f7}7‘YP) = {

1

L1 :?1-7
xlo = f(:l’l{?xzo)v
z9 = hy(z29,22),

23 = gi(z?),

xﬁo = 1”2(3'?)5

Ig = ki(z 'O)v

x?:h(.t3,g,5) }
As Kahn now observed it is a well-known mathematical result (Kahn cited Milner [1973], but a
more recent reference is Stoltenberg-Hansen et al. [1994]) that such a system of equations over
CPOs admits a unique minimal solution; that is, a least fixed point, and in particular this least
fixed point is the value

FN(al,...,(ll) = (bla-'-ybk)

that we tequire. (For a proof of this fact Kahn directed the reader to Cadiou [1972].)
Furthermore, Kahn observed that by adopting a fixed-point semantic approach that Scott’s
Induction Rule (Kahn cited Manna et al. [1973]) and several techniques for proving properties

of recursive programs found in Vuillemin [1973] are now available including structural induction
and recursion induction.

Conclusion. While we admire Kahn’s work we have several specific objections to the methods
he developed from the perspective of the development of software tools and from the perspective
of the automated verification of SPSs. We return to these points in Section 3.10.
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Chapter 3

A Survey of Stream Processing

Comparisons are odourous.

Shakespeare
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3.1 Introduction

The origins of stream processing research can be traced back at least as far as the early 1960s,
although not always in a form that is immediately recognizable as such today. Since that time
individual research has typically been applications driven and has concentrated on developing
specialized stream processing systems rather than developing a theory concerned with the gen-
eral issues arising out of stream-based computation. For example, dataflow is considered to be
a canonical example of stream processing research, but dataflow is predominately concerned
with the development of parallel processing techniques. In particular, this is highlighted by the
fact that dataflow is often considered to be a specialized implementation method for functional
programming rather than a separate area of research. Indeed, in general we believe it is fair to
observe that with a few exceptions stream processing systems have essentially been used as a
convenient tool in research that has been concerned with other issues. Consequently, a coherent
theory of stream processing based on the study of abstract stream transformers has not emerged
in the literature.

In light of the rather eclectic nature of stream processing research, especially from the per-
spective of semantics, we believe it is particularly important to examine the existing stream
processing literature in some detail. Therefore, before we present an overview of the main topics
that we will address in this thesis we will use a literature survey to motivate the theoretical and
practical issues that we wish to address.

In Section 3.2 we begin our analysis of the literature with a brief historical perspective of
the development of stream processing from the early 1960s to the present day.

The three sections following this overview are devoted to a more detailed analysis of some
of the individual approaches to stream processing: dataflow (Section 3.3); specialized functional
and logic programming (Section 3.4); and reactive systems and signal processing (Section 3.5).
In each case we discuss the basic motivations and ideas underlying each paradigm. However,
for convenience in order to clarify certain issues relating to computability theory and language
design we have deferred the topic of stream processing primitives and languages arising in this
research until Sections 3.7 and 3.8. The first part of our literature survey is concluded in Sec-
tion 3.6 where we mention briefly some topics related to stream processing,.

For emphasis, in Section 3.9 we discuss a topic of particular interest in this thesis: the use of
streams in the design and verification of hardware. This leads into our discussion in Section 3.10
that gives a detailed summary of the research presented in this thesis and how it relates to the
existing stream processing research that we have discussed. In particular, we motivate what we
believe are the the advantages of the use of algebraic techniques in stream processing including
an overview of SCA theory that is the starting point for much of our own research.

3.2 A Brief History of Stream Processing

In this section we present a brief historical perspective of the development of stream processing
over the last four decades. Of course given our general definition of stream processing it is
impractical to survey every paper that is in some way related to the use of streams as either a
theoretical or practical tool. Therefore, we mention only either well-known research or research
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that we believe is representative of a particular topic within stream processing, and that provides
a useful starting point for any further reading the reader may wish to undertake. Research topics
that we believe are most important are analysed in more depth in the following sections.

3.2.1 The 1960s

Within computer science the term stream has been attributed to P J Landin (see Burge [1975])
formulated during his work on the correspondence between ALGOL 60 and the A-calculus (see
Landin [1965a] and Landin [1965b]).

The first type of SPSs that can be identified within the literature are dataflow systems that
have certainly existed, although not always under the name ‘dataflow’, as early as the late
1960s (see for example Mcllroy [1968] and Adams [1969]). The term dataflow originates from
the term data flow analysis (see Ackerman [1979]) used to evaluate potential concurrency in

computations.

3.2.2 The 1970s

The first dataflow language, and probably still the most famous, is LUCID (sce Wadge and
Ashcroft [1985]) that was conceived in 1974. LUCID is based in part on the language POP-2
(see Burstall et al. [1971]), that allowed a limited use of streams. Other relevant dataflow
references from the 1970s are Adams [1970], Kosiniski [1973], Dennis [1974], Weng [1975] and
Arvind et al. [1979]).

As discussed in Section 2.5 in 1974 G Kahn published his well-known work outlining a sim-
ple parallel programming language designed for representing SPSs using a fixed-point semantics.
The use of a fixed-point semantics for SPSs in the style of Kahn’s work is common in the liter-
ature, and for this reason SPSs are sometimes referred to as Kahn networks.

In 1975 W Burge (see Burge [1975]) discussed the use of streams as a method for structured
programming and introduced a set of functional stream primitives for this purpose.

In 1976 P Henderson and J H Morris (see Henderson and Morris [1976]) and D P Friedman
and D S Wise (see Friedman and Wise [1976]) published their work on lazy evaluation techniques
that are useful for computing with infinite data types of which streams are an example.

In 1977 G Kahn made another contribution to the field with his joint paper with D Mac-
Queen (see Kahn and MacQueen [1977]) wherein they introduced a language designed to model
distributed process interaction using ideas from Kahn [1974].

3.2.3 The 1980s

Dataflow continued to be an area of widespread rescarch during the 1980s and several additional
semantic models for dataflow were introduced, for example, Faustini [1982], Bergstra and Klop
[1983], Staples and Nguyen [1985], Stefanescu [1987a], Stefanescu [1987b], Kok [1987a] and
Jonsson [1988].

Logic programming languages also began to be used to model SPSs. A modification of
PROLOG used to model what have become termed perpetual processes (see Lloyd [1984]) within
logic programming was introduced in Bellia et al. [1982].
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Functional programming languages were also used widely to model SPSs. Notable in this
area is the work of M Broy and his use of functional languages to study stream based distributed
processing (see for example Broy [1983], Broy [1986], Broy [1987a], and Broy [1987b]).

In 1985 the first paper on the subject of synchronous concurrent algorithims (SCAs) was
released. Conceived by B C Thompson and J V Tucker, SCAs have been the stimulation for
much of our own work into stream processing (see Section 3.10 where we give a full list of
references on the subject of SCAs).

The year 1985 also saw the publication of a paper by D Harel and A Pneuli (see Harel
and Pnueli [1985]) on the subject of reactive systems. Reactive systems, together with signal
processing networks and synchronous dataflow networks — that can be considered as special cases
of reactive systems — have been the stimulation for a large body of stream processing research
(see for example Guatier et al. [1987], Caspi et al. [1987] and Berry et al. [1988]).

During the 1980s streams and STs have also been used extensively for hardware description,
for example, Sheeran [1983], Sheeran [1986], Kloos [1987a}, Kloos [1987b], Harman and Tucker
[1988c] and Harman [1989] (also see Section 3.9).

3.2.4 'The 1990s

As with the 1980s semantic models for dataflow are still being developed, for example, Kearney
and Staples [1991], Bartha [1992a], Bartha [1992b], France [1992], and Lee and Tan [1992],
although the work in Bartha [1992a], Bartha [1992b] is concerned with flowchart schemes (see
Leiserson and Saxe [1983]) that has applications to the study of dataflow schemes. A useful
overview of the concept of dataflow with an extensive bibliography can be found in Sharp
[1991].

SCAs continue to be an intensive area of research (again see Section 3.10 for references) as
does research into reactive systems (see for example Beveniste and Berry [1991], Halbwachs et
al. [1991], Guernic et al. {1991], Ratel et al. [1991] and Halbwachs et al. [1992]).

The 1990s have also produced a body of work concerned with the theoretical foundations of
stream processing. In 1992 J V Tucker and J I Zucker (see Tucker and Zucker [1992]) released the
first in a series of generalizations of computability theoretic results from the natural numbers
to algebras with streams. This work is continued in Tucker and Zucker [1994]. In addition,
Stephens and Thompson [1992] presented a theoretical study of the compositional properties of
STs in Cartesian form (Chapter 4).

The theoretical work of K Meinke has applications to the specification, verification and
parameterization of STs (see Meinke [1990], Meinke [1991a], Meinke {1991Db], Meinke [1992a],
Meinke [1992b]) as does the work of K Meinke with L J Steggles and B M Hearn (see Meinke
and Steggles [1992] and Hearn and Meinke [1993] respectively).

Finally, M Broy continues his functional study of distributed processing over streams (see
for example Broy [1990], Broy and Dendorfer [1992], and in particular Broy et al. [1993]).
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3.3 Dataflow

As dataflow networks were the first type of SPSs to appear in the literature we begin our more
detailed survey with an examination of the research aims of dataflow and an analysis of the
semantic models and implementation techniques that have been developed. An more detailed
introduction to the concept of dataflow can be found in Sharp [1991].

3.3.1 Origins

As we have mentioned dataflow research began as far back as the 1960s and continues to be an
area of widespread research. One of the continuing aims of the dataflow approach has been to
avoid the so-called ‘von Neumann bottleneck’ (see Backus [1978] and Backus [1981]) and exploit
the parallelism offered by VLSI technology. As part of this research many experiments with
specialized architectures have been undertaken (the interested reader can consult the bibliogra-
phy of Sharp [1991] for a list of references).

We note in passing at this point that it has been observed that the link between J von
Neumann and sequential computing methods is historically inaccurate, as he was one of the
early advocates of parallel computing methodologies (Kiliminster [1993]). However, we use this

phrase as it can be found in the dataflow literature.

3.3.2 Dataflow Networks

A classical dataflow network is an ADU-SPS, although dataflow computation based on ANTU-
SPSs has also been studied, and more recently dataflow computation based on SDU-SPSs has
been of particular interest. The filters within a dataflow network (sometimes referred to as
coroutines ~ see Mcllroy [1968]- and also agents) compute over streams; that is, [T — A]
wherein A is usually restricted to int, bool, real and lists of these types.

3.3.3 Dataflow Computation and Semantics

The dataflow model of computation can be divided into two basic forms: data driven wherein
filters compute depending upon the availability of data at their inputs; and demand driven
wherein filters request data on the input lines when they wish to compute.

Both of these approaches to dataflow computation can be formalized denotationally in the
style of Kahn. Indeed, as we have discussed (see Section 2.5) a domain-theoretic semantics is
common for dataflow languages. However, as discussed in Kok [1987b] Kahn’s method is not suf-
ficient for some more general classes of dataflow network, for example non-deterministic models
of dataflow computation. Furthermore, ‘straightforward’ extensions to the Kahn semantic model
to cope with non-determinism can fail to be compositional (see Brock and Ackerman [1981] and
also Rabinovich [1993]). Consequently for this and other reasons many other semantic models
have been formulated for dataflow. For example, some recent references include Faustini [1982],
Bergstra and Klop [1983], Staples and Nguyen [1985], Kok [1987a], Kearney and Staples [1991],
Lee and Tan [1992], and France [1992].

Despite the many semantic models for dataflow none seems to have been widely adopted. In
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addition, the formal relationship between these different approaches is poorly addressed in the
literature as is the correspondence between the model of computation provided by dataflow and
formal models of computation. Indeed, it is interesting that despite the fact that the dataflow
approach is in many senses closely related to CCS (see Milner [1989]) that (as far as we are
aware) dataflow has not been formalized using this well-developed formalism. It has been sug-

gested that this is due to the ‘value’ passing nature of dataflow networks that CCS does not

handle concisely.

3.3.4 The Uptake of Dataflow

Despite the extensive body of dataflow research the dataflow approach appears to have had little
impact on the traditional approach to ‘von Neumann computing’. Indeed, even the most well-
known dataflow language LUCID (see Section 3.8.4) has been described as ‘a language looking
for an application’.

The reasons for the poor uptake of the dataflow approach may stem from two different areas:
on the practical side, implementation of the datafiow approach on conventional architecture leads
to inefficiencies, including large and wasteful memory usage, that has required the development
of specialized architectures; and on the theoretical side, as we have already mentioned, the lack
of a clear and straightforward semantics.

Perhaps the recent move toward more parallel architectures will change the current attitude

toward dataflow and the general usage of dataflow techniques.

3.3.5 Synchronous Dataflow

The asynchronous nature of dataflow can lead to problems with non-determinism and associated
anomalous behaviour (see Broy [1990]); and cyclic networks can suffer from deadlock (see Wadge
[1981] and Misunas [1975]). Synchronous dataflow has been developed to avoid these problems.
While each filter in a synchronous dataflow network still has its own clock, rather than a global
clock as the name might suggest, the interplay between these clocks is restricted and ensures
synchronous (and hence deterministic) behaviour.

We discuss synchronous dataflow more fully in Section 3.8.5 when we examine the language
LUSTRE that is used to describe synchronous dataflow networks.

3.4 Specialized Functional and Logic Programming

Functional and logic programming comprises a very broad and diverse area of past and current
research within computer science. However, the theoretical approaches used to incorporate
streams into functional and logic programming languages are in many cases closely related,
and are essentially that of a domain-theoretic approach. Indeed, it is for this reason that
we have grouped these two areas of research together into a separate section of our literature
survey. A detailed discussion of the domain-theoretic relationship between functional and logic
programming languages can be found in Silbermann and Jayaraman [1992].

In Section 3.4.1 we examine the functional approach to stream processing and in particular
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the work of M Broy.
In Section 3.4.2 we look and logic programming with streams, and in detail at a modification

of PROLOG that can be used for stream processing.

3.4.1 Functional Approaches to Stream Processing

The use of the function abstraction operator (A-abstraction) provides a mechanism for the rep-
resentation of STs in functional languages in both second-order and higher-order forms. Indeed,
most dataflow languages are functional languages, and some researchers regard dataflow as a
particular implementation technique for the functional paradigm (see the bibliography of Sharp
[1991] for a list of references on this subject). In particular, within functional programming, STs
are often referred to as being in data passing form and higher-order STs (third-order or above)
are referred to as being in agent passing form.

As dataflow languages and functional languages are closely related, in some sense any func-
tional programming language can be considered suitable for general purpose stream program-
ming. For example, the well-known functional languages LISP, ML and MIRANDA (see Milner
[1984] and Turner [1985]) can all be used to represent STs. However, whether such languages
provide a natural and straightforward mechanism for the specification of STs is less clear and for
this reason several specialized stream orientated functional languages have been developed in-
cluding ARTIC (see Dannenberg [1984]), HOPE (see Burstall et al. [1980]) and RUTH (see Har-
rison [1987]) designed to meet more specific needs such as real-time programming over streams.

Functional SPSs and Semantics. Typically ADU-SPS and ANU-SPS are studied using
the functional paradigm and as with dataflow languages the work of G Kahn has been widely
adopted as a semantic approach for functional stream processing. However, other (sometimes re-
lated) approaches are also used including greatest fized points (see de Roever [1978] and Gordon
et al. [1979]) and Aczel’s logical theory of constructions (see Dyber [1985] and Dyber and Sander
[1988]). In addition, the work of Friedman and Wise [1976] and Henderson and Morris [1976]
on lazy evaluation has provided an implementation technique for functional stream processing

that has been widely adopted.

Applications.  The verification of functionally specified STs has been explored in the lit-
erature. In particular, operating systems have been an area of quite extensive research (see
Jones and Sinclair [1989] for an overview) as the swapping of processes can be modelled using
agent passing stream transformers. An example of operating system specification can be found
in Broy and Dendorfer [1992] and in addition this paper provides an example of how ANU-SPS
can be specified using classes of functions.

As a more detailed example of functional stream processing research we now discuss the
work of M Broy who has made a significant contribution to the development of techniques
for functionally based stream processing. In particular, we discuss the FOCUS project that
provides a functional framework for the specification of distributed systems based on stream
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The FOCUS Project. FOCUS (see Broy et al. [1993]) is based on the work developed in
Broy [1986], Broy [1988a], Broy [1988b], Broy [1989], Broy [1990], Broy and Lengauer [1991],
Broy [1992a], and Broy [1992b].

FOCUS is not a language, but rather a collection of tools and modelling concepts that pro-
vide a framework for the description of parallel distributed systems as concurrent asynchronous
processing elements. Within such networks data is exchanged via unbounded FIFO channels
that are modelled as streams.

FOCUS aims to provide a theory of stepwise refinement and modular development of parallel
systems and includes verification calculii that are intended to provide a formal system to reason
about the correctness of system implementations at various level of abstraction. However, it
is not the intention of FOCUS to provide a theory of stream based distributed processing (see
Broy et al. [1993]).

Despite the fact that FOCUS is a paradigm and not a language it does provide two concrete
representations for expressing STs (as SPS). The first (and most abstract in the sense of specifi-
cation) is the language AL based on AMPL (see Broy [1986]) and the second is the language PI,
based on the work in Broy and Lengauer [1991] and Dederichs [1992]. We discuss the languages
AL and PL in Sections 3.8.9 and 3.8.10 respectively.

Given the specification of an ST in AL the FOCUS paradigm provides transformational
rules (refinements) towards more concrete representations (in the sense of specification). Indeed
within FOCUS a representation is considered to be in its most concrete form (an implementa-
tion) if no further refinements and no further re-writings to another formalism (representation)
are possible. Given this definition the implementation language of FOCUS can be consider to be
PL, although one can imagine that these techniques could be extended to additional languages.

3.4.2 Logic Programming Languages with Streams

As logic programming provides a high-level and useful method of specification for some classes of
systems it is natural that some researchers have explored the use of logic programming languages
for the specification of SPSs. Indeed, there are several examples of modifications of relational
languages for stream processing that can be found in the literature. In Parker [1990] these

languages are divided into three groups:

(1) Committed choice parallel programming systems, for example, PARLOG (see Clark and
Gregory [1985]).

(2) Extension of PROLOG to include either the parallel and or parallel or operators (see for
example Li and Martin [1986]).

(3) Extension to PROLOG to include functional constructs, for example, Kahn [1984], Lind-
strom and Panangaden [1984], Subrahmanyam and You [1984], Naish [1985], Bellia and
Levi [1986], and DeGroot and Lindstrom [1986].

However, a different classification can be found in Bellia and Levi [1986] wherein logical languages

for programming with streams are divided into two groups:



(A) Languages based on static input-output mode variable declarations for example the lan-
guages of Clark and Gregory [1981] and van Emden and de Lucena Filho [1982].

(B) Languages based on dynamic variable annotations for example Clark and Gregory [1983],
Shapiro [1983] and Subrahmanyam and You [1984].

While we are not aware of any work in the literature that describes the relationship between
these two classifications, it is possible to make the following general comments on the methods

used to incorporate the use of streams in logic programming.

Describing SPSs as Relations. The use of the term ‘coroutine’ in relational languages does
not directly imply the use of streams (see Parker [1990]). However, typically logic programming
languages modified for stream programming are designed to represent ADU-SPSs, although the
particular description of ADU-SPSs will of course depend on the stream processing operations

and types of concurrency allowed in the particular language.

The Use of Streams. As with the functional approach streams are treated as the union of
finite and infinite sequences. In particular, streams are typically implemented as finite lists, al-
though the declaration and manipulation of infinite lists (and hence streams) may be permitted.
However, the use of infinite lists in some relational languages may be non-terminating as they
tend to use eager evaluation.

Specialized logic programming languages extended with non-strict processes and lazy eval-
uation to cope with stream programming are sometimes termed perpetual processes (see Lloyd
[1984]) and have many similarities with functional languages. (A survey of the relationship be-
tween logical and functional languages can be found in DeGroot and Lindstrom [1986] and Bellia
and Levi [1986].) Alternatively, relational languages can be modified to cope with streams by
eliminating the occurs check, although this can lead to ‘unsound inferences’ (see Parker [1990]).

Semantics. Several semantic approaches have been adopted for dealing with perpetual pro-
cesses including a fixed-point semantics in the style of Kahn. A discussion and comparison of

these approaches can be found in Levi and Palamidessi [1988].

Languages. In addition to the specialized logic programming languages we have already
mentioned in Section 3.4.2 we look in detail at a modification of PROLOG to cope with the use

of streams.

3.5 Reactive Systems and Signal Processing Networks

The reactive system paradigm (see Harel and Pnueli [1985]) and signal processing paradigm are
conceptually closely related. The essential difference between the two approaches is that reactive
system research is concerned with SDB-SPSs and signal processing is concerned with SDU-SPSs;
that is, in reactive systems channels are bidirectional. Consequently, from this point we will use
the term ‘reactive systems’ to mean both reactive systems and signal processing networks.

35



Reactive systems are designed to model real-time systems such as operating systems and
process control programs that ‘repeatedly respond toinputs from their environment by producing
outputs’. Stream communication provides a natural method for the specification of real-time
systems. However, real-time system specification is not limited to this technique and is the reason
that in general real-time system theory is less related to stream processing than the specialized
real-time system research explored in reactive system theory. Therefore in this section we discuss

reactive systems as a separate topic.

3.5.1 Streams, Signals and Sensors

Reactive systems and signal processing systems communicate via signals that are related to our
concept of streams. Signals are divided into two types: pure signals that are un-typed and
simply communicate an ‘event’ that can be used for synchronization; and typed signals that
communicate data. Within the reactive system paradigm signals may be used for both input
and output, but we note that typed signals are only used for input and are referred to as sensors.
Given this informal definition signals in signal processing networks are all sensors. A comparison
of typed signals and streams can be found in Section 3.8.7.

3.5.2 The Strong Synchrony Hypothesis and Multiform Time

The reactive system paradigm is based on what is referred to as either the strong or perfect
synchrony hypothesis (see Berry and Gonthier [1988]) that requires all filters within a network
to react instantly to input producing a corresponding output in zero time. As a consequence
the whole computation performed by a reactive system is ‘instantaneous’. In addition, reactive
systems also use what is referred to as a multiform notion of time (see Berry and Gonthier
[1988]) wherein signals (streams) may be used as a time unit. As such co-operation of sub-tasks
(processes) defines new temporal relations that are used to define the global ordering of the data

(compare Harman [1989] — see Section 3.9).

Semantics.  The semantics of reactive systems have been formalized using temporal logic
(see Pnueli [1986]). In addition, Pnueli [1986] also includes a comparison of several different
semantic approaches to general concurrent systems and how these approaches can be applied to

reactive systems.

Languages. In Sections 3.8.5, 3.8.7, and 3.8.8 we describe three languages for programming
reactive systems, respectively LUSTRE, SIGNAL, and ESTEREL, and contrast the different
approaches that they take.

3.6 Other Stream Processing Formalisms

3.6.1 ALPHA

While the language ALPHA (see Dezan et al. [1992]) is not specifically a stream processing lan-
guage we mention ALPHA here as it is described by its authors as ‘...a grandson of LUCID. ..’
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and is used for the design and synthesis of systolic VLSI (sce Verge et al. [1991}). In particular,
ALPHA is an equational language that involves a generalization of stream variables that can be
used to represent a ‘spatial domain’; that is, a (possibly infinite) matrix indexed by a sub-set of
Z". For example, if variable X is declared on the domain D defined by

D={()]i>0,1<j<2}

then X represents a matrix
[ Z1,15%1,2, 21,35+ -

Ta15%22,L235-

Using this methodology if variable Y~ was declared over domain D’ defired by
D' ={i]i>0}
then Y would essentially be a stream

Yos Y15 Y2, Y35+ - -

To compute over spatial domains ALPHA uses a generalization of point-wise extensions
called ‘motionless operators’ whose semantics is formalized denotationally in the style of Kahn.

3.6.2 Stream X-Machines

Stream X-machines (see Holcombe and Ipate [1994]) are based on the X-machine model of
computation (a generalization of the Turing Machine — see Holcombe [1988]) that allow streams
as both input and output. Stream X-machines have been used in the study of system testing
and verification for which the authors claim they offer significant advantages.

3.7 Stream Processing Primitives and Constructs

3.7.1 Introduction

As we have already discussed one of the main motivations of our reserach is the development
of a mathematically well-founded, high-level language that is suitable for the formal specifica-
tion and formal verification of systems that compute over streams. In particular, we require a
formalism for representing STs that is independent of implementation issues; that is, a specifi-
cation language for STs that does not either require or imply that any implementation will use
a specific type of SPS. Indeed, we require that the representation of a ST does not imply an im-
plementation as a SPS at all. Furthermore, we also require that the specification language does
not imply the use of any particular language for the representation of a suitable implementation
of the abstract ST.

Of course it is fair to observe that these pre-conditions for our stream processing language
seem rather obvious. Moreover, it is correct to observe that these requirements are necessary
of any specification language that can be classed as abstract whether it specifies either stream
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based computation or not. Despite this fact, as we will show in this section, given the pre-
occupation of stream processing research with distributed processing we believe none of the
specialized languages that exists in the literature satisfy these requirements. Indeed, we believe
that this fact becomes self-evident from even an informal examination of these languages’ syn-
tax and stream processing constructs. In contrast, we believe that these languages should be
considered as useful specialized implementation languages.

However, we still believe that a detailed analysis of these languages is appropriate as in
Chapter 6 it will enable us to demonstrate that our specification language ASTRAL is suffi-
ciently expressive to represent abstract specifications of implementations written in many of the
existing stream processing languages that we discuss. Furthermore, this analysis will enable us
to discuss computability theoretic issues relating to the use of each stream processing primi-
tives.

Therefore, in this section we analyse in some detail the abstract stream processing primitives
and constructs that can be found in the literature; and in the following section we look at specific
languages that can be found to specify the particular classes of stream processing systems that

we discussed in Sections 3.3, 3.4 and 3.5.

3.7.2 Common Functional Stream Processing Operations

As explained in Section 2.5 it is common for stream processing languages to be formalized using
a domain-theoretic semantics. As we have discussed a domain-theoretic semantics requires that
all operations be continuous, and further that streams be generalized to include finite sequences
with an appropriate partial ordering. (This is true of most functional approaches to stream
processing.)

In this section we describe informally the typical functional stream processing primitives that
can be found in the literature using the generalized concept of a stream. (However, we note in
passing that these primitives are used in other formalisms as well, sometimes under a different
name.) This formalization is based on the description given in Broy and Dendorfer [1992].

Functional Stream Processing Primitives Let A be any continuous algebra with an appro-
priate partial ordering for each carrier. We use A = [T — AJ|J A" to denote the set of all finite
and infinite sequences (generalized streams) wherein <> € A denotes the empty sequence and
—» denotes a continuous mapping.

(1) Stream construction operator. We define the stream construction operator, denoted :

with functionality :: A — A% —» A by (in infix notation)

(Va€ A) (Vs € A¥) as =

b

wherein if |a| < |[N| then

(vt e{ |s] B 1) = e !
vt € {0,...,]|s|+1 8
s(t —1) otherwise

and if |a| = |N| then s’ = a.
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(2) Concatenation. We define the concatenation operator, denoted o, with functionality

o: A¥ — A% — A¥ by (in infix notation)

(Yae A¥) <>ea=a

and
(V(as),s" € A¥)  (a:s) e s’ =a:(ses').

(3) First element selection. We define the head operator, denoted hd (and also first),
with functionality hd : A¥ — A* by

hd. <> = 1

and
(V(a:s) € A)  hd.(a:s) = a.

(4) First element elimination. We define the tail operator, denoted ¢! (and also rest), with
functionality ¢l : AY — A“ by
tl. <>=<>

and
(V(as) € A¥)  tl(a:s) = s.

(6) Last element selection. We define the last operator, denoted last, with functionality
last : A — AL by
1 if s = <> or |s| = |N|;
(Vs e A¥) last.s=(a if s =< a> for some a € A;

last.(tail.s) otherwise.

(7) Filtering. We define the filter operator, denoted (©, with functionality @) : p(A) — AY —
A“ by (in infix notation)
(VS € p(A)) SO <>=<>

and

S©s ifadgs;

a:S©s otherwise.

(VS € p(A)) (V(as) € A¥)  S©O(azs) = {
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(8) Pointwise change. We define the pointwise change operator, denoted .[. — ], with
functionality .[. — .]: A* — T'— A — A“ by (in infix notation)

s(t) if U £t

a otherwise.

(Vs € AY)(Vt,t' € T)(Va € A)  s[t—a](t') =

It is also common in functional stream processing to use the following two higher-order primitives

that act directly on STs themselves.

(A) After. We define the after operation, denoted <, with functionality < : (A% — B¥) —
A — (4% — B¥) by (in infix notation)

(Vf € (A = B*)) (Va € A) (Vs € A°) ([ < a).s = f(azs).

(B) Then. We define the then operation, ambiguously denoted <, with functionality <: B —
(4% — B*) — (A¥ —» B¥) by (in infix notation)

(Vb€ B) (V] € (A — B*)) (Vs € &%) (b < f).s = b:fus.

3.7.3 Stream Processing Primitives in Logic Programming

In this section we identify four generic stream processing primitives that can be found in the
logic programming literature. We conclude the section with some concrete examples of these
types of stream processing primitives based on the list given in Becker and Chambers [1984].

Generic Relational Stream Processing Primitives. In Parker [1990] stream process-
ing primitives in logic programming languages are referred to as transducers (see Abelson and
Sussman [1985]) and are divided into four groups. However, as pointed out in Parker [1990] this
list of transducer types is not exhaustive, although no indication is given as to why this is the

case.

(1) Enumerators (Generators). Enumerators produce a stream derived from some initial

values. A generic enumerator definition is as follows:

enumerate(Stream) :-
initial_state(State),
enumerate(State,Stream,).



(2)

enumerate(S,[X | Xs]) :-
nezxt_state_and_value(S,NS,X),

/
2]

enumerate(NS,Xs).

enumerate(_,[]).

Maps. Maps produce an output stream by applying a function to an input stream. A

generic map definition is as follows:

map-f([X'| Xs,[Y| Ys]) :-
J(X,Y),
map_f(Xs, Ys).

map_f([][])-

(3) Filters. Filters produce part of their input stream as output, the elements selected being

based on defined criteria. A generic filter definition is as follows:

filter([X | Xs],Ys) :-
inadmissible(X),
/

filter(Xs, Ys).

filter([X | Xs],[X| Ys]) :-
filter(Xs,Ys).

filter({].[])-

(4) Accumulators. Accumulators produce an ‘aggregate’ of input values as output. A generic

enumerator definition is as follows:

accumulate(Stream, Value) :-
initial_state(State),
accumulate(Stream,State, Value).

accumulate([X | Xs],S, Value) :-
next_state(X,5,NS),
accumulate(Xs, NS, Value).

accumulate([], S, Value) :-
final_state_value(S, Value).

Notice that accumulators are strictly first-order primitives.
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Examples of Relational Stream Processing Primitives. We now list the examples of
second-order stream processing primitives (in functional form) presented informally in Parker
[1990] based on the list given in Becker and Chambers [1984].

Let A be any standard S-sorted X-algebra.
(A) For each constant ¢ € A, for some s € § we define
ConStrt :— [T — A],

by
(VteT) ConStre(t) =c.

(B) For each constant i € Z we define
IntFrom' :— [T — 7]

by
(VteT) IntFrom'(t) =i+ (t—1).

(C) For each binary operator ¢ : A, x A, — A, for some s € § we define
Agg? [T — A], — [T — A],
by

a(0) if t =0, and

(Vae[T — Al,)(vteT) Agg’(a)(t) = {U(Agg"(a)(t —1),a(t)) otherwise.

(D) For each unary operator o : A, — A, for some s € § we define
Map” : [T — A}, = [T — A},

by
(Va € [T — AL)(Vt€T) Map®(a)(t) = a(a(?t)).

(E) For each binary relation p C A, x A, for some s € S we define
Com?: [T — Al, x [T — A], = [T — B]

by

tt i p(a(t), as(t)), and

vla'l "“’AA,\V/ T C’pl,gt:
W ea € [T h)(eed) om*{as, &2)() {ff otherwise.

(F) For each n € N and for each s € § we define
Rep? : [T — A, — [T — A],

by
(Vae [T — Al,)(Vte€T) Rep;(a)(t) = a(tdivn).

42



(G) For cach s € § and for each n,2 € A, we define

Lag™® : [T — Aly — [T — A,

, - T if t < n, and
(Va € [T — N)) (Yt €T) Lag»*(a)(t) =

a(t —n) otherwise.

(H) For each s € S we define
Merge, : [T — Al x [T — 4], — [T -~ B]

by
a;(t) if tis even, and

as(t) otherwise.

(Vay,a, € [T — Al (Vt € T) Merge,(ay,a2)(t) {

3.8 Stream Processing Languages

As promised we now examine some examples of stream processing languages designed to repre-
sent the particular classes of SPSs we have identified in the literature.

In Section 3.8.4 and Section 3.8.5 we discuss the languages LUCID and LUSTRE designed to
programme asynchronous and synchronous dataflow SPSs respectively. Also, in Section 3.8.6 we
briefly discuss the so-called Manchester Languages and mention some other dataflow languages

that can be found in the literature.
In Section 3.8.7 and Section 3.8.8 we discuss the related languages SIGNAL and ESTEREL

that are used for programming signal processing networks and reactive systems respectively.
In Section 3.8.9 and Section 3.8.10 we discuss the functional languages AL and PL.
In Section 3.8.11 we examine a modification of PROLOG designed for stream program-
ming.
Finally, in Section 3.8.12 we look at the language STREAM used in the design and verifica-

tion of hardware.
However, we begin this section with a discussion of the RS-Flip-Flop, that we will use as a

running example for presenting and hence comparing the syntax of the existing stream processing

languages that we discuss.

3.8.1 A Running Example: the RS-Flip-Flop

The RS-Flip-Flop (that sometimes for convenience we will simply call the Flip-Flop) is a widely
occurring device found in computer hardware. The Flip-Flop is designed to output a stream of
‘true’ (tt) and “false’ (ff) signals (high and low signals) controlled by two input streams of true

and false control signals.
Valid control signals consist of one of three simultaneous input pairs:

o ‘Reset’ - (tt,ff). This indicates that the Flip-Flop’s next output should be a ff.
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o ‘Set” — (ff,tt). This indicates that the Flip-Flop’s next output should be a 1t.
o ‘Hold’ ~ (ff.ff). This indicates that the Flip-Flop should repeat its previous output.

However, while the pair (tt,tt) is considered to be illegal input, in general a practical implemen-

tation of the Flip-Flop should be able to cope with this input.

3.8.2 Formalization of the Flip-Flop as a ST

This informal description of the Flip-Flop’s operation can be made more precise by defining the

Flip-Flop as an abstract ST as follows:

Flip-Flop : [T — B]* — [T — B]

defined by
(Wb, by € [T — B])  Flip-Flop(by, b2)(0) = ¢t
and
(Vby,by € [T — B]) (VL €T)
Jii if bi(t) = tt and by(t) = ff
Flip-Flop(by, b2)(t + 1) = § ¢ if by(t) = ffand by(t) = tt; and

Flip-Flop(b;, b2)(t) otherwise.

In particular, notice that this specification outputs its previous output if the illegal control signal

(tt,tt) is supplied as input.

3.8.3 An Implementation of the Flip-Flop as a SPS

A typical implementation of the Flip-Flop can be visualized at the conceptual level as a SDU-
SPS comprising two input streams, two modules, and two output streams wherein both modules

compute the ‘nor’ function; that is,

nor:BxB—B

defined by

(Vb,, by € B) nor(by, b2) = not(or(by, ba)).
To reconcile this implementation with the functionality of the specification only one stream is
considered as ‘proper output’ (the first module’s output), with the other stream used only as
‘feedback’ to compute the Flip-Flop’s next output.

The Flip-Flop SPS’s Computation.  The SPS representing the Flip-Flop is shown in

Figure 3.1. Initially the modules of the SPS representing the Flip-Flop will output some initial
values (see Sections 3.10 and 8.3) that for convenience we will assume is the pair (it,ff).
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Figure 3.1: The RS-Flip-Flop as a SPS

After the Flip-Flop’s initial output each module computes (synchronously) on the streams
of control signals and the previous output of the other module to produce the next output.

Properties of the Flip-Flop.  Despite the relative simplicity of the Flip-Flop, the device
has many subtleties and has been the subject of extensive study (see for example Thompson
and Tucker [1991]). Indeed, in order for the Flip-Flop SPS’s implementation to meet the re-
quirements of the specification the Flip-Flop requires pre- and post-processing of its input and
output respectively. Indeed, in Chapter 7 we show that the formal verification of the imple-
mentation of the Flip-Flop we have presented is non-trivial. However, the device is simple to
specify at the conceptual level and relies on mutual recursion and therefore provides a useful
small example to illustrate the syntax of the stream processing languages that we discuss in the

following sections.

3.8.4 LUCID

LUCID (Wadge and Ashcroft [1985]) is perhaps the best known of all the dataflow languages
that have been developed. A LUCID programme is essentially a system of recursion equations,
although LUCID is described by its authors as a ‘functional dataflow programming language’.
The term ‘dataflow’ is chosen because each LUCID programme is semantically equivalent to a
dataflow network; and “functional’ because the output of each filter is a function of its inputs.
(Note that the term ‘functional’ used here does not imply a computation without side-effects as
in the mathematical sense.) LUCID is also described by its authors as a ‘typeless’ langunage as
there is no declaration section. However, a more formal description would be to say that LUCID
operators are overloaded and their type is inferred from their context.

LUCID was conceived by its authors in 1974 with what they claim to be quite modest aims;
that is, to show that real-life programmes could be written in a purely declarative style so that
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programme verification would be possible. The authors felt that a purely functional language
was not creditable for this purpose for reason of efficiency, and so LUCID contains iterative
constructs so that (the authors claim) when writing LUCID programmes the programmer may
make use of algorithms used in real ‘everyday’ programming. It was also (later?) intended that
LUCID could exploit the new highly-parallel, multiprocessor dataflow machines.

Constructs and Primitives. Each LUCID programme is an expression structured using
the ‘where’ clause taken from ISWIM (see Landin [1966]) over simple ‘data types’, for exam-
ple: integers; reals; Booleans; words; character strings; and finite lists. LUCID also uses the

if...then. . .else construct.
LUCID has the ‘usual’ operators over the data types just mentioned and treats them as

point-wise extensions over time and hence can be used to manipulate streams directly. In addi-
tion LUCID uses six explicit stream processing primitives with the following semantics.

Let A be any standard S-sorted L-algebra.
(1) First. For cach u € ST we define

First:: [T — A]* — [T — AJ*
(Va € [T — A]*)(Vt€T) Fi?'sti(a)(t) = a(0).
(2) Next. For each u € §* we define
Nextd: [T — A" — (T — A]
(Va € [T — A]*)(VteT) Nea:t;_i(a)('l) =a(t+1).

(3) Followed By. For ecach u € §* we define

171).1]&—l [T — A]“ X [T — A]u — [T — A]u

a,(¢) ift =0, and

(Vai,ar € [T — A*) (Yt € T)  Fbyi{ay,a)(t) =
B as(t—1) otherwise.
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(4) At Time. For each u € ST we define

AtTimed: [T — A x [T — N] — [T — A]*

(Va € [T — A*) (Yn e [T — N])(Vt € T) AtTimei—(a, n)(t) = a(n(t)).

(5) Whenever. For each u € S* we define

I/Vheneverf: (T — A" x [T = B] — [T — A}*

(Ya € [T — A]*) (Vb € [T — B]) (vt € T)

a(t) if b(t) = tt, and
Wheneverd(a,b)(t + 1) otherwise.

VVh(:neve'rf(a, b)(t) = {
(6) As Soon As. For each u € S we define
Asag: [T — A" X [T — B] ~ [T — A]*
by

(Va € [T — AP*) (Vb e [T — B]) (Yt € T)  Asal(a,b)(t) = a(p k.[b(k) = 11).

(7) Upon. For each u € §* we define

Uponi [T - Al x [T — B} — [T — A"

Va e [T — A*)(Vbe[T'—B]) (VteT)

U poms(a, b)) a(0) if¢=0,

on,(a, = )

PRy a(NumOf’l‘rues(Nezt,-_:—(b))(t)) otherwise

wherein Nel‘tf} is defined as above and NumOfTrues : [T — B] — [T — NJ is defined by
(Vb € [T — B])

1 if b(0) = #t, and

0 otherwise

NumOfTrues(b)(0) = {
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and

1+ NumOfTrues(b)(t) if b(¢+ 1) = tt, and

NumOfTrues(b)(t + 1) =
umOfTrues(b)(t + 1) {NumOfTrueS(b)(t) otherwise.

The use of Streams. As with many of the other languages we will discuss streams are repre-
sented as variables. In the particular case of LUCID any free variables (not explicitly declared)

are treated as input streams.

Language Development and Current Uses. Since its conception various implementations
of LUCID have been written (see Farah [1977] and Sargeant [1982]) and one such implementa-

tion pL UCID — LUCID over the algebra of POP-2 taken from Burstall et al. [1971] - has been
used experimentally for software design (sec Wadge [1984]).

Lucid Syntax. The RS-Flip-Flop can be described in LUCID as follows:

flipflop(Int, In2) = (Outl, Out?)
where
Qut! = true fby (Inl nor Out2)
Out? = false fby (In2 nor Outl)

3.8.5 LUSTRE

LUSTRE (see Caspi et al. [1987]) is a synchronous dataflow language related to LUCID. Like
LUCID it is based on the description of a SPS as a system of equations. However, unlike LUCID,
LUSTRE requires that the output at time ¢ of the functions defined by such a set of equations
depends only on input received either before or at time &. This property is referred to by the
authors of LUSTRE as causality.

We note in passing that intuitively causality appears to restrict LUSTRE to expressing the
class of course-of-values recursive functions (see Tucker and Zucker [1988]). However, the au-
thors do not discuss the issue of computability in this respect.

In common with languages for describing reactive systems LUSTRE is based on the strong
synchrony hypothesis and has a multiform notion of time (see Section 3.5). Furthermore, in
common with the language ESTEREL (see Section 3.8.8) LUSTRE programs are implemented
via compilation into finite automata.

The authors state that LUSTRE programs are subject to a strict analysis for deadlock based
on a domain theoretic analysis of the various clocks defined using the When operator, rather
than by the cycle sum test that is applied to LUCID programmes (see Wadge [1981]). However,
the authors concede that while this approach does detect any potential deadlock it also rejects
some valid programmes. It is this strict approach to the interplay between the various clocks

over which the various filters compute within a programme that ensures the synchronous nature

of LUSTRE.
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Primitives and Constructs. In common with LUCID underlying operations are treated as
point-wise extensions over time in LUSTRE and can be directly applied to streams.

Any LUSTRE program, that is correct with respect to the various static-semantic tests that
are applied to it, is compiled into a simplified basic abstract syntax. Compilation into this
restricted syntax eliminates separate node (filter) definitions, used to employ a modular pro-
gramming technique. In particular, stream operators are compiled into a restricted subset of
stream operators that form a functionally complete set. This functionally complete set consists

of the following four operations that we now define informally.

Let A be any standard S-sorted S-algebra wherein S = {s1,...,s,} forsomen € N. Also, let
U=<U,,...,U, > be some collection of distinct values such that U, ¢ A, fori=1,... n.

and let AY = AUU.
(1) Previous. For each u € S we define
Preg: [T — A" = [T — AV
by
(Vae [T — A")(VteT) Pref(a)(t) = {

(2) Followed By. For each u € S we define
FBy: [T — A]* x [T — A]* = [T — A]*

by
(Vay,ap € [T — AP*)(Vt € T)  FByXay,a,)(t) =

a;(0) ift=0,and
a,(t) otherwise.

Notice that this is different from the LUCID operator Fby.

(3) When. For each u € § we define

Whens : [T — A]* X [T — B] ~ [T — A]*

by

(a)(t—1) ift >0, and
(Uuyy- -, Uy,,,) otherwise.

(Va € [T — A]")(vbe [T —B]) (vt €T) Wheni(a,b)(t) = a(p k.[b(k) = ttA k > 1]).



(4) Current. For each u € § we define

Current? : [T — A]* x [T — B} — [T — AJ*

by
(Va € [T — A]*) (Vb€ [T — B)) (VL € T)
a(t) ifb(t) =t
Currenta,b)(t) = { Currenti(a,b)(t = 1) il b(t) = ffat>0
Wheng(a,b)(0) otherwise.

The use of Streams. As is common in equational stream processing languages undelined
variables are treated as input streams in LUSTRE programmes. Indeed the notion of a stream
in LUSTRE is the same as in standard dataflow and is not the same as in the reactive system
paradigm. It is for this reason that we choose to classify LUSTRE as a dataflow language.

Semantics. Two separate approaches to the semantics of LUSTRE have been applied. The
first is a domain-theoretic approach in the style of Khan’s work. The second approach is an oper-
ational semantics based on the work of Plotkin (see Plotkin [1981]). This operational semantics
can been used for proofs of equivalence of different LUSTRE programs, and is the semantic
models that has been used to analyse the properties of the compilation of LUSTRE programmes

into finite automata.

Language Development and Current Uses. LUSTRE has been used for such diverse
applications as music synthesis description (see Amblard and Charles [1989)) and for verifica-
tion of real-time systems (see Halbwachs et al. [1992]) and appears to have superseded its parent
language LUCID as the the language of choice for dataflow systems.

Syntax. The RS-Flip-Flop can be expressed in LUSTRE as follows:

node flipflop(Ini, In2 : bool)
returns(Outl, Out? : bool);
let
Outl = tt : FBy pre(Inl) nor pre(Out2);
Out2 = ff : FBy pre(In2) nor pre(Outl);
tel

3.8.6 Other Dataflow Languages

The ‘Manchester Languages’.  There are several so-called ‘Manchester Languages’ (see
Herath et al. [1986]) including SASL, SISAL, LAPSE and MAD that have been used on the
Manchester Dataflow Machine. In this Section we very briefly discuss these languages. The
reader interested in the topic of specialized dataflow architecture can consult Gurd et al. [1981]
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and more recently Sharp [1991].

SASL. The language SASL (see Herath et al. [1986]) is a functional language. SASL derives
its name from the fact that only single assignment functions (one argument) are permitted.

Multiple argument functions are achieved with Currying.

SISAL. The language SISAL (see McGraw et al. [1985]) is a typed ‘value orientated’ func-
tional language designed for dataflow computing machines. The name SISAL is derived {rom
Streams and Iteration in a Single Assignment Language. SISAL allows recursive constructs and
looping. In addition to being implemented on the Manchester Machine, SISAL has also been

implemented on the VAX, CRAY and HP dataflow machines (see Sharp [1991]).

VALID. Thelanguage VALID (see Amamiya et al. [1984])is a higher-order functional language
designed to achieve very high-level parallelism. VALID derives its name from Value Identifica-

tion Language and has a mix of ALGOL- and LISP-like syntax, including block-structuring and

case statements.

DCBL. The language DCBL (pronounced ‘decibel’ — see Herath et al. [1986]) is a high-
level dataflow language designed to define the operational semantics for dataflow computing
languages. In particular, DCBL is designed to enable users to express programmes with many
forms of concurrency, at a high-level of abstraction without any machine dependent character-

istics.
General Dataflow Languages.

VAL. The language VAL (sce Dennis [1974] and Brock [1987]) is a synchronous functional
language with implicit concurrency. The name VAL is derived from the languages ‘value orien-
tated’ rather than ‘variable orientation’ nature; that is, new values can be derived, but cannot
be modified. This principle is used in the language so that values can be assigned to identifiers,
but identifiers cannot be used as variables in order to address certain issues arising from the

automatic generation of concurrent implementations.

ID. The language ID (sce Arvind and Gostelow [1978]) is an un-typed, functional, block-
structured language that supports non-determinism and the use of streams. A programme in
ID consists of a list of expressions wherein each expression is either a ‘loop’, a ‘conditional’, a

‘block’ or a ‘procedure application’.

3.8.7 SIGNAL

SIGNAL (see Guatier et al. [1987]) is an applicative language designed to programme real-time
systems using synchronous dataflow. The authors claim that a SIGNAL representation is very
close to the specification of a system, either mathematical or graphical, and leads to an clegant

formal ‘synchronization calculus’.
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SIGNAL uses two concepts of time: logical time and an associated timing calculus based on
the strong synchrony hypothesis (see Section 3.5); and physical time. Using this system tempo-
ral references are determined entirely by the sequence of communication events and not (as the
authors claim) by the input events as in either ESTEREL or the dataflow approach.

Individual processing elements in a SPSs described by SIGNAL are not synchronized by
a single global clock 7" = {0, 1,2,...}, rather SIGNAL has a ‘multiform’ notion of time (see
Section 3.5).

The use of Streams. The name SIGNAL is derived from the infinite sequences called sig-
nals over which all processes in a SIGNAL system compute (see Section 3.5.1). Each signal
is amap a : T — A for some data set A and some clock T = {1,2,...}. (Notice that the
clock starts at 1 and not 0.) It would appear from this description that signals are streams.
However, the individual values of a signal may be ‘sampled’ at continuous points rather than
simply at the discrete division indicated by the signal’s clock. In addition, the values are not
persistent and as such may only be sampled in order; that is, once the value of a signal a has
been sampled at time t € T it may henceforth only be sampled at some time ¢’ wherein ¢’ > ¢.
(Also see the following section on further operators.) Notice that this interpretation of a sig-
nal is related to Kahn’s visualization of streams as asynchronous FIFO queucs (see Section 2.5).

Constructs and Primitives. SIGNAL operators are divided into two classes: ‘S-operators’
that define signals and ‘P-operators’ that are used to create interconnections between processes.

We will only consider signal definition operators here.

(1) Basic Operations. The syntax
a:=b+1

for some signals @ € [T' — A] and b € [T" — A] for some data set A wherein 1 is a constant
signal creates a process with the following semantics:
(VteT) a(t)=0b(t)+1;

that is, it creates a process that takes a single signal input b and produces a single signal

output a that at every time cycle ¢ is precisely the value of a(t) plus one.
Notice here that because of the nature of the process specified the two clocks T and

T" are synchronized and hence considered to be the same. This is not a property of signal

processes in general.

(2) Delays. The syntax
amite
a:=b69%1
for some signals @ € [T — A] and b € [T" — A] for some data set A wherein ¢ is a constant
signal and creates a process with the following semantics:

c if t =0 and

vteT t) =
(vee®) ot b(t - 1) otherwise;
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that is, the statement creates a process with a single input that delays its output by one
time cycle and outputs a constant at time ¢ = 0.

Notice here that a delay is defined by two separate processes (statements) and hence
if the first statement is omitted (as in some of the reference examples) then the signal
described by its process is undefined at time ¢{ = 0. Also, there is an inconsistency in the
reference examined in that the signal’s underlying clocks are given as 1" = {1,2,...}, but

the init statement define values of streams at time ¢ = 0.

(3) Composition. The syntax
(la init cla := b+ 1]b := a §1])

denotes the process formed by the composition of the processes a initc, a := b+ 1 and
b := a 31 specified in the previous examples. The ordering of the sub-processes within a
composition is unimportant; that is, it is associative and commutative, and communication
is implied between processes wherein an output signal of one process (an identifier on the
left of an “:=") has the same name as an input signal (an identifier on the right of an “=")

from a different process. So our example has the intended semantics

c ift =0 and

VteT a(t) =
( ) () a(t — 1)+ 1 otherwise;

(4) Further operators. SIGNAL also uses the operators when, event and synchro with the
following syntax
a = bwhenc,

a:= event b

and
synchroa,b

respectively. Because the semantics of these statements is ‘formalized’ using a clock calcu-
lus, that we will not discuss, we will only give the intuitive meanings of these statements:
when is a so-called undersampling operator that, in the context of our example, produces
the input signal b if it is defined at the same time the Boolean signal ¢ is defined and ‘true’;
event delivers an always ‘true’ Boolean signal whenever (in the context of our example)
signal b is defined; and synchro (again in the context of our example) explicitly synchro-
nizes the signal’s a and bs clocks.

Because of the lack of a global clock and the definition of a signal, when examining
the current value of a particular signal a : T — A we have two possible result: it may
either be undefined or will have some value in the data set A. Because of this definition
of signals the authors use a clock calculus to give and check the semantics of SIGNAL
definitions. As Boolean signals are used to define clocks (via the event operator) this
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clock calculus requires two data sets (and is the reason, the anthors claim, that a Boolean
calculus is insufficient); that is, ¢ = {—1,0, 1} for Boolean signals, wherein 0 denotes the
absence of a value, —1 denotes ‘false’, and 1 denotes ‘true’; and C' = {0, 1} for all other
signals, wherein 0 denotes the absence of a value and 1 the presence of a value. Within
this calculus the data set C' is given the structure of a commutative field onto which all
SIGNAL processes can be mapped. This ‘mapping’ of a process is used to analyse the
relationship of any sub-modules clocks and to detect incorrectly defined processes. Ior

example, the compositional process
(|z := a when (a > 0)|y := a when (not(a > 0))|z =z + y|)
gives rise to the following equations in the clock calculus (using ¢ to represent the Boolean

expression a > 0)

2

2t =a*(—c - )

y?=a*(c—c)

(%)
[3%]
[

I
]
I
<

A
~

that gives —¢ = ¢. As this has a single solution (¢ = 0) the process defined by this

composition is undefined. This is intuitively clear from the example as the clocks over

which z and y are defined are mutually exclusive.

Semantics. SIGNALS semantics is based on the clock calculus described above that we will

not discuss further.

Syntax. The RS-Flip-Flop can be expressed as follows in SIGNAL:

(| Outl init tt | Out2 init ff |
In? := Ini181| In? := In281 |
Outl’ := Outl81 | Out? := Out2$1 |
Outl := Inl' nor Out? | Out2 := In2 nor Qut!l’

1)

3.8.8 ESTEREL

ESTEREL (see Berry and Cosserat [1984], Berry et al. [1988], Berry and Gonthier [1988] and
Boussinot and de Simone [1991]) is a real-time imperative concurrent language for describing
reactive systems. However, ESTEREL is designed for describing ADB-SPSs rather than ADU-
SPSs as in the case of the languages LUSTRE and SIGNAL. (See the following section on the
use of streams in ESTEREL.)

The authors state that the aim of ESTEREL is to develop a rigorous formal model of real-
time computation with an operational semantics that can be used for tasks where programming

using conventional languages is difficult.
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Constructs and Primitives.  The basic structuring device in an ESTEREL programme
is the module with input and output signals for broadcast communication and internal signals

for internal broadcast communication.
The body of a module that describes its operation can include the following basic primitives

and constructs:

(1) Null process. The command

nothing

creates a process that does nothing in zero time.

(2) Local variable declaration. The command

var X : type in ¢ end

creates a local variable X for process .

(3) Variable assignment. The command
X = exp

assigns variable X with the value of the expression ezp.

(4) Signal Transmission. The command

emit s(ezp)

emits the value of exp on signal s.

(5) Conditional execution. The command
do i upto s(ezp)
repeatedly execute process ¢ until the value ezp is broadcast onto signal s and
do 7 uptonext s(ezp)

repeatedly execute process ¢ until the value ezp is broadcast onto signal ‘s’ twice.

(6) Sequential Composition. The command

[S2]
@)}



iy o

invokes process i, immediately upon completion of process i;.

(7) Parallel Composition. The command
Vi

simultaneously invokes processes i, and i, sharing the same local variables and local sig-

nals.
(8) Iteration. The command

loop 7 end
executes process ¢ in a continuous loop. However, processes like
X := 0; loop X := X + 1 end; loop emit s(X) end

have no semantics, due to the strong synchrony hypothesis, and are checked for during

static semantic evaluation.
(10) If Then Else. The command

if boolezp then 1, else i, fi
has the usual semantics, but because of the strong synchrony hypothesis, we assume here

that boolezxp is evaluated in zero time so control is passed immediately to either 7, or .

(11) Process termination. The command

tag T in ¢ end
exit T

executes process i until ‘exit T’ is executed (in ¢) whereupon process i is terminated.

From these basic primitives many ‘higher-level’ construct are formed. However, these are just

for convenience during programming and to not occur in the semantic model.

The use of Streams. ESTEREL uses the same notion of stream processing as SIGNAL;
that is, signals and a multiform notion of time. However, unlike SIGNAL in ESTEREL some
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signals are used for both input and output from processes and information is broadcast in the
sense that complete connectivity is assumed between processes. A commutative operator **’ is
explicitly associated with each signal to deal with simultaneous transmission (see Milner [1983])
such that if the values vy, vs,...,v, for n > 1 are broadcast simultaneously onto a signal s then

the value on sis vy * vy % -+ - % v,,.

Semantics. ESTEREL has a complicated semantic model with three different levels:

(1) Static Semantics. Used to establish temporal relations between processes and check for

any temporal paradoxes.

(2) Behavioural Semantics. Used to define the temporal behaviour with respect to the

static semantics.

(3) Computational Semantics. Used to establish exactly what a program computes.

Once the computational semantics has been established any concurrency is eliminated by
compiling into a sequential programme that is implemented as an automaton in C'(for example)
by a similar method used in parser generators (see for example Sun [1988]). The authors are
confident that this technique leads to an efficient implementation.

Language Development and Current Uses. ESTEREL has been used for HCI and
for programming communication protocols and real-time controllers (see Clement and Incerpi
[1989], Murakami and Sethi [1990] and Berry and Gonthier [1991] respectively). An ESTEREL
environment exists (sce Boudol et al. [1990]) that includes simulators, debugging tools and a
compiler to hardware, based on the techniques discussed in Berry [1991]. One current research
aim is to implement existing ESTEREL programmes directly in hardware.

Syntax. The RS-Flip-Flop can be described in ESTEREL as follows:

var L1,L2 : bool in flipflop ;
module flipflop:
input Inl, In2 : bool ;
output QOutl, Out?2 : bool ;
L1 := true ;
L2 := false ;
emit Outl(L1) ;
emit Out2(L2) ;
loop
L1 :=1Inl nor L2;
L2 :=In2 nor L1;
emit Outl(L1) ;
emit Out2(L2) ;
end.
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3.8.9 AL

AL is a typed equational language that provides a specification formalism for (potentially) re-
cursive stream operations. Implicit concurrency is expressed by the juxtaposition of equational

definitions within both programme and agent definitions.

Constructs and Primitives. AL uses a block structure and includes constructs such as
if.. . then...else...fi. It also includes the finite choice operator 0, and hence is AL is able to

define non-deterministic behaviour.
AL has all of the basic stream processing primitives as described in Section 3.7.2 as built

in operators. In addition, functions mapping data to data and components mapping data and

streams of data to streams of data can be defined by the user.

The use of Streams. The declaration of input and output streams is explicit in AL and
streams may occur at most once on the left-hand-side of an equation. In particular output
streams must occur exactly once as a left-hand-side and input streams may not occur as a left-

hand-side.

Semantics. AL is restricted to second-order definitions and has a fixed-point semantics

in the style of Kahn.

Language Development and Current Uses. For an introduction to the use of AL see

Section 3.4.1 on the FOCUS project.
A prototype of AL has been implemented on a SUN workstation (see Nueckel [1988]) and

experiments to implement AL on an INTEL hyper-cube are in progress (see Gorlatch [1992]).

Syntax. The RS-Flip-Flop can be represented in AL as follows:

programme flipflop = chan bool Inl, In2 — chan bool Outl, Out?:
funct nor = bool b1, b2 — bool:
not(b! or b2),
agent streamnor = chan bool sbl, sb2 — chan bool sbout:

sbout = nor(ft.sb1, ft.sb2)

end,

agent leftbs = chan bool lbs!, rbs! — chan bool lbs
lbs = lbs1

end,

agent rightbs = chan bool lbsl, rbs! — chan bool rbs
rbs = rbsl

end

Outl = true & streamnor(Inl, rightbs.flipflop(Inl, In2)) & leftbs.rt. flipflop(rt.In1, rt.In2)
Out2 = false & streamnor(In2, leftbs.flipflop(Ini, n2)) & rightbs.rt. flipflop(rt.In1, rt.In2)

end flipflop.
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3.8.10 PL

PL is a imperative, parallel procedurally language designed for stream programming.

Constructs and Primitives. In some sense PL can be considered to be a classical lan-
guage containing assignment statements and while loops. However, in addition PL also has the
non-terminating loop construct loop. . .pool. PL is syntactically very similar to AL and allows
the definition of functions and components (sce Section 3.8.9) and also has all the stream pro-

cessing functions described in Section 3.7.2 as basic operations.

The use of Streams. As with many stream programming languages variables are used
to represent input, but in addition as with AL variables are also used to explicitly represent out-
put. In contrast to AL there are two explicit operators in PL for ‘reading’ and ‘writing’ values
to and from streams (channels) denoted ‘2" and ‘!’ respectively that can be defined informally

as follows.
If ¢ is a channel identifier and z is a variable of appropriate type then the command

clr

is interpreted informally as ‘remove the first value from channel ¢ and assign this value to variable
2’ If ¢ is empty then execution of this command is delayed (possible infinitely). Similarly if ¢ is
again a channel identifier and £ is an expression of appropriate type then the command

cE

is interpreted informally as ‘evaluate E and then write this value to channel ¢’ Again if F

cannot be evaluated, as it may depend on some input evaluation, then this command may also
be delayed (possible infinitely).

The use of these two operations provides
pointed out in Broy et al. [1993] that they should not be confused with the operators ‘?’ and
‘" in CSP (see Hoare [1985]) that provide synchronous communication.

In PL equations are further restricted in that channel identifiers may only occur once (at
most) in the right hand side. Also, new channels may be introduced dynamically within PL via
recursion and hence dynamic networks may be modelled. For this reason the use of the word

channel is less related to the concept of a stream in PL than it is in AL.

a model of asynchronous communication and it is

Semantics. PL is based on an operational state transformer semantics derived from work
in Broy and Lengauer [1991] and Dederichs [1992]. It is intended that this semantics can be
related to an equivalent abstract (denotational) semantics as a ST and hence PL can be related

formally to an AL specification.

Language Development and Current Use. For an introduction to the use of PL see

Section 3.4.1 on the FOCUS project.
Syntax. The RS-Flip-Flop can be represented in PL as follows:
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programme flipflop = chan bool Inl, In2 — chan bool Outl, Out?2:

var bool i1, 12, 11, 12

var bool ol := true, 02 := false;
var nat time 1= 0;
loop
if time > 0 then
Ini?il;
n2%2;
ol := il nor l2;
02 :=12 nor l;
fi
Outtlol;
Out2!lo2;
I := o0l
12 :=02;

time := time + I;
pool
end flip-flop.

3.8.11 PROLOG with streams

Bellia et al. [1982) and Bellia et al. [1984] describe a modification of PROLOG (see Kowalski
[1974]) (that for convenience we will denote PROLOG) to provide an applicative language for
the specification of a class of ADU-SPSs.

Constructs and Primitives. In PROLOG a network of agents is specified by a set of

Horn clauses wherein each clause corresponds to a p
guage is essentially that of PROLOG and the stream processing primitives available are those

used in the functional approach (see Section 3.7.2).

articular agent. The structure of the lan-

The use of Streams. The approach to streams in PROLOG is the same as that in func-
uni-directional chanunels are modelled by shared

tional languages. In particular, in PROLOG

syntactically distinguished input and output variables within each atomic clause and hence the

expressive power of PROLOG is limited compared to conventional PROLOG, as invertibility is

limited. However, the authors claim that this is not a problem in practice.

Semantics. PROLOG is formalized using a standard fixed-point semantics (see van Emden
and Kowalski [1976]) and makes a explicit distinction between data constructors and functions
(see Levi and Pegna [1983)) to modify the semantic model to deal with infinite terms.

Language Development and Current Uses. It is intended that PROLOG is viewed
as a proper extension of a term re-writing system, wherein cach Horn clause is interpreted as

an extended re-write rule. It is also the authors’ intention that completion algorithms such as
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Knuth-Bendix (see Knuth and Bendix [1970]) can be generalized to generate confluent systems
from PROLOG network descriptions. However, we are not aware of any subsequent work by the

authors in this field.

Syntax. The RS-Flip-Flop can be represented in PROLOG as follows:

type BOOL 1s tt, ff ; 4
type STREAM-OF-BOOL is nil, cons(BOOL, STREAM-OF-BOOL) ;

flopl : STREAM-OF-BOOL X STREAM-OF-BOOL — STREAM-OF-BOOL ;
fflop2 : STREAM-OF-BOOL X STREAM-OF-BOOL — STREAM-OF-BOOL ;
Nor : BOOL x STREAM-OF-BOOL — BOOL ;

not : BOOL — BOOL ;

fflop1(cons(bi1,sb1),cons(b2,sb2)) = cons(cons(tt,01),02) —
ol = Nor(bl,jﬁop?(cons(bl,sbl),cons(b?,sb?)}) ;
02 = fflopl(sbl,sb2) ;

[lop2(cons(bl,sbl),cons(b2,sb2)) = cons(cons(ff,03),04) —
03 = Nor(b?,ﬁ‘lop](cons{'bl,sbl),cons(b?,sbi’))) ;
04 = fflop2(sbl,sb2) ;

Nor({f,cons(b,sb)) = not(b) — ;
Nor(tt,cons(b,sb)) = ff — ;

not(tt) = ff — ;
not(fj) =1 —;

3.8.12 STREAM

STREAM (see Kloos [1987a] and Kloos [1987D]) is a concurrent scheme language designed for
formally specifying, reasoning about and transforming hardware designs at the conceptual, regis-
ter and gate level. Furthermore, STREAM is intended to address description features associated
with each level in a single formalism. The approach is rather like a single programming language
that includes formal, high-level and machine-code descriptions as primitives, and is referred to
as almost hierarchical approach (sec Sussman and Steele [1980]).

STREAM is an acronym for STandard REpresentation of Algorithms for Micro-electronics.
However, the name STREAM is also intended to reflect the stream processing nature of the
language. Indeed, in addition to its role as hardware description language STREAM can also be
directly interpreted as a dataflow language, resembling the language of Dennis [1974]. However,
the formal equivalence of STREAM and Dennis’s language is not addressed.

Constructs and Primitives. STREAM uses the following stream processing primitives
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that are referred to as agents.
Let A be any standard S-sorted Z-algebra.

(1) Append. Tor each s € § we define the append agent
&, t A, x [T — A, = [T — 4],
(ambiguously denoted &) by

a ift =0, and

(Vae A,)(Va' € [T — Al,)(VteT) (a&d)(t)= , .
a'(t—1) otherwise.

(2) Lifting. For each o € %, , for each w € S* and for each s € 5 we define the lifting agent
tye 2 (AY — A) = ([T — A" = [T — 4],)
(ambiguously denoted *) by
(Vae A¥) (vt e T) o(a)(t) = ola(t)).
(3) Distribution. For each s € S we define the distribution agent
distr, : [T — B] x [T — Al ~ [T — A], x [T — A,
(ambiguously denoted distr) by
(Vb e [T — B)) (Va € [T — Al,) (Yt eT) distr(d,a)(t) = (zy,2,)

wherein

oy = a(pk > t]b(k) = t])

and

zy = a(pk' > t[6(K") = f]).
(4) Selection. For each s € § we define the selection agent
selec, : [T — B] x [T — A]} — [T — A,

(ambiguously denoted selec) by

ay(t) if b(t) = tt, and
(Vb e [T — B))(Vay,a, € [T — A],)(VteT) selec(b, ay, ay)(t) = (2) 1 0(¢) ‘ An
ax(t) otherwise.

In addition STREAM also uses the following functional constructs for building SPSs from more
primitive SPSs:
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(A) Parallel Composition. TFor each u,uw,v,v" € St we define the parallel composition
constructor ambiguously denoted | with functionality

Y:i([T— A" = [T — APYx ([T — A = [T — AP) — ([T = A*Y — [T — AP

N (VS e [T — A]* — [T — A]") (V8" € [T — A} — [T — A]")
(Va = (ay, .-, auw)) € [T — A**) (Yt e T)
(S48 a)(t) = (x1ve ooy 2py o)
wherein

(S(ay, - apu)(1)): if ¢ <ul, and
r; =
(S/(@uj41s- -+ Buu)(t));  otherwise.

(B) Sequential Composition. For each u,v,w € S* we define the sequential composition

constructor ambiguously denoted = with functionality
= ([T — AP = [T — AP)x ([T — A" — [T = A]*) = ([T — A} = [T — A]")
by
(VS € [[T — A]* — [T — AP']) (VS € [T — A’ — [T — A]*)) (Ya € [T — A]*) (V¢ € T)
(8 = 8')(a)(t) = S'(8(a))(1).

(C) Feedback. For each s € S and for each u,v € St we define the feedback constructor

ambiguously denoted C with functionality
C:([T — AP" = [T — AP") = ([T — A" = [T — A]")
by

(VSe[T — AP = [T — APy (Va e [T — A*) (Vi€ T) (C**S)(a)(t) = S(z,a)(t)
wherein
r = (S(x,a)).

Notice here that as z is defined recursively in terms of itself whether C(S) is computable

will depend on the definition of S.

(D) Forking. For each s € S we define the fork constructor ambiguously denoted fork with

functionality
fork : [T — A], = [T — A], x [T — A],

by
(Va € [T — A),) (Yt €T) fork,(a)(t) = (a(t), a(t)).
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(E) Permuting. For each s € 5 we define the permutation constructor ambiguously denoted

perm with functionality
perm : [T — A], x [T — A], — [T — A], x [T — A],

by
(Vay, a0 € [T — Al (Vt € T)  permy(ay, as)(t) = (aq(t), a\(t)).

(F) Sinks. For each s € S and for each u € 5* we define the sink constructor ambiguously
denoted sink with functionality

sink : [T — AP* — [T" — A]¥
by

(Va = (a1, a9y -y apugz1) €T — AP*)(VLET)  sink®*(a)(t) = (as(t), ..., app41(t))-

The use of streams. Again in common with the functional approach to stream programing,
STREAM adopts the generalized concept of stream as the union of finite and infinite sequences.

Semantics. Both a denotational and algebraic semantics have been derived for STREAM
(see Kloos [1987a] and Kloos et al. [1986] respectively). The denotational semantics is used
in Kloos [1987a] to demonstrate the equivalence of STREAM with a procedural language for

stream processing.

Language Development and Current Uses.  We are not aware of the development of
the use of STREAM in hardware design.

Syntax. SIGNAL uses two syntactic styles to reflect the different requirements of hard-
ware description at different levels of abstraction: an applicative style and a functional style.
The RS-Flip-Flop can be represented in the two styles as follows:

Applicative.

agent RS-flipflop =

mr, s ni
t:= nor(r,s'),
ri=tt&t,
w = nor*(s,r’),
si=ff&u

out r', s’ tou

Functional.



agent RS-flipflop =
o
C(

(perm § Id* | Id") =
(Id~ |} perm* | Id*) =
(nor | nor) =

(ff& U tt&) =

(fork i fork) =

(Id § perm |} Id")

3.9 Stream Processing in the Design and Verification of Hard-

ware

As our research places a strong emphasis on the formal specification and verification of hardware,
in this section we discuss the use of streams as a method for formal hardware description. We
begin with a brief general overview of the topic of hardware specification followed by a more
detailed discussion of how STs and SPSs provide a natural and general purpose mechanisms
for the formal specification and implementation respectively of many types of hardware devices.
However, for emphasis we leave a discussion of the theory of synchronous concurrent algorithins
(SCAs) that is the basis of the techniques that we advocate to the following section.

3.9.1 Abstraction Levels and Formalized Hardware Description

Several levels of abstraction can be identified for the description of hardware. These are (in

descending order of abstraction from the actual physical device)

(1) The Conceptual Level. A high-abstraction level characterized by the use of graphs and

high-level algorithmic descriptions.
(2) The Architectural Level. Description by block diagrams.

(3) The Register Transfer Level. Architectural entities are identified that are synchronized
by a global clock and the transfer of information between them is modelled by binary words.

(4) The Logic Level. Combinational and state-preserving elements are identified character-
ized by the laws of boolean algebra and additional mechanisms.

(5) The Circuit (Gate and Switch) Level. Gates and devices are identified, characterized
by a simple description of power sources, transistors, resistors, etc.

(6) The Geometry Level. The geometry level is the lowest level of abstraction of hardware
description and is subdivided into two further levels:
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The Flexible Geometry Level. Characterized by the description of relative orientation
of primitives (stick diagrams).

The Mask Geometry Level. Characterized by the description of physical sizes and
absolute locations.

As pointed out in Stavridou [1993] constructing a formalism that encompasses the details and
requirements of hardware at different levels of abstraction is a non-trivial task, as is the formal
translation of a description at one level of abstraction into another level of abstraction. As such,
it is common for hardware description languages to address a single level of abstraction, although
this is not always the case (see Section 3.8.12). Indeed, there have been many experiments
with the formal specification and verification of hardware using a variety of different languages
and logics. However, a discussion of most of these approaches lies outside the scope of our
research as they are not directly related to the subject of strcam processing. The interested
reader can consult the following general references on the subject of hardware specification and
verification: Goguen [1987], Melham [1988], Milne [1989], Cohn and Gordon [1990], McEvoy and
Tucker [1990], Weijland [1990], Johnson and Zhu [1991], Zhu and Johnson [1991] and Hanna
and Daeche [1993].

3.9.2 The Advantages of Formal Hardware Description

One of the main advantages of a formal (syntactic) description of a hardware device is that
when such a description is combined with an appropriate formal calculus it makes possible ei-
ther an automated or a machine-assisted proof of device correctness. Moreover, the application
of a mechanical theorem prover for the verification of hardware is particularly appropriate as
correctness proofs tend to be straightforward, but long and tedious and hence error prone.

Despite this fact the application of formal methods to the study of hardware is by no means
straightforward and as we mentioned in our introduction has had limited ‘real-world’ practi-
cal success. In particular, in Stavridou [1993] it is observed that at present the value of the
specification of hardware at low levels of abstraction is limited in the sense that with current
technology only devices comprised of a limited number of components can be tractibly modelled
and formally verified with a sufficient degree of accuracy (see Section 8.5). Moreover, this is
especially the case at the moment as current technology is based on transistors and the accurate
modelling of devices based on transistors is difficult (see Gorden [1981]).

Furthermore, in Stavridou [1993] it is also pointed out that the improvements in the correct-
ness of device fabrication that formal specification techniques provide can be difficult to quantify.
More specifically, the benefits offered by formal techniques are typically observed through prac-
tical experience rather than by any mathematical argument to justify their effectiveness.

While these objections are justified we believe that there are significant advantages offered by
formal techniques at high levels of hardware abstraction, particularly at the four most abstract
levels of hardware description that we have identified. We justify this statement by observing
that:

(1) Experimental evidence suggests that a significant proportion of design errors are introduced
at high levels of abstraction and hence a formally-verified, high-level implementation of the
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required hardware device is in general beneficial, especially in the context of safety-critical

applications.

(2) With particular relevance to our reserch we believe that the use of streams at high levels of
abstraction of hardware description provides a particularly natural mechanism for the for-
mal description of many types of (safety-critical) devices. Indeed, this fact is demonstrated
by the successful modelling and verification of hardware as SCAs.

In order to motivate these important points more fully in the remaining part of this section
we explain in some detail how streams may be used for general purpose hardware description.
We begin this discussion by examining a very straightforward and useful theoretical tool for
hardware description based on the changes of a device’s state. We continue by showing how this
description method can be naturally considered as a special case of a more general stream-based

description technique.

3.9.3 Streams and Hardware Description

At many levels of abstractions of hardware description the role of clocks (see Section 2.4.1)
is an important one. The so-called state transformer formalization of hardware (sce Harman
and Tucker [1993]) relies on the use of an abstract clock T' = {0,1,2,...} to provide a discrete
measure of the evolution within a device of the values of (for example) the registers and memory
from some initial values to the values at some time ¢t € T - referred to as the evolution of the
device’s state

Given an algebra A coding all possible states, the state transformer view of hardware allows

us to formalize a device in two related ways:

(A) As a function
F:A—=[T— A
defined by
F(a)(0)=1a
and foreacht €T
F(a)(t + 1) = NS(t,a, F(a)(1))

wherein a € A is some initial state and NS : T'x A x A — A is referred to as the nezt state
function for F that in general depends on the current time, the initial state value a, and

the previous state of F; and

(B) A refinement of Method (A) based on the observation that it is typical, indeed desirable,
for a piece of hardware to be independent of any particular initial state. Consequently,
we may fix the initial state to be either a ‘don’t care’ value or some fixed initial value
z € A. This provides a further more abstract definition of the hardware in question by
the function

G°:T — A
defined relative to the initial state-dependent representation F' by

(VteT) G*(1) = F(z)(t).
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Generalizing the State Transformer Description.  While the description of hardware as
a pure state transformer is a useful and accurate model it is in some sense rather unrealistic as
the evolution of a piece of hardware’s state is also usually influenced by some external input.
Moreover, typically any useful hardware will also produce some output and indeed the correct-
ness of a piece of hardware will usually be stated in terms of the output generated as a result
of its input. However, this fact is not problematic as we will now show that we can incorporate

the state transformer description into a more general description of hardware based on abstract

stream transformers.

The Stream Transformer Description Method. It is natural to imagine that in ad-
dition to its state any input and output to and from a piece of hardware will also change at
discrete time intervals described by two (further) abstract clocks C' and C’, representing re-
spectively the rate at which the device receives and produces output. Furthermore, typically
the input received by a piece of hardware at any particular time ¢ € C' will be stored as some
sub-set of its internal memory and register values; that is, as a sub-set of its state. Similarly,
it is accurate to assume that the device's output at some time ¢/ € C’ can be derived in the
reverse manner by selecting a particular sub-set of its memory as representing the ‘result’ of a
computation.

Therefore, formalizing this idea: if the abstract data types B and B’ are appropriate to code

all possible input and output values respectively; the function
y:B— A

models the appropriate change to the overall state given some input; and
v:A— B

models the appropriate output given the current state then our most general and abstract
description of a piece of hardware (that we refer to as the stream transformer description, of
which the state transformer description can be thought of as a special case) can be formalized

as follows:
H*:[C — B]—[C'— B
defined by
(Vb e [C — By (V' € C")  H(b)(c") = Y(GT(x(b(r(c)))))
wherein G7 is some state-independent state transformer specification of the hardware device we
wish to model and
r:C'—=C

is a so-called re-timing (sce Harman and Tucker [1988b], Harman [1989], Harman and Tucker
[1990], and Harman and Tucker [1992]) that relates the ‘ticks’ of clock C” to the ‘ticks’ of clock
C.

At this point the reader unfamiliar with these ideas may be surprised that we model a

hardware device using several clocks; that is, as by definition a clock is simply an isomorphic
copy of the natural numbers, why should we need more than one clock? Essentially, the reason
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that we may need more than one clock is that the individual ‘ticks’ of each clock need not denote
the same amount of ‘real time’ relative to either the actual device’s system clock or the ‘user’s’
notion of time. For example, as the general stream transformer description technique shows a
device may consume stream input at a different rate than it produces stream output. Hence,
multiple clocks are an essential tool for modelling hardware devices.

3.9.4 Hardware as Stream Transformers

The general method we have just discussed for describing (electronic) devices at the concep-
tual level provides the foundation for a theory of hardware based on the formal analysis of
the computability of abstract functions (STs) that compute over streams, and the analysis of
their algorithmic implementations (SPSs). Moreover, as we will show given a suitably abstract
formalization of stream transformers much of this theory will have applications outside of the
theory of hardware (see Section 7.5).

Indeed, the basis of just such a theory of stream transformers has already been developed and
because it is suitably abstract makes use of many well-understood techniques from computability
theory. This theory is referred to as the theory of synchronous concurrent algorithms and has
provided the stimulation for our own work on stream processing. One of the main advantages of
the SCA approach is that it relies on an essentially first-order semantic model and hence avoids
many of the complications of a higher-order semantics that is a more typical approach when
computing with streams. In the following section we discuss SCA theory in some detail and in
particular the advantages that an algebraic approach to stream processing provides as the basis

for a general purpose theory of stream processing.

3.10 Discussion: an Algebraic Approach to Stream Processing
and SCAs

As our examination of the literature has shown, stream processing is a diverse subject without
any clear overall objective that is based on specialized rather than general purpose theory.
Moreover, rather than an abstract study of STs stream processing has typically been applications
driven and has concentrated on either the study of special purpose languages for representing
particular classes of SPSs or modifications of general purpose languages for the description of
SPSs. Indeed, even the specialized stream processing languages we have identified are general
purpose in the sense that these languages are intended for the specification, verification, and
implementation (animation) of STs as SPSs in a single formalism. Therefore, as we discussed
in Section 3.7 we believe such languages are not sufficiently abstract as a tool to develop the
general theory of stream processing that we require.

In addition, from the perspective of the automated verification (of hardware) we have the
following four additional specific objections to the approaches to stream processing that are
found in the literature:

(1) Higher-order semantic models are used to reason about ST specifications and implemen-
tations. In particular, while in principle we have no objection to higher-order semantic
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models, typically stream processing languages are based on a domain-theoretic semantics
in the style of Kahn. Therefore, as the generation of an implementation from a least fixed-
point semantics is non-trivial (see Cai and Paige [1989]) such languages typically require an
‘equivalent’ operational semantics that is used to effectively study specific computational
properties.

However, the equivalence of the denotational (Kahn style) and operational semantics
of stream processing languages is, as we have observed before, poorly addressed. Hence, as
this means that essentially an operational semantics is used to reason about many stream
processing formalisms based on a higher-order semantics, we argue that languages based

on this approach are inappropriate as abstract specification languages for STs.

(2) General purpose languages mean that either invalid or incorrect or incomplete STs can be
specified leading to non-determinism and deadlock (see Broy [1990] and Wadge [1981]).

(3) The expressive power of general purpose languages means that if automatic tools for the
verification of STs are to be used then in general completion algorithms such as Knuth-
Bendiz (see Knuth and Bendix [1970]) must be applied to specifications (see Bellia et al.
[1982] and Stavridou [1993]).

(4) The infinite size of streams means that traditional methods for the evaluation and repre-
sentation of data structures for finite objects are not suitable and ‘new’ strategies must be
used to implement and animate STs (see Henderson and Morris [1976] and Friedman and

Wise [1976]).

In contrast to the existing approaches to stream processing we have identified, in our research we
intend to develop a general and abstract theory of stream processing that specifically addresses
these and other problems associated with current stream processing techniques. This theory
is based on existing theoretical tools from recursive function theory and universal algebra and
provides a mathematically neutral and well-understood approach to stream processing that is
more appropriate for the abstract specification of STs.

In particular, the theory that we develop in the following chapters is based on the well-
developed theory of synchronous concurrent algorithms (SCAs). As such we now discuss how
we may abstract the basis of a general theory of stream processing from the techniques used in

the formal specification and verification of SCAs.

3.10.1 SCAs

The concept of a synchronous concurrent algorithm (SCA) was developed by B C Thompson
and J V Tucker in the early 1980s (see Thompson and Tucker [1985], Thompson [1987] and
Thompson and Tucker [1991]). Informally, a SCA can be visualized as a particular class of
dataflow SDU-SPS; that is, a SCA is as a fixed, synchronous, deterministic dataflow network

wherein modules (filters) compute and communicate in parallel via channels synchronized by a
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discrete global clock T.

In more detail, the most basic component of an SCA is a module that computes some pre-
defined total function. Modules reccive and supply data via fixed channels that communicate
individual data elements between modules, and also communicate external input and output
respectively. The parallel operation of the modules in a SCA is synchronized by the ‘ticks’ of
a global clock. As such all modules receive and produce data deterministically and hence the

SCA as a whole also computes a total function. An typical SCA is shown in Figure 3.2.  We

N

Inj
In 5 Ms

Figure 3.2: A Typical SCA

now discuss each of these features of an SCA more rigorously.

Modules. The set of all modules that make up a SCA are divided into three subsets: sources
. that receive the algorithms input; internal modules that perform some computation; and sinks

that produce output.

Sources. FEach source in a SCA is distinguished by the fact that it has no input and produces
a single stream on its output channel. However, as with other channels this stream output may
branch to pass multiple copies of the data to more than one internal module.

Internal Modules.  Internal modules can have any finite number of inputs from either
sources or other internal modules (including themselves) and must compute a total function.
However, the function computed by an internal module need not be continuous with respect to
any partial ordering (see Section 2.5) of the data they receive ~ as would be required if SCAs



were formalized by a domain-theoretic semantics. Indeed, two unique characteristics of SCA

networks compared to other classes of dataflow SPSs are that:

(1) Associated with each internal module is an initial value that is output before the module
begins to compute; that is, at time ¢t = 0 determined by the global clock each module
outputs a pre-defined value that is independent of any input that module will receive; and

(2) While internal modules may receive stream input from a source they are not viewed as
producing stream output. Rather, each module produces data at each ‘tick’ of the global
clock. As we will show this apparently trivial distinction is extremely important and is
essentially the basis of the Cartesian form specification method that we mentioned in our
introduction. We will return to this point in the following section.

Sinks. Sinks are characterized by the fact that they have no outputs and receive a single input
from an internal module. In particular, sinks may not receive input from sources.

Channels. As we have indicated the channels in a SCA network are unidirectional and in
addition may branch finitely allowing the copying of data. However, channels may not merge.
We now give a description of SCA computation and how the concept of an SCA and its

operation can be formalized as a ST.

Architecture. Let n, m and & be the number of sources, sinks and modules respectively
of some SCA wherein for { = 1,...,k each module has n; € N inputs. The architecture of the
SCA is described formally by three partial functions «, 8 and out called wiring functions with

the following functionality:
a:{l,..  k} x N~ {L,...,maz(n,k)},
B:{l,...,k} X N~ {5, M}

and
out : {1,...,m}~ {1,...,k}

respectively. For each module i € {1,...,k} and for each input j € {1,...,n;} the meaning of
these functions is defined as follows: if the jth input to module i is from module z € {1,...,4}

then
a(i,j)==
and
Blid) = M.
Otherwise, if the jth input to module 7 is from source z € {1,...,n} then
a(i,j)==z
and
g8(i,7) = 5.

Finally, if module z € {1,...,k} is the input to sink 0 € {1,...,m} then

out(o) = <.
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Example 2. The architecture of the Flip-Flop as described in Section 3.8.1 can be formalized

as an SCA as follows:

a:{1,2} x N~ {1,2}

is defined by

B:{1,2} x N~ {S, M}

is defined by
B={(1,1)~ 8,(1,2)— M,(2,1) — M,(2,2) — §}

and out : {1} ~ {1,2} is defined by

out = {1 — 1}.

An Informal Description of SCA Computation. The initial values that are output by
each module at the first clock cycle of the network’s operation are formally represented by a
vector z = (z1,...,2) € A* wherein A is the data type over which the functions associated
with each module compute; that is, the output at time ¢ = 0 of module ¢ € {1,...,k} is 2.
In particular, the output of a SCA’s initial values takes place independently of any subsequent
computation that is performed. More specifically, each module in the SCA network computes
in a synchronous output, read, compute, store cycle that is governed by the global clock 7.
At each clock tick ¢t € T each module ¢ first outputs the result it computed at the previous
clock cycle (with the exception that at time ¢ = 0 each module outputs its initial value z;)
and simultaneously reads in the value(s) at its input channel(s) z,,...,z,,. Each module now
computes the value y = fi(z,,...,2,,) wherein f; is the total function associated with module
¢ and stores this value ready to be output at the next clock cycle ¢ + 1.

The synchronicity of the SCA network is achieved by the combination of the totality of each

module function and the following assumption {compare Sections 3.3.5 and 3.8.5):

The Unit Delay Assumption U. The value on each output channel of each internal module
at time ¢ + 1 is uniquely determined by its input at time ¢.

Essentially, this means that at each clock tick 0,1,2,... the modules compute and concurrently
exchange data wherein any module that takes less than one time interval to compute ‘waits’ for

any slower modules to complete their computation.

3.10.2 A Formal Algebraic Model of SCA Computation

Despite the informal similarity between SCAs and dataflow networks there are many technical
reasons, including the approach to computing with streams and the formalization of a deno-
tational semantics, that separate SCAs from dataflow computation. In particular, SCAs have
been designed to provide a formal model of computation suitable for the rigorous study of the
properties of hardware. Consequently, as we will discuss in the following sections, the properties



of SCAs are understood from the perspective of recursive function theory, specification theory
and verification theory in the sense that the mathematical properties of the languages and logics
needed to specify and reason about SCAs are understood in precise detail.

As we discussed previously, dataflow was conceived with very different aims and objectives
from that of the formal specification of hardware, although some researchers have tried to adapt
dataflow to this use. For this reason we believe that SCA theory has significant advantages over
dataflow computing (and all the other stream processing formalisms that we have discussed) as
the basis for a formal stream processing paradigm.

We now discuss these ideas in more detail beginning with a formal algebraic description of

SCA computation.

Formalizing the Components of an SCA. Recall that an SCA network N is comprised
of k modules computing functions fy,..., fi respectively, a global clock T' and an underlying
algebra A from which the values over which the network computes are taken. To begin our
formalization of a SCA network N’s computation, firstly we gather together some of these basic
constituents into what is referred to as the underlying algebra, denoted Uy. While Uy will vary
depending on the particular network N the minimum requirement that we place on Uy is that it
is an enrichment of a standard algebra; that is, that Uy will always have the following standard

algebra as a reduct:
(A, T,B; 0, Suce, tt, ff, not, and, or).

This assuinption is both necessary and convenient as we must have the natural numbers to count
the successive ‘ticks’ of the network’s clock, and we also have some basic functions available for
specification purposes (see Section 6.7.1).

Secondly, in order to formalize the type of stream input that network N receives and also
to fix the basic level of abstraction over which we can formalize the computation performed by
network N, we enrich the underlying algebra to form the component algebra, denoted A, as

follows:
Ay = (A, T,B[T — A]; fi,..., fi, 0, Suce, t, ffynot, and, or, eval).

Again, notice that Ay is a standard algebra, although this time a stream algebra (see Defini-
tion 2.4.2), enriched with the basic functions computed by each module in the network.
The component algebra enables us to rigorously define the computation of an SCA as a ST

as follows.

Formalizing SCA Computation: Value Functions. Let N be any n source, m sink,
k module SCA with global clock T, wiring functions «, 3 and out, and component algebra
Ay. Ifa = (ay,...,a,) € [T — A]" is the stream input received by network N’s sources and

z=(z,...,2) are network N'’s initial values then we formalize the computation of network N

with the value functions
Vi:Tx [T — A" x A* — 4

for each i = 1,...,k as follows:
‘/i(oyavz) =%
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and for each t € T
Vi(Suce(t).a,2) = f(@r,. - )

wherein for j = 1,...,n;

u(ij)(t) if 8(i,5) = S; and
Ir; =
’ Vaapy(ta,z) if B4, J) = oM.

The intention here is that the ith value function V; is defined such that Vi(¢,a, z) denotes the

value output by module 7 at time ¢. Therefore, if we define

Ve :T x [T — A x AF — A

by
(VteT)(Vae [T — AP")(Vz € A*)  Vu(t,a,2) = (Vilt,a,2),..., Vi(t, a, 2))

then Vi tells us the output of every module at every clock cycle. The function Vyy is referred to
as the global state function, although as in general we are only interested in the networks output

at its sinks, we also define the network N’s output specification

Viwe : T X [T — A]® x A¥ — A7

(VteT)(Ya € [T — A*) (V2 € A¥)  Viurlt,a,2) = (Vour)(t, 0, 2), o, Voo (£, @, 2))

to represent the output of only certain specific modules of interest.

Example 3. The RS-Flip-I'lop is described as an ST by the following value functions:

V,,Vo:T x [T — B2 xB* — B

defined by
(Vbl,bg € [T - B]) (VZI,ZQ € IH))

V1(0’bl,52,21, 32) = 21

V‘)(Oabbbﬁ’zl?z’_’) = 2,
and

(Vt € T) (V1,05 € [T — B]) (Vz1,2, € B)
Vi(Suce(t), by, bs, 21, 22) = Nor(by(2), Va(t, by, by, 21, 2));

and

I/Q(S'lLCC(t), blv bih 21, 32) = [VOT(VX(t) blvb?7 31,3'2}7 (JQ(C))

-~J
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In particular, notice that the wiring functions a, 4 and out of Example 2 can be effectively
derived from the value functions coding a particular network. Therefore, not only do value
functions encode the semantics of a network, but also the necessary syntactic information to
reconstruct the network itself. Indeed, in general, value functions provide a simple recursive
method for calculating (either symbolically or otherwise) the output of an SCA at any time t € T.
This is why we refer to this class of systems as synchronous concurrent algorithms reflecting not
only the nature of computation performed by each network (that is, synchronous parallelism),
but also that each network has a precise, straight{forward and denotational description wherein
both the underlying algebra and the function computed by the network are explicit. We believe
this is a significant advantage over Kahn’s method (sce Section 2.5) that is more complicated
at the syntactic level of network description, and also relies on a semantics that in practice is
neither explicit nor necessarily effective.

In more detail, by using Kahn’s method for formalizing complex SPSs it it not obvious at
all what the least fixed point of the function that the network specifies may be, and hence if
the network specifies a function at alll For example, the network might specify the everywhere
undefined function, but in general there is no effective procedure for determining this fact!
Morcover, Cai and Paige [1989] shows that the construction of a function from a least fixed-
point semantics can be extremely difficult. Therefore, even if the network does specify a function
then it is still not clear how in practice we can effectively construct the networks least fixed point
and hence formally simulate the networks operation.

In addition, SCAs have an extra advantage as a specification technique in that it is obvious
from the restricted equational structure of value functions and the totality of each function
computed by the individual modules that value functions are a special case of primitive recursive
functions (see Chapter 4). We return to this point in the following section and in more detail
in later chapters where we will show that the explicit primitive recursiveness of equational
definitions has many useful theoretical and practical implications.

The second important observation that we can make at this point about the general form of
value functions is concerned with their functionality as stream transformers. Specifically, notice
that our general definition of a stream transformer as described in our preliminaries is essentially
a function of the form

F:[l — A = [T — A"
for some data type A and for some n,m € N. However, both the individual value functions V;
for i = 1,...,k, the global state function and the output specification Vy and V,,, respectively
are functions of the form
G:Tx[T— At x Al — 4™

for some n,m,l € N and hence are not strictly speaking stream transformers. In particular,
this difference in functionality raises the question: if we wish to exploit the advantages of the
SCA specification technique as the basis of a general stream processing theory then can we
reconcile this difference in functionality with the more usual approach to stream transformer
specification? As we will show in detail the answers to this question is yes! Indeed, based on
the following two observations, naively it appears that the reconciliation of these two methods

is trivial:
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(1) With respect to the elimination of non-stream input in the domain of G we can apply the
same technique that we discussed in Section 3.9.3 to derive a family of functions indexed by

each z € A! with functionality
G*:T x [T — A" = 4™

defined relative to G by
(VteT)(Vae [T — A]") G*(t,a) = G(t,a, )

(2) We can now observe that the family of functions G* are essentially nothing more that the
un-Curried form of I — what we call a Cartesian form stream transformer (CFST) rather than
what we refer to as either a Curried or applicative form stream transformer (AFST) that we
have described so far.

Therefore, the distinction between the CI'ST specification method and the AFST specifica-
tion method appears to be of little significance in the sense that for each CFST

H:Tx[T— AP — A™

we can define an equivalent AFST
H:[T — A" — [T — A"

by
(VteT)(Vae[T — A]") H™(t,a) = H(a)(t).

However, as we will show this apparently unimportant difference in specification technique is
subtle in its implications. Specifically: from the perspective of computability the reconciliation
of these two techniques is by no means straightforward; and from the perspective of automated
verification the use of Cartesian forms has significant advantages in that it will allow us to ap-
ply first-order techniques to establish the correctness of stream transformers. Indeed, after we
conclude this section with an SCA bibliography we motivate the issues that we must address in
our research to exploit the use of both explicit primitive recursive definition and Cartesian form

specification.

An SCA Bibliography. SCAs have been studied extensively as a formalism for the specifica-
tion and verification of hardware including several case studies (see Harman and Tucker [1988b],
Harman and Tucker [1988a], Harman [1989], Eker and Tucker [1989], Harman and Tucker [1990],
Eker et al. [1990] and Harman and Tucker [1992].)

Furthermore, the SCA model is also appropriate for the study of many specialized hardware
devices and specialized models of computation including: systolic arrays (sce Thompson and
Tucker [1985], Thompson [1987], Hobley et al. [1988], Derrick et al. [1989] and Hobley [1990]);
neural networks (see Holden et al. [1991a], Holden et al. [1991b], Holden et al. [1992b], Yates
[1993] and Thompson et al. [1992]); and cellular automata and coupled map lattice dynamical
systems (see Marshall [1991], Blom [1992], Holden et al. [1992a], Holden et al. [1993] and Blom
et al. [1993]). For general introductions to the topics of systolic architectures; neural networks;
and cellular automata and coupled map lattice dynamical systems see respectively Mead and
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Conway [1980], Kung [1982]; McCulloch and Pitts [1943], Widrow and Hoff [1960], Minsky
and Papert [1969], Kohonen [1972], Kohonen [1978], Rumelhart et al. [1986], Rumelhart and
McClelland [1986a], Rumelhart and McClelland [1986b]; Kamp and Hasler [1990] and Iansson
[1993]; and von Neumann [1966] and Wolfram [1986].

Finally, the SCA computational model has been generalized and formalized in several ways:
graph theorctical models (see Meinke [1988] and Meinke and Tucker [1988]); process theoretic
models (see Toflts [1993]); operational semantic models (see Thompson [1987], Martin and Tucker
[1988], Martin [1989] and Poole [1994]); and infinite SCAs (see McConnell and Tucker [1993]
and McConnell [1993)]).

3.10.3 The Advantages of the SCA Methodology as a Basis for Formal Stream

Processing

SCA rescarch has shown that the algebraic specification of hardware as primitive recursive Carte-
sian form stream transformers offers significant advantages. In particular, from the perspective
of the formal verification of hardware, SCA theory is extremely useful. In our research we gen-
eralize the SCA approach and use this as (an alternative) basis for a formal approach to stream
processing, although, the verification of hardware as SCAs remains of significant importance

and interest.
In this section we motivate what we believe are the advantages of this approach, and in the

following section we set a research agenda for the rest of this thesis so that we may begin to
properly explore the theoretical and practical implications of primitive recursive Cartesian form

equational specification in the broader setting of general purpose stream processing.

Cartesian Forms. A Cartesian form stream transformer (CFST) is a function of the form
G:Tx[T— A" =A™

for some n,m € N. This is an alternative form of specification for a stream processing system
in the sense that for every AI'ST F with functionality

F:[T— A" —[T— A"

we can define a map

Fax :TX[T“‘*/””’*Am

by
(Vte TY(Va € [T — A]")  F"(t,a) = F(a)(t).

We call F* the Cartesian form of I (and sometimes the weak second-order form of F') and as far
as we are aware, as a specific specification methodology for modelling second-order specifications
the use of Cartesian forms is unique outside of SCA theory.

Notice that CFSTs return data and not functions (streams). Consequently, we may use an
extremely weak second-order model (essentially first-order) to formalize the specification of STs
that cannot be used when using AFSTs to specify stream transforming systems. This fact gives

us two distinct advantages:

78



(1) We have a straightforward theoretical account of STs based on first-order methods. In
particular, we will show that we may use methods based on first-order equational logic
to reason about CFSTs. This fact is particularly useful as most, indeed if not all, of the
underlying data types used in computer science (and hence used in stream processing) have

equational theories. We will return to this point in more detail in the following chapter.

(2) CFSTs eliminate the need for the specialized evaluation of the particular infinite data
structures that are used to represent the stream data generated by an AFST. We justify
this statement by observing that as CFSTs simply return data we need now only evaluate
(external) stream input. Since for any stream input a the availability of the individual
data values a(t) and a(t') for some t # ' will (from the perspective of the specification) be
mutually exclusive, we obviate the need for any partial evaluation strategy. Therefore, in
principle we may use any general purpose language for the animation and implementation
of CFSTs.

Primitive Recursive CFSTs. Finally, since each primitive recursive function is total, any
primitive recursive ST specification will be effectively testable against a corresponding primitive
recursive implementation. Moreover, we will show that primitive recursive specifications when
presented in the language PR (see Chapter 4) that is used for the specification of SCA can
be compiled directly into equivalent PREQ specifications that are complete when considered as
left-to-right re-write rules (see Chapter 5).

Therefore not only does PREQ provide the basis of a high-level equational specification
language, but its theoretical properties can also be used as the basis of automated verification

tools that we present in Chapter 8.

3.10.4 Developing an Algebraic Approach To Stream Processing

We believe the advantages of primitive recursive Cartesian form specification of STs are clear
in the context of hardware verification. Our objective now is to develop this methodology for

general purpose stream programming. In particular, we must address the following:

(1) Using CFSTs Specification as a Practical Tool: Cartesian Composition.

One important aspect of CFSTs that we have not discussed so far that the reader may have
noticed is that they do not appear to provide a compositional model of stream processing; that
is, as we have already pointed out CFSTs take streams as input, but return data as output.
One of the appealing aspects of AFSTs is that they allow a modular and hierarchical approach
to stream processing. In particular, given two AFSTs H and G (that represent two systems S,
and S, respectively) such that [/ and G have functionality

0T — A" = [T — A"

and
G:[T— A"~ [T~ AF

for some n, m,p € N we may define a AFST F with functionality

Fi[T— AP — (T — AP
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(to give a composite system ) as follows
(FteT)(Vae [l — A]")  Fla)(t) = G(H(a))(t).
However, given the equivalent Cartesian forms of # and G
H T x[T— A" — A"

and
G T x[T— A" — A

respectively we can no longer directly define the composite system represented by

F*:Tx [T — A" — A7

as the ‘definition’
(vteT)(Va € [T — A]™) Fr(tya) =G (t, H (t,a))

is not well-typed.
Naively, adopting a standard functional-programming technique, we could simply define F*

from H* and G* using M-abstraction as follows:
(Vt e T) (Va € [T — A]*)  F(t,a) = G"(¢, M. H (¢, a)).

However, this would require adding A-abstraction as a primitive operation to our specification
language PREQ (see Point (2) to follow). The subtle problem with this approach is that existing
theory has shown that A-abstraction when combined with the language PR (that captures the
class of primitive recursive functions) provides a stronger model of computation than PR alone
(see Tucker and Zucker [1992]); that is, it is not computationally conservative. Consequently, as
PREQ is formally equivalent to PR in its expressive power if we add A-abstraction as a primitive
to PREQ then we will lose the theoretical properties that PREQ enjoys by virtue of its primitive

recursiveness.
This complication means that if we are to use the SCA methodology as the basis of a stream

processing theory then we must show that for any CI'STs H* and G* (defined as above) we
can construct F* (defined as above) representing a composite system without the use of full
A-abstraction. Furthermore, since one of our aims in this thesis is that our theory can provide
the basis of software tools, clearly we require a constructive proof that CE'ST's are compositional
in this sense.

To this end in Chapter 4 we show constructively that:

(A) The class of primitive recursive CFSTs is closed under Cartesian composition.

(B) The class of uPR computable CFSTs (see Section 4.4.2) is closed under Cartesian compo-
sition; that is, we are able to show that the SCA methodology is appropriate for the most
general class of computable STs and hence our first-order theory of stream processing is

indeed general purpose.
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In more detail, Properties (A) and (B) above of CFSTs are stated formally in Theorem 7. We
prove Theorem 7 constructively using Theorem 9 that concerns the properties of a formal com-
piler C such that given two schemes ay. and ag. representing the Cartesian forms of the STs
H and G respectively, Clay-, ag-) produces a scheme ap. such that the semantics of ap. is F*
the Cartesian form of F = G o H.

In addition, in Chapter 8 we also discuss the implementation of a slightly generalized version
of the Cartesian composition compiler denoted C that is defined in Chapter 7. The compiler C
is tailored for specific practical requirements arising from the use of Cartesian composition in
the formulation of the semantics of ASTRAL. Specifically, the compiler € will allow us to use
CFSTs for specification in the same way that AFSTs can be used, and hence will allows us to

apply modular specification techniques (see Point (3) to follow).

(2) Developing a Denotational Semantics for Stream Processing: PREQ. As our dis-
cussion of SCA theory has shown there is a strong theoretical motivation for using an equational
specification methodology. In addition, from a more general perspective an equational language
provides a high-level of mathematical abstraction that is well-suited to implementation inde-
pendent representation. In particular, for the specification of CFSTs an equational language is
particularly appropriate and satisfies the criteria for the abstract representation of STs that we
set down in Section 3.7.1. Furthermore, as mentioned previously, primitive recursive equational
specifications give rise to equivalent complete term re-writing systems. This fact combined with
the observation that typical data types in Computer Science have equational theories means
that not only may we use equational specifications for CFSTs, but we may also use equational
logic as the basis of a calculus for reasoning about their correctness (see Chapter 7).

In order to exploit the advantages that the equational specification of CFSTs provide in
Section 6 we develop the specification language ASTRAL. In particular, in order that we main-
tain a sufficient level of mathematical abstraction, and hence avoid the problems that we have
highlighted with existing approaches to stream processing, we will provide a denotatjonal seman-
tics for ASTRAL by compiling our ST specifications into a first-order equational specification
language PREQ. Furthermore, in order to maintain precise control over issues relating to com-
putability if we restrict the syntax of PREQ so that it captures the class of primitive recursive
functions. This fact is particularly important if we wish to maintain the advantages of the SCA
methodology for hardware specification. Specifically, should we wish to relax the requirement
that a specification should be primitive recursive, as is sometimes required outside of the context
of hardware specification, then using PREQ we may do this in a controlled way. If we do not
take this approach to the formulation of a denotational semantics then we will have to face
the problems associated with general purpose specification languages that we discussed at the
beginning of this section — especially as unrestricted equations provide an extremely powerful
specification technique in the sense of the class of functions they may specify.

In more detail, PREQ provides a straightforward syntax for the equational representation
of primitive recursive functions and hence can be given a semantics in a rigourous way. There-
fore, by compiling ASTRAL specifications into PREQ to derive a semantics, we can develop an
implementation of ASTRAL that is suitable as a structured, modular high-level programming
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language, but which can still be given a formal semantics. In particular, ASTRAL can be given
a formal semantics using this technique without encountering the complications in developing
a semantics for a high-level language that are typically observed when a top-down approach
to language design is adopted. For example, languages such as C and PASCAL have usable
implementations, but the direct formulation of a rigourous semantics for these languages is not
straightforward as a result of their complex syntax.

As such, we continue the development of our *first-order’ stream processing theory in Chap-

ter 5 as follows:
(A) First, we design the syntax and semantics of the language PREQ.

(B) Secondly, we show formally that PREQ is sound and complete with respect to the class of
primitive recursive functions (Theorem 10), and hence that PREQ provides an appropriate,
neutral specification tool to develop a theory specific to stream processing without any loss
of mathematical abstraction. We do this by designing two formal compilers: CPREQ apd
CPR that compile PR into PREQ and PREQ into PR respectively. In addition, we pay
particular attention to the design of the compiler CPREQ from the perspective of the number
of equations that are produced from a PR scheme, so that C°P"EQ can be used as the basis

of efficient software tools.

(C) Finally, we establish formally the important fact that we wish to carry over from the SCA
methodology: that primitive recursive specifications give rise to equivalent complete term
re-writing systems when expressed directly in PREQ (Theorem 11).

(3) Developing an Abstract Specification Language for STs: ASTRAL.

One of the aims in the development of ASTRAL is to provide a usable, user-friendly specifi-
cation language for STs. As previously discussed, while CFSTs have mathematical advantages
from the perspective of formal verification, AFST's provide a more natural and directly modular
specification technique. Therefore, while designing ASTRAL, as its semantics is derived using
CFSTs, we have been careful to develop the ASTRAL syntax without losing the mathematical

abstraction we have carefully preserved. In order to achieve these aims we proceed as follows:

(A) In Chapter 6 we begin by defining an abstract mathematical formalization of ASTRAL
based on applicative form specification techniques, and hence that provides the basis for
the hierarchical (modular) implementation techniques that are useful in systems design

and implementation.

(B) Secondly, we define a formal compiler that maps abstract (applicative) ASTRAL speci-
fications into equivalent Cartesian form PREQ specifications and hence provide a formal
(first-order) denotational semantics for ASTRAL.

(C) Finally, we present a prototype BNF for an implementation of ASTRAL based on the
abstract mathematical formalization and comment on the underlying design criteria.

In this way we avoid the complications with languages such as C and PASCAL that we discussed

at the beginning of this section.
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(4) Developing a Theory of the (Automated) Verification of STs. The formal-
ization of ASTRAL’s semantics using PREQ means that the theoretical properties that PREQ
enjoys with respect to the construction of equivalent TRSs (Theorem 1) are also enjoyed by
ASTRAL. As we have discussed in Section 3.9.1 typically the formal verification of hardware
requires routine, but long and hence error prone proofs. Therefore it is important to fully utilize
the advantages offered by using the properties that PREQ specifications possess when inter-
preted as left-to-right re-write rules; that is, completeness.

Typically, the intended semantics of any data type is its initial algebra semantics (see for
example Meinke and Tucker [1992]) unique up to isomorphism that captures the essential char-
acteristic of any acceptable implementation of the operations that the data type describes.
However, while complete TRSs are useful in the sense that they provide a decidable equational
theory, this decidability is with respect to truth in all models of the data type (sometimes re-
ferred to as loose semantics — sece Goguen [1988] and Goguen [1990]) that is more general than
initial truth. In particular, loose validity implies initial validity, but initial validity does not
imply loose validity (see Section 7.1.3). Of course in general we cannot hope to have a complete
and decidable theory with respect to initial algebra semantics by Gddel’s famous incompleteness
result. Furthermore, SCA theory has shown that in general deciding the correctness of an im-
plementation of a hardware specification when expressed as a ST is equivalent to deciding the
membership of a co-recursively enumerable set, and hence is co-semi-decidable (sce Thompson
and Tucker [1994] and Davis et al. [1976]). However, as we are interested in automated theorem
proving one important question we must answer is: how much does Theorem 11 gain us in terms
of the decidability of ST verification?

We will show that in order to answer this question we can make use of the following two

facts:
e Over ground terms (variable free terms) loose validity is equivalent to initial validity, and
¢ Free variable induction and equational logic are sound with respect to initial validity.
Specifically, we will show that these two fact will allow us to to the following:

(A) First, given an ASTRAL representation of a ST specification and a corresponding ASTRAL
representation of an implementation we can characterize the decidability of the correctness
of the implementation relative to the syntactic complexity of an equational correctness
statement (Theorem 18). Essentially, this means that we can identify a useful syntactic
sub-class of all decidable equational correctness statements relating STs whose correctness

can be verified fully automatically.

(B) Secondly, we may use this syntactic characterization to implement an automated theorem
prover designed around first-order term re-writing and free variable induction to reason
about ST specifications. This provides precisely the basis for a theory of the automated
verification of STs that we require and as we will show has important implications for the
formal automated verification of (safety-critical) hardware when expressed as SCAs.
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Concluding Remarks. The realization of topics discussed in Points (1), (2), (3) and (4)
of this subsection are the theoretical and practical agenda around which the development of
the rest of this thesis is based. In particular, in Chapter 8 we demonstrate the effectiveness of
our theory of stream processing by using the automated verification of the RS-Flip-TFlop as a
small case study. We also discuss practical ideas to improve the efficiency of the implementation
of our software tools to make them appropriate for complex hardware devices such as micro-
processors.

Therefore as promised we begin our research agenda by developing PREQ and constructively

demonstrating that it has the theoretical properties that we require.



Chapter 4

Primitive Recursion

Cultivate stmplicity. ..

Charles Lamb
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4.1 Introduction

The class of primitive recursive functions (PR) was first formally identified as a specific func-
tional class late last century by R Dedekind in Dedekind [1888] with the intention that they
could be used as a foundational structure for mathematics in the reductionist style of Hamil-
ton (Kiliminster [1993]). Indeed, since that time primitive recursion has played a fundamental
role in classical computability theory as the most basic class of total functions formulated by
recursive definitions. Moreover, it was as late as the 1930s that S Kleene suggested that partial
recursive functions (primitive recursion with least number search - see Section 1.4.2) should be
considered as the most general class of functions in the study of abstract computation. While
this fact may now seem surprising, the use of PR as a general model of computation is in some
sense an obvious choice as most ‘everyday’ functions (in what has become Computer Science)
are primitive recursive.

Typically in classical computability theory primitive recursive functions are formulated over
the natural numbers. However, for our purposes we require a more abstract definition that can

be characterized informally as follows:

Definition 9. For any standard S-sorted Y-algebra Aif f:T X A* — A is defined by
(FaeA")  f(0,q) = g(a)

and
(Vte T)(Va e A") f(t+1,a)=h(t,q, f(t,a))

for some functions g : A* — A and h: T x A* x A* — AY, for some u,v» € 5* then we say f is

defined by an immediate application of primitive recursion.

Early this century T Skolem (Skolem [1923] ~ work of 1919) developed the idea of providing
a foundation for elementary arithmetic by combining primitive recursive function and predi-
cate definitions with induction as a proof technique. This system, known as primitive recursive
arithmetic, does not allow either unbounded existential quantification or unbounded negated
existential quantification and as Skolem himself observed is similar to an intuisionistic approach
to arithmetic, although it is actually more restrictive.

Since its development primitive recursive arithmetic has been studied by several researchers
see for example Hilbert and Bernays [1934], Curry [1941], Goodstein [1941], Church [1954],
Church [1957a], Church [1957b], Goodstein [1957], Rose {1961] and Rose [1962]. This work
includes a consistency proof, some incompleteness results developed from a formalized meta-
theory and the study of primitive recursive arithmetic as a logic-free calculus. As pointed out
in Curry [1941] much of the impetus of this work was the use of primitive recursive arithmetic
by K Gédel in the formulation of his famous incompleteness theorems.

Our interest in primitive recursive functions, and what essentially amounts to primitive re-
cursive arithmetic, is stimnulated by their advantages as a specification formalism, and as a formal
calculus respectively, to study the properties of hardware and certain specialized abstract com-
putational models that can be formalized as STs. Indeed, as we have indicated in Section 3.10,
the next chapter will concentrate on the development of an equational formalization of the class
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PR (the language PREQ) and later chapters will examine the automation of primitive recursive
arithmetic using techniques based on term re-writing.

In the next two Sections we motivate our choice of using the class PR as a specification
formalism, and in Section -.1.3 we overview the material presented in the rest of this chapter.

4.1.1 PR - A Secure Base

While our work is more specialized than classical studies of PR and primitive recursive arithmetic
in that we are specifically concerned with their applications to stream processing, it is important
to observe that much of the existing theory of primitive recursion carries over to any standard
abstract algebra. Consequently, as stream algebras are standard algebras, by developing the
semantics of ASTRAL using PREQ much of the theory of stream processing using ASTRAL is
already implicitly known. Moreover, this fact means that we have an intellectually accessible
and trusted tool as the basis of the theory of stream processing that we wish to develop ~ as T
Skolem observed ‘a secure base’.

Indeed, the generalization of the theory of computability over the natural numbers to al-
gebras with streams has already been considered in Tucker and Zucker [1992] and Tucker and
Zucker [1994] that includes the formalization of a Church-Turing thesis for stream computation.
Therefore, not only is much of the algebraic theory of stream processing already developed, but
we also have a mathematical ‘yard-stick’ against which we may measure certain aspects of the
development of the theory of stream processing in this thesis (see Section 4.4).

4.1.2 A Formal Language for the Class PR

As part of its role in computability theory many formal characterizations of the primitive re-
cursive functions have been developed (see for example Péter [1950], Goodstein [1961], Cutland
[1980], Simmons [1988], Tucker and Zucker [1992] and Tucker and Zucker [1994]). In particular,
in SCA theory the languages FPIT (see Thompson [1987]), CARESS (see Martin [1989] and
Poole [1994]) — both based on the concurrent assignment statement (see Welch [1983]) - and
the functional language PR (see Thompson [1987]) are of interest to us. Indeed, the fact that so
many languages already exist to express primitive recursive functions raises the question: why
should we need to formulate another? We argue that the reason we need a further equational
characterization of PR arises from the following two facts: (1) several of the existing languages
are based on an operational semantics and hence are not appropriate as specification languages;
and (2) the existing formalisms with a denotational semantics are too low-level in the sense that
they are not suitable for high-level, user-friendly specification.

Despite having made these observations about existing languages as we will need to show
that our equational language PREQ does indeed capture the class PR the most obvious (and

constructive) way to do this is to show the following:
(V® € PREQ) (Ja € Leg) [a] = [®]

and the converse

(Va € Lpg) (3 € PREQ)  [®] = [«];
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that is, to show soundness and adequacy with respect to some existing language Lgg that cap-
tures PR. In fact, this is precisely what we will do (see Section 5.3.3). Furthermore, in so doing
if we make an appropriate choice of language then we may directly and constructively exploit
some existing results that we will require in the development of our stream processing theory.
The language PR is a rigorously formulated functional specification language based on simul-
taneous primitive recursion that has been used successfully for the specification and verification
of hardware as SCAs. Therefore, a formal, semantically sound compiler {rom PREQ to PR to-
gether with another from PR to PREQ will not only establish that PREQ is sound and adequate
with respect to the class PR, but it will enable us to use constructively existing theory that has
been developed using PR. Specifically, it will enable us to develop a constructive solution to the
problem of Cartesian composition that is more conveniently expressed at the level of function

schemes.

4.1.3 Chapter Overview

The predominantly technical material in this chapter is devoted to the formal introduction of the
language PR and to a discussion of the use of Cartesian forms as a general purpose specification
methodology. In particular, this chapter is concerned with the development of the necessary
theoretical results for the use of Cartesian form specification in the context of primitive recursive
functions. The following chapter deals with the equivalence of PR and our equational specifica-
tion language PREQ.

Section 4.2 is concerned with the formal definition of the language PR, and the definition of
some useful PR computable functions that we will require in later sections.

So that we may demonstrate the generality of our results, in Section 4.3 we discuss using
PR (and hence PREQ) as a method for specifying STs and set ourselves the task of identifying
the scope and limits of Cartesian form computation.

In order to answer this important question rigorously in Section 4.4 we introduce the lan-
guages uPR, APR and AuPR and show that uPR provides a general model of Cartesian form

stream computation:

Theorem 2. Let MC be any effective model of computation and let MC(A) be the class of
functions computed by MC over the S-sorted %-algebra A.
IfF:A® — [T — A’ € MC(A), for some z € S*, and for some v € ST then there exists a

scheme ap. € pPR(X)¢ ;v such that
(Vte T)(Vae A™)  F(a)(t) = [ap-]a(t, a);

that is, for every computable function F that returns either one or more streams as output there

exists a computable function that computes the Cartesian form F* of I,

In the final section of this chapter (Section 4.5) we address formally the problem of composing
CFSTs that we discussed in Section 3.10.4; that is, we show the following:

Theorem 3. Let & and H be any functions of type

G:[T — AP = [T — AF
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and
H:[T — AP — [T — A"

respectively for some m,n,p € Nt and let
FiT — A" = [T = A"

be defined by
F=Hod.

(1) If G*, H* € PR(A) then F* € PR(A).

(2) If G, H" € pPR(A) then F* € uPR(A).

(3) Furthermore, in both cases above, given schema ag. and ay. representing G and I*
respectively we can effectively construct a scheme ap. representing F* from ag. and ay.; that

is, the composition of CFSTs is uniform in A.

Despite the straightforward nature of the statement of Theorem 3 (that is set in a simplified
form as an exercise in Goodstein [1961]) a full constructive proof is surprisingly technical and
requires several intermediate results. Indeed, Section A.2 and Section A.3 in Appendix A are
given over to the proof of our main technical result (Theorem 9) that we use to prove Theorem 3
(via Theorems 7 and 8).

Finally, notice that the implication of Theorems 2 and 3 is that Cartesian form specification
is indeed a general purpose specification technique in that: for every AFST there exists an
equivalent CFST: and given any two appropriately typed CFSTs we may compose them to give
a single equivalent CFSTs. These facts are precisely what we required to demonstrate that the
SCA specification methodology (see Section 3.10) generalizes to provide the basis of general
purpose theory of stream processing. We return to this point in the following sections.

4.2 The Abstract Syntax and Semantics of PR

We now introduce formally the language PR that we will use as a convenient mathematical tool
to establish the compositional properties of STs in Cartesian form when specified in PREQ.
Given a standard S-structure A we can build-up functions (function definitions) {from the
constants and operations of A using sequential and parallel composition, and primitive recursion.
Thus, formal (syntactic) function definitions will use X-symbols as ground terms to denote
basic functions, and use named function-constructors to build larger terms denoting composite
functions. The set of all well-structured syntactic function definitions is denoted PR(Y), and
a member of PR(¥) may be thought of as a program in a low-level, strongly-typed functional

programming language whose semantics is a function on Y-algebra A.

4.2.1 The Abstract Syntax of PR

The following definition of the language PR is based on the account presented in Thompson
[1987] although we include definition-by-cases as a primitive operation rather than a function
building tool. This definition is essentially a generalization of bounded Kleene schemes that can
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be found in (for example) Cutland [1980].
Let ¥ be a standard S-sorted signature. We define

PR(E) = < PR(S)uy | wav € ST >

wherein cach set PR(E), , of schema of type (u,v) is defined uniformly in « and v by induction
as follows:
Basis Schema.

(1) Constant Functions. If a = ¢* for some ¢ € &, , for some s € 5 and for some w € S+
then @ € PR(Y), ;.

(2) Algebraic Operations. If a = o for some o € ¥, , for some w € St and for some s € S

then a € PR(Y),, ,.

(3) Projection Functions. If o = U¥ for some w € 5% and for some i with 1 < i < |w| then
@ € PR(T)y .-

(4) Definition-by-Cases. If a = dc, for some s € § then @ € PR(X)y,,, ,.
Induction: Function Building Tools.

(5) Vectorisation. If &« =< ay,...,@,, > wherein m > 0andfori=1,...,m,o; € PR(X),,,

for some s; € S then a € I’R(q)“m...sm.

(6) Composition. If @ = a, o a; where o € PR(Y),, and as € PR(X),, for some
u,v,w € ST then o € PR(¥ )y

(7) Primitive Recursion. If a = *(ay, ar) where a; € PR(Y),, and ay € PR(Y)nuy,, for

some u,v € §* then a € PR(X)uu -

4.2.2 The Semantics of PR

Let A be a standard S-algebra. For each a € PR(X) the meaning of « over A is [a], where

[.1.1is the S* x St-indexed family
[Ja=<[]y"u,ve ST >

where each mapping [J%° : PR(E)u,v — [A" — A?] (ambiguously denoted [.]4) is defined uni-
formly in u and v by induction on the structure of a scheme a € PR(X), , as follows:

Basis Schema.

(1) Constant Functions. If o = ¢* for some ¢ € Xy, for some s € 5 and for some w € ST,

then Ja], : A¥ — A, is defined by

(Va € A¥) [a]ala) =
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(2) Algebraic Operations. If a = o for some o € U, , for some w € ST and for some s € 5,

then [a],, : AY — A, is defined by
(Ya € A”) [a]a(a) = o (a).
(3) Projection Functions. If o = U¥ for some w € 5% and for some ¢ with 1 < i < |w],
then [a] 4 A¥ — A, is defined by

(Va = (ay,...,a,) € ") [a]i(a) = a;.

(4) Definition-by-Cases. If o = de, for some s € § then Jo] 4 : AP*° — A, is defined by

a, b=t

(Vb e B) (Vay.as € ,»1,) [[a]],\(b,m,az) = {a:, G h = 7

Induction: Function Building Tools.

(5) Vectorisation. If o« = < ay,...,a,, > forz=1,...,m > 0, oy € PR(Y), ,, for some
s; € 9, then [a]4: A* — A"~ is defined by

(Va € Au) IIO‘HA(U') = ([[alllA(a)v S H:a171]]x1(a‘))‘

(6) Composition. If @ = ay o a; where a; € PR(Y),, and a; € PR(Y), , for some
u,v,w € ST, then [a], : A* — AY is defined by

(Va € A*)  [a]a(a) = [ar]a([o2] (a)).

(7) Primitive Recursion. If o = #{a;, a:) where a; € PR(Y)y,, and oy € PR(Y), 4, , for
some u,v € ST, then [a]s : T x A* — AY is defined by

(Va € AY) [a].4(0,a) = [e1]4(a)

and

(Vt e T)(Va € A*)  [a]at + 1,0) = [a2]a(t, a, []a(t, ).

4.2.3 Notes

(1) Formally we require a proof to justify the existence of functions defined by Clause (4.2.1) of
the preceding definition. The interested reader can consult Tucker and Zucker [1988] for such a
proof. Also, notice that Clause (4.2.1) allows us to capture the class of simultaneous primitive
recursive functions that is strictly larger than the class of primitive recursive functions over an
arbitrary abstract standard algebra. However, in this thesis the simultaneity of the function def-
initions does not play a central role and hence we will simply refer to this class as the primitive

recursive functions.
(2) There is a sense in which the Boolean type and its standard operations (see Section 2.3.5)
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are not necessary in a standard algebra as they can be readily coded using the natural numbers
and primitive recursion (see Chapter 8 of Thompson [1987]). However, from the perspective
of efficiency of specification, definition-by-cases is useful as a primitive and will therefore be
included (see Section 6.7.1). Although, as it is included for convenience and not as a mathemat-
ical necessity, we will omit definition-by-cases in the definitions of the formal compilers in the
following sections and leave the construction of the appropriate schemes and the proof of their
correctness to the reader.

To complete the functional formalization of the primitive recursive functions on a Y-algebra

A we make the following definition:

Definition 10. Let A be a standard S-algebra. We define PR(A) the class of primitive recursive

functions by
PR(A) = {[a]. | a € PR(T)}.

4.2.4 Further Preliminaries

In this section we define further notation and functions either specific to this chapter or that
we will be used throughout the rest of this thesis. In particular, with respect to this chapter
we introduce operations on S™ that will be used for replacing individual sorts by words. The
reader not interested in the details of how we establish the compositionality of Cartesian forms
can omit these definitions (Definition 13 onward) and move directly to Section 4.3.
Throughout the rest of this chapter unless specifically stated otherwise ¥ will denote any
standard S-sorted signature and /A will denote any standard $-sorted X-algebra. lowever,
sometimes for emphasis we will re-state this assumption. In addition X will always denote
any S-sorted collection of variable symbols. Moreover, to avoid any confusion of symbols we
will always assume that ¥ and X pairwise disjoint, and in addition that neither contain the
distinguished symbol f nor any of the distinguished symbols from the set {f, . | n,n' € N}.

Notation 1. Given a vector a € A¥ for some w € S* it is natural to write a = (a,,.. 3 Q)
to name the individual components of a. We will use a similar notation for the individual
components of a vector-valued function: if function f has functionality f: A* — A* for some
u,v € 57 we write ‘f = (fl,...,fM) ;A% — AV to mean that f;: A¥ — A, fori = 1,. o vl

are those functions such that for each a € A*
f(a) = (fi{a),. .., flui(a)).

We call fi,..., i the co-ordinate functions of f.

Finally, if f, : A* — A,, for some v € S+, and for some s € 5 is some function defined using
the operations of A then we use A, to denote the extension of algebra A that includes f, as a
basic function wherein /1, is an S-sorted Lj-algebra such that Xy = XU {f}. For convenience
if fo:A" — AY, for some u,v € §* is a vector-valued function then we also write A, to denote
A extended with f, as a basic operation noting that formally this is an abbreviation for the
algebra (((Af)p) )., Wherein f; for i = 1,...,|v| are the co-ordinate functions of f.
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Definition 11. Given some scheme o € PR(Y) in the sequel we will write 5 C o to indicate
that 3 is a sub-scheme of «; that is, a scheme from which a has been constructed by zero or
more applications of the function building tools of PR. Furthermore, when 3 C « and 3 # «a

that is, when 3 is a proper sub-scheme of o we will write 3 C .

Definition 12. For each a € PR(Z),,. for some u,v € 5, we refer to u and v as being the

domain and range of « respectively and we write dom(a) to mean u and ran(«a) to mean wv.

Operations on Strings

Definition 13. For any w € S, for any 2 € 5" and for any ¢ € {1,...]w]} we define
wi{i/z} € Slwltle -1
by
w{i/z} = wy - winy T Wigy Wi

that is,
w{i/z} = wy Wiy T Wigr o Wil
Notice that it is possible that z = A in which case w{i/z} is w with w; deleted.
Finally, for later convenience, for any w € S*, for any z € §* and for any 7 & {1,...,|w|}
we define w{i/z} € S by w{i/z} = w.
Example 4. If § = {n,t,b,a,b,c}, w=ccbbaband z=nb then w{4/z} =ccbnbab.

Notation 2. Given w € S*, i € {1,...,|w|} and z € §* a typical member z of A¥1i/:} j5 o
vector

= (g, ey @imty Oy by Gy - Q)
wherein a; € A, for j=1,...,01—- 1L+ 1,..., |w| and by € A,, for k= 1,...,|z]. Of course we
can quantify over all such elements by writing “Vz € Awl/2}? “hut in practice we will want to
name the elements of A.,,..., 4;, that occur in z. To do this we can write

Vo = (ay, ..oy @ioy by ooy by @igs - Q) € Awlife}

or just

Yo = (a,,.. i, baie, .. .,(l|w|) € Avli/s)

elements. However, this notation is too cumbersome

provided it is clear that b is a vector of |z
for our needs. For this reason we write “a{i/b}" for a typical element of A“’{’/Z}; that is,

a{i/b} denotes a vector (ay,...,Qi—1,0, iy, - L ap)) forsomea; € A, .. 0, € Au iy, €
A S| € Ay, and some b € A7, and we use

Wigpy e
(Va{i/b} € Avlifzhy
to mean

(V(Ll e [’1“}1) . '(V(Zi—l & /LU‘_l) (Vb & [-1"’) (vai+1 € 1‘1w'+1) .. .(v[llwl € /lw]wl).
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For example, in the context of Example 4,
(Va{1/b} € _,.yu{‘*/t})
means
(Va, € A,) (Vay € A,.) (Vaz € Ay) (Vb € APy (Vay € A,) (Vas € Ap);

that is,

(V(Zl € ’L:) (V(lf_’ € flla) (‘V/(L:} € flb) (vbl € f'lu‘) (be! € "11)) (v”‘«l € "la) (,V(LS € ilb).

Definition 14. Let § be any sort set. For any s € 5, and for any w € S+, we define I** C

{l,...,]w’} by
(V] € {1,...,[‘(1_7”) J € — w; = 8.

Thus, given a sort s € S, and a word w € S*, [** tells us which elements (if any) of w are
y o C * )

exactly s. The size of I is denoted by {[*%].

Example 5. If w is defined as in Example 4 then /™ = {4,6}.

The remainder of this section is devoted to an extremely technical definition of a function
Init whose purpose will not be clear until Section 4.5.4. Therefore, we suggest the reader omit

this material until that time.

Definition 15. Forany s € S,and forany w € S+, wedefine AY™ : {1,...,|w|} — {0,...,|[**}}
by
\.s w O lf Wy # S35
(Vn S {13 ey [TU'}) (43 (n) - ,\é,w(n) Otllerwise’
wherein A\g* : {1,...,|w|} — {0,...,[/>"|} is defined uniformly in w by
(Vned{l,....Jwl}) AMn) = 0
A0Y(0) = 0

4 1) L+ A (n) if s =
y . B 1 ) 3,8 w n + =
(Vs' € )Y (Vne {L,..., |w| 1)) 0" Ay (n) otherwise.

Thus, given asort s € §,aword w € S*,and a number n such that 1 <n < |w], A1 (n) = m > 0
if and only if w, = s and w, is the mth occurrence of s in w (reading left-to-right). If A" (n) = 0

then w, # s.

Example 6. Let S be defined as in Example 4. If w =abcacba € § then
(1) A2™(6) = 2,
(2) APY(7) = 3, and

(3) A7 (5) = 2.
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Definition 16. For any s € S, and for any w € 5%, we define A} : {0,... |[*"]} —

{1,...,|w)} uniformly in w by
(Ym e {0,... 1)) AN m) = 0
AY0) = 0

’ v 1+ AS™(m il s =g
(V&' € SYy(Yme {1.... "= 1}) A" ¥(m+ 1) = “,,( )
L+ Ay%(m+ 1) otherwise.

Thus, given a sort s € §, a word w € S+, and a number m such that 1 < m < |*¥|, ,\g"“(m) = n
if and only if w, is the mth occurrence of s in w (reading left-to-right), otherwise A3 (m) = 0.

(Natice \]™ and A}" are essentially inverses; see Lemma 2).
Example 7. If S and w are defined as in Example 6 then
(1) A(2) = 6,
(2) A3*(1) = 3, and
(3) A3™(1) = 1.

Lemma 1. For any s € S and for any w € 5, if ' # @ then

= (AL, (DY

a
Lemma 2. For any s € S, and for any w € S+,
(1) (¥n e [*v) FUANY(n)) = n, and
(2) (Ym e {1,...,[I>¥]})  A“(Ay¥(m)) =m.
O

Definition 17. Let § be any standard sort set. For any s € §, we define ©* : § — §* by

(Vw € 5+) ﬂ"(’w) = S§e--8

|7%:%] times

Thus, given a sort s € § and a word w € S+, m*(w) is a word w', of length [1°*], where for
i=1,.. [I*%], wl = s. This 7 (w) is used to type JI"* in Definition 18.
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Definition 18. Let A be any standard S-sorted Y-algebra. For any s € S, and for any w € 5
such that [*% # @, we define 1[*Y : AY — A7 ) by

(‘V/(l e ::1_‘”) H"w(a) = ((L,\;v“'(l), .. -7{14/\;"”(1[8.:‘:')).

Thus given a sort s € S, a word w € S+ an S-sorted algebra A, and a vector a € A, II*
selects all elements from vector @ that are of sort s.
Notice th: » co-domain of TI*% is given by 7*(w), and the indices of the co-ordinates of
Notice that the co-dom g

a that are selected by II*'%, are members of the set ™% see Lemma 1).

Definition 19. For any s € S.for any w € St and for any ¢ € I, we define

AP §T ) ST — 57

A if u=A;and

¢yl otherwise,

(Vue sty (¥ze5%) A (uz)=

wherein for j = 1,..., |u,
; if j &I,
c; = . .
§*vi(z) otherwise

wherein for any s € S, for any w € §F, and for any ¢ € I*%, §ovt s St — §F is defined by
(Vz e S8ty &“i(z)=nuw

wherein w’ = 7 (w){A\]"(1)/z}-

Given a sort s € S, words u, w,z € S, and an ;e [P, A*Wi(u, z) is a new word u’ that is
exactly u except that every occurrence of s is replaced by 6***(z). An example of the use of A
is given at the end of this section.

Definition 20. Let A be any standard S-sorted T-algebra. For any s € §, for any w,z € ST,
and for any 4,j € I*** we define

g L At % AV % AT AT

wherein ©w = wy ---wi;_y and v = Wigy o Wi, by
(V(l € xlu) (V(L/ c Av) (vb = 1) 0:,w,i,:.j((t,a/’b) — (/\.;,w(J)’ IIS'I‘((L),Z), H,’U((L/)).

An example of the use of § is given at the end of this section.

Definition 21. Let S be any sort set. For any w,u & 5t we write w 2 u if, and only if
Hu,,w\ > fori=1,.. ., ul; that is, w 2 u when every sort w; of w occurs at least as many

times in w as it does in u.

Exarnp]e 8. Ifw=abecda,u=dcba and v = aa then w D wand w D v, but « 2 v.



Definition 22. Let S be any sort set and let w,u € S* such that w D w. o : {1,...,|u]} —
{1,...,Jw|} is an injection such that u; = wyg) for & = 1,... |uf then we say that (w,u, ) is a
w/u-replacement. We will often write ¢ for (w, u, ¢)if w and u are understood or unimportant.

For each w/u-replacement ¢ we define ¢ : {1,....Jw|} — {0,...,|u|} by
' — . 0 if~(3))o(J) =1; and
Vie (L. el B={ LTI

kooif (k) = 1.

Example 9. If w,u,v are defined as in Example 8 then y = {1 — 4,2+— 3,3+ 24— 5} is a

w/u-permutation and ¥ = {1+ 1,2+~ 5} is a w/v-permutation,

Lemma 3. Let S be any sort set and let w,u € ST, and let (w,u,$) be a w/u-permutation.

(VieIm(4)) o(el(i)) =i

Definition 23. Let A be any standard S-sorted ¥ algebra. For each w/u-replacement ¢, for
each s € § such that I** # @, for each p € I*", and for each z € §* we define

[nitesor . quie/zd o 487" (uws)

by
(Va{p/b} € A2y Init®**?(a{p/b}) = (y1,. .., Ypu|)

wherein for £ = 1,..., |y|

Ap(k) if & g 1""“,
Y =

G5B (@ L @y gy, - - Ay b)) otherwise.

Example 10. Let § = {r,s,5,¢,d} and let A be any S-sorted algebra. If w = ss' ¢ s s,
Uu=srss’,¢={lr6,2—573—4,4—2},z=ddand p=4 then

(1)
d={l 0,243 0,4—3,5— 26— 1}

and
(2) The function Init®*? has functionality Init® P Av{P/zh — A8""7(2) wherein

w{p/z} =ss' csrs{t/dd} =ss' cddrs

and .
Aswr(y z)= AP 70N srss dd)

= §UP(z)rér(z) s

= rrzs



wherein 2 = n sd d s since

0 P(z) §e s es T d)
nr'(sscsr .‘i){/\;’”l T4y /d d)
nsss{2/dd}

nsdds;

{l

il

and
(Va{p/b} € ACID)  Inir=or(a{p/b}) = (977 *2(d, ", b), a5, 8P (ol o, b), )
wherein a’ = a;,a., a5 and @’ = as, as. It now follows from the definitions that
greP8 (g a” b) = 6"’ stesradddS gl g p by) = (3,a1,by, b9, a5);

and
4 "esrs A dddy 1 1 _ .
goorsd(a/ a” by = 0000 TN A 6 by by ) = (2,40, by, by )

that is,

(Va{p/b} € A/} [nat®* 7 (a{p/b}) = (3, a1, b1, by, €5, 05, 2, a1, by, by, ag, ).

4.2.5 Simple PR Computable Functions

Each of the following facts states that a certain function f: A* — A" on an S-sorted L-algebra

A for some u,v € St is PR computable. To prove this fact we must show that there exists a
Y

scheme a € PR(Z),, such that [a]. = f. However, as for each of the following functions the

construction of such a scheme is straightforward they are omitted.

Lemma 4. For any n € N and for any w € S¥, if Copyy™” : AY — (A)" is defined by
ntirmnes

(Va e A4¥) Copyy¥(a) =(a,...,q)
then Clopy™® € PR(A).

Lemma 5. For any n € N for any s € S and for any 1 < ¢ < n if Switehy™ + A" — A, is
defined by

: Gm f1<m< n;
(Vm € N) (Vay,...,a, € A Switeh Y (myaq, ... a0,) = {

a; otherwise,
then Switeh’y** € PR(A).
Finally, the function Init as defined in the previous section is PR( ) computable.

Lemma 6. For each w/u-replacement ¢, for each s € § such that I*'" # @, for each p €[,

and for each = € S~
Init***7 € PR(A)

. . . - 3 ty J)J
wherein Init*** 7 is defined as in Definition 23.
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4.3 Using PR to Represent Stream Transformers

Recall the definition of a standard stream algebra - from Section 2.4.2 and consider the class
of functions that may be computed by PR(A). In particular, notice that there are only two
types of primitive operations that may take a stream as an argument: cval, for each s € § -
that simply evaluate a stream at a particular clock cycle; and projection functions (from the
language PR) - that simply select a stream argument as output. TIurthermore, notice that
there are no mechanisms such as A-abstraction (see Section 4.4.2) for making streams from non-
stream data. As a consequence, it would appear that PR(A) provides a very weak model of
stream computation. In more detail: if A is any standard S-sorted %-algebra then any function
I € PR(A) of the form
FiA" = [T — A

for some z € §* and for some v € ST must use projection functions to produce the stream
output. Thus, z must include stream sorts (otherwise I ¢ PR(A)) and F must simply copy its
stream inputs to its stream outputs; that is, /" must essentially be of the form

F:[T — A*x A = [T — A

for some u € §* and for some y € §* and be defined such that for all a = (a,,.. Q) € [T —
AJ* and for all b € AY if F(a,b) = (a},...,q[,) then for each i € {1,...,|v]} there exists a
J € {1,...,|ul} such that a; = q;. (Although, notice that this j may depend on @ and b.)

The following lemma formalizes these observations:

Lemma 7. Let A be any standard S-sorted Y-algebra. If
Fo (B )t [T = A" x AY = [T — A" € PR(A)

for some u,v € §* and for some y € §* then:
(1) For each i € {1,...,|v|}

(4)
(3_]6{1,,IUI}) uy = u,

(B)

(Va e [T — AJ*)(vbe AY)(Fj € {L,..,[ul}) Fi(a,b)=q,

and
(2) For each such F there erists

F=(fiyeoisfi) [T — A x AV = NP e PR(A)

such that
(Va € [T — AJ") fila,b) = j <= Fi(a,b) = a;.

Jor some ke {1,...,|u|} such that ax = a;.
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Proof. Property (1) follows by induction on the structure of a scheme « such that [a].=F.
Property (2) follows as a Corollary to Theorem 9 (see Section A.2).

O

Lemma 7 appears to place severe restrictions upon the class of STs that we may represent

in PR. In particluar, Lemma 7 states that STs in PR may only permute or copy their stream

arguments. For example, by Lemma 7 even a simple ST such as
- 2
F [T — AP — [T — Aj

defined by

(Yay,as € [T — AN (Wt € T)  Flay,a2)(t) = a(t) ift=0,

ax(t) otherwise
cannot be primitive recursive over A since /' neither returns exactly a, nor exactly a,.

Despite this fact we will show in the following section that a large and useful class of stream

transformers can be admitted to PR() provided we work with Cartesian forms.

4.4 Cartesian Form Computability

The language ASTRAL that we present in Chapter 6 derives its semantics from the language
PREQ. Therefore, as in the following chapter we show formally that PREQ is equivalent to PR
In its expressive power, Lemma 7 also appears to place severe restrictions upon the class of STs
that may be represented in ASTRAL. In order that we may show formally that ASTRAL is
a general purpose specification tool in the context of primitive recursive STs, we now discuss
the use of Cartesian form specification from the perspective of computability. In particular, we
introduce four extensions to the language PR and discuss the classes of STs that these languages

Can represent.

4.4.1 Cartesian Forms
The informal definition of Cartesian forms from Section 4.1 can be formalized as follows:
Definition 24. Let f: A — [T — A} for any v € §" and for any v € S*. We define the
Cartesian form f*: T x A* — A" of f (also written cart(f)) by

(vteT)(Va € AY)  f(t,a) = fla)(t).

Notice that conceptually the Cartesian form of a function f is similar to the un-Curried formn
of f, although in general the un-Curried form of a function and its Cartesian formn are not the
same. For example, if g is the un-Curried form of f then g has functionality

v} times

et u v
g:Tx - xTxA —/

as we must un-Curry each co-ordinate of f’s stream output individually.
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It is also appropriate at this point to give a formal definition of the dual concept to that of
a Cartesian form; that is, the applicative form, and two simple lemmata.

Definition 25. Let g : 7' x A* — A" for some u € 5" and for some v € §*. We define the
applicative form §: A" — [T — A" of g (also written app(g)) by

(Va e AYY(VLeT) gla)t) =gt a).

Lemma 8. Let [ and g be as above.
(1) app(cart(f)) = f.
(2) cart(app(g)) = g.

Lemma 9. If f = (fy,..., fa) : T x A" — A°, for some u € S” and for some v € S* then

Notice that the Cartesian form of F as defined in the previous section is a function F* :
T x [T — A]* — A and can be defined by

al(t) ift = 0,

VieT)Vay,a, € [T — A Fr(t,ay,a) =
(V€ T) (Va0 € | D (1,0, 02) as(t) otherwise.

Also notice that while I© € PR(A) the Cartesian form of I is readily seen to be a member
of PR(A) and therefore it would appear that at least informally that some useful STs may be
specified in PR in Cartesian form. However, as we are developing the basis of a strcam processing
theory using Cartesian forms as a specification methodology it is important to be precise about
the class of functions that may be specified in Cartesian form; that is, (1) what are the scope and
limits of Cartesian form computation in the context of stream algebras?; and more specifically
(2) what are the scope and limits of Cartesian form computation in the context of PR(A)? In
order that that we may answer these questions rigorously in the following sections we introduce

three extension to the language PR.

4.4.2 PR

It is a well-known result that the class of primitive recursive functions do not provide a gen-
eral model of computation in the sense of the Church-Turing Thesis (see for example Cutland

(1980]). However, the language uPR is a generalization of PR (see Tucker and Zucker [1988]),

that includes Kleene’s least number search operator, and in the context of algebras with lists
containing only finite or countable infinite carriers does provide a general model of computation.
We can define PR by extending PR with the additional induction clause:
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(8a) Minimalization. If o = j(«’) wherein o € uPR(E), .y, for some u € 5 then o €

HPR(X), n.
The semantics of this additional clause is formalized as follows:

(8a) Minimalization. If @ = p(a’) wherein o' € pPR(Z), up for some u € S* then [, :
A% — Nis defined by

(Va € AY)  [a]a(a) = leastn.([a'](n,a) = tt).

The class of functions computed by uPR(E) is formalized in the usual way:
Definition 26. Let A be any standard Y-algebra. We define pPR(Y) the class of primitive

recursive functions with least number search over A by

WPR(A) = {[ela | @ € uPR(D))}.

Notice that similarly to the language PR the formulation of uPR is essentially a generalization

of Kleene schemes (also see Cutland [1980]).

4.4.3 )PR

One operation that is often (implicitly) included in functional languages is A-abstraction. Indeed,
languages such as ML (see for example Milner [1984] and Wilkstrém [1987]) based on the A-
calculus often have this facility. The class of functions that can be computed when PR is
extended with a limited form of A-abstraction, referred to as ‘stream abstraction’, has been
considered in Tucker and Zucker [1992]. The language APR is PR extended with an additional

induction clause as follows:

(8b) Stream Abstraction. If « = A(a') wherein o/ € APR(X),,,, for some v € $* and for
some v € §* then « € APR(E).,. (Note that if u = A then the type of A(a’) is u by
definition.)

The semantics of this additional clause is formalized as follows:

(8b) Stream Abstraction. If @ = A«') wherein o/ € APR(X),,,, for some u € S and for
some v € §* then [a], : A* — [T — A" is defined by

(Vae A" [ela(@) = An([@]a(n,a)).

Again the class of functions computed by APR(X) is formalized in the usual way:

Definition 27. Let A be any standard X-algebra. We define APR(A) the class of primitive

recursive functions with stream abstraction over A by

APR(A) = {[a] | @ € APR(Z)}.
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4.4.4 M.PR

Having defined pPR(Y) and APR(Z) one further obvious extension to PR, that is also considered
in Tucker and Zucker [1992], is to define ApPR(X); that is, PR with both additional induction
clauses ((8a) and (8b)). As before the class of functions computed by ApPR(Y) is formalized as

follows:

Definition 28. Let .1 be any standard Z-algebra. We define AuPR( ) the class of primitive
recursive functions with stream abstraction and least number search over A by

ApPR(A) = {[a]a | @ € ApPR(E)}.

4.4.5 The Scope and Limits of Cartesian Form Computability

The formalization of the three extensions to the language PR above enables us to characterize
precisely the nature of Cartesian form computability by drawing on two results from Tucker and
Zucker [1992] and Tucker and Zucker [1994].

Theorem 4. Let MC be any effective model of computation and let MC(A) be the class of
functions computed by MC over the S-sorted algebra A.
IfF: A" — [T — A" € MC(A), for some x € St and for some v € S* then there exists a
scheme ap € \pPR(Z), , such that
I = [ar]a.

Theorem 5. If F : A" — [T — A" € ApPR(A), for some z € St and for some v € St then

there ezists a scheme ap- € pPR(X); 20 such that

(Vte T)(Va € A7)  F(a)(t) = [ar-]alt,a).

Notice that clearly Theorem 2 (Page 88) follows as a simply corollary to Theorems 4 and 5
and they provide a precise answer (and from our perspective positive answer) to the first part
of our question concerning the scope and limits of Cartesian form computation that we set at
the end of Section 4.4.1: that from the perspective of effective computability Cartesian form
specification is a gencral purpose technique. However, what does this result tell us about the
second question concerning the scope and limits of Cartesian from computability in PR(A) and
in particular the computability of STs in ASTRAL?

In fact the answer to this second question follows from an examination of the proof of
Theorem 5 that is by induction on the structural complexity of the scheme ap such that

[ar]a = F.

In particular, we can observe from this proof that the use of least number search does not play
a significant role other than in the obvious sense of increasing the class of functions that may
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be computed; that is, as a straightforward corollary to the proof of Theorem 5 we have the

following:

Corollary 1. If F: A" — [T — A}’ € PR(A) for some x € 5% and for some v € S* then there

exists a scheme ap. € PR(X), .. such that
(Ve e TY(Va € A7) Fla)(t) = [ap-]alt, a);

that is, Cartesian form computability is also a general purpose technique in the context of prim-

ttive recursive STs.

Indeed, as by definition PR captures the class PR we may infer from this result that the class
of all primitive recursive CFSTs can be specified in Cartesian form in PR. More specifically,
every SCA (see Section 3.10) can be specified in PR by means of CF'STs. Therefore, as PREQ
is equivalent to PR (Theorem 10) the language ASTRAL is also an appropriate and general
purpose tool for the specification of SCAs and hence hardware.

4.4.6 The Role of xPR in this Thesis

As Corollary 1 shows that the explicit inclusion of least number search plays no significant role in
the relationship between STs and the formulation of an equivalent Cartesian form, for generality,
in the following sections we will formulate our proofs concerning Cartesian composition in terms
of uPR computability. In particular, Theorems 7, 8 and 9 are concerned with PR computability
and in a similar fashion to the method that we deduced Corollary 1 from Theorem 5 we will
show that the composition of primitive recursive STs (Part (1) of Theorem 3) follows directly
from Theorem 7.

One slight complication that arises from the use of uPR(X) in our main theorems is that we
are now dealing with partial and not total functions. As such, formally in order to demonstrate
that two functions are equivalent we must show Aleene equality (see for example Cutland [1930]).
However, as in the case of Theorems 7, 8 and 9 it is trivial to deduce Kleene equality from a
demonstration of the equivalence of the functions under the assumption that they are both
defined we leave the details of the completion of our proofs in this respect to the reader.

4.4.7 PR with Cartesian composition as a Primitive

In contrast to the duality of the expressibility of full STs and their Cartesian forms in PR(A)
and ApPR(A), Tucker and Zucker [199‘2] shows that this duality breaks down in the case of
APR(A) computable stream transformers. In particular, Tucker and Zucker [1992] demonstrate
the following:

Theorem 6. There exists an F : A* — [T — A]” € APR(A), for some ¢ € ST and for some
v € St such that there does not exist a scheme aps € PR(A), ., satisfying

(vt e TY(Va € A7)  F(a)(t) = [ap-Ja(t,a).
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The proof of Theorem 6 is by the counterexample of showing that Ackermann’s function is
APR(A) computable.

What makes this result even more interesting from the perspective of this thesis is that,
from a computability-theoretic perspective, Part (1) of Theorem 3 shows that combining stream
abstraction with composition in a single operation does maintain the duality of Cartesian form
and full ST expressibility in PR(.4). This point can be clarified by considering a further extension
to the language PR.

The language }7[\{(;:) is PR(Z) extended with an additional induction clause as follows:

(8¢) Cartesian Composition. If @ = 5(ay,a;) where a; € ﬁ(&)cz,u and a, € ﬁ(&)w
for some u,v» € St and for some = € §” then o € PR(X),. ..

The semantics of this additional clause is formalized as follows:

8c) Cartesian Composition. If a = 5(as,a;) where o, € ﬁ(;)t su and g € PR S
P 4,

for some u,v € §* and for some z € §” then [a], : T x A” — A” is defined by
(Vte T)(Va e A") [alu(t,a) = [aa]a(t, An([ar]a)(n, @)).

As with the other three extensions to PR we make the usual formulation of the class of

functions computed by PR(E).

Definition 29. Let 4 be any standard Z-algebra. We define I/’T{(i) the class of primitive

recursive functions with Cartesian composition over A by

PR(4) = {[]a | @ € PR(D)}.

We can now use Part (1) of Theorem 3 to make a formal statement concerning I/’\R(f_\)
computability that is in contrast to Theorem 6 concerning APR(A) computability.

Corollary 2. Let A be any L-algebra. If o/ € f’?f(_f;)u,v, for some u,v € S then there exists a
scheme a € PR(%),,, such that

(Va€ A%)  [@]ala) = [a]ala);

that is, L
PR(4) = PR(A).

Proof. 1t is suflicient to show that if
o = 5(a},al)

for some o) € PR(Z)y 4, for some oy € PR(X)y,. and for some w € S* then there exists a

scheme o € PR(Z) such that
(vae A*)  []ala) = [elala).
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This follows immediately by Part (1) of Theorem 3.
a

Implications of Corollary 2 to this Thesis.  Corollary 2 states that adding Cartesian
composition to PR; that is, adding a limited form of stream abstraction with composition as
a single operation does not increase the class of functions that may be computed. Therefore,
we may conclude that it is the specific combination of the primitive recursion operator and
stream abstraction that enable us to define functions that are not computable in the absence
of stream abstraction on its own. From the perspective of providing a modular approach to
the specification of primitive recursive STs this is an important result, as it shows that PR is
the most general expansion of the language PR that we can use. We return to this point in
Chapter 6 when via the definition of a specialized compiler we provide what essentially amounts
to an implementation of the language of PR that we use to compile ASTRAL specifications into
PREQ.

Having discussed the scope and limits of Cartesian form primitive recursive computability
we now move on to the proof of Theorem 3. The reader not interested in the technical details
of the proof can now move directly to Chapter 5 on Page 120.

4.5 The Effective Composition of STs in Cartesian Form

Note that before continuing at this point if the reader has not already done so then they should
read the comments in Section 4.4.6 concerning the demonstration of the equality of two uPR(Z)

computable functions in the following theorems.

4.5.1 Composition of Cartesian Form Stream Transformers in PR

For technical reasons that will become clear later in order to formally prove Theorem 3 it is
necessary for us to reformulate and then generalize the theorem in several specific ways. First,
we make a modest generalization of Theorem 3 in the form of Theorem 7 that makes explicit the
types of the functions G and H and more specifically allows the domains of G and H to contain
both stream and non-stream inputs. In particular, Part (2) of Theorem 3 is readily seen to be a
special case of Theorem 7. Part (1) of Theorem 3 also follows from Theorem 7, but in addition
also requires Lemma 10. Secondly, we state Theorem 8 which is a restricted form of Theorem 7
in the sense that G may not be vector-valued. We can now show that Theorem 7 follows directly
from Theorem 8 by the repeated composition of the co-ordinates of a vector-valued functions and
hence to prove Theorem 3 we may now concentrate on a proof of Theorem 8. Finally, to prove
Theorem 8 we use Theorem 9 that concerns the properties of a formal compiler C. However, in
Sections 4.5.5, 4.5.6 and 4.5.7 before we state Theorem 9 we motivate its precise technical form
using a high-level algorithmic description of C and in particular show how Theorem 8 can be
considered as a special case of the compiler’s formal properties.
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4.5.2 Proof of Theorem 3

Definition 30. For any u',u* € §*, for any v,y € ST and for any z € S* if « = u' y u?* and
h and g have functionality h : A — A" and g : T x A — AV respectively then we define the

- . . 1 > 2 1 M —~
Cartesian composition f: A" °" — A" of h and g, in symbols f = h3 g, by

(Va = (ay,b,aq) € A sy [lar,byas) = h{ay,g(b), as).

We now use Definition 3 to formulate Theorem 7 from which we prove Theorem 3.

Theorem 7. For any u',u* € S* for any v,y € ST and for any 2 € S* if u = u! yu? and
h:A* — Av € uPR(A) and g : T x A — AY € uPR(A) then f=h3g e uPR(A).

For convenience we first re-state the theorem:
Theorem 3. Let G and H be any functions of type

G: [T — A" — [T — Ap

and
H:[T— AP — [T — A"

respectively for some m,n,p € N* and let
F:[T — A" = [T — A"

be defined by
F=Hod.

(1) If G*, H" € PR(A) then F™ € PR(A).

(2) If G*, 11" € uPR(A) then F* € uPR(A).

(3) Furthermore, in both cases above given schema ag- and ay. represenling G* and H* re-
spectively we can effectively construct a scheme ap-. representing F* from ag. and ag.; that is,

the composition of CFSTs is uniform in A.

Proof. We prove Part (2) of Theorem 3 and leave the reader to formally deduce Part (1) using
Lemma 10. Notice that if we take A° = [T — A", A" = AY = [T — AP, A" = [T — A™,
g =G" and h = H" then by Theorem 7 we have f = H* 3G = F* € uPR(A) as required.

|

4.5.3 Proof of Theorem 7

Notice that Theorem 7 concerns the Cartesian composition of a vector-valued function ¢. Qur
method of proving Theorem 7 is to repeatedly compose A with the co-ordinate functions of ¢
one at a time, In order to discuss this idea more rigorously we introduce the following notation

for composing a single-valued function g at a selected argument position of a function h:

107



Definition 31. For any s € S. for any d € S such that [** # @, for any p € [24, for any
z € St and for any q € S™ if d{p/q} = d' qd* and h and g have functionality & : A — .A*
and g : T x A" — A® respectively then we define the co-ordinate p Cartesian composition
foAR?% o 47 of h and ¢, in symbols f = k3, g, by

(1 Va = (ay,b,ay) € AdX qd:) flai,byaz) = hay, §(b), am);
(

that is,

(Ya{p/b} € A"/ fla{p/b}) = h(a{p/G(b)}).

As with Definition 30 we can use Definition 31 to formulate a further more convenient form

of Theorem 3, but now wherein g is single-valued.

Theorem 8. For any s € S, for any d € St such that I** # @, for any p € I¢4, for any
t € St and for any g € S™if h and g have functionality h : A= A and g T x AY — 48
respectively then f = ho, g € pwPR(A).

Discussion. Notice from Equation (1) that f is computed by replacing the pth argument
of h with §(b). Therefore for any ¢ = (g1,...,gpy) : T X A~ — AY we can compute h 3 g by
repeatedly replacing the arguments of h with the appropriate co-ordinate functions of g; that
is, by replacing the pth argument of h with g,(b) fori=1,.. . ly]. This is the basic idea behind
the following proof of Theorem 7 from Theorem 8. (We note that these semantic ideas are also
formalized in the definition of the compiler 5 in Section 6.1.1.)

Proof of Theorem 7. By induction on the value n = |y} € N.

Basis. If n = 1 then y is a single sort and hence this follows immediately from Theorem 8 if

wetaked =u,z =v,g=2z,p=|u'|+land s =y.

Induction Hypothesis. Assume for any y’ € S* such that [y'| = k for some fixed & > 1 and

for any u3,u%, 2’ € §* and for any v' € St if v/ = v’y u* and A’ : A — A € #PR(A) and

9 =(q,...,q.): T x A — AY € uPR(A) then f' = K'3 ¢’ € uPR(A).

Induction Step. We must show that for any y” € S* such that [y| = &k + | and for any

ud ub 2" € S* and for any v € St if u’ = u¥y” u® and A" : _r'l"” - A" ¢ uPR(A) and

9" = (gl gl T x A — AY" € uPR(A) then f” = A" 3 ¢" € uPR(A).
Notice that by the Induction Hypothesis if we take u® = u®, y' = y{'-- -y,

V= =2k =h" and ¢ = G = (g7,...,9%) then there exists

4

6

—_ 1
=Yt

8 1,6
u- 2

“ AV e uPR(A)

<

oA

such that

G

(Va = (ay,b,a2) € ALY flla) = b3 Gla).

\ - . 5 L1 I T 5 1 P
Therefore, by Theorem 8 if we take d = u” = Y WP = [ 2"+ 1, 0 = v", g=2z",h=Ff,
and g = g/, then there exists

s 1,6

f A u® Au" € uPR(A)
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that satisfies

5

(Va = (ag,b.a,) € A® ? “6) flay,b. byas) = (h"3G)3; g’k/+l((ll‘b‘b‘ )
that is,

flay,b,b,as) = h”((L\.G(b)._aﬁk+l(b),(Lg)
by the definition of . 5. and .o; .
= (@ (g GD(0) 07 (B )
by the definition of G and by Lemma 9
= h,“(al,ﬁ(b),ag)
by the definition of g” and by Lemma 9
= h"5g"(a,b,ay)

by definition. . /
Consequently if we define f”: A"~ v~ AY by

. 6

(Va = (an,bras) € A% f/(ar,b,az) = flar, Copy*™ (). a2)
then as f € uPR(A) by hypothesis and Copy®®" € PR(A) C pPR(A) by Lemma 4 we have
f” — hli 'O\gll E /JII)R(A)

as required.

4.5.4 A Cartesian Composition Compiler C

As we indicated previously to prove Theorem 8 we will use Theorem 9. In particular, Theorem 9
concerns the properties of a compiler C: pPR(Z) — pPR(L). While the definition of C is based
on a straightforward idea, the full proof of Theorem 9 is highly technical and long and is therefore
banished to Appendix A.2. Consequently, in the following sections we informally, but rigorously
discuss the construction of the compiler and take great care to explain why the constructions
made are the correct ones. In particular, we will show by means of a high-level algorithm that
if g and A are primitive recursive over A then so is f = ho,g by showing how to construct a
scheme a; = Clay,a) € PR(Y) such that [e;]u = f for any schemes oy, oy € PR(X) such
that {a,]4 = ¢ and fan]s = h respectively. In essence, the basic algorithm underlying the
construction of o, from e, and as is to replace occurrences of evaly in o, by @, in such a way
that whenever a, ‘executes’ eval, on arguments (t,a,), ay executes a, on (¢,b). We will now
explain this idea in some detail based on the account given in Stephens and Thompson [1992].
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4.5.5 An Algorithm for Performing Cartesian Composition in PR

Recall Section 4.2.1 where the denotational semantics of a PR scheme « is defined. This defini-
tion can be informally viewed as providing an operational semantics in the sense that it defines
a virtual machine which ‘executes’ a PR scheme a on some suitable arguments ¢ = (a,,... ,q,)

’, and then repeatedly expanding and simplifying this

by starting with the expression ‘[a].(a)
expression using the appropriate clauses of the definition of [.],4 until no further expansion or
simplification is possible. For example, consider what happens when this virtual machine is
executed on a, with arguments aj,...,a,. In particular, consider what happens to argument
a, as the execution proceeds. Since a, is a stream of sort s and the only operation of A that
processes such streams is the algebraic operation eval,, the only stage at which the value of a,
can influence the execution is when a, is passed to eval, together with some natural number ¢ so
that the value [eval,]4(t,a,) = a,(t) is computed (and is presumably used in some subsequent
computation).

Now imagine a second machine executing aj on the same arguments a = (ay,...,q,), but
in the case of this second machine we first compute g(b) (for some b € A”) and substitute this
for a,. (Notice that in general this preliminary computation of g(b) must be done externally
since if § is a non-trivial ST then § cannot be primitive recursive by Lemma 7.)

If the two machines are executed on their arguments in parallel, then the machines will
perform identical computations at the same times until the first time that the pth argument is

used. At this time, the first machine is about to compute
[eval]a(t,a,) = ay(t)
whereas the second machine is about to compute
leval,]4(¢,5(0)) = 9(0)(1)-

However, g(b)(t) = g(t,b) = [e,]a(t,b). Thus, if we could modify the first machine so that
at this critical stage in the execution sequence it executes &, on arguments ¢ and b instead of
eval, on ¢ and a,, then both machines will compute the same value (g(¢,b)) at this point in the
execution sequence.

In essence then, we have forced the first machine to simulate the second by replacing an
occurrence of eval, in a, with a,. If we can consistently modify a; so that whenever it would
normally execute eval, on some ¢’ and the special stream a, we replace this with an execution
of @, on t' and b, then both machines will compute the same result: f(a{p/b}). The difference
between the two computations is that the first machine computes f(a{p/b}) using only primitive
recursive computations. This suggests that f is indeed primitive recursive, and the technique

of substituting a, for relevant occurrences of evaly is at least the basis of an effective procedure

for performing Cartesian composition.

4.5.6 The Effectiveness of our Algorithm: Code Vectors

The difficulty with the above procedure is that we need an effective mechanism for determining

whether a stream argument to eval, is the special stream a, or not. However, in general this
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test is impossible to perform effectively since streams are infinite objects and hence equality on
[T — A,] is only co-semi-decidable. In order to describe how we avoid this problem it will bhe
helpful if we first establish some notation.

Recall that h is a function of n arguments a = (a,,...,a,) of which the streams of sorts s
are a; ,...,a;,. Thus, for k = 1,...,n, il a; € [T — A,] then there exists some j = J(k) €
{L,...,m} such that a; = @, 0 particular, there must be some r = j(p) € {1,...,m} such
that a, = a;,.

Now consider executing «; on @ = (ay, ... ,a,) again. At any stage in the calculation where
eval, is to be executed on some stream, it must be the case that the stream in question is a;; for
some j € {1,...,m} by part (a) of Lemma 7. However, a;, = a, when t; = p (or, equivalently,
when j = r). Thus, if we can modify aj so that it computes with the indices of streams rather
than the streams themselves, then we can effectively test whether or not a stream is a, by
comparing the indices of the two streams in question.

We use the indices of streams to compute f by executing a new scheme «} obtained from
ay in the following way. (For simplicity we will assume in what follows that |¢| = 1 so that a
typical argument b € A° to § is a scalar rather than a vector.)

Given arguments ¢ = (ai, ... ,a,), we replace each argument a; that is a stream of sort s

with what we call its code
(2) code(k) = (J(K)s @iy ooy iy by @igrs ey as,)
for k = 1,...,n wherein r is such that a;, = a, as above. The idea here is that first component

of each code is the index of the stream it represents. (The code also contains copies of b and all

the streams of sort s as these will be needed later.)
The crucial idea is to construct o} so that in each place that aj uses a stream of sort s, o},

uses a code instead. In particular, wherever eval, occurs in «, and is passed a number ¢ and
a stream a to evaluate, at the corresponding place in aj, the available arguments will be ¢ and
a code ¢ = code(k) for some k € {1,...,n}. Thus ay can now inspect the first component of

¢ and decide what action to take. Let the first component be some j € {1,...,m}. If j = r
then ¢ represents a, so aj needs to execute o, ont and b — this is straightforward to arrange

since ¢ is already available and b is the (7 + 1)th component of ¢. Alternatively, if j # r then ¢
represents a;, so aj needs to execute eval, on t and this stream. Again, this is easy to arrange

since a;, is the (j + 1)th component of c.
More formally, the scheme o} is obtained from «; in the following way. First note that a

code has type ne where e comprises m copies of s with the rth occurrence of s replaced with g.

Thus codes are members of the set
AP = Nx [T — A x A" x [T — A"

We now construct v, so that it computes in the way described above by replacing all occurrences

in o of eval, in vy by a scheme Eval of type
[Eval]a:T X A — A,
that is,

[Evally: T x Nx [T — A7 x A" % [T — 4,]"77 = 4,
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and is defined for each t € T and each ¢ = (¢1, ..., €my1) € N x A" by

ﬂ&gﬂi(t’cr+l) lf c,=r
[eval,Ja(t, coirr) if ey # 1.

(3) [Eval]a(t.c) = {

4.5.7 Remarks

The transformation of @, into aj obtained by substituting £val for eval, is the essence of our
method of compiling ¢, and ¢, into «;. However, there are a number of matters arising:

(1) Some readers may have asked themselves why we do not use part (b) of Lemma 7 in our
construction to compute the index of a stream at the point at which that stream is about
to be used as an argument to eval,. The reason for this is simply that we have been unable
to prove Lemma 7 without using results based on the composition of CI'STs(!)

(2) Simply substituting Eval for eval, will create ‘type clashes’.

(3) Although it is clear that «f can be used to compute f, o} is not the required scheme oy

since [a}],4 does not have the same domain as f.

(4) This description of the compilation process does not consider the case where h returns

streams.

(5) The presentation of Eval contains a subtle flaw.

Each of points (2)-(5) has an impact on the precise formulation of the compilation of a, and
@y into aj.

With respect to (2), it is not sufficient to modify «, by simply replacing occurrences of eval,
with Fval as we must also modify all of a,’s other basis schemes so that they have the right
types. For example, if a; involves a constant scheme d* for some constant symbol d and some
z € S* then in o}, this needs to be changed to d* where z’ is z with any occurrence of s is
replaced by the type ne of a code. Projection schemes and definition-by-cases schemes require
similar modifications, but we will leave the details to the formal definitions in Section 4.5.3.

With respect to (3), the constructions discussed above result in a scheme aj such that

[h] s AT — A7

where d’ is d with every occurrence of s replaced by ne. Notice that if @ denotes a = (ay,...,q,)
with each a, that is a stream of sort s replaced by code(k) for k € {1,...,n}, then it follows

from the above discussion of codes and Eval that
[e)]a(@) = f(a{p/b}).

Thus aj is the required characterisation ay of f = hé,g except that aj has the wrong domain.
However, it is easy to see that @ can be computed from a{p/b} with a PR scheme Init such that

If we define ay by
af - a',l o} [TLL[
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then

[aslala{p/b}) = [ah o Init]ala{p/b})
[ )al/nit] ala{p/b}))
[ ]a(@)

= fla{p/b}).

(Recall that Init was defined in Definition 23.)

With respect to {-}), the hypothesis on the function A is that it does not return streams.
(Recall that the co-domain of h is A” for z € §T and not z € §¥). However, notice that it is
possible for oy to be of the form a, = a, o @; where ¢, returns streams. This means that a
theorem stating the primitive recursiveness of f = ho,g cannot be proved by an argument that
proceeds by induction on the structure of a; since the induction hypothesis will not be strong
enough. (We note in passing that g and h must have the general form given in Definition 30 for

I

I

the same reason.)

This matter is easily resolved: if we allow the co-domain of a to be 47 for 2 € §* then the
construction will generate a scheme «j, with co-domain A7 where 2’ is « with every occurrence
of s replaced with ne. Since this is not the co-domain of f, the theorem to prove in this case is
one stating that for each co-ordinate function h; of k: (a) if the co-domain of A; is not [T" — A,]
then the ith co-ordinate of o o I'nit], returns the ith co-ordinate of fé,g, and (b) if the co-
domain of h; is [T — A,] then [a} o Init] returns the code of the stream returned by ( f5,¢);.
(Theorem 9 that states the correctness of the compilation process has exactly this form.)

With respect to (5), the discussion of Eval was simplified in Section 4.5.6 for ease of pre-
sentation. The difficulty is that the generalisation of & described immediately above is still not
sufficient for a proof by structural induction to succeed if we use Eval naively.

To see the difficulty, recall the semantics of Fval from equation (3) above. Notice how this
definition is implicitly dependent on d (the domain type of h); that is, ‘Eval’ is properly ‘Ewval,.
For example, suppose a; = eval,. In this case d is ns, and since the second argument to h is
the only stream, we deduce that p = 2 is the only possibility. This means that there is only
one code: code(2), and it must be that [Init], always returns code(2) = (1,b) since the second
argument is the first and only stream. This in turn means that the definition of Fval = Evaly,,
collapses to Eval = a,. While this is correct in the case where a, is eval,, in general eval, will
only be a sub-scheme of a,. Thus in an argument that proceeds by induction on the structure
of &, we need to replace eval, by Evaly, but the induction hypothesis will only cover the case
where u = ns. This is not what is required, and as with the situation above, we must generalise
the construction again to give us a stronger induction hypothesis.

We do this in the following way. When eval, occurs as a sub-scheme of ay,, the only streams
on which eval, could ever be executed must be inputs to a,. In other words, the (stream)
arguments to eval, are contained in the (stream) arguments to a,. To reflect this situation in
an induction hypothesis we consider the substitution of G(b) for the pth argument in any list
@' = (af,... . a’,) which contains the arguments a = {a1,...,a,) to oy More precisely, in terms
of the notation and terminology of Section 4.2.4, our approach is to consider the effect of sub-

stituting §(b) for the pth component of a vector a’ of type w where w D d and there exists some
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w/d-replacement ¢. (This was the reason for defining sort replacements in Definition 22.)

In an argument based on the structure of cj, in this context, the basis case where o, = eval,
does not require the domain type d of o, to be exactly ns as it is now sufficient to have ¢ D s.
This reflects the idea that the stream argument to eval, when it is a sub-scheme of a; must
be one of a,’s arguments, and leads to a construction wherein eval, is replaced by Ewvaly as
required.

Finally, to recover the theorem we set out to prove, it is a simple matter of considering the

special case where w = d and ¢ is the identity function.

4.5.8 A Formal Definition of the Compiler C

In the previous section we explained informally the structure of a compiler € such that
, :
Clay.ap)=aj o Init

and
{[C(aw ah)]]i\_ = [[OéhL\_ ap {Iag]]i

(Recall that oy is of type (d,z) wherein d, = s and «, is of type (t ¢,s).) In this section we
present a complete definition of this compiler and make a formal statement of its properties that
we use to prove Theorem 7.

For technical convenience the formal definition of C is given by two separate functions. For
example, the construction of the scheme «} is formalized by the definition of the compiler ¢
wherein for additional technical reasons concerning the functionality of ¢ the scheme «, is given
as an index rather than an argument. For example, the formal construction of the scheme o,

as above is given by
;o ”"‘d'p(a )
Qp = Var hj

The formal construction of a scheme to represent the function Init was given in the latter part
of Section 4.2.4 to which the reader may now wish to refer before continuing. Specifically, notice
that the function Init is used to compute the appropriate input to aj where each stream is
replaced by a code vector, and the function # is used to compute the individual code for each
particular stream. The function /A computes the correct type for the domain and co-domain
of o where streams are replaced by codes and the function 6 is used to compute the type of
each individual code. In particular, in the case of «j), as above A*4?(d, q), and ATP(d q) are
the domain and co-domain of ) respectively wherein the type of each code vector replacing
each stream of sort s is 647(¢); and if id is the identity function on {1,...,|d|} then for each
@ = (o', b,a") € A4P/9) the input to o is Init***P(a) wherein [nit'®42P has functionality
Initidasy . qdlp/e} . 4A%*"(49) and replaces each stream of type s occurring as the kth co-

ordinate of d with the code #2473%(a’, a”,b).

The Compiler ¢. We now present the formal definition of the compiler ¢. Recall that
for technical reasons concerned with the formal proof of the properties of C (stated as Theo-
rem 9) that the definition of ¢ involves a further domain type w such that w D u (wherein u



is now the domain of the function we are performing Cartesian composition on) and a w/u-
replacement ¢. However, to deduce Theorem 7 from Theorem 9 it is sufficient to have w = «

and ¢ as the identity function (as above).

Definition 32. Let ¥ be any standard S-sorted signature. For each s € 5, for each w,u,v € S*
such that w O u and I¥¥ # @ for each p € I*¥, and for each 3 € uPR(Y),,, for any z € §~
we define

szjp cpPR(Y )y — /LPR(E)AL‘“'P(u,;),givw't’(v_;)

(ambiguously denoted 7** or just Q) by induction on the structural complexity of a scheme
@ € pPR(Y)y,, uniformly in (u,v) as follows:
Basis Cases.

(1) Constant Functions. If o = ¢¥ for some ¢ € ¥y ,+ for any s' € S then
<> :/Ll)lﬂ(l—‘:)u,s’ - NPH'(.Z.)Ai"”"’(u,z),Ai"""’(:',g)

is defined by
O(a) — CA—' ' (u,.:)‘

Well-Definedness. Since AS¥P(s',z) = s’ by definition it is clear that
0(a) € WP R(Z)asr(uamwr sy
as required.
(2) Algebraic Operations. If « = o for some o € Y. forany s’ € § then

0 :N[)R(;)u,a’ - /L—PR(E):.\i"""(u,z),z.\i'"‘-"(;',;)

is defined by
o if o # eval,,

Ola) =

Eval?**? if 0 = eval,
: > * . ~ s, w
wherein for each w € ST, for cach z € §" and for each p € I*
s . 2] 25 rtx
El,'(ll:l P = S?l)ltChl LAY (p) o < U:, ,/31, . ,,/3“5_,\.:' >

. . w s . . = eswpf ; . s
where switch!***2®) is as in Lemma 5, z = 6*¥?(2), and for j = 1,...,]|[*"],

cval, o < ULZ, Uil > if 1 <7< AP (p);
By =qdo < U7, jt—f'l""’[];-flll—i—l > if j = AP (p);
coalyo < UL Utum > () <5< )

Note, when defining J; above, in the case that 7 = AY“(p) if z = ¢ and hence [z] = 0 then
the sequence of projections U;‘f-_), e U].‘Jf]:IH is empty and we operate the convention that
By =po < UT >.

Well-Definedness.  We have two cases to consider:
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(a) 0 # eval,. Notice that since o # eval, we have A*™P(y, z) = u and ALY ?(s,2) = ¢
by definition and theI‘CfOI‘Q O(CY) € /J'PR(_.E_)Al"‘”P(u,g), ADWP(gr 2} AS [‘equired_

(b) o = eval,. First notice that if 1 < 7 < AP¥(p) then z;4, = s by definition. Similarly
if AP¥(p) < j < [[2¥] then @j4pz441 = S Thus, eval,o < UF, U;sz > and eval, 0 <

U=, Uty > are well-defined as compositions since the domain of eval, is t s.
Second, notice that if j = /\%’w(p) then U;fga cees thfm“ is of type (tx, 2) by definition

Jtr

and therefore fo < Uf*, Ui, .- G U i > s well-defined since by hypothesis the
domain of 8 is t z. Also, notice that < Us=, By, ..., Brew; > is well-defined since 3; €
PR(®)e,, for j =1,...,[/*¥| and U%” is of type (t z,n) by the definition of z and
by hypothesis switch = 1A () ¢ PR(%)n,r, wherein &’ = 8y - -8 2w such that
s, = s for ¢ =1,...,[[*"]. Therefore switch! s P o < U™ By, .0, Birew) > is
well-defined as a composition. Finally, since A¥*2(t s,2) = t §+***(z) by definition
and A&¥P(s,z) = s by definition, we have O(a) € pPR(E)aswr.y, azwr(ss) as

required.
(3) Projection Functions. If o = U7 for some j € {1,...,]u|} then
0 I[LPR(_);)U',_‘] - }LPR(_L:)ALwxr(uy;)’AL.W.p(uJy‘,)

is defined by

Uﬁi"”"’(w) if j &I+,
Ole) = 2wy AL P(u,2) if 7 u
@, < U]-A: (u, ),...,Uj/+|6s,w.p(;)|—1 > ifjels

wherein j' = |A&¥ P (uy -+ u5-1, 2)| + 1

Well-Definedness. We have two cases to consider:

(a) j & I®. Notice that since j & [** we have u; # s and hence A&“P(uy;,z) = u; by
definition. Therefore as j' = JAP(uy - 1;_1,2)| + 1 we have (Ax¥P(u, z));) = u;
and therefore O(a) € pPR(E)arwp(u,z),a0 7 (u;,2) 38 required.

(b) j € I¥*. Notice that since j € I&* we have u; = 8 and hence A*¥P(u;, z) = 62¥P(z)
by definition. Therefore as j' = [AsP(uy« - uj_y, 2)| + 1 we have

(A2 (1, 7))y - (AP (1, 2))peapgnmnai-1) = 8720(2)

and therefore O(a) € pPR(E)azwr(u,:), 8227 (uj,2) a8 required.

Induction Hypothesis. Assume for any scheme &’ € (PR(X), i for some u',v' € §* of less

structural complexity than « that

0% WP (o) € pPR(Z)aswrur,2), a2 2(u,2):

ulv’ \

Induction: Function Building Tools.
Note that in each of the cases below the well-definedness of ¢{a) follows immediately from the

Induction Hypothesis. Consequently we leave the details to the reader.
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(4) Vectorisation. If &« =< ay,...,q,, > for some a; € pPR(Y),,, for any s; € S for
t=1,...,m >0 then

<> ZIIL[)R(;)U,M»--S,,. - /LPR(}*;“_)Ai‘w"'(u‘:),&i"""’(s1-'-s,,.,:)

is defined by

Ola) =< Olag), ... 0(a,,) > .

(5) Composition. If & = a, o «a, for some a; € PP R(Y), u and for some s, wPIR(Y),.

for any v’ € S* then

O ;/[P]{(_};)uyu — ,U«PR(ZJ.)A}“”P(u,z),ALW'P(U,;)

is defined by

O(a) = O(az) o O(ay).

(6) Simultaneous Primitive Recursion. If a = *(ay,q;) for some o, € pPR(E), , and

for some ay € uPR(E)¢., . then
O :puPR(E)u, — /»LPR(:\;)AL"""(tu,z),/_\.l"”"’(v,z)

is defined by

O(a) = #(0(ar), O(a2)).
(7) Minimalization. If a = p(a’) for some o’ € pPR(Y), 4 p then
Ot uPR(X)un — #PR(E)arwr(u:yarvr(n,)

is defined by
O(a) = u(0(a')).

Lemma 10. Let & be any standard S-sorted signature. For each s € S, for each w,u,v € St
such that w D w and I+* # @ for each p € I'", for each B € PR(X),., for any 2 € ™ and for

any e € PR(Y), .
07 P(a) € PR(L).

Proof. Immediate from the definition of { since { never introduces any new instances of

.. . R - . > ’ 4 : T
Minimalization. This fact is used to deduce Part (1) of Theorem 7.

a
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The Formal Definition of the compiler C.

Definition 33. For cach s € §, for cach w,u € S¥ such that [** # @, for each w/u-
permutation ¢, for each p € I+* for each a € puPR(X)., and for cach 3 ¢ pPR(Y), ., for
any z € 57 we define

cowr . /LPR(S_;)“,U X /L})R(.\—l)t s ,“PR(;:)w{p/:},Ai"""’(v,:)

u,v,2,8
(ambiguously denoted C**?) by
s wp _ ABwp nifeap
CoP = Oy P(a) o Init .

Notice that by Lemma 6 we have Init***? € PR(X). Therefore if a,3 € PR(Z) then by
Lemma 10 we have ¢?*» € PR(X) and hence C**?(a, 8) € PR(X). Otherwise, if o, 3 € uPR(Z)
then C*¥r(a,3) e nPR(YD).

4.5.9 Proof of Theorem 8

We now complete this section with a formal statement of the properties of the compiler ¢ and
use this to prove Theorem 8 and hence Theorem 3. Notice that the statement of the theorem
concerns the particular co-ordinates of the function created by the compiler C. In particular, in
the context of our example notice that if sort z; of the co-domain of a; is not a stream of type
s then the output produced by the compiler is precisely as required by Theorem 7. However, as
discussed under Point (4) in Section 5.7 if sort z; of the co-domain of a is a stream of type s
then the compiler produces a scheme that returns some code vector g=dPar(a’ a” b) for some
T € I+ of type §29P(q) that was produced by Init.

Theorem 9. Let A be any stundard S-sorted S-algebra. For each s € S, for each w,u € S*
such that I+ # @, for each w/u-permutation ¢, for each p € I**, for each o € pPR(T),,, for
some v € ST, for each 3 € uPR(Z), ., for some z € 57 and for each i = 1,...,|v|:

(1) ifi ¢ I then if we define

padswe . quip/zl A,
(ambiguously denoted F}"‘J) by

Froowr = ([CAla, B)]a);,
wherein j; = (i — |feve v |) 4 (J187 1] |62 P(2)]) 4+ 1 then

(Va{p/b} € Avtr/eh F7(a{p/b}) = ([[a]]A(P(“{P/b})))

wherein
P qulersh o gulire)

s defined by .
P((l{])/[)}) = ((IQU), cey Qpip—1)y nﬂﬂl(b)a Ap(FH1)r - +» (l(,&(luf));
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wherein p = &(p); otherwise

(2) if i € [2 then if we define

pasowr . r‘w{P/l} LS
1 ——— _—

(again ambiquously denoted F}"‘J) by

Frfowr = ([Cla )] )i LT, B)]ads, v,

l

=

wherein j; | = ji as defined above and jix = Jikoi+ L for k=2,...,[629P(2)| then
(Va{p/b} & A“TIy  FE(a{p/b}) = 027 T (@r, s 0pots Gy s @y, b)

for some r € I¥% such that

(Pla{p/b}))5, = (LelalP(a{p/b}))):

We now show how it is straightforward to deduce Theorem 8 from Theorem 9.
Proof of Theorem 8. Notice that as by hypothesis 2,9 € uPR(A) there exist schemes
an, e, € puPR(Z) such that [a,]s = h and [a,]4 = g. We claim that by Theorem 9 if we take
t=w=d ¢(j)=jforj=1,..,|dv=r2=¢ a=ay, f=o0,and p=1ithen

s = (BN F ) = hy g

]
To see this first notice that Ff"'a" € uPR(4) for j = L,...,lz| and as z € 5% we have
Atdi(z ¢} = ¢ and hence Fe @7 is of the same type as h o, g. Also, again since r € §t,
d
by Theorem 9 we may calculate as follows for each a{p/b} € A /a3

v an(a{p/b}) = (KT B
= ({[Qhﬂi(G(a{p/b}))l* SRR [[&hﬂg(a(a{l’/b}))lxl)
= [an]a(Gla{p/b}))

= [an]alay, - .,ap_l,m(b),apH, Ce )
by the definition of G with the hypothesis that ¢(j) = Jj

= h(ay,.. .,(LP_L,ﬁ(b), Qpity- s Q)
by hypothesis

= h 5, gla{p/b})

by the definition of A o, g as required.
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Chapter 5

Primitive Recursive Equational
Specification

A little inaccuracy sometimes saves tons of explanation.

Saki
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5.1 Introduction

[n this chapter we define the language PREQ that we will use to give a formal semantics
to our stream processing language ASTRAL that is presented in the following chapter. Qur
motivation for the development of PREQ can be found in Sections 3.7.1 and 4.1 and in particular

Section 4.1.2.

5.1.1 Overview

Essentially we have two main aims in this chapter: (1) to show formally that PR and PREQ
are equiv:;lent in their expressive power; and (2) to establish some formal properties of PREQ
that demonstrate its effectiveness as a specification language from the perspective of automated
verification. In a similar fashion to Chapter 4 wherein we used the formal compiler C to establish
a theorem constructively, in order to prove Property (1) we will employ the use of two formal
compilers: CPR and CPREQ, As with the compiler C both of the compilers C°® and CPREQ yre
also highly technical in nature and so the formal proofs of their properties (Lemmata 27 and
28) are again banished to an appendix (Appendix B). Therefore, as before we concentrate on
an informal, but rigorous algorithmic description of our compilation techniques.

In more detail, this chapter is structured as follows: in Section 5.2 we introduce the impor-
tant concept of a normal form representation for PR schemes. The use of normal forms will
enable us to reduce the number of equations produced by PR schemes when they are compiled
into PREQ to a theoretical minimum. As a motivation for this normal form representation we
present the high-level algorithm for compiling PR schemes into equations that is the basis for
the compiler definitions that we use to show the adequacy of the language PREQ.

In Section 5.3 we concentrate on the development of the language PREQ. First, in Sec-
tion 5.3.2 we define the syntax and semantics of PREQ. In Section 5.3.3 we are now in a
position to define the two formal compilers that we will use to show that PREQ captures the

class PR:
Theorem 10. There exist compilers
CPR . PREQ(S, X ) — PR(Y)
and
CPREQ . PR(S) — PREQ(S, X)

such that o
(vb € PREQ(E, X)) [P]a =[CT(®)]

and

(Vo € PR(E)) [ada = [CT9a)]4

respectively from which we deduce that
(1) |
(4 € PREQ(S, X)) (3a € PR(D)) el = [@].



and

(2)
(Va € PR(Y)) (3 € PREQ(E, X)) [®]. = [a]..

r\ . ~ . - S . . SN
[o conclude this chapter (Section 5.-4) we concentrate on the properties of PREQ from
the perspective of automated verification; that is, we show that any PREQ specification when

interpreted as a TRS is complete:

Theorem 11. If & € PREQ(S,X) and R = TRCONM®) C TRS(Z, X); that is, if R is the
term re-writing system formed from ® by orienting each equation in ® as a left-to-right re-write

rule then R is complete.

As with the previous chapter this chapter is also predominantly concerned with the technical
development of our stream processing theory. Therefore as before for the reader not interested

in these details we will indicate which sections can be omitted.

5.2 Compiling PR into Equations: PR Normal Forms

In order to establish the adequacy of the language PREQ in the sequel we will define a compiler
CPREQ {Hat maps PR schemes into a semantically equivalent equational representation in the
PREQ syntax. A compiler that maps PR schemes into equivalent equational representations
can already be found in Thompson and Tucker [1991]. However, while this compiler is mathe-
matically concise in its construction, it is highly inefficient from the perspective of the number
ofcquations produced from a PR scheme and this in turn leads to impractically large TRSs (see
Chapter 8). . . . .

In order to produce compact TRSs the compiler CPREQ in this thesx:s fehes on a scheme
@ € PR(Y) being first converted into an equivalent ‘normal form’ o before it is finally conver‘r,e.d
into equations. (In the sequel we will denote the class of all such normal fc?rms PREg.) This
intermediate compilation into a normal form means that the number of efluatxons created from
a PR scheme a can be reduced to what in general constitutes a theoretical minimum: if & is
the number of applications of primitive recursion in a scheme a then C°"**? produces either 2k
equations if a = *(a,, aq) or 2k — 1 equations otherwise. . '

The formalization of this intermediate compilation process relies on the construction of a
compiler

CPR# : PR(Z) — PRg(Y U F)

(wherein £ is a set of additional function symbols dependent on the scheme « that we are
compiling) that essentially performs the following two operations: (1) the replacement of occur-
rences of primitive recursion by new function symbols (Definition 44); and (2) the elimination

of occurrences of vector-valued compositions (Deﬁmtlon'ﬂ.). ' ‘ o
While at an intuitive level CPRe is straightforward in its operation, a detailed description

of its procise functional behaviour is highly technical. Therefore, we motivate the form of the

systems of equations that it produces with a high-level algorithmic explanation of the recursive
~ - Iy o (29 .
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operation of the compiler CPREQ . As such, we suggest the reader not interested in the precise
nature of our compilation technique limit their attention to this informal algorithmic description
of the operation of CPREQ presented in Section 5.2.2. For the reader who is interested in the
technical details of the compiler CPREQ we suggest they limit their attention to Section 5.2.2 on
a first reading, and return to Sections 5.2.3 to 5.2.6 when they are familiar with the intuitive
ideas underlying our technical definitions.

Finally, despite the fact that the elimination of vector-valued composition from a scheme re-
lies on first replacing occurrences of the primitive recursion operator with new function symbols
we explain vector-valued composition elimination first as it is intuitively more straightforward

and is only performed for technical convenience.

5.2.1 Eliminating Vector-Valued Compositions

The elimination of vector-valued compositions from a scheme « relies on the fact that either o
contains no application of the primitive recursion operator or « contains one application wherein
a is of the form a = *(ay,a,). The class of all PR schemes that satisfy this property (see the
following section) are denoted PRc(E), and we call the process of eliminating vector-valued

compositions from a scheme a € PRe(Y) thinning.
Essentially, the compiler that we define to perform the thinning operation:

Thin : PRo(S) — PRE(S)

is nothing more than a homomorphism that converts any sub-schemes of a scheme « € PRC(E)

of the form
< g1, Q2. 0o n > 00y

into a semantically equivalent scheme of the form

<@gy 0 Q1,02 O Qpy..., Qa4 O Q) > .
The operation of Thin is formalized as follows:
Definition 34. For each u € S* and for each v € §* we define

Thin, , : PR¢(X) — PRg(X)

(ambiguously denoted Thin) by induction on the structural complexity of an argument « €
PRC(Z)U'U as follows:
Basis Schema.

(1) Constant Functions, (2) Algebraic Operations, (3) Projections and (4) Definition-
by-Cases. If either @ = c* for some ¢ € Xy, for some w € §* and for some s € § or
a = o for some o € &, ,, for some w € S* and for some s € § or o = U¥ for some w € S+
and for some 7 with 1 < i < |w] or a = dc, for some s € 5 then

Thin(a) = .
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Induction.

(5) Vectorization. If « = < a,,...,a, > wherein o; € PRe(Y)y s, for some uw € S+ and for

some s; € S fori=1,...,m then

Thin(a) = < Thin(ay), ..., Thin(a,,) > .

(6) Composition. If @ = o, o a; wherein «a, € PRe(E), w and ay € PRc(Y), 5 for some

w, v, w € St then

ay o Thin(a,) if [ran(cy)| = 1,
Thin{a) = { < Thin(as,; o a1),..., Thin(agp 0 @) > fay =< ay,,.. Sy Qapy >, and
Thin(agvg o (02,1 o al)) if Oy = Qg,g o} O_’:_)’l.

Notice that these three cases are exhaustive by the hypothesis that « € PRq(T).

(7) Simultaneous Primitive Recursion. If o = *(ay, aq) wherein o, € PRe(E), , and
a3 € PRe(%), 440 for some u,v € ST then

Thin(a) = #(Thin(a, ), Thin(ay)).

Notice that from a close examination of Case (6) of the preceding definition it is not imme-
diately obvious that Thin is terminating. However, the compiler can be shown to terminate by
observing that Thin reduces the number of sub-schemes of « such that

Q= Qy O (;p O (1)

Wherein |ran(a,)| > 1. However, we leave the details of a formal proof of this fact to the reader.

The main property of Thin that we require can now be stated as {ollows:
Lemma 11. [fa € PR:(X)y, for some u,v € §* then

[a]s = [Thin{a)] ..

Proof. By induction on the structural complexity of & and by sub-induction on the number

of sub-schema 8 C « such that 3 = 8 o f; wherein |ran(y;)| > 1.
(|

As demonstrated by Lemma 11 the correctness of the compiler Thin relies on the fact that
2 scheme « satisfies o € PR¢(E). As such, we now informally define the process of converting

3 scheme into an equivalent representation in PRc(Z).



5.2.2  An Informal Algorithmic Description of Compiling PR into Equations

We first explain the intuitive visualization technique on which the operation of the compilers
I
CPRe and CPREQ 3re based and a straightforward theoretical result that provides the basis for

a recursively defined compilation procedure.

Visualizing PR Schemes. Exploiting a technique that is common in computer science
we can visualize a PR scheme as an inverted tree wherein branches represent applications of
the function building tools - vectorization, composition and primitive recursion - and leaves
represent constants, projections and algebraic operations. In particular, according to some pre-
defined ordering we may index the nodes (branches and leaves) of a tree to enable us to talk
about concepts such as ‘the ith node of scheme a’ and ‘the jth primitive recursive node of

scheme o', For example, the scheme
a = *(*(*(., Dy )y VI(x(Ly x(, Dy *(5)))

Wherein ‘.’ represents some basis scheme and V represents some function building tool other
than primitive recursion can be visualized as the tree shown in Figure 5.1. Specifically, notice
that each node is annotated with a tuple (z,y, 2) that represents three separate indexes as per
a top-down, breath-first traversal of the tree: the number z counts each node; ignoring the root
node, the number y counts only branches that represent an application of the primitive recur-
sion operator — what we refer to as ‘proper’ primitive recursions; and ignoring the root node
again, the number z counts only branches that represent applications of the primitive recursion
operator that do not occur below any other applications of primitive recursion — what we shall
refer to as ‘top-level” primitive recursions.

In particular, observe that using this indexing: the second node is the first proper primitive
recursive node and also the first top-level primitive recursive node; the tenth node is the fourth
proper primitive recursive node, but is not a top-level primitive recursion; and the thirteenth
node is the fifth proper primitive recursive node and also the third top-level primitive recursive

node.

Eliminating Top-Level Primitive Recursions. Recall the meaning of A; from Sec-
tion 4.2.4. In general, as part of our normalization process we wish to eliminate top-level
Primitive recursions by replacing them with (new) function identifiers. For example, in the case
of & as defined in Figure 5.1 we can replace nodes 2, 8 and 13 with the function symbols f,, f,
and f; respectively (the reason for this choice of numbering is explained in the sequel) to give

scheme

o = *(fo, V(fi, fs))-

Of course now &' PR(E U { fo, fas fo}), but il we define f», fy and fs by the semantics of the
sub-scheme of o that they have replaced; that is, if we define

f;\/;./4 [ L ‘I(.YQHA’

f;‘lzvlq»fs — U:QSJ]A



(L) *

(2,1.1) %
¥ Q2D ©,_.) k(832 % (13,5.3)
3.0 6.0 (104,00 =% (14,0 (s5,_)
aL.) (12,_,)

Figure 5.1: An Example Tree Representation of a PR Scheme with Three Indexes

and
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fo = [a"]4
wherein o?, o® and a'® are the sub-schema of @ with nodes 2, 8 and 13 respectively as their

root node then
[[a,]]"lzrh-ls = HQ]]A-
More generally, the result on w ‘hich the correctness of this phase of normalization is based

can be stated as follows: given any scheme & € PR(Z U {f}) if f represents a function that is
Primitive recursive over algebra A then there exists a scheme a' € PR(Y) such that semantically

& and o are equivalent:
Lemma 12. Let f, : — A" for some u',v' € St be any function that is primitive recursive
over A, Ifa € PR(ZU {f})u . for some u,v € St then there exists a scheme o' € PR(Y), ,
Such that [o']4 = [[a]],”.

Proof. By induction on the structural complexity of a. By hypothesis there exists a scheme
8 e PR(Y),, such that [8]. = fa- Therefore, if we replace each basis scheme * f’ of a with 3
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to give o' then [o'] 4 = [a]., as required.

O
Compiling PR Schemes into Equations. As we will now show, by combining Lemma 12
with the technique of visualizing a PR scheme as a tree we have the basis for a recursive algorithm
to compile PR schemes into equations. For example, notice that to equationally specify scheme o
of our running example, it is sufficient to specify o as defined above. Morcover, to do this we can
firstly specify o' by a system of equations £y wherein fo, fy and f; are basic operations; secondly
specify f,, fi and f; themselves with separate specifications £y, Ey and £y respectively; and
finally derive the required specification £ of a by merging Ly, £, E; and E3. We now explain
this *divide-and-conquer’ technique in more detail, by discussing each of its four constituent
phases of operations individually. This is followed by a high-level algorithmic description of the
whole compilation process.

First, given a scheme o we replace all top-level primitive recursions in a with new function
symbols. The function that we define to formalize this procedure in the sequel is denoted
EimSubPR. One important feature of ElimSubPR is that as it is used recursively we wish
to avoid clashes in the use of function symbol names that are used to replace applications of
Primitive recursion. For example, we would not want Eo through £y to all specify the function
symbol f;. Therefore, throughout the compilation process we use a natural number index e,
that is passed to EimSubPR on each recursive application of CPREQ " to enable us to avoid any
potential name clashes.

Secondly, after we have applied ElimSubPR we use the main sub-function of C"*EQ (denoted
C°PREQ) to either generate one or two equations depending on the structure of a. In particular,
if the scheme « to be compiled into equations does not contain a primitive recursion after the
top-level primitive recursions have been replaced then

CZPREQ(Q) def folzy, .. BT =T
wherein z; are some variable symbols for i = 1,...,n € Nand 7 € T(Z, {z1,...,z,}); otherwise
if & does contain a primitive recursion after ElimSubPR has been applied then

PREQ de f fe([)!wla"'yzn)
¢ () = folt+ 1,20, .00) =

wherein z; are some variable symbols for i = 1,...,n € N, ¢ is a distinguished variable symbol
of type n, 7 € T(S,{z1,...,2,}) and 7' € T(Z,{t,z1,...,2a, Y}). (The significance of the
variable Y is explained in Section 5.3.2.)

Thirdly, CPREQ is applied recursively to the sub-schemes of o that have been replaced by
ElimSubPR.

Finally, all the sets of equations produced are joined into one single specification. These four
phases can be explained more rigorously using the following high-level algorithm.

Let o contain & € N top-level primitive recursions and let a; C a such that scheme o; has
the ith top-level primitive recursion of a as its root node for i = 1,..., k. Finally, let »* be
the function defined such that for each i € {1,...,&} r*(z) = j if and only if the ith top-level
Primitive recursion of « is the jth proper primitive recursion of &, and let the index value e = 1.

BEGIN



(1) For i = 1,...,k replace each sub-scheme a; with function symbol fru,y4. and *thin’ all
occurrences of compositions to derive scheme o’ € PRg(¥). (Notice that if & = 0 then

a=a.)
(2) Let E = CPREQ (/).

(3) Recursively repeat the compilation process on o, for o = L.... &k with ¢; = r*(i) as an

index value to give the sets of equations £;.
(4) Join E with E\,..., E..
END

Example 11. Using « as defined in Figure 5.1: at Step (1) we derive
o' = #( fraines VUfroyses Srowen)) = #(f2, VI f)).
At Step (2) o' is compiled into the following set of equations E (say):
[i(0,2) = falx)

and
Alt+ 1,z) = fo( folt, T))-

At Step (3) we recursively repeat the procedure on schemes a; = o?, @y = ® and a3 = o'?
with indexes e; = 2. ey, = 1 and €3 = 6 respectively to give the sets of equations £, Fy and Fy
that give specifications of the function symbols fa, f4 and fs respectively.

At Step (4) we join £ with E,, E, and Ej to produce a single equational specification of a
defined over function and constant symbols taken from ¥ and the function symbols fi,..., f;

representing each occurrence of an application of primitive recursion in a.

Discussion. The recursive structure of the algorithm defined above offers two advantages:
ﬁrStly, in a uniform way we are able to compile PR scheme into minimal sets of equations in the
sense defined previously; and secondly, the recursive structure of the algorithm enables us to

verify its correctness using an inductive argument based on the number of occurrences of proper

Primitive recursions in a scheme.
The following three technical sections formalize the intuitive ideas behind the high-level
algorithm that we have just described. The reader not interested in these technical definitions

can now move directly to Section 5.3 on Page 137.

5.2.3 Section Overview
The first section formalizes the methods of counting particular occurrences of applications of
Primitive recursions in a scheme a and identifies particular classes of PR schemes based on these
Countings.

The second section formalizes the functions necessary to relate the indices of a given node

M 4 scheme under different countings.



The final section gathers together these definitions to present the main lemma of this section
(Lemma 22) that formalizes the intuitive idea of the construction of a normal form representation
in PR.

5.2.4 Counting Primitive Recursions

In this section, as many of the lemmata are simple exercises in using the definitions, we will
either omit proofs or sketch proofs and leave the details to the reader. Also, as a concession to
conserving space we will present the definition of some functions defined by structural induction
on the complexity of PR schema simultaneously. We also omit the proofs of the well-definedness

of these constructions.

Definition 35. For each @ € PR(Y) we define
|]: PR(Y) — N
by
lal = {38 € all;
that is, |a| is the number of nodes in a.

We now present four functions that tell us the number of primitive recursive sub-schemes

and proper primitive recursive sub-schemes of a scheme a.

Definition 36. We define the function
NPRSS : PR(¥) — N

that counts the Number of Primitive Recursive Sub-Schemes in a scheme «. Tlowever, for

convenience we will also define the functions
NPRSS’, NPPRSS, NPPRSS" : PR(Y) — N
that we will require in the sequel. For each @ € PR(X)
NPRSS(a) = {818 = +(01,82) € o},
NPRSS (@) = NPRSS(a) = {7 |7 = *(71,72) C #(é1,82) C a}l,
NPPRSS(a) = {818 = (51, 8) C e},

and

NPPRSS(a) = NPPRSS(a) = [{7 |7 = *(71,72) C *(41,62) C e}

Tespectively.

Thus: NPRSS(«)is the number of sub-schemes of o that are primitive recursions; NPRSS'(«)
I8 the number of primitive recursive sub-schemes of a counting only the root of a and top-level
Primitive recursions; NPPRSS(«) is the number of proper primitive recursive sub-schemes of «;

and NPPRSS'(a) is the number of top-level proper primitive recursions.
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Lemma 13. [fa € PR(Y) then

NPPRSS (o) < NPPRSS( o).
In particular, if NPPRSS(o) = 0 then NPPRSS (a) = 0 and if NPPRSS(«) = 1 then
NPPRSS () = 1.

Using the function

NPRSS : PR(Y) — N

we can now define our class of normal forms PRE(X). We do this via four intermediate sub-

classes of PR schemes as follows:

Definition 37. We define PR(Z).PR(X),PRc(E), PRH(E). PRE(Y) C PR(Y) to be the re-
stricted forms of PR schemes as follows: for each a € PR(X)

a € PRA(Y) <= NPRSS(a) =10,

a € PR(E) &= a = x(a,a:) A (NPRSS(a;) = NPRS5(a,) = 0),

n € PRA(E) <= a € PRY(E)Va e PR(Y),

a € PRp(S) <= a € PRAUE)A[(Va' Ca) o =052 0 31 <= [ran(p,)] = 1]

and
a € PR(Y) == a € PRe(S)A (Vo' Ca) o =82 0 By = [ran(By)| = 1].

Thus: PR,4(Y) is the set of all polynomial functions over ¥; that is, PR schemes without an
application of the primitive recursion operator; PRs(Y) is the set of all schemes over & with
a single primitive recursion at the root node; PR¢(Y) is the union of PR4(X) and PRy(L);
PRy ¥))is PR 4(¥) with the additional restriction that compositions cannot return vector types;
and PRg(E) is PRe(X) with the additional restriction that compositions cannot return vector
types.

Lemma 14. For each o« € PRp(Y) if NPRSS(a) = 0 then a € PRp(Y). In particular,
PRL(S) C PRE(S) (see Definition 62 on Page 163).

5.2.5 Indexing Nodes in PR Schemes

We now simultaneously define several functions that formalize the intuitive concepts discussed
in the introduction to this section relating to the indexing of nodes in a scheme when it is
Visualized as a tree. The informal description of these functions is as follows.

Let a € PR(E) be any scheme: ¢((F(a) =z +p - 1 if and only if the zth node of « is the
eth primitive recursive node of a; (¥ (a) = 2 +p — 1 if and only if the zth node of « is the
eth top-level primitive recursive node of a; ff"’(a) replaces all top-level primitive recursions in
@ with function symbols fu, fosre oot and &(a) returns the sub-scheme of a that has the eth

node of o as it root.
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Definition 38. For each ¢ € N, for each p € NT, for each b € B, for each F such that {/i.1} C
F C{fan | n,n" € N}, for each v € ST and for each v € 5T we define

Cihe t PR(E), — M.
(et PR(Z)u, — N,
:’f;ﬁ’; PR(Y)., — PR(YN U F)

CPR(Y),, — PR(Y)

. e, ~e, b,:’ P - ‘. . . . . .
(ambiguously denoted ({7, (37, & and & respectively) uniformly in (u, v) by induction on the

structural complexity of an argument @ € PR{Y), , as follows:

Basis Schema.

(1) Constant Functions, (”) Algebraic Operations, (3) Projections and (4) Definition-
by-Cases. If either a = ¢* for some ¢ € Y, for some w € S and for some s € § or
a = ¢ for some ¢ € ¥, ,, for some w € 5T and for some s € § or a = U¥, for some

w € St and for some ¢ with 1 < i < |w] or a = de, for some s € § then

-e.p

C;;Z‘.w‘(.a) - L’ RITINIIN ((Y) = 07

and

Induction.
(5) Vectorization. If @ = < a,...,a, > wherein o; € PR(X),,, for some u € S* and for
some s; € § for i = 1,...,m then
e.p ek
QIIIJJ\"J"‘(Q) _Ql ((’Yi)

wherein

p(l < m)le < S0Z) NPRSS(ap)] if SIZV NPRSS(a;) > e,

m otherwise;
j=i—-1
Y NPRSS(o;)
j=1
and jmict
E=p+1+ Z Loy,
j=1
Gy anl@) = G2 ()

wherein , =m
j(l < m)le < Y2 NPRSS ()] if DI NPRSS (o) 2 e,

. otherwise;
j:i-l

k=e—- . NPRSS'(ay)

j=1
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and

j=i-1
EF=p+1+ Z ;]
j=1
Foky 1 ko '
o F b2 (a) = <& ) ) > i b =
Shusy s, - F Lo .
' < MR ) SR () > otherwise

wherein forz = 1,....,m.k; = e + Zj?l_] NPRSS(a;); and

- (o) o if e <1,
\é,t, ___sm((l' = 3 .
o £:(a;) otherwise
wherein
pull < m)[% »~1Inj{>()—l] xfzj gl > e~ 1,
1 =
m otherwise
and .
j=i-1
k:(?—~2l(1j‘—l
j=1
respectively.

(6) Composition. If @ = a, o «a; wherein oy € PR(Y),, and a; € PR(Y), , for some
u, v, we ST othen
CEP (o) i NPRSS(ay) > e,

Q]uu( ) =

) otherwise

wherein k = ¢ — NPRSS(a;) and [ = p+ 1 + |asl;

e P (az) if NPRSS'(0n) 2 ¢
Gaola) =197, _
G{ar) otherwise

wherein k = ¢ — NPRSS'(a) and I =p+ 1 + |eals

soe o JETTTHa2) o G o) iD=t

El,u,v(a) - L'ff” cff k .
(a) o &% (ay) otherwise

wherein & = ¢ + NPRSS(a»); and

o ife <1,

Golo)= 6 @) 1< < al,

o
o
§§~la:|~1(m) otherwise

respectively.
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(7) Simultaneous Primitive Recursion. If a = «(a,a4) where oy € PR(Y), , and a, €
PR(Y), v for some u.v € ST then

p if e <1,

GF la) =G ay) e > TANPRSS(ay) > e — 1,
N .
Cp () otherwise

wherein &k = ¢ — 1 — NPRSS(evy) and [ = p+ 1 + |ay|;

P if e <1,
Ghu o) =G o)) e > TANPRSS (a)) 2 e — 1,
C'f'l(ag) otherwise

wherein & = e — 1 = NPRSS (o) and [ = p+ L+ e i

(& ), &0 (an)) i b=t

cf‘b‘e( . fon ifob=f for € Fand |v] =1,
Sl,u,v v) = . .
<fez,1~,""fe,|l’|> lfb:./{f‘ ft?,la"'afe,fviej:a/nd ’U’> 1,
fia otherwise

o if e <1,
& ola) =487 ) if 1 <e<|ayl,
g7led=N0,)  otherwise

respectively,

5.2.86 The Formal Definition and Correctness of the Normal Form Compiler

We now gather together the definitions of the previous two sections to formalize the remaining

ideas presented in the introduction to this section.
We first formalize the idea of identifying a particular sub-scheme of a scheme « relative to

some index value,
Definition 39. For each u, v € 57 we define

SubSchy , : Nx PR(Y).,, — PR(Y)

(éunhiguously denoted SubSch) by

o ifn=0Vva>ja

(¥n € N)(Ya € PR(Y),.)  SubSch(n.a)= -
: £} () otherwise.

Lhus, SubSch(n, a) returns o if n = 0 or n > |a] and the sub-scheme of o that has the nth node

of & as its root node otherwise.
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Definition 40. For each u.v € §7 we define
PRSS,, : PR(E), . x N — PR(Y)
(ambiguously denoted PRSS) by
(Yo € PR(Y),.) (Vn € N)

SubSch(¢]"' (@), @) if n < k; and

PRSS(w.n) = .
SubSch(¢;" (@), a) otherwise

wherein £ = NPRSS(a). Thus, PRSS(n, ) is the sub-scheme of a with the nth primitive
recursive node of a as its root node.
Definition 41. For each u,v € ST we define
PPRSS, . : PR(Y),, x N— PR(X)
(ambiguously denoted PPRSS) by
(Vo € PR(E), o) (Y € N)

SubSch(¢; ) a) i ao= w(ag, ) and n < k;
PPRSS(a,n) = ¢ SubSch({ () ,a) if @ # *(e@,a0) and n < k; and
SubSch((YHa), a) otherwise

wherein & = NPPRSS(a). Thus, PPRSS(n,a) is the sub-scheme of a with the nth proper
primitive recursive node of « as its root node.
Definition 42. For each u,v € ST we define

PPRSS, , : PR(Y)u X N— PR(Y)

(ambiguously denoted PPRSS’) by

(Vo € PR(Z),,) (Vn € N)

SubSch((3™ " (), @) if @ = *(ay,@2) and n < k;
PPRSS'(a,n) = ¢ SubSch( 3 (). ) if @ # x(ay, ) and n < k; and
SubSch(isHa). @) otherwise

wherein & = NPPRSS(a). Thus, PPRSS'(n, @) is the sub-scheme of  that has the nth top-level

Primitive recursive node of a as its root node.

Lemma 15. Let a € PR(Y).
(1) If ic {1,....NPPRSSa)} then

NPPRSS(PPRSS(a,1)) < NPPRSS(«r).

(2) If i€ {1.....NPPRSS )} then
NPPRSS(PPRSS (1)) < NPPRSS(a).

134



Lemma 16. Let o € PR(Y) such that NPPRSS{ee) > 1. If i € {1,...,NPPRSS )} then for

PPRSS(a, i+ j) = PPRSS(PPRSS(«x, 1), ).

We now formalize the definition that relates the values of the index of a sub-scheme according

to a counting of proper primitive recursions and top-level primitive recursions.

Definition 43. For each a € PR(Y),, such that NPPRSS(a) > | we define
re:{l.....NPPRSS ()} — {L....,NPPRSS(e)}
(ambiguously denoted r) by

P U

t=1

i=NPPRSS'(a) {ir—p n.| “§+1’1(a‘) = g'?“’l(a)]} if @ = *(ay,a,y), and
(i — p e Na) = )]} otherwise.

Thus, for each scheme « € PR(Z) if o’ = PPRSS'(a.?) for some ¢ € {1,..., NPPRSS(a)} then
o = PPRSS(a, r(i)).

Example 12. If
o = *(*(*(“31, 33),}33), *(‘134, *("35,’3,3))) e} *(’;37,,‘33)

for some schema 3; for i = 1,....8 (see Figure 5.1) then
re s {1,2,3} — {1,2.3,4,5}

1s defined by
re = {1 1,2 3,3 — 5}.

Lemma 17. Let a € PR(Y). If NPPRSS () > 1 then

re(l) = 1.

Lemma 18. Leta € PR(S). If n = NPPRSS(a) > 2 then
(1) For cach i € {1,....,n—1}

i)+ NPPRSS(PPRSS (e, ) + L= r(i+ 1).

(2)
Fo(n) + NPPRSS(PPRSS (e, n)) = NPPRSS(w).



Finally, we are now in a position to make a formal definition of the function ElimSubPR that
eliminates top-level primitive recursion from a scheme and hence to make the formal definition of
the compiler CPR2 . In particular, notice that as the number of additional function symbols that
will be required to replace the top-level primitive recursions in a scheme o € PR(E) cannot be
determined in advance we are forced to define the co-domain of our formal compiler EimSubPR
to be the union of all PR schemes defined over ¥ extended with all possible sub-sets of the
set {f;; | &,j € N}. However, notice that from the perspective of developing software tools
based on ElimSubPR, by defining ElimSubPR using the function € once given a scheme a we
can determine precisely which finite sub-set of {fi; | i, € N} we require using the functions

PPRSS’ and r™. This idea is made precise in Lemma 19.
Definition 44. For each u,v € ST we define

ElimSubPR,, : PR(2), . x N— [ J PR(X UYL

Lch
wherein
G={fi;lij€eN}
(ambiguously denoted EimSubPR) by

(Vo € PR(Z), ) (Y € N} ElimSubPR(a,n) = ff'”'”(a)

wherei
herein i=NPPRSS'(a)

]:: U {fr“’(i')-i—n,l?'"7fr“‘(i)+n,|u‘|}

i=1
and v* = ran(PPRSS'(a.?)) for i = 1,..., NPPRSS (a).

Lemma 19. Let o € PR(Y), .. for some u,v € St. Foranye & N
ElimSubPR(a.n) € PR(S U F)

wherein

= NPPRSES («)

F o= U {frotirrents e Srairpe ot}

1=1

This lemma is used implicitly in the following results.

Lemma 20. Let o € PR(S),.. for some u, v € St. For any e € N if either NPPRSS () = 0
or for cach i = 1.....NPPRSS(a) and for each j = 1,... [ran(PPRSS(«,1))| the function

fr"(,-‘)ﬂ‘j is defined over A by fit 4., = ({[PI)RSS((IJ))]]A)_ then

J

[a]a = [ElimSubPR(«, e)ar

whercin Fois defined as in Lemma 19,



Proof. By induction on the structural complexity of « using Lemma 12 and the definition of
ElimSubPR.
O

Definition 45. For each u,v € ST and for each ¢ € N we define

CPRE : I)R'(E)u,u - U [)RI‘(S U El)u,u

AT
LCh

wherein

G={filijeN}

(ambiguously denoted CI™#) by

(Voo € PR(Y)uw) Cf[{’?(a) = Thin(EimSubPR{a,¢)).

Lemma 21. If a = #(a;,a,) € PR(E) and o' = (o}, c)) = CPle(a) for some ¢ € N then
NPRSS(a) = NPRSS(a) = 0.
Proof. By definition of C'=,

d

Lemma 22. Let a € PR(Y).. for some u,v € §*. lorany e € N if either NPPRSS (a) = 0
or for each i = 1,...,NPPRS5S(«) and for each J o= 1,...,ran{ PPRSS( v, 1))| the function
Sratiyes, s defined over A by fil . = (;’[PPRSS(Q.I:))]]IJ_ then

j

[y = [CP* ()]0,

wherel
herein i=NPPRSS' (o)

]: = U {fr“(i)-%n,lv‘-'3fr"’(i)+n,]v‘|}-
1=1

Proof. By the definition of CPRe  Lemma 20 and Lemma 11.

5.3 Primitive Recursive Equational Specification

We can now begin the first stage of the development of our abstract specification language
for STs. As we have indicated. in order that we preserve a sufficient level of mathematical ab-
straction ASTRAL's semantics is formulated denotationally and will be derived using essentially
nothing more than a first-order equational formalism for making primitive recursive definitions.
The language PREQ that we develop for this purpose is distinct from existing equational
specification languages such as OBJ (see Goguen [1987], Goguen and Winkler [1988], and Goguen
€tal. [1992]) in that it is deliberately and syntactically restricted to capture the class PR; that

i, it does not as o matier of course provide a general model of computation (sce Section 4.1.2).
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We will show that PREQ is sound and adequate with respect to the language PR by defin-
ing two appropriate compilers. As a consequence we may constructively apply Theorem 7 (see
Section 4.5.1) in order that we may compose CI'STs when specified in PREQ (see Section 3.10).

5.3.1 Overview

We begin by defining the abstract syntax of the equational specification language RPREQ that
can represent a restricted class of primitive recursive functions. Secondly, we define the abstract
syntax of PREQ in terms of RPREQ. Thirdly, we define the formal semantics of RPREQ and
PREQ. Finally, we make the formal compiler definitions that map between PREQ and PR and
hence provide a constructive proof of Theorem 10. However, for convenience of presentation,

the formal proofs of correctness of our compilers are given in Appendix B.

5.3.2 The Syntax and Semantics of RPREQ and PREQ

We now introduce the formal abstract syntax and semantics of RPREQ and PREQ.
Abstract Syntax of RPREQ. Let T be any standard S-sorted signature and let X be any

S-indexed collection of variables satisfying the conditions set out in Section 4.2..f. We define the
S* x S*-indexed family of restricted primitive recursive equational specifications

RPREQ(Y, X) = < RPREQ(E, X)ulu, v € 5 >

wherein for each u,v € §% the set RPREQ(T, X),, is defined uniformly in (u,v) by one of
the following cases: (throught the following definitions we use X to denote the set {z,,...,2,

wherein ¢; € X, forsome s; € Sfori=1,...,n2 1)

(1) Simple Specifications. If
de
o :f f(.L'I, e ) =T
for some distinct z; € X, for i = 1,...,n > I and for some 7 € T(¥,X), for some s € §

then
¢ € RPREQ(Y, X ), sns-

(2) Vector-Valued Simple Specifications. If
© d—i“/ f(‘l’.l',' . '7IH) =< Tyee oy Tm >

for some distinet z; € X, fori=1,...,n2>1 and for some 7; € 1 L,X),; for some s;» =)

forj=1,...,m>1 then

6 € RPREQ(S, X ), anstost -

m

(3) Primitive Recursive Specifications. If

Cj déff(()»rls'-'v‘l:fl) =TI

flt+ Loy o Iy) = T2
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for some distinet z; € X, for i = L.....n > I, for some 1, € T(E,X), and for some
9 € T(E,X"),, for some s € 5 wherein X’ = XU {t,Y} such that t € X, and Y € X, are

distinguished variable symbols distinct from z; for + = 1,..., n then
o € RPREQ(Y, X )es, s s
(4) Vector-Valued Primitive Recursive Specifications. If

”:f(() Xy, N ):<Tl,l~"'*‘—1,m>:
flt+ Ly, . r,) =< Taly ooy Tam >

for some distinct r; € X, fori = 1....,n > 1, for some 7 ; € T(Z X) . and for some

T ; € T(X,X'), . for some &} € § for j = 1,....m > 1 wherein X' = XU {t,}l,..., Y.}
' J

such that t € X, and Y € X,; for j = 1...., m are distinguished variable symbols distinct

from z; for i =1....,n then

O 6 R,PI{LQ(_J,_ )(.31.,,3“‘311.,_3/ .

m

Discussion. It is ourintention to formalize the semantics of a specification ¢ € RPREQ(Y, X), ,,
for some u,v € §* in some algebra -1 to give a primitive recursive function

S S A

In order to ensure that function f is indeed primitive recursive when ¢ is defined by Case (3)
and Case (1) we restrict the interpretation of ¢ as follows: in the context of Case (3) (Case (4)
is similar) for cach @ = (ay, ..., ap) € A" if @, = 0 then the value of [¢].4(a) is the value of 7, in
A under the assignment of (zl,aq, ..., @)y to the variables t,z,..., 7, respectively; otherwise if
@, > 0 then the value of [¢]4(a) is the value of 75 in 4 under the assignment of a; — 1, as, ..., qpy
to the variables t,zy,.... 2, respectively and variable ¥ has the value [¢].(a, ~ 1, as,..  Q])-

We illustrate this idea in the following example:

Example 13. Let XY D X, D {x.}. The RPREQ scheme:

'M (0,2,) = xy;

f(t+1,2) = Suce(Y)

represents the addition function on the natural numbers.

The use of the variable Y to represent f(¢,z1) (and more generally Y; to represent fi(t,z.,. ..,
Z,)) in this way may at first sight seem rather unnatural. However, it is important to remember
at this stage that we are designing an abstract theoretical tool not an implementation language.
As such the use of the distinguished variable Y in this way allows us to avoid the possible
complication with unrestricted equations that flt+1,aq,....a,) may be defined (either directly

. . . A . 1 - I o at ot
or indirectly) in terms of f(t + d.a}.....a,) for some d > 1 and for some af such that af # q,

for i = 1, n. From this perspective the use of the variable Y provides a concise syntactic

method 1o control the class of functions that we may specify. Indeed, as we will show this choice
of syntax greatly simplifics the formulation of a denotational semantics for PREQ without
adversely affecting the design of a user-friendly syntax for the implementation of ASTRAL (sce

Definition 77 on Page 191).

139



The Abstract Syntax of PREQ. We continue our equational formalization of the prim-
itive recursive functions by introducing the idea of a family of mutually dependent RPRIQ
specifications; that is, a PREQ specification. Essentially, the formulation of PREQ is based on
the definition of the class PR as the union of all classes of functions in the Gregorczyk Hierar-
chy (see Grzegorczyk [1953] and also Réddling [196+4], Marchenkov [1969] and Kozmidiadi and
Marchenkov [1969]): that is,
PR= ] &
neN

wherein £" is the class of all n-ary functions closed under n nested applications of bounded
(primitive) recursion. Informally, we can think of the Gregorczyk Hierarchy as being the suc-
cessive classes of functions that are computable by increasing the number of nested *for loops’
in an imperative programming language.

Based on this idea a PREQ specification is comprised of a number { > 1 of RPRIEQ specifi-
cations defined over a common signature ¥ extended with extra function symbols f;,,..., f; ..
for some n; € N* for i = 1....,m > [. Each extra function symbol f;; is interpreted as the
semantics of co-ordinate j of some RPREQ scheme ¢,y wherein ¢ 2 {1,...,m} ~ {1,... 1} is
some given injection such that ¢(7) |, that tells us which function symbol is to be interpreted by
which RPREQ specification. A semantics is given to the PREQ specification itself by choosing
a particular RPREQ scheme &, for some ¢ € {1,...,l} as representing the ‘main function’ that
is being specified.

This method of formalizing the PREQ syntax provides a sound basis for the equational
formalization of the class PR. However, unfortunately by itself this method ‘s still not suffi-
clent to ensure that a PREQ specification does indeed define a primitive recursive function. In
order to deal with this complication we first define the class of pre-PREQ) specifications (Defini-
tion 16) denoted PREQ,, based on the informal explanation given above, and use the function
InTermsOf (Definition 19) to syntactically test for a PREQ, specifications ‘primitive recursive-
ness’. Specifically, given a PREQ, specification comprised of [ component RPREQ specifications
and a number j € {1,...,/} the function [nTermsOf tells us which other RPREQ specifications
the jth RPREQ specification’s definition depends upon. To do this the function InTermsOf
uses the function DefOver (Definition 48) to tell which additional functions symbols from the
set {fi1,..., fin ) forsomen; € N*fori=1,....,m 2 [ occur in the term(s) over which the
Jth RPREQ specification is defined. If for each j € {1,...,1} the RPREQ specification j is
not defined in terms of itself by the use of the additional function symbols then the PREQ,
specification potentially represents a primitive recursive function and is admitted as a member
of the class of partial PREQ denoted PREQ, (Definition 50). We use the phrase ‘partial’ here as
in order to be a total PREQ) specification we must further ensure that cach additional function
symbol is indeed interpreted by a particular RPREQ specification.

The class of total PREQ) specifications is presented in Definition 51. For convenience we
also identify a further sub-class of total PREQ specifications that we refer to as standard PREQ
Specifications in Definition 52.

These ideas are formalized as follows:
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Pre-PREQ Specifications.

Definition 46. For some [, m € N*, for some ¢ € {1,...,{}, for some injection ¢ : {1,..., m} ~~
{1,....1} and for some mapping n = (n”, ) : {1,....m} — ST X ST if ¢; € RPREQ(Y". X ), .
for some u',v* € ST for ¢ = 1,..., wherein ¥ = S U F and F is defined by

i:mj:|UH(i”
F = U U UrJD(i)m”(i)),{fi,j}
=1 j=1
then we say that
b =< o, o>

L ¢

is a pre-PREQ specification of size l. scope m and type (u°, v*) denoted & € PREQ (X, X
(and sometimes ambiguously just ® € PREQ, (X, X )us,v¢)-

Checking Pre-PREQ Specifications for Primitive Recursiveness. The function DefOver,
that determines which function symbols from the family F a particular RPREQ specification is
defined over, uses a further sub-function TermsDefOver defined as follows:

n,n’ € N}

Definition 47. For each s € § and for each F C {fn,n’
Termsfovaerir T(ESUF. X)X o({fun | n.n" € N}) = p(N)

{(ambiguously denoted TermsDefOver) is defined for each F € o({f. | n,n" € N}) uniformly in
s by induction on the structural complexity of a term 7 € T(X U F, X), as follows:

Basis.
(1) Constants. If 7 = ¢ for some ¢ € ¥y, for any s € 5 then

TermsDefOver,(7,F) = @.
(2) Variables. If 7 = z for some x € X, for any s € 5 then

TermsDefOver,(7,F) = @.

Induction.

(3) Algebraic Operations. If 7 = o(7,.. > Thy) for some ¢ € {Y U F}, , for any w € §+,
and for any s € §, and for some 1y € T(Y U F, X))y, fori=1,..., |w| then

i=jw|
{k} U TermsDefOver(r;,F) if o= fi; € F for some k,] € N
TermsDefOver, (7, F) = 1_:!”":’
U TermsDefOver(7;. F) otherwise.
=1
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Thus, given a term 7 € T(S U F,X), and an F € o({f,. | n,n" € N}). the result of
TermsDefOver(7. F) is the first index of all the function symbols f; ; € F such that fij € Fand

fi; occurs in 7.

Example 14. If
F= {f1.1-~--~f1,5-f3,1 ----- f'z,:z}‘

7= Add(Suce( fialzi))s fos(Ta.ry))

and

F = {f1,1,~~-~,f1,5}

then

TermsDelOver(7,F) = {1}.

Using TermsDefOver it is straightforward to define DefOver:

Definition 48. For each u,v € St and for cach F C {f, . | n,n" € N}

Devaerfyv :RPREQ(S U F, X)uo X o{fan | nyn" € N}) — o(N)

(ambiguously denoted DefOver) is defined for each F € o({fun' | n,n" € N}) by the structural
complexity of a specification ¢ € RPREQ(Y U F,X),, as follows: (throught the following
definitions we use X to denote the set {xy,...,r,} wherein z; € X, for some s; € § for

I = L..oon2> 1)
(1) Simple Specifications. If
. de
) e/ flog, .. ,an)=T
for some distinct z; € X,, fori=1,...,n > 1L and for some 7 € T(¥ U F,X), for some

$ € 5 then

DefOver,,. . (¢, F) = TermsDelOver(r, F).

(2) Vector-Valued Simple Specifications. If
&= flay,e ) =< Ty Ty >

for some distinct z; € X,, for i = 1,...,n > 1 and for some 7; € T(¥ U f»x)a; for some

si€Sforj=1,...,m>Lthen

j=m

DefOver,, . 4.0 (0.F) = U TermsDefOver(r;, F).

j=1

(3) Primitive Recursive Specifications. If

) ‘i_i.ff((),;l‘l,.. .,1‘“) = T
f(t ‘+' ]-sl‘lv""‘ru) = Ta
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for some distinct z; € X, fori=1,....n > 1, for some r, € T(Y U F,X), and for some
79 € T(Y U F.X'), for some s € § wherein X' = XU {£,Y} such that t € X, and ¥ € X,
are distinguished variable symbols distinct from z; for i = 1,...,n then

DefOvery .4, (9, F) = TermsDefOver(r, F) U TermsDefOver(r,, F).

(4) Vector-Valued Primitive Recursive Specifications. If

(i
1) éff((),xl,....z,,) =< Ty ey Ty >

f(t+ J-*,:L'la"'a‘EH) =< T'!,lv"'ﬁTE,m >

for some distinct «; € X, fori=1,...,n> L. forsome 7 ; € T(XUF,X), and for some
€ T(S U:F’X/)J; for some s € S for j = 1,....m > | wherein X' = XU {t, Y. Y)
such that ¢ € X, and Y} € ‘\'S; for j = 1,...,m are distinguished variable symbols distinct

from z; for i = 1,...,n then

j=m
DefOvere,, ..y, st (@, F) U (TermsDefOver(7, ;, F) U TermsDefOver(r, ;, F)).

j=1

Given a pre-PREQ specification ¢ to test ®'s ‘primitive recursiveness’ our strategy is to
repeatedly test cach constituent RPREQ specification ¢; for ¢ = 1,...,[ to see which function
symbols from the set F are being used in their definitions. From this information we construct a
set F; C F associated with each ¢; and a set F7 representing the transitive closure of F; relative
to Fiyoo oy Ficts Figrn ..o Fi. Now mutato mutandis the ‘re-numbering’ ¢, if FT' 2 {i} then we

can conc ludo that if every function symbol from F is interpreted by a RPREQ specification then

the pre-PREQ) specification does indeed represent a primitive recursive function.
Essentially, the definition of InTermsOf that follows is a formalization of the informal al-
gorithm that we have just described. Notice in particular the role of the sets S and S’ in the

following definition that we use to ensure that InTermsOf is terminating.
Definition 49. For each [, m, ¢, 7 and ¢ defined as in Definition 46 and for each u,v € §* we

define

InTermsOf : PREQ, (. X )L™ x {1, 1} X o({fan [ myn" € N}) — o({1,...,1})

(ambiguously denoted InTermsOf) by
(vd € PRIQ ) )i"(ﬂ"ﬂ) (\/zé {1,,1}) (VF € S?({f,, n' ! n,n' € N}

InTermsOf(®, 4, F) = nTermsOl (¢, ¢, 0, F)

wherein for each L.m.r,n and ¢ and for cach u,v € 5F defined as before

InTormsOf] : PREQ, (L, X)o7 x {1 A} x o(N) x o({fa | nyn" € N}) — o({1,...,1})

"
(Jnnhiguously denoted InTermsOf') is defined by

( b IRI()«J \-‘ \ Imx'}s (me{l’,l})(VSEp(N (VFégJ{”n IIL n' EN}

’tl
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InTermsOf' (@, 4,8, F) = /U Fl

wherein
Fi={j)]J € DefOver(o, FYA o(j) [}
and
F = U InTermsOf' (P, &, S F)
keF, -5
wherein
S'=8Su{i}.

Thus, for example if & = < ¢y,..., 005 >€ PREQ(E, X)) wherein for i = 1,...,] we
have 3; € RPREQ(Y’, X'} defined using Case (1): that is, if ¢; is defined using a single term
then

InTermsOf(< ¢y, .., O s >, 6,8 -8y =P

for some P C {1,...,1} if and only if for each j € P either the function symbol f;, for some
k,p € Mappears in 7; and ¢(k) = j or the function symbol f; , appears in 7; and j € InTermsOf( <

Oly e, O s > (k)Y =)

Lemma 23. For each ® = < oy,.... 056105 > € PREQ (Y, X)y,, for some u,v € 5, for
each j € {1,....1} and for cach T C {fu |00 € N} if

[InTermsOf®, j,F)| =P

and

DefOver(o;, F) 2 {k}

for some ke {1,.... m} then for each e € {1,....j — L,j+1,...,1} such that

InTermsOf®,5,F) D {e}

we hape

|InTermsOf ¢, F)| < [P].

Proof. Immediate from the definition of InTermsOf and DefOver.

a
PREQl Specifications. As we indicated we can now use InTermsOf to identify the sub-
set of all pre-PREQ specifications that define a primitive recursive function; that is, the class
PREQX C PREQ,. Finally, we identify the class of total PREQ specifications (Definition 51).
The role of PREQ, specifications is explained prior to the formalization of the semantics of

RPREQ and PREQ at the end of this section.
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Definition 50. We define PREQ (Y, X) C PREQ.(X, X) such that
G =< o, .56 > € PREQ (S, X)
if and only if

(Vi€ {l.....0})
1 & InTermsOfl < &1y b5 65056 >0, F)

(1)

wherein F is defined as in Definition 46 and

(2) (Vie{l,....m}) (i)l = (u‘(") = nD(i) A ) = nR('i)).

Example 15. Let ¥ and X be defined as in Example 13. If

él déff(oaxl) =,
ft+ 1,z,) = Suce(Y);

def

¢o = f(0,2,) =0,
flt+1,20) = fi(z,Y);

63 < £(0,21) = Suce(0),
ft+1,20) = fou(z,Y);

andL~{1r—. 1,2+ 2, }»-73} 7}D—{1r—>n° 92— n? ?an},andnlzz{lHn,QHn,3._,
3,3,¢,m,3

n} then ¢ = <« (rﬁl,()) ¢;, Ly 3>€ PREQ (~474 )nn n
Given the semantic interpretation we intend @ represents the exponential function over the

hatural numbers.
Using the class PREQ, of partial PREQ specification we can now identify the class of total
PREQ specifications that do indeed specify a primitive recursive function.

Definition 51. For any ® € PREQ, (%, X)I o € PREQ, for some !, m, ¢, m, ¢, uand v defined
as in Definition 50 if for each

3=l
1 € U [IITG‘I‘THSO'/((I),‘].,{fl,lv-' ,fl InB(1)|s - afmla . 7fm,|n"(m)[})
j=1
We have ((i) | then we say that either ® is a totally defined primitive recursive equational
‘ S al Y Y VLML,
Specification or just totally defined denoted ® € PREQ(Z, X)),
In common with other formal language definitions in this thes1s we gather together all totally

defined PREQ specifications into an St x S*-indexed family

PREQ(Y, X) = < PREQ(Z, X )us | v,v € §* >
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Of the class of all total PREQ specifications one particular further sub-class that we wish
to identify are those wherein each function symbol is interpreted directly by the RPREQ spec-
ification indicated by its index; that is, wherein function f;; is interpreted by co-ordinate j of
the ith RPREQ specification:

Definition 52. For any & € PREQ(E.X) 7" for some [, m,e,n,5,u and v defined as in
Definition 50 if

(1) I = m;
(2) (i) =ifori=1,...,m;and
3)¢=1

then we say that ® is standard.

In the sequel if ® is standard then we will write ‘< ¢,,...,¢,, > for ¢ omitting [, ¢, »
and ¢. Similarly, if ® € PREQ(T, X )} ¢ satisfies (1) and (2), but not (3) then we will write
‘< (#")lv~~"<.>rn;g >‘ for .

See Example 16 on Page 150 for an example ol a standard PREQ specification.

Lemma 24. If & =< ¢,,...,& > € PREQ(Z, X),,, then for each i € {1,...,1}

< by b i > € PREQ(S, X e e

Modularity: Joining PREQ Specifications.  Rather than directly define the class of
total PREQ specifications as a sub-class of PREQ, we have identified the intermediate sub-class
PREQ, to address one of the issues that is important in the development of ASTRAL: the use
of modular specification techniques. In particular, it is useful at the abstract language level to
allow several partially defined specifications to be joined together. At the ‘front end’ this enables
a user of ASTRAL to define a complete specification either ‘bottom up’ or ‘top down’ via the
definition of sub-functions that may be incompletely specified. Using a common programming
technique these sub-functions can then be brought together to give a final complete specification
wherein each function is specified by either some particular equation or equations from within
the specifications constituent parts.

In arder to support the use of this technique it is sufficient to define a function that joins
two PREQ, specifications into a single specification. The following function |4 designed for this
purpose sets out formally the conditions under which two partial PREQ specifications may be
Jjoined.

Informally, we will allow two partial PREQ specifications @, and @, to be joined if the
resulting specification is itself at least a partial PREQ specification (it does not need to be
tOta,l). To ensure that this is the case we place certain constraints upon the functions 7, and ¢,
and 77, and ¢, from €, and @, respectively: that (1) m and 77, must agree on the functionality
of any function symbols for which both functions are defined; and (2) the sub-domains of the
domains of ¢; and ¢, for which each function is defined must be disjoint.

Definition 53. For each I}, Ly, m,, ma € Nt; for each

no{l.,mi} — St xSt
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Nyt {l,...,my} — St x §F
such that
(I 2n2) Vi 2m)V (’?1ﬂf7'z = J);
for each injection

e {Loocoomp~ {1, .0 0)

and for each injection

il ooml~ {1, L}

such that
Dom | (¢)) (] Dom | (1y) = @

for each ¢ € {L,....,0;} and for each ¢ € {1,...,l5}; and for each n ¢ {1,2} and for ecach

ut,u? vl vt e St we define

wll‘lg,ml‘m:‘“,q : PREQl(S, ‘Xv)béirlxt;i‘l,n‘,q % PREQI(S, ‘X")qu,;z;i:;’f)z,iz — PR,EQI(.\:, ‘X*)Il-Hg,m,z,r],k

§1,82,m,utu? vl y? Jusm sn
(ambiguously denoted ) ..) by
(:v(bl =< (Pis .- -a’bll,?li; Nis1 > € pREQl(S’ ‘/’)U“,v‘l)
(YO, =< 07, ..., 01 L2 i 62 >€ PREQ (T, X )yez ye2)

(I)I Mn(p'.’ = (b, =< ¢av"'a¢;x+12;(’;n;‘l‘:>

wherein ¢! = ¢} fori = 1,...,/, and o = (f)f_,l for e =0 + 1.0+ 1y ¢ {1,...,m} ~
{L,..., [y + 1.} is defined by

) 1{) if (i) ], and
) I,..., : = )
(vied mh) () + 1 i (i) |;
M if m 2 7,
=19 if 75 2 1y,

m U, otherwise;

I S1 fn=1
- ¢ + [, otherwise

Well-Definedness.  We consider the case wherein n = 1 and leave the case wherein n = 2

and

(that is similar to the case wherein n = 1) to the reader.
To show that 13, is well-defined it is sufficient to show that

(4) (Vi€ {l.....i + 1}) i ¢ InTermsOf(&',4, F)
Wherein B = {f, . | n,n’ € N} and for i = 1,....m

(B) i) = (0 = P () A = pP ().
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To prove property (:\) we will use induction. In the basis case we will show that the assumption
that there exists a b € {1,....{; +[»} such that [nTermsOf(P’ £, F) D {k} leads to a contradic-
tion.

Proof of (A). By induction on ¢ = |InTermsOf(®’, &, F)|. We consider two basis cases:

(1) | InTermsOf{ ' . k. F)| = 0.
(2) InTermsOff®' k£, F)| = 1.

Basis Case (1) ¢ = 0. This is obvious and is omitted.
Basis Case (2) ¢ = 1. In this case InTermsOf(®'. k,F) = {k}. We consider two sub-cases:

(a) 1<k <L,
(b) 11 <k§ /1+lg.

Sub-case (a) 1 < k < {,. This assumption implies that there exists a & € {1,...,m} such
that
(1,(k") = k) A DefinedOver($;,F) D {k'}

contrary to the assumption that &, € PREQ, (¥, X).
Sub-case (b) I, < k < I, +1,. This assumption implies that there exists a & € {l,...,m}
such that

(l(K)=p=Fk = 1)) A DefinedOver(¢h,F) 2 {k'}
contrary to the assumption that ¢, € PREQ, (¥, X).
Induction Hypothesis.  Assume that for some fixed ¢/ € N* if i € {l,...,[; + .} and
[InTermsOf(®’, 7, F)| < ¢’ then i € InTermsOf(d’, i, F).
Induction. We must show that if there exists d € {1,...,{; + [} such that

InTermsOf(®',d,F)| = ¢’ + 1

then d € InTermsOf(d', d. F).
Notice by definition that

InTermsOf( @', d,F) = {«(J) |5 € T A(J)IJUT
wherein
T = DefinedOver(o), F),
1" = U InTermsOf (', 4, {d}, F),

JER
and

R={(k)|(keT - {d})Adk)]}.

We have two sub-cases to consider:
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(@) de {t(jyljeT A}
(b de 1.

Sub-case (a) d € {«(j) | j €T Anuy)l}. This implies that there exist a &' € T such that
t(k) = d and hence that either
b, ¢ PREQ, (Y. X))

if (k) = ¢ (k") or
¢, ¢ PREQ,(X. X)

if ((k") = t2(k") + [} contrary to hypothesis.

Sub-Case (b) d € 77. Notice in this case that as d ¢ 5 = {¢(j) | j € T Ae(j) ]} it must be the
case that T D {4} for some ¢ € {1,....m} such that ¢(q) # d otherwise by definition we would
= 0 contrary to the hypothesis that {InTermsOf(®’, d, F)| > 1.
Therefore, |S| > 1 and consequently |77} < ¢ and so by the induction hypothesis d ¢ T7 as

have R = @ and hence that |T”

required.

O
Proof of Property (B). Notice that if we let (u',v") be the type of ¢ for i = 1,...,1; + [,
(w’,z7) be the type of ¢} for j = 1.....0 and let (y¥,2*) be the type of of for k = 1,...,1
then by definition of [,

fori=1,...,1, and
forp=1,...,m we have
and

piP) — pnfe)

Similarly, as by the definition of |,

fore =10 +1,...,0, + 1, and
ta(p) = «p) = wlp)+ 1L
for p = 1,...,m (the fact that ¢ (p) | and w(p) | are mutually exclusive is guaranteed by

hypothesis) we have

ILL(p) — yt:(p)

and
l,:(p) — ~tlp)

Consequently notice that by hypothesis for each p € {1,...,m} we have

n(p) L= () = P (p) A = 5P (p))
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and

as required.

Example 186.

wherein

and

then

La(p) L=y = pP(p) A 22 = nP(p))

If & is defined as in Example 15 and

¢ =< &, n, 1> PREQ (Y, X)un

6 fle)) = farlfar(21,2).2)

=0

(I)L"_'JQ(DI =o' = < (vblv"'ﬂ(.bl}v@’; Ll; 7}~1 >

Furthermore, given the semantic interpretation we intend ®” is the equational specification of

the function 2°".

Also notice that ¢ is totally defined and standard, ®” is totally defined, and &’ is partial.

In particular, notice that we may make totally defined PREQ specifications by joining partial
PREQ specifications.

The Semantics of RPREQ and PREQ. We begin by defining a variable evaluation map v
(see Section 2.3.10) that we require to give a denotational semantics to RPREQ specifications.

Definition 54. Let X be any S-indexed collection of variable symbols. Foreach X = {&,...,2,}

for some z; € XN of type s; for i = 1,...,n we define
2

w4 s
R A SR

(ambiguously denoted ™) by

(Ya = (ay,...,a,) € A7) (Vz € X) vi(a)(z) =

a; ifz =2z, and

I otherwise,

Lemma 25. Let X = {xy,...,2,} for some z; € X, for some s; € § fori=1,...,n. [If
7€ T(E,X) then

(Va € A ) Vixw(r)].

This fact is used implicitly in the following definitions.
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Definition 55. Lorecach ¢ € RPREQ(X, X) we define the meaning of @ over A by the §¥ x 8-
indexed family of mappings

[la=< [}, : RPREQ(S. X)yy — [A¥ — A*Jju,v € §7 >

wherein for each u,v € S* the map [.]}, : RPREQ(E, X )y, — [1* — AY] (ambiguously

u,v 2
denoted [.].) is defined uniformly in (u,v) by the structural complexity of the specification
® € RPREQ(Y, X),, as follows: (throughout the following definitions we use X to denote the

set {x,,....z,} wherein z; € X, forsomes; € Sfori=1,...,n>1)
(1) Simple Specifications. If
C‘) = f(;tla"'sxrl) =T
for some distinct z; € X, fori=1,....,n > 1 and for some 7 € T(X,X), for some s € §
then [¢] A% — A, is defined by

(Va = (ar,...van) € A7) [olala) = Vira(7):

(2) Vector-Valued Simple Specifications. If

. def
O = flayyee s ZTp) =< Ty ey Ty >

for some distinct z; € X, fori=1,...,n > 1 and for some 7; € T(¥,X), for some s; € 5
1 i . J
forj=1,...,m>1then [¢]: A — Av"*m is defined by

(AVCL = (a'h .. 'aan_) € .4.11--'5,.) I_[@Di(”) = (‘/V:"‘(a)(rl)a sy L/'l/x(a)(rm»))'

(3) Primitive Recursive Specifications. If

éd:t-:‘ff('ovxlw--yxn) =T1;

flt+1,zy,...,0,) = 1o
for some distinct z; € X, for i = 1,...,n > 1, for some 7, € T(¥,X), and for some
€ T(X,X'), for some s € § wherein X' = XU {t,Y} such that t € X,, and ¥ € X, are
distinguished variable symbols distinct from z; for i = 1,... nthen [@], : T'x A" —

is defined by

(Va = (ar,..ya) € A7) [¢1a(0,a) = Vix(a)(m)

and

(V' € T)(Ya = (ay,...,ap) € A7) l[“b]]«“(tl + 1,(1) = va'(a,t’,["f’],\U',u))(rg)'

(4) Vector-Valued Primitive Recursive Specifications. If

def .
O = (0,2, .0, 20) =< Ty dye e Tom >

f(t+ l,ﬁl‘,..,fy,) =< T'J,l\--'vT'l,m >



for some distinct z; € X, for 2 = 1,...,n > 1, for some 1 ; € T(¥,X),  and for some
. ~ . . 7 I3 r
To; € T(E,X’),:}, for some s/ € 5 for j = 1,...,m > 1 wherein X’ = XU {t,}.....Y,}
such that ¢t € X, and Y; € X/ for j = 1,...,m are distinguished variable symbols distinct
' \
from x; for 1 =1..... n then [o] 4 0T x A% — % %= s delined by

(Va = (ay....,aq,) € L7 [0]a(0,a) = (Vg (T10)y - -y Vixgay (T m))

and

(\V(tl € I) (V(l = (alﬁ' . '1(171,) € “13]A 3")

EQH,\UI + l,a) = ("LK’(a,v,w]A(w‘G))(Tz,l)a SR "’LX’(a,zf,[w],.\u',u))(T'.’,m))-

Using the formal definition of the semantics of RPREQ specifications we now finally complete
this section with the formal semantics of PREQ specifications.

Definition 56. For each ® € PREQ(Y, X') we define the meaning of ¢ over A by the §* x -

indexed family of mappings
[la =<1y PREQ(E, X )y — [A" — L") |y, 0 € 57 >
wherein for each u,v € 5% the mapping
157 PREQ(Y, X))y, — [A* — AY]
(ambiguously denoted [.]) is defined for each ® € PREQ(E, X );5*" as follows:

(Vae AY)  [®]ala) = [¢]ala)

wherein each f;; € Ffori = 1,....mandforj = 1,...,|9"(i)]; and F as defined in Definition 50
satisfies
fi:,‘j}- = ([< (;,)15 . '7¢1; Ln L(I) >]]A)]

Notice that the well-definedness of < ¢y,..., ¢ ¢ m5¢(2) > is addressed in Lemma 24.

5.3.3 The Soundness and Adequacy of PREQ

In this section we turn our attention to the proof of Theorem 10; that is, we show that PRIEQ is
both sound and adequate with respect to the class of primitive recursive functions. In order to
prove Theorem 10 we define two compilers C** : PREQ(X, X)) — PR(E) and CPHEQ : PR(E) —
PREQ(Y, X)) respectively, with the intention that a proof of Statement (1) of Theorem 10 follows
as a corollary from a proof of the correctness of C'® and similarly the proof of Statement
(2) of Theorem 10 follows as a corollary from a proof of the correctness of C"'EQ. lowever,
for convenience we leave the formal proofs of correctness of the compilers C'* and C"1*EQ to
Appendix A.

An informal algorithm that describes the basic intuition behind the operation of the compiler

CPREQ can be found in Section 5.2. The compiler CP® is structured so as far as possible it behaves



as the inverse of CPREQ - The reader wishing to omit the technical material concerned with the
)

construction of both these compilers can move directly to Section 5.4 on Page 170.

The Soundness of PREQ. In order to define CP® we will require three sub-compilers: CV
and C7 that compile terms into PR, and C*® that compiles RPREQ specifications into PR. As

such we begin with the definitions of these compilers.

Discussion: Compiling Terms into PR. Recall that due to the particular form of the
definition of a PREQ specification & =< ¢;,..., ¢ > € PREQ(Y, X) it is the terms that occur
on the left-hand-side of each RPREQ specification ¢; for ¢ = 1,...,[ that play the central role
in the description of the function that & represents. Also recall that all of these terms fall
into two categories: (1) the terms used in simple RPREQ specifications and in the basis case of
primitive recursive RPREQ specifications — that are defined over T(YUF, X) (see Definition 50):
and (2) the terms in the induction case of primitive recursive RPREQ specifications - that are
defined over T(S U F, XU {t,Y1,...,Y,}) for some n € NT wherein the variables t and Y; for
i = 1,....n are given the particular interpretation described in the discussion at the beginning
of Section 5.3.2.

First, we remark that in the context of compilation into PR it is useful to consider these two
classes of terms separately as the special interpretation of variable symbols Y, ..., Y, slightly
complicates the compilation process. In particular, we require terms from the second class of
equations to be mapped into PR schemes of type (tu, v) for some u,v € S*. However, in general
this requirement is not true of the first class of terms. Therefore, while both compilers C' and
C* perform essentially the same compilation process, using two separate compilers is convenient
as it simplifies the overall complexity of our constructions.

Secondly, while the similarity of terms and function schemes make the process of compiling
terms into PR basically routine, it is slightly more difficult in the context of terms occurring in
PREQ specifications due to the intended interpretation of each additional function symbol from
the signature F. In more detail, recall that (ignoring for the moment the role of the function ¢)
each of the additional function symbols f;; € F for some 2, j € N* is interpreted by co-ordinate
j of the ith RPREQ specification ¢;. Therefore, if symbol f;; occurs in term 7 (say) and we
wish to compile 7 into an equivalent scheme a, € PR(X) then as part of this process we must
coustruct the sub-scheme a;,  C a, equivalent to f; ;. However, the structure of the required
scheme «ay, | must by definition be dependent on the structure of ¢;; that is, more specifically it
must be dependent on the terms in ¢; that are not part of the structure of 7 itself. Morcover, as
we cannot derive the structure of ¢; from 7 alone and we cannot predict in advance the particular
value of i € {1....,1} we must in general have the whole of ¢ =< ¢,...,¢ > available when
we compile 7 into a function scheme. For this reason when compiling a term 7 it is necessary
to index both compilers €' and CT by the particular PREQ specification @ in which 7 oceurs.
As such if function symbol f;; € F occurs in 7 then the appropriate PR scheme can be created
by recursively using the compiler C"" that compiles RPREQ specification into PR to generate
the scheme ay, .

The only potential problem with this method is that C"® is itself defined in terms of C
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and CT and therefore we must consider the termination properties of this recursive process; that
is, if 7 occurs in RPREQ specification ¢; then we must show that Cl{7) cannot give rise to a
recursive call of CiP*(¢;). Fortunately, it is not difficult to demonstrate this fact as in order for
¢ to be a total PREQ specification it must satisfy Property (1) of Definition 50.

Finally, we note that we must also index C' and C¥ with the particular variables X =
{ri,...,2,} wherein r; € X, for some s; € 5 over which the term 7 to be compiled is defined.
This enables us to determine the type of the function scheme that will be required (as variables
are used as input) and reduces the construction of the necessary sub-scheme to represent a
variable to an analysis of the particular index ¢ € {I,...,n}. In particular, if « = s,...s

then we can straightforwardly define Cj «(z) = U¥ that clearly has the required semantics as it

n

represents a function that has n inputs of the correct type and selects the ith co-ordinate of its

input (which is variable z;) as output. These ideas are formalized as follows:

The Compiler CT.

Definition 57. For each & € PREQ(Y, )L™ ens for some [,m,u,ns.w and v as defined in

Definition 50; for each u = s, ---s, € §*: for each s € §; for each X = {x,,...,2,} € X such

that r; € X,, for ¢t = 1,...,n are distinct; and for each s € § we define
T ks AR WY A wl
C‘b,.‘-l,u,s 1 (“—‘ »X)a - PI{(L)u,s

(ambiguously denoted either C! | or just C') wherein ¥ = $ U F is the extended signature of
¢ as defined in Definition 50 uniformly in « and s by induction on the structural complexity of
aterm 7 € T(L')X), as follows:

Basis Cases.
(1) Constants. If 7 = ¢, for some ¢ € ¥} | for some s € § then

Ch(r) = c™.

3

Well-definedness. It is clear here from the simplicity of the scheme that C'(r) € PR(Y), ,

as required.
(2) Variables. If 7 = z; for some z; € X, for some s € § then
T . u
Cl'(r) = Uw.
Well-definedness. By hypothesis on r; we have u; = s; = s and therefore C'(7) €
PR(Z), , as required.

Induction Hypothesis.  Assume for each 7 € T(¥',X), for some s € S that for any term
e T(Y,X), for some s' € S of less structural complexity than 7 that C'(7') € PR(%)
Induction.

u,s’.

(3) Algebraic operations. If 7 = a(7y....,7;) for some o € Y, for some w € S and for
some s € S, and for some 7; € T(¥,X), fori=1,.. vk = Jw] wherein w = ¢ -+ - s} then

CM(r)=00 <CT(r)....CT(m) >
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ifo €Y and
ol b Ry T N -
CHr) = U o CF M (up) o < CH{n),...,Cl{m) >
if o = f,, € F wherein C*PR is defined as in Definition 59.

Well-definedness.  We have two cases to consider:

(A)oe X,
(B) g = fp,q S F i‘; {fl,l """ fl,[r)”(l)]w "3fm,1’~ . "fm,!r]”(m)[}-

However. for convenience we first consider the sub-scheme common to both cases
T T
<C (m)y....C (1) > .

Notice that by the induction hypothesis C'(7;) is of type (u,st) forie = 1,...,k and hence
< CV(7),....C"(r) > is well-defined as a vector-valued scheme with type (u, w).

Case (A) o € ¥. As by hypothesis 0 € ¥, , it is clear that
go < (C/[‘(TI), . .,CT(Tk) >

is well-defined as a composition and C'(7) € PR(Z), , as required.

Case (B) o = f,, € F. Notice that, by hypothesis on ® that Ci'®(#,,)) is terminating
and well-defined with type n(p) = (n”(p), n"'(p)) = (w, n%(p)) and therefore

OPR((b[(,,)) o < CT(T]_), .. .,Cr(Tkv) >

is well-defined as a composition with type (u, n®(p)). Finally, notice that by hypoth-
esis f,, is of type (n?(p). (n"(p)),) = (w,s) and therefore

17312(") o CPM(p) 0 < C(my),...,C () >

is well-defined with type (u,s) and therefore CP(7) € PR(Z),,, as required.

The Compiler CT. As we have already remarked the definition of CT is essentially the same
as CT — the only difference being that CT must deal with the special interpretation of the variable
symbols ¢t and ¥, ..., ¥,. To motivate the construction of the necessary function schemes for
these variables recall the types of the sub-schemes «; and a, in a scheme « = «(a), ay) defined
by primitive recursion. In particular, recall that if the overall type of o is (t «, v) for some
w,v € St then «; and @, must be of type (u,v) and (t u v,v) respectively. Thercfore, in
general if we consider that in the case of a primitive recursive RPREQ specification our aim
is the construction of some scheme o as defined above then essentially we use CF to construct
that part of a defined by scheme a,. Also, recall that form the perspective of semantics if
@ = (dy,an, ..., 04 ) € A" is the input supplied to £, wherein F, is the function computed
by scheme « then by definition

a = (ay — Loao, .. oy Q41 F{,((I/l - 1,(Lg,...,(l|“|+[))
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is the input supplied to F,, wherein F,, is the sub-function of #, computed by schene as.
Therefore, if we also index Ci,“: with the particular variables ¢ and Yy,...,Y,, then as with
the set X this enables us to determine the type of the function scheme that we will derive and

again reduces the construction of the necessary sub-schemes a, C a, to represent a variable

2 to an analysis of the particular index ¢ € {1....,m}. In particular, if 2 = ¢ then we can
straightforwardly define Clz) = Utvviif 2 = 2; then we define CT(;L') = Uf;‘l“: and if 2 =Y
then we define Ct(z) = ey wherein j o+ Jul + 1 will select the particular co-ordinate of

Folay — loas, ... apy+1) from @ as required.

o, . N -~\Lmyen ¢ . .
Definition 58. For each ® € PREQ(X, X),", "¢ for some I, m, 1, n,¢, w and w’ defined as in
Definition 50; for cach u = s, -+-s, € S*; for each v = &} -8/, € §*; for cach s € §; for cach
X=A{r,....zq .Y, ... Yo} € X such that x; € X, for ¢ = 1....,n are distinct, t € X,
is a distinguished variable symbol distinct from each z;, and ¥, € Xy for j = 1,...,n" are

1

distinguished variable symbols distinct from each »; and ¢; and for each s € § we define

(CT : T‘(E/,X)‘ - I)R(S)tu u,s

¢, X u,v,s

(ambiguously denoted either CT | | or just CT) wherein &' = ¥ U F is the extended signature of

)vv"
¢ as defined in Definition 50 by induction on the structural complexity of a term 7 € T'(Y, X)),
uniformly in w, v and s as follows:

Basis Cases.

1) Constants. If 7 = ¢, for some ¢ € ¥ | for some s € .9 then
As
T Sty
C(r)=1c"".

Well-definedness. [t is clear here from the simplicity of the scheme that C7(7) €
PR(Y)¢uo,s as required.

(2) Variables. If 7 = ¢ for some ¢ € X, for some s € § then

Upne if z = ¢

C(r) = QUL if z = z; for some i€ {1,...,n};
Ttu v o — VO . N /
Uttt ifz =Y forsomeje {1,...,n'}.

Well-definedness.  We have three cases to consider:

Case (A) z = (. By hypothesis t € X, and thercfore it is clear here that C*(r) ¢
PR(Y)¢y o as required.

Case (B) z = z;. By hypothesis on z; we have u; = s; = s therefore as (tuv);y) = u; = s
we have C7(1) € PR(E)tw s as required.

Case (C) ¢ = Y;. By hypothesis on Y; we have v; = s; = s therefore as (t u Dul4j+1 =

v; = s we have C*(7) € PR(E)¢uv,s as required.

Induction Hypothesis. Assume for cach 7 € T(¥',X), for some s € S that for any term
& T(Y, X), for some s' € S of less structural complexity than 7 that CT(7') € PR(Y)y, 4.

Induction.
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(3) Algebraic operations. If r = o(7,..., 1) for some o € ¥/ , forsome w & St for somne

“~i

s € 5, and for some 7; € T(Y/, X)), for i Lyoo ok = |w| wherein w = &/ - - &), then

(CT(r) =00 < (CT(Tl),...,CT(Tk) >

if o € ¥ and
PR T
C(r) = U o C M (oupy) 0 < C(my),...,CT (1) >
ifo = fo, € {fireeors fipmmny o os m1s -+ fminR(my} Wherein CPR s defined as in
Definition 59.
Well-definedness.  The well-definedness of both cases follows by essentially the same

argument as the well-definedness of CP in the same case and is omitted.

The Compiler CF*. Using C' and C¥ we continue by defining the compiler CFR that maps
RPREQ specilications into PR

Definition 59. For each ® € PREQ(S, X)2™" for some {.m,1,n.¢,w and @’ as defined in

w w

Definition 50 and for each u,v € 5§ we define

C’(pn RPREQ(Sla 4'—)u,v - PR(’\:’)H,U

P u,v

(ambiguously denoted cither C:PE or just C*PR) wherein ©/ = S U F is the extended signature

u,v

of & as defined in Definition 50 by analysis of the structural complexity of the specification
¢ € RPREQ(Y, X)), , as follows: (Note that the termination properties and the well-definedness
of this construction are considered at the end of the definition.)

(1) Simple Specifications. If

def
Q= f(‘z‘ls"wl'n) =T

for some distinct z; € X, for it =1,...,n > 1 and for some 7 € T(X,X), for some s € §

then

OPR(Q")) = (C«I) X, «( )
wherein u = s;---8, and X = {z,....,2,}.
(2) Vector-Valued Simple Specifications. If
, def

O = f(.L‘l,...,.T,,) =< Ty Tm >

for some distinct z; € X, fori=1,....,n > 1 and for some 7; € T(S,X)Jlj for some 3; es

foryj=1,...,m > 1 then
C -P R(O) =< C«b AU, 3 (T1)7‘ . "CI,X,U,J'M(Tm) >

wherein u = &;-+-s, and X = {z,,...,2,}.



(3) Primitive Recursive Specifications. If

Lir

6 L0y, ) =T

flt+ Lo, e, =7

for some distinct z; € X, for ¢ = 1,...,n > I, for some 7, ¢ T(X,X), and for some
e T(¥,X"),. for some s € 5 wherein X' = XU {¢,Y} such that t € X, and ¥ ¢ X, are

dlStlIlglllSth variable symbols distinct from z; for 7 = 1,....n then

CK})R(O) - *(C‘b ) TI) C;; Llu,s s( ))

lJ
wherein uw = sp,.... 8, X = {2,...,onf. and X' = {2y, . ...z, (, Y},

(4) Vector-Valued Primitive Recursive Specifications. If

,:if
P.f(() Liyee oy ):<Tl,17"'77_1,m>;
f(l+ l,.l)l....,.l'n): < Taty---sTam >

for some distinct z; € X, for : = 1,....n > 1, for some 7, ; € T(E,X),; and for some

Ty; € T(S,X’),/], for some s € S for j = 1,...,m > 1 wherein X' = XU {t,Y7,...,Y,}

such that t € X, and Y; € Xy for j = 1,...,m are distinguished variable symbols distinct
1

from x; fori=1,...,n then

O

( < C'P\ R (Tl,l),...,ch u,s’m(lem) >,

< Ct;,?i’,u,v,s’l(rz,l)’ (C‘D Xhu,v,sl, (Tg'm) >)

N P p— ! A P P id
wherein ¢ = $y...., 8 X = {T1o.. o, 2n b, v =8, 00,8, and X = {&,..., 2,6, Y1, ...,

Y.}

Termination. Notice that as previously discussed because both C' and C*® and CT and
C*PR are mutually recursive before we can show that C*PR is well-defined we must first show
that for any ¢ and ¢ that CiF®(¢) cannot give rise to a recursive call of CiP® (o). To see this
notice that ¢ € PREQ(Y, X) and hence that ¢ € InTermsOf{(< éy,...,¢5¢; 974 >, 4, F) for each
i € {1,...,1}. Therefore, CPR(¢;) for each j € {1,...,/} cannot give rise to a recursive call
of C"1(p;) and clearly as a consequence C*"!*($) cannot give rise to a call of C*"™(¢;) that in
turn could give rise to a recursive call of CPR(¢;). Hence termination is guaranteed.

Well-Definedness. Since we are guaranteed termination the well-definedness of C*P? follows

directly from the hypotheses on ¢ and the well-definedness of C" and C and is omitted.

The Compiler CPR, Finally we are now in a position to define the compiler C'R
PREQ(Y, X)) — PR(Y). Indeed, this' is now straightforward using C**® as by definition for
ecach PREQ specification ¢ = < Soins > it s oo € RPREQ(E, X) that provides the

semantics for .



Definition 60. We define the §* x S*-indexed family of compilers

C'M = < CIY PREQ(S. Xy — PR(Y ) s v € ST >

%,

wherein for each @ € PREQ(E, X'), . for any u,v € 5% the mapping
CON PREQIE. ..~ PR(S.

is defined as follows:

CoL(®) = CF, (0).
Well-definedness.  As by hypothesis & € PREQ(X, X') by the well-definedness of CPR ()
we have CS%(‘D) € PR(Y),., as required.

The Adequacy of PREQ. We now define the compiler C"8#5Q : PR(Y) — PREQ(Y, X)
that we gave an informal algorithmic description of in Section 5.2.2. As with the definition of
the compiler C'® the compiler C""EQ is also defined in terms of a number of sub-compilers:
C-PREQ " CoPREQ (CePREQ CVPREQ an( the compiler CPR&. Of these sub-compilers it is CoPREQ
and C'®& that perform the most complex aspects of the compilation procedure.

In order to formally define C°PREQ that maps PR schemes into RPREQ specifications we
employ the use of the normal form representation PRp (see Definition 37). Indeed, the use
of PRy in essence enables us to reduce the compilation of PR schemes into RPREQ into the
construction of either one or two appropriate terms. More precisely, recall that if « € PRy(¥)
then either (1) « contains no applications of primitive recursion or (2) a contains one primitive
recursion and is of the form o = *(ay, ay); that is, either (1) @« € PRp € PRg and represents a
polynomial function or (2) & € PR and represents a primitive recursive function defined using
two polyvnomial functions o; € PRp and ay € PRp. Also recall that PRi(A) = PR4(A) is
precisely the class of functions that can be represented in RPREQ over algebra A. Therefore,
(ignoring vector-valued functions that we discuss in a moment) in Case (1) the process of con-
verting a into RPREQ can essentially be reduced to converting a to a single term 7 — used in
a simple RPREQ specification; and in Case (2) the process of converting « into RPREQ can
essentially be reduced to converting a; and a, to two terms 7, and 7, respectively - both used
in a primitive recursive RPREQ specification.

The compilation of PRy schemes into terms is performed by the compiler CPREQ [p.
deed, as far as possible CPREQ is structured to be the inverse of the compilers C' and CT
described in the previous section. In particular, C*PREQ deals with the generation of the ap-
propriate variables to represent each input by making the order of the sets X = {z,,...,z,
and X' = {t,z,....,2,.Y1,.... Y.} significant (see Definition 5.3.2). Thus, if o = U¥ then
CPREQa) = ¢ wherein ¢ = tif i = Lo =z, if L <o <n+land e = Y, if
n+l< i< i+ n+m.

Finally, returning to the question of vector-valued functions notice that in the following def-
inition of C-PREQ that (ignoring other indexing) in fact C"REQ s properly a family of compilers
C:PREQ for each ¢ € N*. The index e is designed to deal with the slight complication created

with vector-valued functions in that regardless of the size of the co-domain of the PR scheme «,
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we require the result of the compilation CMQ(a) to produce a term 7 that must by definition
be single-valued. In more detail, to cope with this problem, essentially each compiler CPHEQ
is only well-defined on a PR scheme o if o defines a function £ = (£, ..., I{) for some
k> e. In particular, C;"™EQ () produces a term 7 such that the semantics of 7 is equivalent
to F*. Therefore, to produce a RPREQ scheme for the vector-valued function « as above, if
NPRSS(e@) = 0 then we simply compute the terms 7, = QPREQ(Q) for i = 1,..., &k and use
these to make a vector-valued simple RPREQ specification; otherwise if a = #(ay, a,) then we
compute the terms 7, = «C:PREQ(al) and m; = C[pREQ(ag) for i = L,..., & and use these to
make a vector-valued primitive recursive RPREQ specification.

The Compiler CTREQ,

Definition 61. Tor each X = {,..... 24} € X such that »; € Xy, fori=L,..., |u| we define
the St x 5+ x N-indexed family o fm.lppmo

CPREQ = GPREQ PR (V) (8, X),, >

U n

CPIEQ L PRA(E) — T(,. X

u.un

1%

wherein for cach u, v € §7, for each n € {1,...,

(ambiguously denoted C:PREQ) is defined uniformly in (u,v) by induction on the structural

complexity of a scheme o € PRp(Y),, as follows:

(1) Constant Functions. If a = ¢* for some ¢ € ¥, , for some s € .5 and for some w e §*
then
(C'PRLQ(O') ="

w,s, 1

Well-definedness. It is clear here that since by hypothesis ¢ € £y, and v = v; = s we
have CP™ 9 (a) € T(X, X), as required.

(2) Algebraic Operations. If @ = o for some ¢ € ¥, , for some w € St and for some s € §
then
PREQ ()

Y w,s,l

=01,y Tyw))-

Well-definedness.  Again as by hypothesis v = v, = s and also as by hyp()thesis we have
- : ST , PRE
5 € Xy fori=1,... Ju= u| and 0 € ¥, , it is clear that C] Q(a) € T(S,X), as

required.
(3) Projection Functions. If a = U}’ for some w € S* and for some ¢ with 1 < { < jw| then

c’ m;Q(a') = ;.

R

Well-definedness. It is clear here that since by hypothesis z; € X, fori=1,...,|Jw= u)
PRE T et
and v = w, = 5 we have CT¥ () € T(E, X)y, as required.
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Induction.  Assume that for each « € PRp(¥), . for some u,v € §* that for any scheme
a' € PRp(Y), . for some u', v/ € 57 of less structural complexity than aif Xr={af,... ITU,[}

wherein 27 € Xy, for j = 1,....[u/| then for each i € {1,.... ]2}
=PIEQ e
ule! 1(1) E F(L. X)I:
(4) Vectorization. If a = < ay.... ap, > for some m > 0, for some a; € PRp(%),,, for

some u € St and for some s; € § for i = 1, n

PRE PRE
C::’ Q--sm,n(a) = (C; 1Q(an)'

2,UL, 8y S,y

Well-definedness. By the induction hypothesis CIPREQ(O',;) € T(X.X),.. Therefore, it is
clear that C:PREQ (@) € T(X.X),, as required.

(5) Composition. In this case @ = a, o ay for some a; € PRp(Y), . and for some a, €
PRp(E), , for some u, w € S§* and for some s € 5. As a € PRp(Y) we now consider two
sub-cases:

(A)w=s€85.

(B) w=s," 8 €5 wherein |w| > 2.

Sub-case (A) w =4 € 5. In this case

c? if Xy = cwv
CIBEQ () = { g(CPREQ o)) if ay =0, and
You,s,l w1
C,‘(«SP,)L[},Z),Ql(HI) if @y = U'f

Notice that by the hypothesis that [w] = | and the definition of PRp(X) the scheme

a must correspond to one of the above three cases.

Sub-Case (B) w = s; -8, € St wherein |w| > 2. In this case

v if vy = ¥,
O(‘»‘C&ITSE»?,I(O“)’ .. -st(:ljs,E(,zw,,l(“\,IWI))) if oy = o, and
C’P”‘ Ya) = = <y gy >
C{Jl‘fﬁ?l(’al‘,-) if o = U and
L= <y, Q) >

Notice that by the hypothesis that [w] > 2 and the definition of PRp(X) the scheme a
must correspond to one of the above three cases.
Well-Definedness.  We consider the well-definedness of Sub-case (B) and leave Sub-case

(A) that is similar to the reader.
We have three sub-sub-cases to consider:

(A) a» = c. In this case since by hypothesis ¢ € Xy it is clear that P (a) € T(T, X),

as required.,
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(B) a; = 0. By the Indnction Hypothesis Cy f‘“; ary) € T(E,X),, fori=1,... |w

and by hypothesis 0 € ¥, ,. Therefore, it is clear that CPREQ(a) e T X)S as

required.

(C) ay = U¥. This case is similar to Case (B) and is omitted.

The Compiler C°PREQ,

Definition 62. We define the N x §T x 5% -indexed family of compilers

CPREQ = « QL PR(Y),,, — RPREQ(Y . X ), , e € Nand u,v € S* >

u,v

wherein ¥ C YU F and F is defined as in Lemma 19 as follows: for each e € N for cach v € §+
and for each v € S* the mapping

CPREQ . PR(T), , — RPREQ(Y, X)),

e,u,v

(ambiguously denoted C°PR*ER) is defined by the structural complexity of a scheme o € PR(Y).,
as follows: (as the well-definedness of the various cases follows directly from the well-definedness
of C-PREQ 3nd CPRe and by Lemma 14 we leave this to the reader; also, notice that in each of
the following cases X = {x,,..., 2y} wherein r; € X, fori=1,...,|u|)

(1) Constant Functions. If a = ¢* for some ¢ € ¥, , for some s € § and for some w € §+
then
> de f <PRE PR
CPREQ(0) . flay, ... 2p) = CEEE(CPR e ().

e, w.s Nw,sl

(2) Algebraic Operations. If & = ¢ for some o € ¥, , for some w € S* and for some s € §

then

le’ﬂh () = 4o/ (1:1,...,1'|w|):Q}?EE%(CSRE(O‘))'

w,s

(3) Projection Functions. If o = UY for some w € §* and for some ¢ with | < i < |w| then

» def (=PRE
CIE) Z Sz a) = Gl (S ().

Ww,Wy

Induction.

(4) Vectorization. If & = < aj,....an, > wherein a; € PR(Y), ,, for some v € §* and for

some s; € § fori=1,...,m then

> de PREQ PR g PRE Ry
‘C>I IUQ )‘—" f -1317---:1‘|u|) C’;usll((ce L(ul))7"'7CZ,:£,u,JS,l((CLRL(am))>

e,u, 8y -

(5) Composition. If @ = a» o «, wherein a; € PR(X)y . and o, € PR(Y), , for some
w,w e St and for some s € S then
PREQ def
C(e)uu ( ) -
Tio...T C:Pnh?((cpnb(a)) if fo| = 1, and
1 |ul u,v

3] SR e PRE > .
flr o) = < CORCR (), . G RC R (@) > il o] > 1

162



(6) Simultaneous Primitive Recursion. If o = *(ay,ay) wherein oy € PR(Y), . and
ar € PR(E), 4o for some u,v € 5T then
CoPREQ (o)

u,v

PRE >
f(o"rl """ I‘f‘“i)—muu?(cl RL(QI))
flt+1,20,..... Yhol) = C*l }t{%%ul(cleliﬂ((lﬁ),)
if j[v] =1 and
G ) =
FO0 2y, z) = < CFU (T8 (1)), CFRES (CEM e (o)) >
PRE g ; RE R
f(t + I‘Il' t 'SIIIUI,) =< R ’,tu%,v,l(csnh(aﬁ))v . -v(cj:{\i/‘l:lu%,vylul((ci Rh(ﬂ"_))) >

if [v] > 1 wherein X/ = {t.21,. ., Zjups Y10 o, Yo )

Using C°PREQ we now define the compiler C**™*¥Q that given a scheme « produces a partial
PREQ specification essentially of the form & = < CPREQ(a) >.

The Compiler C*TREQ,

Definition 63. For each e € N* and for each u,v € §* we define

CPRkQ })I{(v)ztu-’I)REQl( )Irnl.r;,g‘

(ambiguously denoted CFPREQ) as follows:
(Va € PR(Z).,)  CLV%(e) = & = < gumic >
wherein
o = CPREQ ),
t={e—1}
n={e— (uh, ") e+ (1) (F,07), e (k) — (W pE )
wherein u! = w. v!' = v, and for i = 1,...k = NPPRSS/(«) we have u't! = Dom(PPRSS («, 1))

and v**!' = Ran(PPRSS (a,1));
¢ =1

and
m=ce-+k.

Well-definedness.  First, notice that by the well-definedness of C°"'Q we jmmediately have
¢ € RPREQ(Y, X), . wherein

= s U U
U e dU Ul esrmaonn)

U{fc?-k""(k),l} U t .U{f"~+"“(k),lv"+‘|}-
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Secondly, again by the well-definedness of CTREQ we have
I & InTermsOf(d, 1,5 — %),

Finally. as
Dom | (¢) = {e}

and
de) 1 D(

and

b= l,L(L’) — ’Ul — 7]1\’(

by definition it is clear that ® € PREQ,(Y¥, X),,, as required.

The Compiler CYPREQ,  [ollowing the structure of the informal algorithmic description
presented in Section 5.2.2 our strategy is to now define the compiler CVPREQ to yse CPREQ (g
produce partial PREQ specifications for each top-level primitive recursion in « and join these
specifications together using the function ¥ (see Definition 53) to make a single (total defined)
PREQ specification with the same semantics as a. As we indicated during the discussion of
the high-level algorithm to perform this procedure the main technical problem is to ensure that
each additional function symbol from the signature F is given an appropriate index. To achieve
this formally we use the function 7 (Definition 43). The correctness of this indexing procedure

is address in Lemma 26.

Definition 64. We define the Nt x §* x §*-indexed family of compilers

CVPREQ _ o CFPREQ . pR(T),  — PREQ(S, X)u,|e€ Nt and u,v € St >

2,u,v
wherein for each e € N and for each u,v € St the mapping

CVPRLQ PR(\ﬂ)“ v Pl{L(}(—J,- )u,v

e, u,v

ambiguously denoted CYVHEQ is defined as follows:

(Yo € PR(Y),,) CVPREQ(q) =

CPRER(a) 1y, CTI S (PPRSS (o, 1))

T (D+e

W CEPEEQ(PPRSS (@, 2))

6 ('7)+e

W CEERES (PPRSS (o, k)

I3 (L)+€

wherein £ = NPPRSS (a).

Lemma 26. If a € PR(Y),., for some u,v € ST then for cach e € NT

TP (0) b =< GBS > € PREQIY, X )yt
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wherein
PREQ
o =C “(av);

6= CIIES (PPRSS i~ 1))
fori=2,.. 1= (r*(k)= K = NPPRSS(a)) + | wherein k = NPPRSS (ov);
t={e—lie+l—20 ¢+ N — [}

n={e— (ul. e 4+ L (uh o) e+ Ko (}ul"'H, u’\’“)}

wherein u' = u, v' = v, and for i = 2,..., K we have u' = Dom(PPRSS(«a,i — 1)) and
v' = Ran(PPRSS(n. i — 1)):
¢ =1
and
m=c¢c+ M.

Notice that if e = 1 then & is standard.

Proof. By induction on A = NPPRSS(«). We consider two basis cases:
(a) K =0, and
(b) K = 1.

(a) K = 0. In this case by definition
CEPREQ (o) = C*PREQ ()

and hence the proof is immediate from Lemma 71 and the definition of C*PREQ,

(b) K = 1. In this case as by hypothesis NPPRSS(a) = | by Lemma 13 we have NPPRSS(a) =
1 and therefore by Lemma 17 we have r* = {1 — 1} and PPRSS'(e, 1) = PPRSS(a, 1)
and hence

ER IR 2

wherein
¢, = ‘C:PREQ(”) =< @yt 1>

and
o = CEUR(PPRSS (3, 1)) = CEY (PPRSS(m, 1)) =< i s 1 >

wherein
o = (CTPRHQ(&)
on = CUE(PPRSS (o, 1))
o= {e—1}
={e+ 11}
n = {e— (u',vh) e+ 1 — (u?, v7)}
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and
e = {e + L (¥, %)}

Notice, that by the well-definedness of C*PREQ we immediately have &, € PRI2 QY X )
and ¢, € PREQ (X, X )u2,2. Therefore as Dom | (¢;) )\ Dom | (v2) = @ and 5, D 1, by

the well-definedness of ¢, we have

® € PREQ, (T, X)3ettem!

u,v

wherein

t={e—le+1—2};
that is,
b =< o, 050551 >

Therefore to complete our proof in this case it remains to show that & is totally-defined;
that is, for each

=

U InTermsOf(d, j, ¥, —¥%)

we have (i) |. This is obvious as by the definition of C°FP™¥Q we have

]

U InTermsOf(®, j, ¥, -Y) =€+ 1
and by the definition of ¢ we have (e + 1) =

Induction Hypothesis. Assume for any scheme o € PR(X), . for some v/, v’ € §* that if
NPPRSS(«') < K for some A" € N then for each e € N*

Cvpm‘:Q((r’) =@ =< @,....0; ¢ >

e u’ v’

wherein
¢ = ClY a )
C;Z{‘LFI L, (PPRSS( i~ 1))

fori=2,. .. 1I'=(r'(k) = NPPRSS(Q’) = K') + 1 wherein &' = NPPRSS'(o');
d={em—liet 1l =2, e+ K" — '}

p= e () et L (257, e b B (2R Ry

wherein 2! = o/, y' = ¢/, and for i = 2,..., K" we have 2 = Dom(PPRSS(«,7 = 1)) and
= Run(PPRSS{a’,i— 1))
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and
m' =e+ K'.

Induction Step. We must show for any scheme o” € PR(Y),» ,» for some u”,»” € §* that
if NPPRSS(a”) = K = K’ + 2 then for cach ¢ € N*

VPRE / L
Coum s Ty = O =< G >

wherein

Qlll — (COPRLQ o )‘

8_ij1

= CPC | (PPRSS(a”,i — 1))

eti—1,r"y"

Il

fori=2,....1" = (r~" (k") = NPPRSS(a”) = K") + | wherein k" = NPPRSS'(a");

"=de—lie+ 12, e+ N — "}

n={e— (L7 ) e+ 1 (T57%),. . e+ K" (T g+

wherein ' = v, ' = ¢”, and for ¢ = 2,... K" we have T = Dom(PPRSS(a”,i — 1)) and
"= Ran(PPRSS(a”,i— 1));
=1
and
=e+4+ K"

Notice that by definition

‘b” — (CeVPREQ (O(”) — C:PREQ(Q//) L’f) ICFV;PTYSI((QI)(PPRSS/ o l))

W1C L (PPRSS (@, k7))
wherein for cach ¢ € {1,...,k"} by Lemma 15 NPPRSS(PPRSS'(a”,1)) < K" and therefore by

the Induction Hypothesis we have

CYIRER (PPRSS'(0”, 1)) € PREQ(E S XL

wherein
I' = k' + 1 = NPPRSS(PPRSS (", i) + 1,
m' = e+ 1% (i) + K,
l,i — {6 + ra”(l’) — 1,(3 + 7»”“ + 1 2,. ..,e+ Ta”(i) + ki — li}‘

and

B= {e+ () — (W, T ) e+ 0 T+ L (@ T, L
R ()
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wherein 7' = Dom(PPRSS (a”, 1)), T = R(m(PPRSS"( 1)), W = Dom(PPRSS(PPRSS (0",
1)) and ¥ = 1{(171(I’PRSS(PPRSS’( o)) for j =2, (k' = NPPRSS(PPRSS(a”, i) + 1.
Furthermore, notice that as by hypothesis NPPRSS/(e”) > 2 that by Lemma 18 for cach
i€ {1,....NPPRSS'(a”) — 1} we have

P (i) + NPPRSS(PPRSS' (", i) + 1 = 2" (i + 1)
and
P (NPPRSS'(@”)) + NPPRSS(PPRSS'(a”, NPPRSS (")) = NPPRSS(a").

Therefore for each i.j € {1.....r* (k")} we have
1< j=> ((Dom |t ﬂDoml/’ = @)A (don'x(n")ﬂdom(nj) =0))
and hence it is clear that

. CV]’RS)(i (PP}{SSI(QN, 1))U CVPR

2 4. (PPRSS' (0", 2))

W R, (PPRSS (@, k"))

is well-defined.
In addition, notice now that as A > 2 by Lemma 13 we have NPPRSS'(«”) > 2 and hence

by Lemma 17
re (1)y=1

and by Lemma 18 for each i € {2,...,k” — 1} we have
(i) + NPPRSS(PPRSS (o, i)) + L = r* (i + 1)

and

o’ (k") + NPPRSS(PPRSS (a”. k")) = NPPRSS(a”) = A

and thercfore
U =< (:’/1/7" 7@1\”1 S / § >

wherein

C°PRLQ(PPRSS 1))
fori=1....,0" = K",
V= {e+l—let2—2, e+ K" 1"}

N = {e+ 11— (T.7)het+2— (T 7). e+ K7 (T )

Finally, notice by definition that

CPREQ( ) =< oy 1> € PREQ (S, X!

ult oyt
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wherein

(,D — (C?,pREQ (()/l).

[ =1,

m=c¢e+ k",

L= {e— 1},
and

n={c— (T 7 ) e+ 7'“”(1) = (T2, 7). .., e + r‘"”(k”) — (.T:k”“,_z‘/"”“)}.

Consequently, as by the definition of %" we have PPRSS (o, i) = PPRSS(a”, r"(4)) for i =
L. . k" it is clear that
Domuﬂ Dom |/ =0©

and

"

and hence that
(b// — CE’PREQ (’a//) — C;[)[{EQ (a//) E’J I‘D

. — - Irll e [\-l/’ /I' //,1 .
is well-defined and furthermore that ” € PREQ(Z, X).% 57" "1 as required.

a
Finally, we are now in a position to define the required compiler CP*EQ that is essentially
(CVPREQ, but ensures that the resulting PREQ specification is standard (see Definition 52).

The Compiler CPREQ,

Definition 65. We define the S* x S*-indexed family of compilers

CPREQ = < CPREQ ;. PR(Y),, — PREQ, (X, X )., | u,v € §* >

u,v

wherein for each u € S+ and for each v € §* the mapping CJREQ : PR(Y), , — PREQ(Y, X

(ambiguously denoted CPREQ) is defined as follows:

(Yo € PR(D)ue)  CF9(a) = C7PM %),

This completes the definitions of our formal compilers. In the following section we state
two lemmata regarding the formal properties of C°™ and CPREQ that we can use to deduce
Theorem 5.3.3. The proofs of these lemmata can be found in Appendix B.
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5.3.4 Proof of Theorem 10

Lemma 27. If
b =< o, ..., ortinis > € PREQIN. X)), .

for some u,v € St then

(Va € A*)  [@]4(a) = [CPF(®)].\(a).

Lemma 28. For cach o € PR(Z),, for some u,v € ST if & = CP”EQ(Q’) then

(VYa € ) o]y = [P]..

For convenience we first re-state Theorem 10.

Theorem 10. If A is some standard algebra then

(1)
(Vb € PREQ(S, X)) (3a € PR(Y)) [a]a = [¢]..

(2)
(Vo € PR(Y)) (3P € PREQ(E, X)) [®]4 = [o]..

Proof of Statement (1) of Theorem 10. This now follows as a simple corollary to
Lemma 27.

For each ¢ € PREQ(Z, X) if we define o = C"®(¢) € PR(Y) then by Lemma 27 we have
[6]4 = [@]. as required, and hence PREQ is sound with respect to PR.

Proof of Statement (2) of Theorem 10. This now follows as a simple corollary to
Lemma 28.
For each v € PR(Y) if we define ¢ = C'*EQ () € PREQ(E, X) then by Lemma 28 we have

—

[[0‘}][1 = [[(bﬂ,‘ as required, and hence PREQ is adequate with respect to PR.

5.4 The Properties of PREQ Specifications as TRSs

To conclude this chapter we complete the technical development of PRIZQ by turning our atten-
tion to the proof of Theorem 11 that is concerned with the properties of PREQ specifications
when interpreted as left-to-right term re-writing systems. Theorem L1 plays a significant role in
our formulation of techniques for the automated verification of STs in Chapter 7.

170



5.4.1 Overview

While essentially PREQ specifications are a restricted class of first-order systems of equations we
cannot directly convert a PREQ specification into a TRS (by orienting the equations as left-to-
right re-write rules) because of the following two technical problems: (1) PREQ specifications
may be vector-valued; and (2) (R)PREQ specification involve the use of the special variable
symbols Y;.

As we will require the use of PREQ specification as both proper ‘first-order’ systems of
equations and as equivalent TRSs in Section 5.L.2 we begin by defining two functions: the
function EQCON that converts a PREQ specification into a proper equational specification; and
the function TRCON that converts a PREQ specifications into TRS. In particular, TRCON
is defined to be exactly EQCON except that it orients each equation as a left-to-right re-write

rule.

5.4.2 Interpreting PREQ Specifications as TRSs

Definition 66. For each u.v € S, for each [,m € N, for each ¢ : {1,...,m} — {1,...,1}, for
each n:{l,...,m} — ST x §* and for each ¢ € {1,...,1} as defined in Definition 50 we define

EQCON}*™ : PREQ,(X, X peens — BEQ(Y, X)
(ambiguously denoted EQCON) wherein
= {funs L fus € F A )

wherein F is also defined as in Definition 50 by

izl
(Vb = < ... o6 > € PREQ(S, X)bmem<)  EQCON(®) = | JEQCON] ;. (4)

=1

wherein for each [, m € M. for each i € {1,..., 1}, for each ¢ : {1,...,m} — {1,...,1} and for
cach n:{1,....m} — 5*x 5% as defined above we define

EQCON; RPREQ(YE, X) — EQ(Y¥", X)

{im,,n

(ambiguously denoted EQCON') by the structural complexity of a scheme ¢ € RPREQ(Y, X)

as follows: (in the following definition ¥ = YU F)

(1) Simple Specifications. If
, def ,
6% [z wa) =T
for some distinct r; € X, fori=1,...,n > land for some 7 € T(Y',X); for some s € §

then

}

=i

EQCON/(Q) = {fi‘l(‘ljls .. 'sl‘n) =

wherein ;
p=m j=|7IR(P)l

r=rJ U Vrillunil

r=1 J=1

171



(2) Vector-Valued Simple Specifications. If

, de
o

f(‘l‘lv""‘rn) =< Tleee oy Ty >

for some distinct w; € X, fori=1....,n > L and for some 7; € T(L",K),; for some 5 €8
forj=1.....n" > 1 wherein X = {2,,...,2,} then

j=n

EQCON(¢) =

wherein for j = |

p=m j=|nr(p)i

=l U Bilfanl
r=1 ;=1
(3) Primitive Recursive Specifications. If

@ "'f(O,J?I, 7‘Ln)“‘7—11
flt+ 1,2y, ,2,) =7
for some distinct z; € X,, for : = 1,...,n > 1 for some 7, € T(¥' X), and for some
sy € T(X.X'), for some s € § wherein X' = XU {¢,Y} wherein ¢t € X,, and Y € X, are
distinguished variable symbols distinct from z; for ¢ = 1,...,n then

EQCON'(8) = {fi1(0, 21+, 2n)

Flv f,‘yl(SUCC(t), Tiyenny lln) = :f:_g}
wherein
p=m j=|nr(p)]
Ty =7 U U [foil fipy i)
p=1 j=1
and

p=mj=inrip)|
To = TZ(U U Uil fm iV YT Fia(t 2, cTn)]

p=1 j=1

(4)

Vector-Valued Primitive Recursive Specifications. If

. de

o 10,21,

. .,.L'") =< Tl,l»

R Tl,n' >1
f(t + lsl‘l* .. .,.L'") =< Talse oy Ton >
for some distinct &; € X, forz=1,...,n > 1, for some 7, ; € T(¥',X),: and for some
1
Ta; € T(Y,X')y for some sy € § for j = 1,...,n" > 1 wherein X = {z,,
! 2
X'=Xu{LY,. ...

..., T,} and
Y.} wherein t € X, and Yj € Xs; for j=1,...,m are distinguished
variable symbols distinct from z; for i = 1,...,n then
j:nl ’ B
EQCON" (o) = |J {fij(0.2y ooy 2n) = Tujs fii(Suee(t), o, .. w,)
J=1



wherein :
p=m j=|ua(p)|

7:1.]_ =T U U [fp,j/ft('l’),j]

=1
and
I—”"J—MH(P q:n’
Toj =T U U fp,j/fdp).j])U[Y:;/fi,q(t,l'l,...,;L',,)],
p=1  j=1 y=1

Well-Definedness.  Essentially, TQCON and EQCON' eliminate the use of the function ¢ in a
PRIEQ specification ¢ (see Section 5.3.2) and replace the special variable symbol Y (or Y, . . LYo
depending on the form of ¢) from each constituent primitive recursive RPREQ making-up é.
However, we leave it as an exercise for the reader to deduce formally that both EQCON and
EQCON’ give a well-defined equivalent equational specification.

We now use EQCON to define the function TRCON that converts PREQ specifications into
equivalent TRSs by orienting the equations generated by EQCON as left-to-right re-write rules.
Formally:

Definition 67. For each u.v € 5%, for each {,m € N, for each ¢ : {I,...,m} — {1,...,1}, for
cach n:{1,....,m} — §* x §* and for each ¢ € {1,...,{} as defined in Definition 50 we define

TRCONL™7< : PREQ, (S, X )%™ — TRS(Y", X)

u,v

(ambiguously denoted EQCON) wherein Y7 is defined as in the previous definition by
(VO =< by,...,05 L1056 > € PREQ,( )f‘f"“" )

TRCON(®) = {p= (I~ r)|e= (I = r) € EQCON(®)}.

Using TRCON we now set about establishing that for each ¢ € PREQ,(X, X) the TRS
R = TRCON(®) is complete.

5.4.3 TRSs as Constructor Systems

Before we proceed we recall one further concept form the theory of term re-writing: constructor
systems (also see Section 2.3.12).
Definition 68. Let R € TRS(E, X) be any TRS. If there exists a rule p = (r — [) € R such
that r = f(riy..., ) for some terms 7; fori=1,...,n € Nt and for some algebraic operation
f € X then we say that f is either a defined symbol of or simply just a defined symbol if ¥ is
cither understood or unimportant,

If fe Yis nota defined symbol then we say that f is either a constructor symbol of ¥ or
simply just a constructor symbol if ¥ is either understood or unimportant.

A signature that has been partitioned into defined symbols and constructor symbols is re-
ferred to in the literature as a constructor system. Indeed, constructor systems are used widely

for the analvsis of the particular properties of TRSs including most notably modular properties.
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The list of references on this subject is extensive including: Toyama [1987a], Toyama [1987b],
Middeldorp and Toyvama [1991], Kurihara and Ohuchi [1992b], Kurihara and Ohuchi [1992a],
and Toyama et al. [1989]; and in general is a subtle and complicated problem. Morcover. as
pointed out in Ferndndez and Jouannaud {1993] the subject at present lacks an overall coherent
theory. although Ferndndez and Jonannaud [1993] goes some way to resolving this problem.

In the sequel we will use constructor systems to analyse the termination and confluence

properties of particular classes of TRSs.

Transitive Closure and Separability.  Given a collection of signatures ¥, O ¥ for i =

l,...,n € N* we now present a formal mechanism for establishing which symbols from Y-y
for some j € {1,...,n} are shared by some ¥; for some [ € {1,...,n} such that [ # j. In

particular, we define a formal mechanism for establishing the transitive closure of this property.

Definition 69. Let ¥ be any S-sorted signature and let ¥; for ¢ = 1,...,n* be some signature
such that

S C S AU

for some function symbols f; for i = 1,....k € N*. For each n,m € {1,...,k} we define the

extended signature

by case analysis on the value of n as follows:
1 3 3 .
Em = Lm - (}—J U{fm})a

and for cach n € {2....,k}

s Wl \"1}—1
—m — ~m —j
jeF

wherein ¥, = {z ] f; € S}

Example 17. If

2= {A LU

Sy = {fo, YU,
= {fHUS

S = {ffs}JS

and

§e]
o

={/, fs} US

then

}:i = {f2}7
Ef = {fg,ffl}v,
S:f = {f’_g,f-hfﬁ}
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and

St=50={f fo fu. S5}

By analysing the transitive closure of collections of signatures based on the occurrence of
particular function symbols we are now able to define an important property that we refer to as

separability.

Definition 70. Let ¥ be any S-sorted signature and let &; for i = 1,...,n* be some signature

such that

S C i S} US

for some function symbols f; for i =1,...,k € N*. Iffor each i =1,.. .,k
Efﬂ{f:} =0

then we say that ¥,,..., 3, are separable.

Example 18. If ©,,..., Y5 are defined as in the previous example then they are separable.

However, if £5 were defined by
Sy = {1, fs} UL

then ©;,...,¥; would not be separable as

‘Jl“{flwf f3af4 f}

that is f, € &3

Our strategy now is to first show that by considering a TRS R C TRS(X, X') as an indexed
collection of one-rule TRSs R; C TRS(X,, X), for some ¥; € X fori=1,...,n € N*, we can
analyse the transitive closure properties of the signatures ¥,...,¥,, based on the occurrence
of defined symbols, to identify classes of TRSs that are complete. To prove Theorem 11 we will
use the fact that TRSs created from PREQ specifications satisfy precisely these properties.

In order to do this we require one final function that eliminates all immediate applications

of primitive recursion from a TRS.

Definition 71. Let R C TRS(Y/, .X) wherein ¥ is a constructor system with {f,,..., fi} as
. . Lo . , O P

its defined symbols such that each f; @ 8,801,y 8ia, — i, for some s;; € § fori = 1,...,k,
for j=1,...,n; > 1, and for some s;,5; € . Furthermore, let R be defined by

R = {fl(tlyxl.l" . -71‘1,711) — Ty,

Felbiy Thts -5 Thony) ¥ Tk}
wherein t; € T(X, X)), fori=1,....k 2;; € X, fori=1,... kandfor j=1,... n; and

T{E (-—4114\)
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for some X; C Y. Also, let 0: &7 — N be any injection,
For each o and for each R as above we define
PR.STRIP? : TRS(Y, X) — TRS(Y, X)
{ambiguously PR.STRIP(R) when o is either understood or unimportant) as follows:

PRSTRIP(R) = {filli 21yereovzyy,) — 71

fk(/'ksltk,la .. "‘/I:k‘ilk) = Tl{}

wherein for:=1,....k

is defined by

/ T if t; # Suce(x) for some r € X, and
T = . ,
' 7 j;;[fj(‘r.rﬂ....,Jrj,,,k)/cj] otherwise

wherein ¢; is some constant of type (A, s]) from L' satisfying o(c;) < o(c) for each ¢ € EAy,; such
that ¢ # ¢;. Notice that ¢; is guaranteed to exists by the hypothesis that in this thesis we only
consider non-void signatures.

In the sequel we will refer to PR.STRIP(R) as the PR-stripped version of R.

We now begin presenting the preliminary lemmata that we will require to establish our main
result. Recall that in this thesis we assume that ¥ is any S-sorted signature, X is any S-indexed
collection of variable symbols such that ¥ and X' are pairwise disjoint and that neither ¥ nor
X contain the distinguished symbol f and any of the distinguished symbols f;, f; ; for each
iwj € NT.

Lemma 29. If r = (f(z,,...,2,) — 7) wherein the function symbol [ is of lype (sy,...,8,.9)
forsome s; € S fori=1....,n> Land for some s € S.andr; € X, fori=1,...,naredistinct
variables and 7 € T(X, {r1....,2.}), then the one rule TRS R = {r} € TRS(XU{f}, X) is

orthogonal and strongly terminating.

Lemma 30. If R C TRS(SU{/i..... fe}. X)) wherein the distinguished function symbol f; :
Silaen oy Sin, — & for some s;; € 85 fori =1, ..k and for j = 1,...,n; > 1, and for some
S €5 fori=1,....k and is defined by

R = {fl(lflylw-wl'l,nx) [ le

fk(‘l.k'vl"' 'N'Ek,nk) = Tk}
fori=1.....kand forj=1....n, and

Ty [ 1"(};;, {~L.;"1~- : '1"1"1',11,})

wherein x, ;€ X,

Jor some X0 CUU{ S fimr fie o Se} Jor v =1, ..,k such that ¥y, ... Yy are separable

then R s orthogonal and strongly terminating.
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Proof. By induction on the number £ & N*. We leave the details to the reader. (Notice that
the basis case follows immediately by Lemma 29.)

O

Lemma 31. If R C TRS(XCU{S}, X) wherein the distinguished function symbol
finsi . s, — & forsomes; €8 fori=1,....n21, and for some s' € S and is defined by

R = {f(0.x, ....0,) — 7, f(Suee(r),xy,... 1) — ™}
wherein x; € X, fori=1.....n, r € X, is some variable distinct from x; fori=1,....n,
g 1S {oe o).

and
e TS {r.x.. 0, 2,))

for some ¥ C S J{f} such that any term 7" C 7 with f as the outermost function symbol is of

the form 7" = f(c,zy,....1,) then R is orthogonal and strongly terminating.

Discussion. We now use these results to establish our main technical lemma of this section:
Lemma 32. In particular, Lemma 32 details the necessary conditions under which particular
classes of TRSs are orthogonal and strongly terminating and essentially identifies precisely the
properties of PREQ specifications when they are converted into TRSs. Specifically, notice that
Conditions (1) to (1) of the lemma simply restrict the definitions of the defined symbols occurring
in the signature of R to be either one rule — defining a polynomial function - or to a pair of rules
~ defining a function by an immediate application of primitive recursion. Condition (5) restricts
any recursive definitions to be strictly those defined by primitive recursion; that is, Condition

(5) eliminates the possibility of any non-terminating reduction sequences.

Lemma 32. If R CTRS(SU{/1..... fu}. X)) wherein the distinguished function
fit 8 Site . 8, — S1) for some s;; €85 fori= L. nand for j = 1,00 2 1, and for

some s;, 80 € 8 fori=1.....n and is defined by

1 1

R — {fll(tla‘rl,l"""1:1:“1) — T,

flk(t}cv‘rk,la"'v;l"k.nk) — TL.}
whercin
(1) z;;€ X, fori=1,....kandforj=1,....n;

(2) for i = 1,....k we have either t; = z; € X, wherein either xy is distinct from those

variables defined in Case (1) above or t; =0 € T(X)y or &; = Suce(z;) € T(T),;

(3) ;€ {1.....k} fori=1.....k arc defined such that for each p,q € {1,...,k} we have

=1, s p=qV(t, = ONAt, = Suce(x,))V (L, =0AL1, = Suce(x,));
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(4) fori=1,...k

(A) ift; = x; then
€ TN {enri e e

wherein ©; C S U1 ficts fivrs oo os S bs
(B) if t; =0 then

. c I(st {-L'i.l* . .,»L‘i‘n.})s"

wherein $; C Y U{fivoo o ficys fisre oo fids
(C) ift, = Suce(x;) then

7 "‘1’{1“!*:ll""!'ri,n,})sll

wherein 8, CEU{fi.... fi} and any term 7 C 7 with f; as the oulermost function
symbol 77 is of the form v = filxi riyo. .o 20,

(5) if ©).....8% are the signatures from PR.STRIP(R) as defined in Definition 71 then

Y. 8L are separable

then 'R is orthogonal and strongly terminating.

Based on these five conditions of the two properties that such specifications have (orthogo-
nality and strong termination), only strong termination is non-trivial to establish. However, this
property is itself straightforward to prove by induction on the number of equations occurring
in the TRSs of interest R. Consequently as a concession to conserving space will only present
a proof sketch of how to establish strong termination and leave the remaining details to the

reader.

Proof of Lemma 32. By induction on k€ N7,
Basis. We consider two basis cases:

(A) k=1, and

(B) k=2

Case (/ ) = 1. This follows immediately by Lemma 29.
Case (B) & = 2. In this case we must consider two sub-cases:
(a) I, # 1,, and
(b) I, = L.
Sub-Case (a) [, # l,. This follows immediately by Lemma 30.

Sub-Case (b) {; = 1,. This follows immediately by Lemma 31.

Induction Step. Notice now that as the only mutually recursive rules in R are defined by
primitive recursion (this is guaranteed by the separability of any PR-stripped version of R).
Consequently. for any reduction sequence under R wherein R contains & + | rules and for any
redex ¢ it must be the case that ¢ is always re-written in a finite number of steps to a term ¢ such
that for all possible remaining reduction sequences only &' < & rules from R can be applied to ¢’
If we lot R denote this subset of R with only these &' rules then we can observe that the normal

form of ¢ under R and R’ must be the same and furthermore by the Induction Hypothesis R’



is strongly terminating. Therefore, R must be strongly terminating as required.
|
To conclude this chapter we can now prove Theorem 11 using Lemma 32 and the following
result from Bergstra and Tucker [1992].
Lemma 33. (Lemma 2.4.3 of Bergstra and Tucker [1992]) I[ R is an orthogonal and
weakly terminating TRS then 'R ois complele.

For convenience we first re-state Theorem 11,

Theorem 11. [fd € PREQIX.N) and R = TRCON(®) C TRS(X, X): that is, if R is the
term re-writing system formed from & by ortenting cach equation in & as a left-to-right re-write

rule then R ois complete.

Proof of Theorem 11. Notice that for any PREQ specification ¢ the equivalent term
re-writing system R = TRCON(®) is of precisely the form required to satisfy Conditions (1)
to (3) of Lemma 32. In particular, notice that we can satisfy Condition (5} by the fact that

d ¢ PREQ(Y, V)= & ¢ PREQ, (X, Y) and hence
(vie {l,....1})
i€ InTermsOf < Oyy e Qe >, 0, F)

wherein F is defined as in Definition 46 and is precisely the defined symbols of R. Therefore,
since for any TRS strong termination implies weak termination by Lemma 33 we have that R

is complete as required.
0
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Chapter 6

ASTRAL

Language ws a kind of human reason, which has its own internal logic of
which man knows nothing.

Claude Lévi-Strauss
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6.1 Introduction

As we indicated in Section 3.10.-1 the main theoretical consideration that we face in the design
of the abstract syntax and semantics of ASTRAL is to reconcile the mathematical advantages
of Cartesian form specification with the more natural style of applicative form specification that
is associated with stream processing. In particular, we will require that a user of ASTRAL
may specify applicative form definitions, while a formal denotational semantics is achieved us-
ing an equivalent Cartesian form definition in PREQ. However, in addition to these theoretical
considerations we also wish to design a user-friendly implementation of ASTRAL based on the
abstract mathematical syntax, and address the practical issues that arise in the development of
this syntax. In order to accommodate these two aims we proceed as follows:

First, in Section 6.2 we define an abstract mathematical formalization of ASTRATL that is
similar to PREQ. but is svntactically tailored to the representation of STs. Specifically, AS-
TRAL allows the specification and composition of non-trivial AFSTs and hence is appropriate
for the modular and hierarchical specification techniques discussed in Section 3.10.4.

Secondly, in Section 6.3 we use this formal syntactic definition of ASTRAL to define a com-
piler that maps ASTRAL specifications into equivalent equational representation in PREQ. This
compiler, denoted CYSTRAL makes use of the compilers €, C'* and C'MEQ (see Definitions 33,
60 and 65 respectively) and as such is able to eliminate any (composite) definitions made using
AFSTs to derive a single, equivalent Cartesian form definition. As a consequence in Section 6.
we are able to use the resulting Cartesian form PREQ schema created by CASTRAL 45 the formal
semantics of our original ASTRAL specifications.

Finally, in Sections 6.5 and 6.7 to complete the development of ASTRAL we present a high-
level prototype BNF based on the abstract syntax presented in Section 6.2 and comment on
the features that an actual implementation of ASTRAL will incorporate. In particular, we use
the stream processing primitives and constructs that we examined in Chapter 3 as examples to
demonstrate that ASTRAL provides a general purpose and natural specification formalism for

a broad class of stream processing systems.

6.1.1 Preliminary Notation and Definitions

Before we proceed with the development of the technical material in this chapter we require
some further preliminaries. Specifically. we require a further modification of the language PR,
denoted PRY. that has two additional vectorization construction. However, while we will define
the abstract svntax of this languages we will not specify an independent semantics. Rather, as

PRY is a computationally conservative expansion of PR we will have a compiler:
RY PR -
VIV PRY(E) — PR(E)

\

to define the semantics of PR¥(Y) schemes.
Furthermore. in order to eliminate instances of Cartesian composition that are created when

ASTRAL is compiled into PREQ we will define a compiler

C:PR{YL) — PR(Y)
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that is a more general formulation of the compiler C. In particular, € is more general than
C in that it will perform vector-valued Cartesian composition and also combine vector-valued
composition and ordinary composition in a single operation.

Our final preliminaries for this chapter concern the use of higher-order signatures and terms.
The Language PRY. In order to simplify the compilation of ASTRAL into PR LLQ 1t is
convenient to define one further computationally conservative expausion of PR. The language
PRY includes two additional and more general formulations of vectorization as function-building
tools: < ... > that allows vector-valued schemes to be vectorized; and "< ... >>"that allows
vector-valued schemes with different domains to be vectorized. We can define PRY formally by

extending PR with the following additional induction clauses:

(5a) Type One Extended Vectorization. If « =< a;,....a, > for some a; € PRY(Y)
for some u, 0t € ST fori=1,....m > 1then a € PRY(Y), .1 ym.

u,

(5b) Type Two Extended Vectorization. If o = << ap,...,«a, >> for some «o; €
PRY(Y)yr,. for some w0t € ST fori=1,...,m > Lthen a € PRV ()0 yu 1y

Notice here that in Case (5b) as each «; may have a different domain, in contrast with standard
vectorization, the domain of a is the concatenation of the words ' for 1 = 1,..., m.

We now define the compiler \P®" that maps PRY schemes into standard PR schemes, al-
though, we only formally define the compilation of schemes defined by extended vectorization.
We leave the other cases and the well-definedness of this compiler to the reader. However, as
the definition of \"*" is quite technical in the case of type two extended vectorization we begin
by motivating the structure of the PR schemes the compiler produces (Definition 72). The PR
schemes constructed in the case of type one extended vectorization are similar.

First, notice that as cach «; of tvpe (', v') may be vector-valued, in general we replace a PRY
schieme < aq.....a,, >> with a scheme < gy,...,3, > wherein n = |p'---0™|; that is, we
replace each a; with |0] schemes cach representing an individual co-ordinate of a;. Secondly, no-

tice that in each of the four cases the scheme < U ..., U‘;’ ) > selects the correct co-ordinates

of w = u!,....u™ as input to each J;i that is, if J; represents a particular co-ordinate of «;
then « le"""[}z|u1| > selects precisely o' from u. Thirdly, notice that if ;| > 1 then the
scheme Uy selects the appropriate co-ordinate as output for each g;. Finally, notice that we

PR 16 a scheme o if it itself contains further occurrences

only inductively apply the compiler \

of extended vectorization.
Definition 72. We define

W = PR PRY(S)u — PR(E)uy [ w0 E ST >

— "~ Xu.uv

wherein each \P PRV, — PR(S)u. (ambiguously denoted \"'Y")

u.v

is defined uniformly

in (u,v) by induction on the structural complexity of a scheme a € PRY(Y). In particular, the

extended vectorization induction cases are defined as follows:

(5a) Type One Extended Vectorization. If o =<y, ... o, %% for some oy € PRY(Y),

for some u, '€ ST fort=1...., m > 1 then

V) =< By g, >

7
o3



wherein n = et~ o™ and for i = 1... ., n
o if (7] = Land a; € PR(Y):
, ) if e/] = Land o) g PR(Y):
Uy o PR (ay) i[> Tand o) € PR(Y): and
['17 o 0 otherwise

wherein j = gL [leb o > and B=1= ot Tt

(5b) Type Two Extended Vectorization. If a = <& ay,...,q,, > for some o; €

PRY ()., for some vty vt € ST for i = 1.....m > 1 then

i)y =< 3, >

wherein n = v - v and for 1 = 1,.... n
< Ug..... s if |o/| = 1 and a; € PR(V);
; \Sf‘{_( Do < Ui I"if' > if [/ =1 and o; ¢ PR(Z);
i = N - ’ vy . ; - N
Uy o \l‘f‘l,m])o < Uk Uy > if |v7] > 1 and «; € PR(Y); and
Uy oa;0 < U L..., Sy > otherwise

wherein j = pl.{je! -0 > 0ok = i=fot o T and by = et [Hplorp =1, )

An Extended Cartesian Composition Compiler. We now define an extended Cartesian
composition compiler, ambiguously denoted C, based on the Cartesian composition compiler C of
Chapter 1, that we will nse in the formalization of a denotational semantics for ASTRAL. The
reader should consult Section 1.5.-1 for an explanation of the operation of the compiler €. This
extended compiler is precisely what we need to eliminate the instances of Cartesian composition
created by the composition of AFSTs in ASTRAL.

The difference between the compiler € and the compiler € is that the latter allows us to
combine the actions of ordinary composition and Cartesian composition into one ‘primitive’ by
selecting the particular type of composition required for each co-ordinate of the co-domain of a
particular function. For example, if @ € PR(Y) is of type (u, v) wherein u = $) 89 83 84 for some
s €8 fori=1.....4and 3 € PR(E)., ., and J» € PR(X), ., ,, for some 2.2y € PR(Y) then

(\ e (,{ At {Oﬁ}(a) € PR‘( )n 2y IS4

u.v
is the scheme such that
(V= {ayapag,ag) £ AT Talale) = [adalan [81]aa), MR (1 aa), ay).

Thus. € has allowed us simultancously compose @ with g at the second co-ordinate of o’s do-
. C has allowed s A

main and to perform Cartesian composition on a and 3y at the third co-ordinate of o’s domain.
Indoed, (while for simplicity we have not demonstrated the fact in our example) C also allows

s to perform vector-valned Cartesian composition formalizing the idea behind the semantic



proofl of Theorem 7 from Theorem 8 in Section -1.5.1. However, for convenience we formalize
vector-valued Cartesian composition into an elfective procedure using an intermediate compiler

denoted 5. As such we begin with the definition of o.

Formalizing Vector-Valued Cartesian Composition. The operation of the compiler
o is essentially straightforward in that it formalizes the process of repeated Cartesian compo-
sition using the successive co-ordinates of a vector-valued function. However, the compiler is
highly technical as we must be precise about the types of the co-ordinates of the domain of the
resulting scheme that is created as the process is iterated. This is reflected in the establishment
of the well-definedness of o that requires a proof by induction. Therefore, before we present the
formal definition. we motivate the formulation of @ with a few comments on the structure of the
schemes it produces (Definition 73).

Notice in the induction step that 8:-;:",',"’1,1,,(&”,,3”) is defined inductively using essentially three
new schemes derived from the original structure of o” and 9”: that is; the schemes 5, ,:}I’,’+1 and
n. Of these schemes 4 is the vectorization of the first to the I“th co-ordinate functions of the
function computed by 3", and 3/ represents the ' + 1th co-ordinate function of the function

computed by 3”. As such by two applications of the Induction Hypothesis

(An”,m”—l N

(", 7), I/¢+x)

~p.p
O -4

- = M - SR i
Uy oy T U Gt v

vl

must represent the composition of each co-ordinate of 3”7 with a”. The slight complication with
this inductive technique is that (similarly to our semantic proof of Theorem 7 from Theorem 8
in Section 1.5.1) as we have composed the co-ordinate functions of g” individually, the domain
of the scheme generated is not what is required. In particular, rather than the required domain
TR Uy g 3" Uy sy - - - lx We have fiy o digr g 2 2 gy - - G- This is dealt with by the scheme
£ that duplicates the necessary co-ordinates of any input.

Definition 73. Foreach u = (uy -+ ug) € St such that there exists a v/ = (u, -+-u,,) € St for

—~

some | < n < m < k. foreach = € §7, and for each v € 5 we define

Sr PR wy X PRIE) s = PRAZ) vy 2 g oun e

u.v,r =2

by induction on the value [ = m — n as follows:
Basis [ = (0. First, notice in this case that n = m and hence we have v’ = u,,. We define 831”
as follows:

(Vo 2 PR(Y), ) (V€ PROZ)e: ) 6:::3?;(”: 3) = Ciff,;“,d’"(m,f)
wherein 7d* - {1, Jul} — {L....,]ul} is the identity function on each ¢ € {1,..., |u]}.
Well-De finedness. Notice that by the well-definedness of C we have

CH i 3) € PR{Y)ufn/s).a% (o)

WU, U

Therefore to complete our argument it suffices to show that A% p 2) = ¢, This follows
immediately from the fact that r € 57

. ) R - o ) .
Induction Hypothesis. Assume for each @ = (- p) € 57 such that there exists a



W=y, a,) € ST for some 1< o0’ <o’ < kosuch that m/ — n' < I for some fixed I/ € N.

for cach 2/ € Q*. and for each v" € S* that if o € PR(Y)s, and 3 € PR(Y), t .o then

~n' m’ [ TN oY
O“ v ~'(’1 ) 3 ) < ! R(;_)zll Uy A R TRt

Induction Step. For cach = (i, ---u;) € ST such that there exists a o = (thyor o ﬁ,,,,,) c

St for some I < n” < m” <k such that m” = n” =1 + 1, for cach 2 ¢ 57, and for each
1" I -

'€ 5t we define oF
4,

Iy

as follows:

(\7/(1/ PR( )uL )(\/ 3“ € P R(E) 2! A”)

1" ‘" i

~n''m 7 Uy o opr n "o " .
O!:.'.{‘” :”(l) N Aj )= Ol:ll ST G e Gk.u? //(Ou v it ((1 N /)‘ s 1/+1’) O K
. . 7 N P - " RV 7 - .
wherein p = m" + (|2} = 1),y =< Ll U e 3> a0 = U,:L,, o 3", and
B oz 5 : = vz =
u, U“/l__1 B um//_+_1‘ Uk yUy U2 um//+l--uk
h—~\L veees Upn s
L.z:“»-tl,‘//_‘ 2 Itlm//+l -1:“‘ l'u, u"u_l:” Ii"lll+l"lzlk
i (ni 4l —1 ,
.z_il-v-r-inuﬁlz” l:lm//+l~-t:£k l.ul Ry all Y zi"|1;+l--1ik
L W ) L””’H ”D"l y
Lvr—hv Ay 2 I:Lm//+1 St L,tq Ay 2 (:lv“//+‘4'-l§k
IZH( s 'H:“')—l > .
. . . T -
Well-Definedness. First, notice that as y € PR(Y) vz g, and m” — 1 =" = 1', by the
+ n m -_— ? -

Induction Hypothesis with o' = ", 3" =y, & = 4, W' = Gpr -+ ldppoy, W' = 0", m/ = m"” - 1,

2= 2 and o' = ¢” we have § = 5= (e ) € PR(E)&YUIZ by e e AASO, notice

-1 <

that as J" € I’R(i)t i, and p - p = 0 < ! by the Induction II»pot}l(’sxs with o = ¢,
3 = Vare =l " gy -+ iy, 1 = u.mu, w=p,m =p, =2 and v = v” we have
[ X
AP r ~nm~1 1 ¥ _ N }
z.x i U,y st :i,nz, 1'1,,.//,“ ﬁk,t“,:”(oﬁ,v”,:“ ((Y ’ ‘y) [+1) € PR( )“1 Hprly 22 G T
lh(‘l‘l‘f()rl‘ Qs Kz P R( -‘).Al iy ! ﬁ,,.,/+1' Gyt 202 ﬁm”+1" i itis clear that
n'‘om' =1 3
~pop _ A . \
O‘;“' 1.1,,/1_; L ‘:Amn !:L,n»r+\ !1k,l”,:”(oz.t;'»‘”,:” ( )’ JI +1) o K& l R(:—{)

. B o =z z Y e e
With tvpe (g - tipgooy 27 gy -+ Ui, 07) as required.

Combining Ordinary and Cartesian Composition. As with the compiler 6 the intention
behind € is essentially straightforward in that it is based on an iterative process. The difference
now is that, rather than acting on the successive co-ordinates of a vector-valued scheme, this time
the composition process is iterated on successive schemes that may themselves be vector-valued.
In particular, the compilation pm(‘oas is iterated on cach member of the set § = {3,,..., 3}
for some 3; & PR(Y)... .. for some o' 0t € St for v = 1.....k > L. Moreover, each successive
composition may be mthvr a normal compositiou or a Cartesian composition and hence the type
of composition required must also be indicated. Specifically, the type of each composition is

indicated by the set T = {d/,....,di} wherein for each 7 € {1....,k} di = o indicates a normal
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composition and d; = ¢ indicates a Cartesian composition. In order for this process to be well-
defined, if d; = ¢ then (1} .3; must be an appropriate scheme; that is, a Cartesian form ST
and (2) the particular co-ordinates of the domain of @ to which 3; is to be composed must be a
stream of an appropriate tvpe.

Again the technical nature of this compiler means that in order to establish that it is indeed

well-defined we require a proof by induction on the number £.

Definition 74. For cach S = {J;..... 3} wherein for i = 1.... k> L either 3; € PR(E), .. o

for some ' € S™ and for some w' € ST, or d; € PR(Y).. .. for some 2 € 5 and for some

w' e St:and for each T = {dy,....dx} such that d; € {c,0} for i = 1,... k satisfies d; = ¢ ==
=

3

we define

PR(Y)¢ .o i and for ecach u =z wh oy € 5T for some x,y € ST, and for each v e §t

CoTi PRI ) — PR(E)s v ok,

y.v

by induction ou the value k& N* as follows:

Basis. & = 1. Notice in this case that 8 = {3, }. T = {d,}. and u = v w' y. We consider two
sub-cases:

(1) d, = c.

(2) d, = o.

Sub-Case (1) d; = ¢.  We define 3

n

as follows: (notice in this case that 3y € PR(X)¢ .1 1)

v

(70 € PR(),)  Colla) = BN ).

TR u,v, 2!

~lz|+1,]rw?]

Well-Definedness. Notice that in this case by the well-definedness of © we have

uy,z!
BT e 30 € PRID): o1y
as required,
Sub-Case (2) d, = 0. In this case we define CiZ as follows:
(Voo € PR(L)u )
a o AP UL U A U L U )i e > 0 and [y] > 0,
- a o APV (3L UYL U, ) il jz| = 0 and |y] > 0,
Coita) = - ) . ,
: a0 PR UL Ul B >) if 2] > 0 and [y] = 0, and
n o .3, if 2| =0 and [y] = 0.

Well-Definedness. In order to reduce the complexity of the schemes created we have used the
language PRY. In particular, this enables us to have vector-valued compositions wherein the
domains of the fnctions that are combined need not be the same. Notice, that these extended
schemes are reduced to standard PR by the use of the compiler YR Using this compiler the
proof of the well-definedness of each of the schemes in the four cases above is straightforward
and 1s left to the reader.

Induction Hypothesis. Assume for cach 8’ = {31, ... 3} wherein either g/ € PR(X)g .o e

. P 7 ) -\
for c<ome 2t ¢ 87 and for some w't € S*or Jp €l R(

[

)ervwee for some 2 € §1 and for some
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w't € ST for i = Ll..... k" for some fixed &' € N*t: for cach T = {d}. ... d} such that
di € {b.o}. for i = L.... k" is defined such that d] = b = 3/ € PR(¥)¢ .. . and for each

W=z w'teow'f € 5T for some 2,y € 5™, and for each v € St that

o -
(Vo € PR(X)urwr)  Corpl@) € PR(E) 0 oov i Yoo
s - o . an " . s . 5
Induction. For each 8" = {3Y,..., 3.} wherein either 3" ¢ PR{Y) v i for some

e §7 and for some w’?' € §* fori = 1.... k" + 1; for each T = {d},....dj.,,} such that
di € {b.o}. for i = 1,.... k" + 1, is defined such that df = b <= 3/ € PR(X),.»\ ,n.; for each

"

W=ty € §F for some 27 y” € 575 and for each v € S we define €27, as

follows: "
T (32 F4d7 )
"o~ = LIS I ZANEEYS g T WAL S L] -
(va <= I I{(\:)u“‘v”) ('u”,l""((l ) - LL‘” PR R T L T T Y y”,v”( / )
wherein
(8930 Add)
Y= Cpnlpn T ().
Well-Definedness.  First, notice that by the Induction Hypothesis with 8§ = {57 ..., g7.},
1
T ={d},....dL}, W =u' 2" =2" Yy = w" Ly and v = v we have
BB Y _ .
7= Wt ((Y) = PR(__i)_ru PR NI LY PIES ERATS
Therefore by the Induction Hypothesis with 8’ = {8{, .}, T/ = {d{. ., },
0
wom oyt Stk k41 ‘{///7 gl o= g MLk , ’]j/ — y//, and v = v we have

1{,3;’_'_1},{(i;:,,+1} — PR g
~ .
(/I// JTR UUNRTE LRI LB y“,u”( l) = ‘(i)x” P e S R

as required.

Higher-Order Signatures and Terms. In the following sections we will require the use of
signatures containing full second-order function symbols rather than the restricted weak second-
order signatures that we have used in the previous chapters. However, as the use of such
functions is restricted to the purely syntactic level we will not require the full development of
this generalized theory of universal algebra. The interested reader in directed to Meinke [199:2h]
for work on this extended theory.

Definition 75. As our use of higher-order functions is so limited, for our purposes it is sufficient
. .- . . ) T o A . B .

to define an §7-sorted second-order signature X to be the 5" X (S — 5)*-indexed collection of

sets wherein any ¢ € %, , for some v € S* is referred to as a (second-order) constant of type

~1

r; and any f € S, for each u, v € ST is referred to as either a (second-order) function or
Junctional of type (u, ).

Notice in particnlar that a functional may be vector-valued and may have non-streams sorts
in their domains. However. their co-domain types are restricted in the sense that they must
return stream output and hence we cannot have f € Y if fis of type (=, w) for some = € §* and

for some w e §+.



Discussion.  In making Definition 75 our higher-order signatures are limited in that they
may only contain second-order function symbols with restricted types. However, as we are
developing an essentially first-order theory of stream processing (that eliminates the use of full
second-order functions) this limited definition is sufficient for our purposes. Moreover, we have
not directly extended the definition of S-sorted signatures ¥ to include full second-order function
symbols so that in the sequel it is straightforward to be precise about which function symbols are
either first-order or weak second-order and are taken from a standard signature. Consequently,
this clarifies which function symbols may derive their semantics using the basic techniques of
universal algebra we have already developed, and which function symbols are properly second-
order and must be eliminated to derive a first-order denotational semantics vin PREQ. This

fact is reflected in the following notation.

Notation 3. When defining a term 7 that may contain a second-order function symbol we will

write

re T(E. ¥, X),

to indicate that 7 is term of sort s € § formed over symbols taken from the standard §-sorted
signature 3, the §° x (S — 9)*-indexed second-order signature ¥ and the S-indexed collection of
variable symbols X. In particular, notice as a consequence of restricting higher-order signature
definitions, & and ¥ must be disjoint. Indeed. continuing the assumptions of previous chapters
in the sequel we will always assume that £ is some S-sorted signature, Y is some §” x (5 — S)*-
indexed second-order signature and .\ is some S-indexed collection of variable symbols such that
T, Y and X are all pair-wise disjoint and that none of them contain the distinguished function
symbols F and f, and f; and f;; for i,j € NT.

Also, throughout this chapter if it is not explicitly stated otherwise we make the assumption
that any collections of variable symbols always contain the distinguished symbol ‘¢” of type n
and do not contain the distinguished symbols *Y;” for each 7 € N.

Finally, as a concession to conserving space, as with previous chapters we will only include

the well-definedness areuments for our constrnctions when they are not straightforward.
(=] ¢

6.2 The Abstract Syntax of ASTRAL

We begin the development of the abstract mathematical syntax of ASTRAL with the definition
of the particular classes of terms that may be used in a specification. Example specification
using a prototype BNT based on this abstract syntax can be found in Section 6.7.

As we have indicated the abstract syntax of ASTRAL specifications is very similar in form
to that of PREQ specifications. In particular, a full ASTRAL specification is constructed {rom
several restricted specification in the same way that a PREQ specification is constructed from
RPREQ specifications. However, unlike PREQ full ASTRAL specifications are constructed
from two distinet types of restricted specifications: ASTRAL; specifications and ASTRAL,
specifications.

As with RPREQ specifications the formalization of these restricted classes of ASTRAL



specifications is based on the use of particular classes of terms. As such we begin with these

definitions.

6.2.1 ASTRAL Terms

As Theorem 6 shows (see Section -.4). in order to maintain control over the class of functions
that we can specify in PREQ, it is necessary to control the combined use of primitive recursion
and full A-abstraction. Therefore, as we will allow the use of AFSTs in ASTRAL. we must be
careful to ensure that each ASTRAL specification only represents a primitive recursive ST, so
that it can be compiled into PREQ to derive its semantics. In order to maintain this precise
control we will define three classes of ASTRAL terms. Specifically, we will begin by defining
two restricted classes of terms: type one ASTRAL terms and extended type one ASTRAL terms,
that we will use to define type one ASTRAL specifications (denoted ASTRAL,). Type one AS-
TRAL specifications are used to define full ASTRAL specifications in essentially the same way
as RPREQ specifications are used to construct PREQ specifications. In particular, type one
ASTRAL terms are used in ‘simple specifications’ and the basis case of ‘primitive recursive (type
one ASTRAL) specifications’, and extended type one ASTRAL terms are used in the induction
case of ‘primitive recursive (type one ASTRAL) specifications’.

Type one ASTRAL terms are also used in a third more general class of terms: type two
ASTRAL terms. This third class of terms are used as the basic mechanism to provide a user-
friendly syntax for the composition of AFSTs without expanding the class of STs that can be
specified.  Specifically, we use type one ASTRAL specifications - defined using type one and
extended type one ASTRAL terms — together with type two ASTRAL specifications — defined
using type two ASTRAL terms - to define type three ASTRAL specification. In particular, type
three ASTRAL specifications are sufficient from a computability theoretic perspective to define
every AFST that can be compiled into an equivalent primitive recursive CI'ST in PREQ. How-
ever, as a further consideration to the user, while full ASTRAL specification are based on type
three ASTRAL specifications, we provide an extended syntax that is more suited to modular

specification techniques. These ideas are now presented in more detail.

Type One ASTRAL Terms.  Type one ASTRAL terms are essentially first-order terns
except that we include an additional induction case (Case (5)) that also allows second-order
function svmbols to be used in terms provided that that they appear in evaluated form. lor
example, if F is a second-order function symbol of type {(u,v), for some u € 57 and for some

v € 5% then for appropriate terms 7, of type u; fori=1,..., [u]
Fim, ..., mu)(0)
is permissible as a type one ASTRAL term.
Definition 76. We define the S-indexed collection of type one ASTRAL terms

e Y ) =< ALY ) {seS >
AL YN

.
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wherein each A" (X, Y7, X)), is defined uniformly in s € S by induction on the structural com-
plexity of a term 7 & (‘ N X)), as follows:
Basis Cases.

(1) Constants. If

T=c
- o ~ T/ v ¥ v
for some ¢ € ¥, ,, for some s« € § then 7 € A"(X, X X),.

(2) Variables. If

T =2

for some ¢ € X,. for some s € 5 then r € ANY. Y7 X),.
Induction.

(3) Algebraic Operations. If
T=0(T,...,Ty)

—

for some o € ¥, ,. for some w = (s,---8,) € 5% and for some s € 5, and for some
e AN Y X), fori=1.....nthenre€ Al(Y, U X,

(4) Stream Variables. If
T =z(7")
for some « € X, for some s € S and for some ' € A(X. Y, X), then 7 € AR, Y X)),

(5) Type One Restricted Functional Use. If

T == [[,‘(7'1, .. ‘17—11)(7-/)

for some H € ¥7,,, for some u = (s;---5,) € 8 and for some v € $*; for some
i< {1,...,|z|}; for some 7; such that for j = l ., neither 7; = z; eX, ifs;€(8-9)
orT; € \T‘ nY , X),, otherwise; and for some 7’ € AF’(L, Y, X)e then 7 e A (X, L XD,

Notice, that in our (leﬁnition H; is properly (H);; that is, 1 is considered as a separate
syntactic token indicating which co-ordinate of Il we wish to select and does not indicate

that I, e ¥/

Extended Type One ASTRAL Terms. We now defining two further classes of terms. First,
we define the class of extended type one ASTRAL terms. Essentially, the additional clause that
is included in these terms is cquivalent to the use of the special variable symbol ¥; in RPREQ
specifications (see Definition 84); that is, it is the mechanism by which we specify primitive

recursive AI'STs definitions.

Definition 77. For each X = {y.....yn} € X and for each w € ST we define the S-indexed
collection of extended type one ASTRAL terms

AR EL X = < AR TN, e 5
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wherein each A=Y, 3 X)), is defined uniformly in ¢ € .9 by induction on the structural
complexity of a term 7 € ATv=2(y Y, X)),

Essentially, for each X = {y....,yn} € X, for cach w € ST oand for cach s € 5 we define
Al v 3 . X), to be identical to A (Y .—L‘—’. A\')s with the exception of an additional induction

clause defined as follows:

(6) Type Two Restricted Functional Use. If

for some i € {1,...,|w|} then 7 € A* (8 VX)), .

Thus, extended type one ASTRAL terms allow us to use second-order stream transformers in

terms, but they may only take variables as input and are evaluated at a fixed time ¢.

Type Two ASTRAL Terms. Finally, our third class of terms - type two ASTRAL terms
- provide the mechanism for the most general use of AFSTs that can be permitted without
expanding the class of functions that may be specified. In particular, the induction case of
type two ASTRAL terms allows us to apply a second-order function symbol to both type one
and extended type one ASTRAL terms and hence provides a mechanism for the composition
of AF'STs. For example, if (¢ is of type (. v), for some u,v € §*; x; € X, fori = 1,...,|ul;
Fis of type (sy s2 0, 2/). for some s;,8, € S and for some v’ € S*toand 7 (.md Ty are type one

ASTRAL terms of sort sy and s, respectively then
P, mo, G(or, e 2py))

is a well-defined type two ASTRAL term.

Notice that this syntax provides a user-friendly method for working with AFSTs, in that
AFSTs can be composed directly in vector-valued form. Indeed, the desire to work with terms
of this form is the reason that we need the generality provided by the compiler C. In particular,
in order to construct a PREQ specification that provides the necessary semantics for the term
above we must compose 7, and 7 with F, but we must use vector-valued Cartesian composition
to compose (¢ with I as we must give I and G their semantics in Cartesian form.

The use of terms in the form above is especially useful in the context of formal hardware
description, as in addition to allowing the specification of devices from smaller components, it
also allows devices to be dependent on initial non-stream values (see Section 3.10 and for an

example see Section 3.8.1 and Section 6.7.2).

Definition 78. Let X = {z;.....2m} € X such that z; € X, for some s, € S for i =

P

Lo om > 1. We define the §7 % (5 — S)T-indexed collection of type two ASTRAL terms

A T ) =< AN Y X)), lue S ve St >

wherein each A(3, Y, X), , is defined uniformly in (u,2) by induction ou the structural com-
plexity of a term 7 € AR Y X)), as follows:
Basis,



(1) Stream Variables. If
r=2z
for some z € X of type s € 5 then 7€ A*(X, ¥, Xgs
Induction.

(2) Composition. If
T=H(r,...,m)

S

for some H € ¥/, ,, for some w = y'---y" € ST, for some n < |w], for some p € ST and
for some 7; for ¢ = 1,...,n such that either

Ti € ;\Tl(i" Elv x)s’

for some &) = y* € 5 or
1

e A T X)L

=
; = - P T, S .
for some u' € §° and for some z' = y* € S then 7 € A®(E, ¥ X))y 4o, wherein for
! = 1,...,n we have
S1° S if T € AR '\:, Oy X) B and

! itr e A, Y X)“. . otherwise.

d' =

6.2.2 ASTRAL Specifications

Using the classes of terms defined in the previous section we now define three forms of restricted
ASTRAL specifications that we use to define the full abstract ASTRAL syntax. We begin with
type one ASTRAL specifications that essentially provide a more natural syntax for the repre-
sentation of RPREQ specifications in the context of stream based specification.

Type One ASTRAL Specifications

Definition 79. We define the §° x (S — ) -indexed family of type one ASTRAL specifications
ASTRAL (X, Y, X) = < ASTRAL(E, Y, X)u, | u,ve ST >

+
wherein for each v € §*. and for each v € ST we define

ASTRAL(Z, Y, Xy

(ambiguously denoted ASTRAL (X, ¥'..X)) by case analysis as follows:

(1) Simple Specifications. If
de
Y Plen,. o)) =T

S ~ O oy ] = - N ; T
for some 2, € X , for some s; € Sfori=1,....n € Nand for some 7 € AM(E, Y {ay,...

- SR} o

£ }), for some s € § then & € ASTRAL (. VX s
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(2) Vector-Valued Simple Specifications. If
O Py, ) = (T )

forsomew; € X, forsomes; € Sfori=1,...,n € Nand forsome r; € A (X, ¥ {z,.. ..
tn})y . for some & € § for j=1,....m > 1 then & € ‘\SIR..»\I”(L, YN,

(3) Primitive Recursive Specifications. If

D Flzyo.oo.oz,)(0) = T
Flzy, ..oz ))(t+ 1) = 7/

for some x; € X, . forsome s; € Sfori=1,...,n¢€ N+' l'or ‘%()IIIO re ANE Y e,
A X

T . for some s € 5§ anc - some 7€ Alfgna (8, a2 then ¢
a )y, [ c 5 Wd for some 7 Axy, ooz,
ASTRAL(Y, Y, X)),

(ry....,)(0) = (TiyeeerTm)
Floy, . .ooxn)t+1) = (r,...,7!

m

for some z; € X, . for some s, € S for e =1,...,n € N¥; for some 7; € AN N {z,
- ¢ C come Ty{zy,... ratst o S
In})e. for some s € 55 and for some 77 € Alznrabigy g, V,\d’{,l,””l_n )y for
b 2

J=1c..om>1then & € ASTRAL (S, Y, X))y, onato o
Type Two ASTRAL Specifications.  To avoid the complications that the unrestricted
combination of A-abstraction and primitive recursion can create, we cannot directly incorporate
the composition of AFSTs into type one ASTRAL terms. As such we define two further classes
of restricted ASTRAL specifications that we will use to construct full ASTRAL specifications.
The first of these is type two ASTRAL specifications that allow the use of type two ASTRAL

terms and hence the composition of STs.

Definition 80. We define the §7 x (5 — §)*-indexed family of type two ASTRAL specifications
;\S’[YR:\LQ(_\;- _\:;7. __\_t) =< ;\Sr[‘R;\Lg(i, Kjv j;)u,giuiﬂ € i+ >

whercin for each « € 8§ and for each v € ST OASTRALLE, ¥, , X )u, (ambiguously denoted
ASTRAL, (.Y, X)) is defined as follows:
if

& Fley,. . e)=71
forsome 2, & X,  forsomes; € 5 fori=1,....,n € Nt;and forsome 7 € AB(X, ¥, {z,,.. T })
of type (w, r) for some w € 8" and for some v € ST othen @ € ASTRAL,(X, Y, X),,

RP
Type Three ASTRAL Specifications.  In the same way that we used total PREQ spec-
ications as an intermediate stage between partial PREQ specifications and standard PREQ
specifications. the definition of type three ASTRAL specifications and full ASTRAL specifica-

tions is again simply a convenience in that it allows a more modular approach to be used in
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system specification. In particular, type three ASTRAL specifications are constructed from a
single type two ASTRAL specification and a number of type one ASTRAL specifications. The
role that the type two specification plays is to choose a particular type one specifications as the
semantics of the whole specification. This technique mirrors the way that we choose a particular
RPREQ specification to represent the semantics of a whole PREQ specification. However, as the
abstract syntax of ASTRAL only provides the basis of an implementation language, for math-
ematical convenience this role of choosing a particular type one specification is also combined
with the mechanism for composing AFSTs. Specifically, the type two ASTRAL specification
within a type three ASTRAL specification either selects a single type one ASTRAL specifica-
tion to be the semantics of the whole specification or selects a number of type one ASTRAIL
specifications composed together to be the semantics of the whole specification.

While from the perspective of computability a type three ASTRAL specification is a general
purpose tool for the specification of primitive recursive ST, from the perspective of user-friendly
specification it is rather limited. Therefore, in full ASTRAL specifications we allow several type
two specifications to be used wherein only one determines the whole specification’s semantics.
For example, suppose we wished to specify a system F that was naturally visualized as two sub-
systems Fy and F, wherein it is also natural to sub-divide I} into two further sub-sub-systems
Fi, and Fy ». If we restricted the user to type three ASTRAL specifications then they would
have to specify F' as follows:

G =< P, P11, b1, P2 >

wherein the type one ASTRAL specifications ¢y 1, ¢10 and ¢, represent sub-systems Fiy, B o
and I respectively and the type two ASTRAL specification % would be of the form

‘Ir/) = F(.’El, .. .,‘l'n) = B(FI,E(F‘I,l(zlv' . -71‘71)))

for some approriate variables z; for ¢ = 1,...,n > 1. However, using a full ASTRAL specification
we can specify F as follows: 4

P =< wl"lr/’"l?(fbl,]vd)l,ﬁv (bQ >

wherein the type two ASTRAL specifications ¥, and 1, would be of the form
o= Flay, ..., z0) = I(Fi(z, ..., 2,))

and

¥y = Fi(zy, .., 20) = Fia(Fa(zy, .0, 2,))
respectively. This more naturally reflects a modular approach to the specification based on the
Systems intuitive structure.

As we will show in the sequel the additional type two specifications in a full ASTRAL specifi-
cation can be eliminated (using an inductive technique) by compiling full ASTRAL specifications
into a type three ASTRAL specification. To complete the compilation procedure the resulting
type three ASTRAL specification is compiled into PREQ to derive a semantics.

Finally, notice in the following definition we use a version of the function InTermsOf (see
Definition 49) adapted for use with ASTRAL specifications, although we leave the details of a

formal definition of the necessary modifications to the reader.
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Definition 81. We define the 8" x (S —5)* -indexed family of type three ASTRAL specificalions
ASTRAL4(Z, X) = < ASTRAL(X. X)u, v €S ve ST >

wherein for each u, v € §* we define ASTRAL (X, X).., (ambiguously denoted ASTRALy(Y., X))
as follows:
if

G =<, DD >

for some

¢ € ASTRALS(Z, {Five oy Fu}y XD

for some v € 57, for some » € S such that F} is of type (u', ') for some u* € S™ and for some

vie St fori=1..... n > 1; and for some

¢>i S \STRA\LI(;:a {Fh .- '7Fi——1~ F;+1' DR Fn}wi)u’,g‘
for i = 1,....n such that
) Q IH’TCI'InSOf(< (,’513 .. ~,‘7bn >>7"7{F17' R Fn})

fori=1,...,n then & € ASTRAL3(X, X)u,u-

ASTRAL Specifications
Definition 82. We define the S° x (8 — §)T-indexed family of ASTRAL specifications
ASTRAL(E, X) = < ASTRAL(E, XDy Jue ST, v e St >

wherein for cach u € $* and for each v € S* we define ASTRAL(Y, X)), (ambiguously denoted
ASTRAL(YE, X)) as follows:
if

b =< P, P Py Gry e, P >

for some

€ ASTRALL(E, {F1y o Fngn s Duw

for some u € S™, for some ¢ € S* such that F is of type (u',2*) for some u' € S* and for some

veStfori=1,...,m+n > 1; for some
'l./),‘ € "\ST‘I{AL?(‘—\ZJ {FU e R—l’ FH'I ey lnm}a:.".‘.:)u‘.l’.'
fori=1,...,m; and for some

Q‘)i € ASTR,;\TQ(E, {Fm+1, ety F1i—-17 Fi+1~, R Fn+m}7é:)u‘,

e

fori=m+1,...,m+ n such that
) g IIXTCI‘IHSOf( < 1,,/’17 ey wm’ ¢17 ceey Qbrx >, i, {1’1, ey Fm+n})

fori=1,...,m+nthen ¢ € ASTRAL(E, X)uw-
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The definition of ASTRAL specifications finalizes the first stage of our abstract specification
language formulation. In order to complete the formulation, by defining a denotational semantics
for ASTRAL specifications, we require the compiler definitions that we make in the following

section.

6.3 Compiling ASTRAL into PREQ Specifications

As with the compiler that maps PREQ into PR, the compiler that maps ASTRAL into PREQ
is defined in terms of several sub-compilers that map the various classes of terms and restricted

classes of ASTRAL specifications we have defined.

6.3.1 Compiling ASTRAL Terms

First, we show how to compile type one ASTRAL terms into strictly first-order terms that will be
used in the construction of individual RPREQ specifications. Indeed, given the restricted form
of type one ASTRAL terms this process is relatively straightforward. The main operation of
this compiler is the replacement of terms involving functionals by equivalent terms in Cartesian

form comprised of new weak-second order function symbols.
Definition 83. Let ' C {F},..., I},}, for some n € N such that F} is of type (u’, v*), for some
u' € ST and for some v € ST for i = 1,...,n. Furthermore, let ¥ be defined such that for each

w € 5" and for cach s € §

.y
w : [ . . wiata - Al W
S U{fij} if w=tuand there exists an F; € X, ..
for some i € {1,...,n}, for some v' = (s,---3,,) € S*
such that s = s;, for some j € {1,...m}, and

hM otherwise.

—w,s

For cach s € § we define
Al - AL \’"W

A ANE T X), — T(E, XD,

(ambiguously denoted y*") uniformly in s € § by induction on the structural complexity of a

term 7 € AB(Y, ¥, X)), as follows:

4 =

Basis Cases.

(1) Constants. If 7 = ¢ for some ¢ € Xy, for some s € 5 then

AT

Xt (t)=c

(2) Variables. If 7 = z for some ¢ € X, for some s € S then

X.»\Tl (T) .

Induction.
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(3) Algebraic Operations. If 7 = ¢(7y,...,7) for some o € Yws.forsomew = (s, -8,) €
S+, for some s € 5 and for some 7; € AN(X, X, X)), fori=1,...,m then

T

AT, Al A
U = (T ()T (

Tm))'
(4) Stream Variables. If 7 = z(7') for some v € X,, for some s € 5 and for some 7' €
A(E. Y7 X)), then
T T
xH(r) = eval (XM (), 2).
Well-Definedness. First, notice that by definition that ¥ is standard and therefore eval, €
it .s- Also notice that by the unstated Induction Iypothesis that y** () e T(Z, X)..
T . . - AT N .
Therefore as by hypothesis x € X it is clear that eval,(x*' ('), z) € T(X, X), as required.
(5) Type One Restricted Functional Use. If 7 = (£7);(7,...,7,)(7'), for some I € ¥/, ,
for some u = (s;---5) € &7 and for some v € S¥; for some i € {L,...,n}; for some
J € {l,...,|z]}, for some 7 such that for & = 1,...,m either 7, = z, € X, wherein
sx € (8 — §)or 7, € AN(E, Y, X),, otherwise; and for some 7/ € AT(E, ¥/, X), then

T Ty
M) = LT () yn e Ym)

wherein for k = 1,...,m we have

Ty if 7. = z4; and

Ye = T )
(1) otherwise.

Using the compiler x" it is now also straightforward to define a compiler that maps extended
type one ASTRAL terms. The only additional mechanism that we need is to convert terms
defined using type two restricted functional use. This is achieved by replacing these terms with
the distinguished variable symbols ¥; that has the required semantics when the resulting term

is used in the induction case of a primitive recursive RPREQ specification.

Definition 84. Let 3’ and Y, be defined as in the previous definition. Foreach X = {y,,...,y,} C

X, for each w € 5% and for cach s € S we define

T P —_ -
:\’;\ R : .‘\F“Lu(g, hX ):"L)s - rr(};’ X_i)s

. T . ) .
(ambiguously denoted y*'*%), wherein for each s’ € 3

X’ X, Uy} if s’ = w forsome i€ {1,..., |uwl}, and
= X, otherwise,

uniformly in s € § by induction on the structural complexity of a term 7 € AT Xw(y ¥ x|
. T . . . AT . e . . -
Essontlally b "X is defined identically to y2' with the additional induction case as follows:

(6) Type Two Restricted Functional Use. If 7 = Fi(yi....,y,)(t) for some i € {1,..., ]}

then
T
V() = Y
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As Cartesian composition is formalized at the level of PR schemes it is also necessary to
compile type one ASTRAL terms and type two ASTRAL terms directly into PR. As such the
schemes created by this compilation process can be combined using the compiler € into a single
scheme and converted back into PREQ using the compiler C°*Q Ty more detail, recall from the
previous section that from the perspective of computability type three ASTRAL specifications
are sufficient to specify any AFST with an equivalent primitive recursive CFST. Also recall that
a type three ASTRAL specification ¥ is comprised of a single type two ASTRAL specification
and k > 1 type one ASTRAL specifications; that is,

V=< ,Qn. 0>

Therefore to compile a type three ASTRAL specilication into PRIEQ our strategy is as follows:
(1) independently of ¥ (that either selects a particular ¢; as the semantics of ¥ or a number
Biryen ., ¢;,. for some j; € {1,.. kY forl=1,...,m € NT composed together as the semantics
of U) compile W into k& Cartesian form PREQ specifications ®; wherein cach ¢; fori = 1,.. .k
respectively is selected in turn as the semantics of ¥; (2) using the compiler C*® compile each
®; into an equivalent PR scheme a;; (3) using the schemes ay, ..., a; compile ¥ into a PREQ
scheme using the compiler C. As such if ¥ simply selects a particular type two specification
¢; then we use ®; as the semantics of ¥; otherwise if ¥ dictates that ¢; ,...,¢;  composed

together is the semantics of ¥ then (essentially) we make
b = CPREQ(Clonwaml(q; )
the semantics of ¥ wherein by definition the schemes «j,, ..., @; are equivalent to the type one
la al . . ; . o . . L o, PRE [ _
ASTRAL specifications ¢;,, ..., ¢;, respectively and hence using C and C°M"EQ is appropriate to

construct the single PREQ scheme @ to represent V.
With this strategy in mind we now define the two compilers that we need to compile a type

two ASTRAL specification into PR.

Definition 85. Let Y/ be defined as in Definition 83 and let X = {z1,...,z,} € X for some
z; € X, for some s; € S for i = 1,...,m > 1. For each § = {ay, ..., a,} wherein o; €
PR(Y);yi o for i = 1,...,n and for each s € § we define

C L AN(E, Y, X), — PR(D),, sl

(ambiguously denoted CA"5) uniformly in s € § by induction on the structural complexity of a
term 7 € AT (Y, Y, X), as follows:

Basis Cases.
(1) Constants. If 7 = ¢, for some ¢ € ¥y, for some s € S then

(C"\'l.ls(T) — c“l"\’m'

(2) Variables. If 7 = ;. for some z; € X of type s; € 5 then

(C:\TIS(T) — U;_’l""m.
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Induction.

(3) Algebraic Operations. If 7 = o(7,..., 7). forsome o € Sy, forsomew = (s -8 ) €

m

ST and for some s € §; and for some r; € AN, Y, X))y fori=1,.. .,m then

Ty Ty q \ Q¥
CA“«(T) =00 <CY(r),....CY(r,) > .

(4) Stream Variables. If 7 = z;(7'), for some z; € X of type s; € (§ — 5) and for some
e A(Y, ¥ X)), then

CY'S(r) = eval, o < CV'O(r!), U om >

(5) Type One Restricted Functional Use. If 7 = ([});(7,...,7,)(7") for some F; € ey
for some u' = (s;1---8im) € S” and for some vt € 8T for some 7 € {1,...,n}; for some
j e {l,..,]2']}; for some 7 such that for I = 1,...,m either 7, = 2, € X, | wherein

si1€(S—8)orm € AT, Y, X),,, otherwise; and for some 7 € AN(E, ¥, X), then
T , a, T g T @
CAM3(r) = UV o a;o0 < CAM (), (), ..., Y (1) > .
Definition 86. Let 3 be defined as in Definition 83 and let X = {z,,...,2;} C X such that

z;€ X, forsomer; € Sfori=1,...,0> 1 Toreach 8 = {e,...,a,} wherein o; € PR(X); 41
for i =1,...,n and for each u € S and for each » € §* we define

\,‘\7‘::} . ;’\TZ(;_‘, E’, X)“’y_ . I)R(;)t o

Ay, v

(ambiguously denoted y*"*) uniformly in (u,v) by induction on the structural complexity of a
term 7 € AP(X, ¥, X), , as follows:

Basis Cases.
(1) Stream Variables. If 7 = z, for some z € X of type s € S then

\/;\"s(r) = eval,.

Induction.

(2) Composition. If 7 = Fi(7y,...,7m) for some [} € Yy 0, for some v = y'-..y» € §F,
' i +. ‘Ar g 5= . .
for some m < |u'| and for some p* € S7; and for some 7; for j = 1,...,m such that ecither

7; € ATI (Ev -E—’-v X)s i

2

for some s; = y? € 5 or
Ta/rv 57
Tj S A ‘(;4_, Ll, X)u1,£)

. . o + 4la
for some @ € §” and for some 7 =y € S then

XAT:S(T) — (;frﬁ,T ((Y,’)

‘tutp!
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wherein

R: 717"'77m}

and
T={d,....dn}
wherein for j = 1,..., m we have
T2 . To/ v N7 T
vUE() i r€ AR(E, Y X)), L, and
=
1} Ty 2 .
CA'3(7;) otherwise
and
c it e ARE, Y, X),, ., and
dj = -

o otherwise.

. . 125 1
Well-Definedness. TFirst, notice that we have Y**%(7;) € PR(Z)¢ws s such that T, €
AB(y, E‘“/,X)“,yij for cach j € {1,...,m}. Secondly, notice that by the well-definedness
of CX™8 we have (CAT‘S(TJ.) € PR(Y)r, ...rs;- Therefore as by definition d; = ¢ = B; =
/\,x‘ss(rj) is of type (t w?,v?) for j = 1,...,m by the well-definedness of C we have

X‘{FBS(T) = CE'T (ai) E PR(;)t el em pt

tury
wherein for j = 1,...,m we have

ry--ery if T € AN(E, YL X),, and

w if ; € AFQ(E, y X)u,g otherwise

as required.

While the two previous compilers are sufficient to map the terms that occur on the right-hand-
side of a equation in a type two ASTRAL specification into PR. To complete this compilation
process we must also take into account the role played by the term on the left-hand-side of the
equation and in particular the variables that occur in this term that are used to name particular

co-ordinates of input.

In order to make sure that the PR scheme created from the term on the right-hand-side of
an equation in a type two ASTRAL specification receives the correct input we use the compiler
CA™ that follows. For example, if a type two ASTRAL specification is of the form

Flzy,...,zy) =T

for some z; € X, for some r; € S then we use the set X = {x,...,2,} as an index when we

, Als . . Alag,
compile 7 to create a scheme 8, = C*7(r) that can be composed with o, = \**3(1) as follows:
a=a, o j,

to achieve a scheme with the desired semantics.
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Definition 87. Foreach X = {z,... Tyt forsomex; € X, forsomer; € Sfori=1,...,m>

1, for each u € S* and for each v € S* we define

AT2 Ty /vt N7 -
CN AR, Y Xy~ PR(E) o

u.v K

. T, . . . .
(ambiguously denoted C**) uniformly in (u,2) by induction on the structural complexity of a

ar

term 7 € AT(Z, Y7, X)), , as follows:

Basis Cases.

(1) Stream Variables. If 7 = z; for some z; € X of sort r; € S then

AT2

C

(r) = T

Induction.

(2) Composition. If
T=H(r,...,T)

for some H € 7, ,, for some w = y'---y" € S* for some n < |w| and for some v € §*;

and for some 7; for ¢+ = 1,...,n such that either

T € f\T‘(E_s §/—3 X)s

1

for some s; = y* € S or
gy
Ty €A '(;i’ AV X)u‘y:’_‘

for some u' € S and for some z' =y € St then
CAT:(T) _ Xl)Rv(<< Y >>)

wherein for i = 1,...,n we have

¥ (1) if 7 € AB(E, 3%, X), .., and

<UL, U > otherwise.

6.3.2 Compiling ASTRAL Specifications

Using the compilers we have defined to compile ASTRAL terms we now define a number of
compilers that map ASTRAL specifications into PR and PRIIQ, to realise our strategy for com-
piling full ASTRAL specifications (via type three ASTRAL specifications) in PREQ.

Type One ASTRAL Specifications. We begin by compiling type one ASTRAL speci-

fications into RPREQ specifications.
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Definition 88. Let ¥ and ¥ be defined as in Definition 83. Also, let X' = RGURDCINNNN i
|v]. For each u, v € St we define

wherein Y; is of type v; of i = 1

tu,u

tASTRAL(E, Y, X),,, — RPREQ(E, X"

ASTRAL, .
u,u
(ambiguously denoted yASTEA) by case analysis on the structure of a specification
VXD v

‘p 6 I\STR \Ll(:\i —d

as follows:
(1) Simple Specifications. If
o Flzy..,z.) () =7

(o1 $ Hiv v -
and forsome 7 € A" (X, Y7 {z, ... 2.},

forsomez; € X, ., forsomes; € Sfori =1, (X, %7

for some s € S then

ASTIL g (ief . R ) [’r
v'\,‘\SIR\I (‘I’) = f(tjll)"'yl“n) \1(7_)'

(2) Vector-Valued Simple Specifications. If
def ]
= Flzy,...,z.)(t) = (T1,. -, Tn)
forsomez; € X, ,forsomes; € Sfori=1,...,nandforsomer; € AU(E, ¥ {z,...,2,}),
.,m > 1 then

for some s;. e Sforj=1,..

ASTH. de f .
X\SIR\I (D) f(ta‘le"'

) <YAX(TI)”"*/\"‘\TI(TUL)>'

(3) Primitive Recursive Specifications. If
(I’L‘if F(I17~-'axrl)(0) = T
S Pz, D) =
for some z; € X, , for some s; € S fori = 1 ,n; for some 7 € AB(E, Y {xy, ..., Zo 1)
/\_‘ \‘ {‘Lla'“axn})s thcn

for some s € .5; and for some 7 € Al iz,
T
/,;\S']*R:\L,((b) d;f f(o- Liygeony l‘n) = /\/,‘;‘1 (T)
X ~ Fll 1oy, ) = N Eemhay,

i
o~

(4) Vector-Valued Primitive Recursive Specifications. If

o4 F(zy,...,z,)(0) = (T, Tm)
- F(ll,.--,myl)(t+1) = (T{v""Tr/n)
i for some 7; € AN(D, Y (g, ...,

for some s; € § fori =1
Tz, za}slos g, .
[\ "} 3y _m(E_, L y {1,1, ceay ‘L'n )',] I()r

for some z; € X,

. ,

zr, 1)y for some s; € S; and for some 7; €
3

J=1,...,m>1 then
XASTRALl((I)) def

o1y
) = <x* (7'1) ;
.»\1{1,1 L },_J_"(T{)’.“’X

FAC R TR
<X

f([‘{‘*l,.l«'l,'---l‘n)

f

Q%]
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Type Two ASTRAL Specifications.  We now show how to compile type two ASTRAL
specifications into PREQ.

Definition 89. Let ¥ be defined as in Definition 83. For each § = {a,,...,a,} wherein
a; € PR(X)¢ o for o= 1,....n and for cach v, v € ST we define

YISTRALL - ASTRALS(Y, Y, X)., — PREQ(Y

u Jeuw
(ambiguously denoted \*STRAE) as follows: if
p Fley,...,epn) =71
for some z; € X, fori=1,...,m > 1 and for some r € A*(¥, Y, X)w o, for some w € 9% and
for some v € 57 wherein X = {x,....,2,,} then

CPREQ (\A23( 1) o \PR (& Ut CY* (1) >)) if Jw] > 05 and

ASTRAL® _
()= cpnng s :
CHR () otherwise.

\

Well-Definedness. We consider the case where |w| > 0 and leave the case where |w| = 0 to the
T
reader. First, notice that by the well-definedness of C** we have

C*(r) € PR()uu
and hence by the well-defineness of x"" we have
'*// = }(I)}{v(<< UT,CATE(T) >>) € I)R(E)t u,tw:-
Al2g

Also notice that by the well-definedness of y* > we have

\,‘\TZS(T) € Pl{(_\;)c w,v

and hence clearly X'\Tzf'(r)o'y € PR(Y) with type (tu, v). Therefore finally by the well-definedness

.
of CPREQ we have

WSTEA (@) = PR (W (1) o P« U €Y (1) ) € PREQ(S, X)),

as required.

Type Three ASTRAL Specifications.  Using the three previous compilers we can now
compile type three ASTRAL specifications into PREQ.

Definition 90. For each v € § and for cach v € St we define

\‘,\S'I‘IL»\I.J - ASTR.: \Ls( s, Y )“ . = PREQ( )t“ .

\u,v

as follows: for each

O = < P01 O > € ASTRAL(Y, X,

for some

i € ASTRAL (N, {5, o}, Xuy
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for some u, v € 87 such that F; is of type (u'.v") for some »' € St for some ¢' € S* for

i=1,...,n>1;and for some
Oy € ASTRAL (X {F e oy By F,l},;‘i)“‘vi.

fori=1,...,n such that

1 ¢ InTermsOf(< oy, . ... Oon > 0 {F), LY
fori=1,...,n
ASTRAL: ASTRALS
u\Yl—Y A 3((1)): /\SIR\I:(L&)

wherein § = {a,,...,a,} such that for i = 1,....n
4% € PR(E.)tu‘,U‘
is defined by
_ PR ASTRALy . ASTRAL :
(,l’,‘—C (<\ ‘((;)1)’_”’ X l(‘rl)n)a’/v’/yl>)

wherein ¢ : {1,...,n} — {l,....n} is the identity function on each & € {1,...,n} and y :
{1,...,n} — 5% x §7 is defined by

(Vhk e {1,....n})  n(k) = (tu* v").
Well-Defincdness. Notice that by the well-definedness of y*STRALS it suffices to show that
«; = (Cb[(.( < \;\STR;\Ll(Ol)‘ o XASTRALI((}/Dn)q L, i >) € PI{(E)(; .

fori =1,....n. In particular. notice by the well-definedness of xA5T"8A for each & € {1,....2)}
we have

ST () € RPREQ(E, X' )o s o

. ~k . Y . .
wherein ¥ is defined such that for each w € S and for each s € §

S, U{fi;} ifw=tu and there exists an F; € PO
for some i € {l,....k—=1,k+1,...,n},
<k :
Yo, = for some v* = (8- $m) € St such that s = S
for some j € {1,...m}, and
) b
< fise
Ry otherwise
and X' = X U {Y:.....Y,x} wherein Y, is of type v; of j = 1,...,[v*]. Thercfore i
Ea Fasy 1 vk J J ) s 11 tor

t=1,...,n we can show that
ASTRAL: < ASTRAL, [ 4 ; O v
B, =< MRS TR (6L), 4, 0> € PREQ(Y, Xy
then by the well-definedness of CP** we will have

a; = (CPR(‘I);') € [)I{(.\;)t ut, vt

as required.
First, notice that by the definition of ¢ and 5 that ®; is standard. Therefore to complete our

well-definedness argument it sufficies to show that
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(1)
(Vie{l,...,n}) ¢ InTermsOf($;, i F)

wherein

|L’

IL"

U
and

(2)
(Vie{l,...,n}) i)]l=(u w Oyl DA (0 = B ).

The fact that (1) holds follows from the hypothesis that
! é InTermsOf( < @1, ..., 0, >, 1, {[1, ey F,,})

The fa(t that (2) holds follows from the fact that «(i) = i for i = 1,...,n and the fact that
(tu, = n(i) for ¢ = 1,..., n by definition.

Compiling Full ASTRAL Specifications. As promised to complete our compilation process
we now show how the compilation of full ASTRAL specifications can be achived using the
compiler that maps type three ASTRAL specifications into PREQ. In particular, the compiler
definition is based on an iterative process that reduces the complexity of the full ASTRAL
specification until it involves only one type two ASTRAL specification that can then be compiled

directly into PREQ using \ASTRALs,

Definition 91. For cach u € S, for each » € 57 and for each
¢ =< ‘¢,¢’1,. CIERY lfbmv(p’h‘ '-1¢n >

for some

) € ASVFR:\LQ(E, {FI-, LS ‘an—n}al)u,y_

for some u € 5™ and for some v € S*, such that F; is of type (v, v") for some v € §° and for

some ' € ST fori=1,....m+n > 1; for some
?f/’i & ;\STR:\ Lg ‘E, {Fu Y Fi——la E+1 $oc ey Fm}a&)rﬂ,g'
for i = 1,...,m; and for some
Oi € :\S,[‘RJ\LI(,_\;,~ {Fm+1~ T Fi—h Fi+b Ty Fn+m}v ;X.:)z;',g*
for i = m -+ 1,....m + n such that

IIlTCI’HISOf(< 1,!«’1. PP l’./i'm, (r")la cey P 2T, {ﬁjla sy Fm+n})

ASY

for i =1,...,m 4+ n we define

CAITRAL - ASTRAL(E, Xuw — PREQ(E, X,

bo
[
(1]



(ambiguously denoted C*3THALY by induction on the value m € N,

Basis m = 0. Notice in this case that
¢ ¢ ASTRAL(Y, X)
and therefore we define CASTRAL by
CASTRAL () = \ASTRALa ().

Well-Definedness. This follows immediately by the well-definedness of \ASTRAL,
Induction m = & + 1 for some fixed & € N. In this case we define CASTRAL o

STR: | ! ; A ASTRAL? !
(C,\sm.\L(< e Pk Ofe e e Oy >) = .\'\bm“l(h’f’)

wherein
S = {('Yl‘, ey C\l’k+”+1}

such that for ¢ = 1,..., &k + 1 we have
oy = COM(CMTRA (g g, Wi gt Vg1 @y e B >));
and for it =k +2,....k+n+ 1 we have
o CPR( ASTRAL () \ASTRALL (5 ) sy
vherein ¢ : {1,...,n + m} ~ {l,....n} is defined by
(Vje{l,...,n+m}) (j)=jj~-m
and n: {l,...,n+m} — §7 x §* is defined by
(Vje{l,....n+m}) n(y)=(tu, ).

Well-Definedness. The well-definedness in this case follows from the fact that by the Induction

Hypothesis we have
CASTRAL (o gy Bim s Wi ts - - Vb1 1y oo @0 >) € PREQ(Y, X )y,

fori = m+1,.. m A+ n,and a similar argument to the well-definedness of yASTRALs 51 s

therefore left to the reader.

6.4 The Semantics of ASTRAL

We are now in a position to define the denotational semantics of ASTRAL specifications using
PREQ. Notice that because ASTRAL has no independent semantics we cannot verify semanti-
cally the correctness of the compiler CAST™ on which the semantics of ASTRAL relies as there
is nothing to prove. Rather, we simply observe that this is by definition our intended semantics
CASTRAL

and that it is well-defined as the compiler is well-defined
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Definition 92. Let (A be any standard S-sorted Y-algebra. We define the S* < (95— 5)*-indexed

family of maps

[La =< LI5S s ASTRAL(Y, X)uy — [~ A [u e 5% e 5F >

wherein for cach v € S and for cach v € St

[]a"  ASTRAL(E, X)uy — (A" — AY

i = 2

(ambiguously denoted [.],4) is defined for each ® € ASTRAL(E, X)), , as follows:

(Va € A (Vi eT) [®lala)(t) = [CETE(0)] (1 a).

This definition of the semantics of ASTRAL specifications completes the abstract formulation
of our specification language for STs. In the following section we discuss the construction of a

concrete syntax for an implementation of ASTRAL and present several example programmes.

6.5 Implementing ASTRAL

6.5.1 Introduction

As we have discussed in previous chapters, the development of the abstract syntax of ASTRAL
has to a large extent been influenced by the underlying theoretical issues that we wished to

address:

(1) Using primitive recursive functions (represented equationally) as a specification methodol-

ogy.

(2) The reconciliation of a Cartesian form semantics with the need for more natural applicative

form specifications.

With these aims now achieved, in this section we turn our attention to some of the practical
issues that arise in the use of the abstract syntax and semantics of ASTRAL as a mathematically
well-founded basis for a high-level specification and programming language. In particular, we
present several examples of ASTRAL specification using a prototype BN

In the following section we begin by using ASTRAL to specify the stream processing prim-
itives that we identified in our literature survey in Chapter 3, including a discussion of the
computability theoretic issues that this raises. In particular, we will show that while ASTRAL
relies on primitive recursive functions for the formalization of its semantics, from a practical per-
spective it is still possible to specify systems that require least number search (see Section 4.4)
by simulating their behaviour. In more detail, any actual implementation will have finite con-
straints placed on the amount of memory that is available. Therefore, while some specifications
may at the abstract level use least number search, when an actual programme representing such
a specification is implemented this use of least number search can be effectively simulated by
bounded least number search that is a computationally conservative expansion of the primitive
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recursive functions. We explain this idea more fully in the sequel.

After the stream processing primitives we specify the RS-Flip-Flop (see Section 3.8.1) that
we also use as a case study in the following chapter. However, we begin this chapter by moti-
vating the prototype ASTRAL syntax. We do this by summarizing the underlying requircments
that have shaped its development, and presenting the basic programming primtitives and their

Syntactic structure.

6.5.2 Developing an ASTRAL Implementation

From the practical perspective their are several requirements that we wish to address in the

design of an implementation of ASTRAL:

(1) As far as possible ASTRAL should provide a general purpose programming methodology
with a syntax that is in keeping with the style of modern languages such as C, PASCAL
and C++. In particular, we require an implementation of ASTRAL to incorporate the

following:

(A) ASTRAL syntax will include features for the specification of hardware as stream
transformers.

(B) ASTRAL will provide support for the definition of user-defined data-types and will
allow the definition and use of library function and project files to support software
re-use and modular programming techniques.

Indeed, as a specific example, ASTRAL will provide library functions to sup-
port the use of the stream processing primitives and constructs that we identified in
our literature survey in Chapter 3. In principle, this will enable specifications and
implementations written in existing stream processing languages to be compiled into
ASTRAL, and hence to be formally verified.

(2) While the abstract syntax of ASTRAL is declarative in style the implementation of AS-
TRAL will incorporate features from imperative languages to aid in the design of certain
systems and algorithms where an imperative approach is more natural (compare with
Section 3.8.4). For example, ASTRAL will incorporate iteration in the form of ‘for’ and

‘while” loops (see Section 6.7).

(3) ASTRAL will provide strong support for the animation of specifications by efficient com-
pilation into a suitable existing high-level language. In addition to the usefulness of this
feature with respect to hardware verification — as animation is often helpful to establish
what it is we wish to prove about a piece of hardware - efficient compilation of ASTRAL
code is also required to make ASTRAL a viable general purpose programming language

as per Requirement (1).

(4) The ASTRAL language will be incorporated into an ASTRAL environment to provide
support for the formal verification of systems via their compilation into term re-writing

systems (see Section 5.4).
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In addition to the practical problems that the development of such an implementation
of ASTRAL will present, many of the issues that arise themselves create further theoretical
problems that must be overcome. This is particularly the case with respect to incorporating user-
defined data types and parameterization issues that arises out of the specification of families of
hardware. Indeed, the development of a full implementation of ASTRAL goes beyond the scope
of this thesis, although it has been the subject of collaborative work between the author and M N
Summerfield (see Summerfield [1994]). However, at the time of writing this thesis, research into
these practical issues is only at a stage where a prototype BNT' for ASTRAL has been developed.
Therefore, rather than present this BNI' formally, as there is a strong similarity between the
implementation of ASTRAL and abstract ASTRAL in Section 6.6 we prefer to: (1) briefly discuss
the general structure of ASTRAL; and (2) in Section 6.7 demonstrate ASTRAL’s effectiveness as
a specification language using some of the stream processing primitives we identified in Chapter 3

and the RS-Flip-Flop as examples.

6.6 The General Structure of ASTRAL Programmes

Our implementation of ASTRAL is based directly on full abstract ASTRAL specifications.
Hence, ASTRAL is declarative wherein each programme is essentially a collection of type one
and type two ASTRAL specifications. However, as our implementation is intended to be a
general purpose high-level programming language, in addition ASTRAL programmes can also
include: declarations of non-STs; and user-defined data types and user-defined constants; and
‘abbreviations’ to reduce the size and syntactic complexity of programmes.

To provide the reader with an overall perspective of the structure of our implementation we
now briefly discuss some of ASTRAL’s key features. Indeed, we re-iterate many of these points

in more detail in the following section with the aid of our examples.

(1) Signatures, Variables and Pre-Defined Data Types. It is not necessary to make an
explicit definition of the signature and variables required to make definitions in the AS-
TRAL implementation. Rather, this information is derived implicitly from each individual
ST and function definition, although the user may explicitly define additional constants.
Furthermore, reflecting the emphasis we place on the specification of hardware, the stan-
dard constants and operations associated with the following pre-defined data types are
always available to the user without the need for their explicit inclusion: bit, byte, bool,
char, nat and int. In addition, for each of these data type (and for each user-defined
data type - see below), the associated array type, set type, stream type, strcam of array
type, stream of set type and the data type extended with the undefined element u are
also available to the user without their explicit definition. For example: bitArray, bitSet,
bitStream, bitArrayStream, u_bitArray, u.bitSet, u_bitStream and u_bitArrayStream are al-
ways available to the user. Notice, in particular that the real numbers are not supported
as a pre-defined data type in ASTRAL, although they will be supported via a pre-defined
library. This distinction is made for technical reasons concerning the formal verification
of ASTRAL programmes as the real numbers are not finitely generatable (sec Chapter 7).
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(2) Definitions. There are six basic types of definition that may be made within each AS-

TRAL programme: two forms of AFST definition; function definitions; user-defined data
types; user-defined constants; and abbreviations. We discuss cach of these definitions in

more detail.

(A) Evaluated AFST Definitions. These definitions have the following basic structure:

AFST name(var_1 : d_type_1,...,var-n : d-type.n ) r_type_1,... ,r_type_m (t)

definition_body.

Evaluated AFST definitions are the the concrete representation of a type one ASTRAL
specification (specifically indicated by the token ‘(t)’) and hence AFST_name can only be
used in the definition body in evaluated form. (The structure of the body of AFST and
function definitions is discussed below.) Sort names in the range of an AFST definition

must be stream sorts.

(B) Un-Evaluated AFST Definitions. These definitions have the following basic struc-

ture:

AFST name(var_l : d-type_1,...,var-n : d_-type_n ) r_type_1,... ,r_type_m

definition_body.

Un-evaluated AFST definitions are the concrete representation of type two ASTRAL spec-
ification and hence AFST_name cannot be used in the function body. Again, sort names
in the range of an AF'ST definition must be stream sorts.

(C) Function Definitions. These definitions have the following basic structure:

function_name(var_1 : d_type_I,...,var_n : d_type_n ) r_type_1,... ,r_type.m

definition_body.

This syntax is the concrete representation of a RPREQ specification and hence the func-
tion may also have stream sorts in the domain and range if the user wishes. Indeed, notice
that as far as the user is concerned the only syntactic distiction between un-evaluated
AFST and function definitions is the range type of the defined function.

(D) User-Defined Type Definitions. User defined data types come in three basic
forms: restrictions of pre-defined types, compound types and type unions:

(a) Type Restriction Definitions. These definitions must conform to one of the three

following forms:
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type type_name isa pre-defined_type-name .
type type_name isa pre-defined_type_name ( constant_value to constant_value ).

type type_name isa pre-defined_array-type_name [ constant_value ].

Examples:

type totals isa natArray .

type register isa nat ( 0 to 32 ) .

"
.

type lowercasechar isa char ( "a” to 727 ) .
type smallintarray isa intArray [ 5] .

(b) Compound Type Definitions. These definitions have the following form:

type type_name compsises
component_type_list.

wherein a componeni_type_list is comprised of any one of the three basic type definitions
except that the keyword type is omitted and a variable name replaces the user-defined type

name. Example:

type employcetype comprises
Name isa chardArray [ 50 ].
Number isa nat ( | to 100 ).
PartTime isa u_bool.

Thus employeetype is a compound type with three fields called Name, Number and Part-
Time respectively. In particular, if as part of an AFST header definition we were to define
the variable ‘ Employee : employeetype’ as an input then the values of the components are
accessed as follows: Employee. Name, Employee. Number and Employee. Part Time respec-

tively.

(c) Union Type Definitions. These definitions have the following form:
typeunion type_name isa type_name_list.

Example:

typeunion intchar isa int, char.

(D) User-Defined Constants Definitions. User-defined constants may be declared
over both pre-defined and user-defined data types. These definitions have the following

basic structure:
const type const_name is const_val list .

211



Examples: (using the definitions of the user-defined types above)

const nat MAN_STRING_LEN s 50 .
const smallintarray ZEROSMALLINT_ARRAY is 0, 0, 0, 0, 0.

const employeetype NULL_EMPLOYEE is "7, 0, u .

(E) Abbreviation Definitions. Practical experience with the specification of hardware
has shown that there is a need for a mechanism for the definition of tokens that can
be used as abbreviations for complex expressions that occur frequently. However, the
specific mechanism in which this feature will be included into ASTRAL is at present
under-developed, although we do include an simple example in the following section of

how we envisage abbreviations will be used.

(3) AFST and Function Body Definitions. There are four basic types of compound
expressions that can be used in the body of AFST and function definitions: case state-
ments, ifmatch statement, for ... statements and for ... while ... statements. These are

explained in the following section using our examples.

There are several further features of ASTRAL that we have not presented and discussed above as
they are not easily motivated by a simple presentation of a BNF definition and some examples.
These include template functions that can be used to define families of functions, input and
output mechanisms, and libraries. Suminerfield [1994] gives a more detailed presentation of the
features of our prototype ASTRAL implementation and discusses these addition features.

6.7 Example ASTRAL Specifications

6.7.1 Existing Stream Processing Primitives

We begin our example ASTRAL specifications by representing the various classes of stream
processing primitives we identified in our literature survey in Chapter 3. Where appropriate we
also include the corresponding abstract ASTRAL definition of a primitive. However, we will
not formally define a compiler that generates abstract ASTRAL definitions from an ASTRAL
programme (implementation) as, while this is essentially straightforward, their are still several
subtle practical issues that must be resolved that go beyond the scope of this thesis. We mention
each of this points in the sequel where appropriate.

In particular, one of the points that we aim to emphasise during our discussions, is that,
while ASTRAL is restricted to the specification of primitive recursive functions, in practice
ASTRAL is not limited in the sense of the class of actual systems, either hardware or software,

that we can specify.

Functional Stream Processing Primitives. The reader should refer back to Section 3.4.1
for a definition of the following primitives. Also, note that in the following definitions we will use
the word ‘sort’ to indicate any valid basic type from our underlying signature ¥. Furthermore, we

, we

assume that any operations that are not explicitly defined are part of the underlying signature.
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In particular, we always assume that equality denoted eq is always available on any basic {non-

stream) type.

(1) Stream Construction Operator. This can be defined in ASTRAL as follows:

cons(a : sort, s : sortStream) sortStream (t)

aift =0
s(’t).

Discussion. First, notice that as we mentioned in the previous section, in the implemen-
tation of ASTRAL there is no explicit information concerning the underlying signature
and (local) variable set. Rather, this information is defined implicitly by the header asso-
ciated with each function definition. In particular, in this case we have one function cons
with type (sort sort, sort) and our variable set is comprised of two variables a and s of
type sort and sort respectively.

Secondly, notice that the typing information at the end of the function header is post-
fixed with ‘(t)’; that is, the functions range is post-fixed with ‘(¢)’. This is to indicate
that while in this case the function cons returns a stream we are actually specifying the
function at some time ¢; that is, we are specifying cons in evaluated form. Indeced, this
concrete syntax corresponds to an abstract definition of a type one ASTRAL specification.
The use of ‘() also implicitly indicates that that our (local) variable set is extended with
the symbol t of type nat.

In general a function definition body (that follows the ‘=’) is comprised of a group of
expressions structured using various constructs and is terminated by a ‘.". In the particular
instance of cons we have a two-way case statement (if ... then ... else clause), although
multi-way case statements are also permitted. (The symbol ‘;” can be used as a shorthand
for ‘else’.)

The symbol *” is also a shorthand that may be pre- and post-fixed to any numerical
expression to indicate the predecessor and successor respectively of the expressions value.
For example, 't is shorthand for pred(t), t’ is shorthand for suee(t), t” is shorthand for
succ(suce(t)) and so forth.

An Equivalent Abstract ASTRAL Specification. This concrete representation of
cons corresponds to the following abstract ASTRAL definition: let X 2 {a,s,t} such that
a, s and ¢ are of type r, r and n respectively for some r € (§ — 5). We define

® =< ,¢> € ASTRAL(Z, X),,,

wherein

v Y Fla,s) = cons(a, s)

and
é def cons(a, s)(t) = deq(equ(t,0), a, s(pred(t))).
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Notice in particular that dec (definition-by-cases) has allowed us to eliminate the cases
statement and hence to convert a limited form of conditional equations to a ‘pure’ equa-
tional representation (see Section :1.2.3). Also, notice that as we indicated in Section 6.2.2
the role of the type two ASTRAL specification in this definition is simply to indicate that
the functional cons is to be used as the semantics of the whole specification.

(2) Concatenation. This can be defined in ASTRAL as follows:
typeunion sortGenStream isa sortArray, sortStream.

concat(sl : sortGenStream, s2 : sortGenStream) sortGenStream (t)

sl(t) if size(sl) < &,
s2(t - size(sl)).

size(s : sortGenStrcam) nat

arraysize(s) if isa_array(s);
MAX_NAT.

Discussion. First, notice that because the stream concatenation operator relics on the
more general notion of a stream (see Chapter 2), in order to simulate the operation of
concat in ASTRAL we have defined a user-defined type sortGenStream that is the union
of the array and stream type for the type sort. This is achieved by the definition

typeunion sortGenStream isa sortArray, sortStream.

(wherein ‘" is an abbreviation for the word ‘and’) that allows us to explicitly describe

information about the underlying signature over which the function definitions that we
make are defined. However, the order of definitions in ASTRAL is unimportant and hence
this declaration could have appeared anywhere in the specification.

One difficulty that arises from the use of type unions for this purpose, is that we
now require the operation isa_array that essentially allows us access to information about
an expressions type; that is, that allows us to tell which basic type an expression has.
While the use of such operations can be eliminated during the compilation into abstract
ASTRAL using a similar coding technique to that discussed in Section 4.5.4 a detailed
discussion of this process goes beyond the scope of this thesis.

Also, notice that the implementation of ASTRAL allows non-STs to be defined; that is,
specifically in this case the function size. In practice, this is not a problem as the function
size is (R)PREQ definable and hence can be considered to be part of the underlying
signature. Again the details of compiling ASTRAL specifications that incorporate non-STs
goes beyond the scope of this thesis (although, Chapter 7 and in particular the definition
of the function AV (Definition 109) goes some way to showing how this process can be

formalized).



(3) First Element Selection. This can be defined in ASTRAL as follows:

hd(s : sortStream) sort

s(0).

Discussion. As with the function size in the previous definition, the function Ad is not
strictly a stream transformer and hence cannot be defined in abstract ASTRAL. However,
again in practice this is not a problem as hd is PREQ definable.

(4) First Element Elimination. This can be defined in ASTRAL as follows:

ti(s : sortStream) sortStream (t)

s(t’).

An Equivalent Abstract ASTRAL Specification. Let X D {s} such that s is of type

r for some r € (5 - 5). We define

® =< 9,6 > € ASTRAL(E, X),,

wherein
v F(s) = ti(s)

and
o tail(s) = s(suce(t)).

(5) Last Element Selection. This can be defined in ASTRAL as follows:

typeunion sortGenStream isa sortArray, sortStream.

last(s : sortGenStream) u_sort

u if isa_stream(s);

s(size(s)).

Discussion. As with the operation concat the definition of last in ASTRAL requires the
more general notion of a stream. Also, notice that to mirror the conceptual relationship
between a finite sequence (a one-dimensional array) and a stream (an infinite sequence)
that array evaluation is also represented as ‘a(t)’ for some array a. Finally, notice that
ASTRAL has an overloaded constant u associated with each type to represent an undefined
value. This is why the range of the function last is u_sort wherein u_sort 5 sort is sort

extended with the additional element u.

(7) Filtering. This can be defined in ASTRAL as follows:
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filt(S : sortSet, s : sortStrcam) u_sortStream (t)

s(e) for e =t to MANX_NAT
while not s(e) in S;

Discussion. First, and most importantly, notice that the mathematical definition of filt
as presented in Section 3.7.2 implicitly requires the use of least number search. Indeed,
it is a feature of unrestricted second-order equations that it is straightforward to implic-
itly incorporate least number search and hence to specify partial functions. Therefore as
ASTRAL’s semantics is derived using primitive recursive functions strictly speaking we
cannot define filt using abstract ASTRAL.

However, by considering the fact that we are dealing with an implementation of AS-
TRAL and that in turn any functional language must be implemented on a machine with
finite constraints on memory it is possible in practice to define a simulation of the filtering
operation. Morcover, we argue that this simulation is essentially indistinguishable from
any implementation of a functional language representation of filt.

In more detail, we can specify a simulation of filt using the for ... while ... con-
struct that is a feature of the ASTRAL implementation. The intended semantics of the

filt simulation using the for ... while ... construct is as follows:

s(e) wherein e is the least value from the set

fule(S,s)(t) = {t,..., MAX_NAT} such that s{e) € S, and
U if no such e exists.
Essentially, the for ... while ... construct is a concrete representation of bounded least

number search that is a computationally conservative expansion of the primitive recursive
functions (see for example Cutland [1980] and also Section 4.4). Indeed, this simulation
of filt (that is primitive recursive) can be represented in the abstract syntax of ASTRAL
as follows:

An Equivalent Abstract ASTRAL Specification. Let MAX_NAT € ¥, , and X D
{S,s,t,z} such that S, s, t, z are of type ©(r), r, n and n respectively for some r (S—-9).
We define

d =< P, ¢y, 02 > € ASTRAL(E, X, .,

wherein

v = F(S,s) = filt(S,s),
b RIS, s)(1) = Lst(t, S, ) MAX_NAT)

and
def

&y =
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Ist(z,9,s)(0) = de( in(s(z),S),zr,u)
Ist(z,S,8)(t+1) = de( and(in(s(t+az+1),5), eqr(Ist(z, 5, 8)(1).u)),
t+ -+ 1,
lst(z,S,s)(t)
)

Notice that the function Ilst simulates the bounded least number search that we require,
although in this particular example at the abstract syntax level it does this inefficiently. A
discussion of compilation techniques using more efficient methods again goes beyond the

scope of this thesis.

(8) Pointwise Change. This can be defined in ASTRAL as follows:

pe(s : sortStream, n : nat, r @ type) typeStream (t)

s(t)if t <> n;
I.

Relational Stream Processing Primitives. The definition of all the relation stream pro-
cessing primitives identified in Section 3.7.3 are straightforward and are left to the reader.

LUCID Primitives. We now specify some of the LUCID stream processing primitives
we identified in Section 3.8.4. In particular, we specify the operators whenever, asa and upon

and leave the operators first, next, foy and attime to the reader.

(5) Whenever. This can be defined in ASTRAL as follows:

whenever(s : sortStream, b : boolStream) u_sortStream (1)

s(t) if b(t) = true;
whenever(s,b)(n) for n = t’ to MAXNAT
while not b(n);

Discussion. As with the functional primitive fill the operator whenever implicitly requires

the use of least number search and therefore the above definition is a primitive recursive

simulation of whenever. However, as with filt we argue that this simulation of whenever is

indistinguishable from
We leave the definition of the abstract ASTRAL specification of whenever to the

any implementation of the partial version of whenever.

reader.

(6) As Soon As. This can be defined in ASTRAL as follows:

asa(s : sortStream, b : boolStream) u_sortStream (t)
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s(n) for n = 0 to MAX_NAT
while not b(n);

u.

Discussion. Agian we are restricted to defining a primitive recursive approximation of
asa. The definition of the abstract ASTRAL specification of asais again left to the reader.

(7) Upon. This can be defined in ASTRAL as follows:

upon(s : sortStream, b : boolStream) sortStream (t)

s{0) ifmatch (-,_,0);
s(numofts(b)(t)-1) ifmatch (_,(0)true,<>0);
s(numofts(b)(t)).

numofts(b : boolStream) natStream (t)

I ifmatch ((0)true,0);

0 ifmatch ((0)false,0);

1 + numofts(b)(’t) ifmatch ((t)true,<>0);
numofts(b)(’t).

Discussion. The operator upon provides an example of the use of the ifmatch construct
in ASTRAL that allows case statements to be presented in a more concise format.

The ifmatch construct can be used in place of the keyword if in a cases statement,
and must be followed by a bracket-enclosed, comma separated list of the same length as
the number of arguments in the domain of the function in which the ifmatch statement
appears. For example, in the case of the definition of upon the list must be of length
three, and in the case of numofts the list must be of length two (as ¢ is considered to be
an input). In addition, each elemenent of the list must be a constant expression of the
same type as the corresponding co-ordinate of the domain, with the exception of stream
clements wherein if the expression is not a ‘don’t care’ then the expression must be of the
same type as the evaluated corresponding co-ordinate of the domain (see below).

Within an ifmatch statement the tokens ‘', “(.)" and ‘<>’ wherein ‘. denotes any
natural number expression, are used with the following meaning: the token ‘.’ may be read
as ‘don’t care’ and will match with any value of an appropriate type; the token ¢(.)” may
be pre-fixed to any expression wherein the corresponding domain co-ordinate from the
function that we are defining is a stream type; that is, this type of expression will match
if, and only if the expression before the token ‘()" matches the corresponding stream
co-ordinate evaluated at time ‘. — see below for an example; and the token ‘<>’ pre-fixed
before an expression can be read as ‘not a’ and will cause the statement to match at that
argument with any input that does not have that value.

Using the upon specification as our example the ifmatch statement above is equivalent

to the following alternative ASTRAL programme:
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upon(s : sortStream, b : boolStream) sortStream (t)

s(0) if = 0;
s(t) if t <> 0 and b(t) = true;
upon(s,b)(’t).

numofts(b : boolStream) natStream (t)

1if b(t) = true, t = 0;

0 if b(t) = false, t = 0;

1 + numofts(b)(’t) if b(t) = true, t <> U;
numofts(b)(’t).

An Equivalent Abstract ASTRAL Specification. Let X D {s,b,t} such that s, b
and t are of type r, b and n respectively for some 7 € (§ — §). We define

& =< 1,6 > € ASTRAL(Z, X), .,

wherein
v F(s,b) = upon(s,b)

and
def

b
upon(s,b)(0) = s(0)

upon(s, b)(¢+ 1) de. (b(Suce(t)), s(Suce(t)), upon(s, b)(t))

I

LUSTRE Primitives. These are very similar in form to the LUCID primitives and are again

left to the reader.
ESTEREL Primitives. These are omitted.

STREAM Primitives and Constructs. We define all the STREAM primitives with excep-
tion of &, *, selec, sequential composition, C, fork and perm that as before are straightforward
and left to the reader. However, notice with respect to the ‘feedback’ operator C'that ASTRAL
is restricted to primitive recursive feeedback. Also, for those primitives and constructs where
we do give an ASTRAL specification of a STREAM primitive we leave the construction of an
equivalent abstract ASTRAL specification to the reader.

(3) Distribution. This can be defined in ASTRAL as follows:

distr(b : boolStream, s : sortStream) sortStream sortStream (t)
& zl “leastirue(b,t)”.
& 12 "leastfalse(b,t)”.

(x1,12).
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leasttrue(b : boolStream, n : nat) nat

¢ fore = nto MAX_NAT
while not b(e);
u.

leastfalse(b : boolStream, n : nat) nat

€ for e = nto MAX_NAT
while b(e);

Discussion. Notice that as with some previous primitives we are restricted to defining a

primitive recursive approximation of distr.
The definition of distr provides an example of a vector-valued function definition and

also the use of (local) abbreviations. In particular, in ASTRAL the symbol ‘& (not to be
confused with the STREAM primitive ‘&”) followed by two expressions, defines the first
expression to be an abbreviation for the second expression. Indeed, the second expression
can be enclosed within quotes to avoid any ambiquity during parsing. Also, unless placed
between a function header and the following ‘=", as in the above definition, abbreviations
have global scope. Essentially, if defined correctly then an abbreviation may be used as a
variable of an appropriate type.

In addition, we also envisage that a full implementation of ASTRAL will allow more
complicated abbreviations including ‘indexed’ familes of abbreviations and nested abbre-

viations.

(a) Parallel Composition. This can be defined in ASTRAL as follows:

F(s! : sortiStream, s2 : sort2Stream) sort3Stream sort{Stream =

(G(s1),H(s2))

G(s : sortlStream) sort3Stream(t) =

H(s : sort2Strcam) sort{Stream(t) =

Discussion. In the above definition ‘... is used in the definitions of the functions G and
H to represent any legal ASTRAL expressions. Iurthermore, the types of the functions
in the specification above are simply examples and could be of any type. Essentially,
the use of what amounts to type-two ASTRAL specifications (function F in the above
example) allows the possibility of parallel execution as the evaluation of ¢ and M may
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be done independently. However, the exploitation of such parallelism will depend on the

underlying architecture on which ASTRAL is implemented.

The definition of selected primitives for the STREAM languages concludes our simple AS-
TRAL specification examples. In the following section we define the RS-Flip-Flop (see Sec-

tion 3.8.1) that we will use as case study in Chapter 8.

6.7.2 Specifying the RS-Flip-Flop in ASTRAL

We now present a more complex example by defining the specification and an implementation
of our running example the RS-Flip-Flop as ASTRAL programimes.

RSFlipFlopSpec(sl,s2 : boolStream) boolStream (t)
true if t = 0;
false if t > 0, si(t) = true, s2(t) = false;
true if t > 0, si(t) = false, s2(t) = true;
RSFlipFlopSpec(si,s1)(t).

and

RSFlipFlopImp(s1,s2 : boolStream) boolStream boolStream
OutSch(FFlop(true,false, InpSch(si,s2))).

FFlop(b1,b2 : bool, s1,82 : boolStream) boolStream boolStream (t)
(b1,62) if t = 0;
(FFlopl(bl,b2,51,s2)(t) nor s2, sl nor Fflop2(b1,b2,51,52)(t)).

OutSch(s1,s2 : boolStream) boolStream (t)

sI(t *2).

InpSch(sl,s2 : boolStream) boolStream boolStream (t)

(sl(t div 2), s2(t div 2)).

Discussion. The ASTRAL programme to represent the implementation of the RS-FlipFlop
provides the first example of the implicit use of Cartesian composition. In particular, notice
that the function body of the definition of RSFlipFlopImp is essentially a composition of the
three applicative stream transformers: OutSch — representing an output scheduling function:
Fflop - represting the actual RS-FlipFlop device; and InpSch — representing an input scheduling
function. Therefore, as we can only specify the Cartesian forms of the ASTRAL representation
in PREQ the formulation of a PREQ specification of the entire RS-FlipFlop implementation
will require the use of the extended Cartesian composition compiler C (see Section 6.1.1).
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Chapter 7

Automated Verification

It is a great advantage of a system of philosophy to be substantially true.

.
George Santayana
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7.1 Introduction

Recall in Section 3.10.4 that the fourth part of our research agenda was concerned with the
investigation of automatic software tools for deciding the equality of two ASTRAL programmes
under initial algebra semantics. More specifically, we promised that using Theorem 11 of Chap-
ter 5 we can identify a syntactic sub-class of all decidable equational correctness statements
relating ASTRAL programmes that can be verified automatically using first-order equational
logic. In order to complete this task it is necessary for us to do the following:

1) Identifv a logical calculus that is sound with respect to the equality of ST's using initial alge-
y g g g
bra semantics. For this purpose we define the calculus EQWIL that formalizes equational
logic augmented with induction and case analysis as a proof system.

(2) Formulate an effective decision procedure for EQWIL that can be used as the basis of our
automated verification tools. For this purpose we define the related functions VER and
EVER both based on term re-writing techniques.

(3) Reduce deductions about Cartesian form (weak second-order) equational correctness state-
ments in weak second-order systems of equations to deductions about first-order equations
in first-order systems of equations so that we may apply first-order techniques. For this
purpose we define the function SubEvals that systematically eliminates occurrences of

stream variables and replaces them with first-order terms.

We now discuss and motivate each of these points in more detail.

7.1.1 Overview

In the literature software tools based on automated decision procedures are often synonymously
referred to as either proof assistants or proof tools without (as far as we are aware) any rigorous
definition of what these terms imply with respect to the software’s expected behaviour. From
the perspective of our research, in order to clarify the results that we present, we find it is useful
to begin this chapter by formalising these ideas. In particular, we find it useful to identify and
classify the properties of four types of abstract device suitable to verify the equality of two STs:

(A) A proof assistant: a device that implements a partial function that can perform deductions
in a formal calculus, but that may either fail to find a proof of a hypothesis or fail to

terminate even if a proof of the hypothesis exists.

(B) A total proof assistant: a device that implements a total function that can perform deduc-
tions in a formal calculus; that is, a device that may fail to find a proof of a hypothesis

even if a proof of the hypothesis exists, but always terminates.

(C) A proof tool: a device that implements a partial function that can perform deductions in a
formal calculus and that can find a proof of a hypothesis if and only if such a proof exists.
However, a proof tool may still fail to terminate if no proof of a hypothesis exists.
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(D) A total proof tool: a device that implements a tofal function that can perform deductions
in a formal calculus; that is, a proof tool that can find a proof of a hypothesis if and only

if such a proof exists and that always terminates.

We note at this point that it is implicit in the above definitions that both proof assistants and
proof tools must always be sound with respect to some intended semantics (the initial semantics
in the context of this chapter). However, even for total proof tools it should not be inferred from
these definitions that we assume that these devices implement a complete proof system — that is,
the non-existence of the proof of a hypothesis in the formal calculus that either a proof assistant
or proof tool implements does not, in general, imply that the hypothesis is false. Indeed, as
we mentioned in Section 3.10.4 unfortunately because of Godel’s incompleteness result and the
negative result to Hilbert’s tenth problem concerning the solution of Diophantine equations (see
Davis et al. [1976)), in general it is impossible to design a sound and complete, total proof tool
that will verify the equality of two primitive recursive functions under initial algebra semantics.
In particular, as we have already pointed out, in the context of SCAs, that are a proper sub-class
of the STs that are representable by ASTRAL programmes, this is because the solution to such a
problem is equivalent to deciding the membership of a non-recursive, co-recursively enumerable
set (see Thompson and Tucker [1994]).

Therefore, with respect to the use of EQWIL, that provides a powerful, but in general

incomplete proof system, in this chapter we shall prove the following:

(I) There exists a general purpose total proof assistant that can verify the equality of two

primitive recursive STs under initial algebra semantics.

(II) It is possible to identify non-trivial classes of correctness statements relating primitive
recursive STs under initial algebra semantics for which there exists a total proof tool.

In particular, we will show that the function VER has these two properties for first-order systems
of primitive recursive equations, and the function EVER has these two properties for systems
of weak second-order primitive recursive equations.

In more detail, we will show that the functions VER and EVER behave as total proof tools
in the context of first-order and weak second-order systems of primitive recursive equations
respectively. Moreover, we will also show (Theorems 15 and 17) that we can identify syntactically
four classes of correctness statements for which VER and EVER behave as total proof tools.

Informally, in the context of EVER (in increasing order of significance) these four classes
of correctness statements are characterized as follows: (in the case of VER it is the same four

classes of equations except restricted to strictly first-order equations)

(A) Ground terms equations.

(B) Equations whose variables either range over finite carriers or whose variables range over

stream carriers of the form [T' — A] wherein A is a finite carrier.

(C) Equations of the form
flz, by, . ta) =c¢
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wherein 2 € X, ¢ is some constant and the terms ¢; for i = 1,...,n € N contain variables
that either range over finite carriers or range over stream carriers of the form (T — Al

wherein A is a finite carrier.

(D) Equations of the form
fla by, ote) = file b, o)

for some f # f/ wherein 2 € X, and forz = 1,...,n € N and for j = I,....m &N
respectively the terms t; and t; contain variables that either range over finite carriers or
range over stream carriers of the form [T — A] wherein A is a finite carrier.

Of these four types of equations notice that Class (D) captures the class of correctness statements
that can be used to represent the equality of a very broad class of hardware devices when they
are expressed as CFSTs. This is our main result and we will return to this point in Section 7.5.

7.1.2 Reasoning about Weak Second-Order Systems

While Birkhoff’s Theorem cannot, in general, be applied to higher-order systems of equations
(see Meinke [1992b]), we now discuss how, in the context of weak second-order systems of equa-
tions, it is possible to reasoning about the initial truth of equational statements by systematically
eliminating occurences of the eval operator during a deduction.

First, we show that the provability of the initial truth of certain classes of first-order equa-
tional correctness statements, relative to primitive recursive systems of equations, is decidable
with respect to the calculus EQWIL (Theorem 15). We prove this using Birkhoff’s Theorem
and Theorem 11 by demonstrating that VER can simulate deductions in EQWIL, and observing
that EQWIL is sound with respect to the initial truth of first-order theories (Theorem 13).

Secondly, we show that EQWIL’s soundness is preserved with respect to the initial truth of
weak second-order systems of equations (Lemma 50).

Finally, we show that relative to systems of Cartesian form equations, deciding the initial
truth of an equational correctness statement e € EQ(Z, X)) using EQWIL can be reduced to
deciding the initial truth of an equation ¢’ = (t = t') € EQ(Z, X) wherein any stream variable
T € X, for some s € § that occurs in either term ¢ or term ¢’ must be part of a term of the form

= ev_al(r, z) for some r € T(X, X). In particular, we show that by replacing each occurrence
of  in e’ with a new variable symbol ¥ € X, we can derive a new strictly first-order equation e
such that the initial truth of ¢” implies the initial truth of e. Moreover, we show (Lemma 58)
that this proof method can be implemented by combining the function VER (Definition99) with
the function SubEvals (Definition 104) to give the function EVER (Definition 105). Therefore,
we show that it is possible to generalize Theorem 15 concerning first-order systems of equations
to Theorem 17 concerning weak second-order systems of equations. This process is summarized

In the following diagram:
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VER(R, t,1') = tt
3

- E SR -
EQWIL® + “T” = EVER(R, 7,7") = 1t
SubFvals
|

EQWILEF (r=1)
§
(Z,E)E=(r="1)

Figure 7.1: A Schematic Representation of our Proof Technique

=

Thus, we have a total proof tool (with respect to EQWIL) for reasoning about the correctness
of a broad and useful class of systems, that is based on strictly first-order term re-writing
techniques.

A more detailed overview of the rest of this chapter is as follows.

As the functions VER and EVER are based on term re-writing techniques we begin in
Sections 7.1.3 and 7.1.4 by discussing the relationship between equational logic, term re-writing
and truth in the initial model of a set of equations in more detail.

This discussion motivates the development of the calculus EQWIL in Section 7.2 that is
based on equational logic. In particular, in Section 7.2.2 we define the key idea involved in the
formal development of EQWIL; that is, the concept of a signature of constructors that can be
used to finitely generate all members of the carriers of certain initial algebras, and that enables
us to formalize the calculus EQWIL itself in Section 7.2.4.

While our main interest in this chapter is the study of the automated verification of STs, for
Benerality we find it useful to begin exploring the properties of the calculus EQWIL in the context
of strictly first-order systems of equations. In Section 7.3.1 we show that EQWIL is sound with
Trespect to truth in the initial models of sets of first-order equations. We also present some
limited completeness results. In Section 7.3.2 we begin to explore the automation of EQWIL
by defining the function VER that is suitable as the basis of both a general purpose total proof
assistant, and total proof tool in the context of the four classes of correctness statements we
discussed in the introduction. These results concerning VER are formalized in Section 7.3.2.

Using these general results as a basis, in Section 7.4 we focus our attention on the automation
of the calculus EQWIL in the context of the verification of STs. In Section 7.4.1 we first show
that EQWIL is sound with respect to the initial semantics of weak second-order systems of
equations. In Section 7.4.2 we discuss the limitations of VER with respect to stream algebras,
but show how it can be extended to give the function EVER that is more appropriate as the
basis of an automated theorem proving tool specifically for STs.

In Section 7.1.3 we complete the fourth part of our research agenda by showing how we may
use EVER to specify a function AV that, in the context of STs specified as ASTRAL programmes,
is both a general purpose total proof assistant, and a total proof tool in the context of the four

classes of correctness statement we have identified.
Finally, in Section 7.5 we discuss the implications of the theoretical results concerning the
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functions VER, EVER and AV in the context of SCAs (see Section 3.10) and in particular in the
context of certain classes of hardware devices. This discussion clarifies how our technical results
satisfy the claims we made in statements (A) and (B) in the introduction to this chapter.

7.1.3 Equational Logic, Term Re-Writing and Initial Truth

Recall our discussion and definitions from Chapter 2 concerning term re-writing and TRSs.

Equational Logic. Equational logic is the simplest and most fundamental fragment of
first-order logic. As pointed out in Meinke and Tucker [1992] the importance of equational logic
stems from the large number of interesting equational theories that naturally arise in mathe-
matics and computer science. Moreover, with particular reference to (automated) verification

equational logic is appealing for the following two reasons:

(1) The Correspondence Theorem shows that any deduction from an equational theory FE
using the four rules of equational logic: reflexivity, symmetry, transitivity and substitution
may also be performed using a TRS constructed {rom FE; that is, that equational logic
and term re-writing are equivalent in their proof-theoretic power. As a consequence the
implementation of equational logic may be achieved via the comparatively straightforward

implementation of a term re-writing engine.

(2) Birkhoff’s Soundness and Completeness Theorem for equational logic shows that we do
not need a more powerful logic to reason about first-order equational theories. This fact
follows as by the completeness of the equational calculus any equation that is provable by
a more powerful logic must also be provable by purely equational means.

As we will show, the combination of these two facts with some of the previous results of this
thesis provides the basis for a straightforward verification methodology for STs.

Indeed, we begin by outlining a ‘naive’ automated verification technique based on these ideas,
and by highlighting its flaw motivate the construction of the calculus EQWIL in Section 7.2.

Using Term Re-Writing to Verify STs. We have shown that a very broad class of
STs and SPSs can be specified using essentially nothing more than first-order equations. In par-
ticular, we have show that we can programme a ST in ASTRAL and can convert this programme
into a complete, essentially first-order TRS. Therefore, given two ASTRAL programmes with
one representing a ST specification and the other representing a corresponding implementation
(possibly a SPS), if we can construct an equational correctness statement that relates these two
programmes then in order to automatically verify this correctness statement it appears at first

that we need only do the following:

(A) Initially we must implement the abstract compiler definitions that we have presented in
the previous chapters thereby providing a mechanism for the automatic generation of a
complete TRS from an ASTRAL programme. Indeed, in the sequel we will show formally
that we may combine two ASTRAL programmes to produce a single TRS that captures
the intended semantics of the STs represented by cach programme.
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(B) Having generated the required TRS we can use these re-write rules to reduce both sides
of the correctness statement to normal forms. (Notice that by virtue of the fact that the
TRS is complete these normal forms are guaranteed to exist and must be unique.)

(C) Finally, on comparing the normal forms of these terms (that represent symbolically the
results of the computation performed by the two STs), if the normal forms are the same

(syntactically identical) then we may conclude that the implementation is correct.

Initial Truth. While the verification method outlined above is both sound and complete, its
completeness is with respect to truth in all models, that does not in general coincide with truth
in the initial model. In more detail, as we have already mentioned in Section 3.10.4 the difficulty
that we face with this method is that typically we require the verification of the correctness of any
Implementation of an ST to be in terms of its initial algebra semantics. Theorem 11 show us that
the verification of an equational correctness statement that relates two ASTRAL programmes
is decidable by virtue of the generation of a complete TRS. However, this decidability is with
respect to the loose algebraic semantics (see Goguen [1988] and Goguen [1990]) that does not in
general imply decidability with respect to the truth of the correctness statement in the initial
model; that is, its initial truth. More specifically, validity (truth in all models) and initial truth
coincide over closed equations (see Goguen and Meseguer [1982], MacQueen and Sanella [1985]
and Heering [1986]), but if we consider open terms then in general the initial semantics of an
equational theory and its loose semantics only coincide if the specification is w-complete.
Unfortunately, the property of w-completeness is only enjoyed by a small sub-set of equational
theories (see Heering [1986]). In particular, primitive recursive equational specifications are not
in general w-complete, but the equational correctness statements relating ASTRAL programmes
do in general require the use of open terms. As a consequence, while the verification method for
STs that we have outlined is certainly useful, in general it is only appropriate with respect to

loose and not initial semantics.
These limitations of equational logic are well-known, and therefore in order to address this

problem researchers have considered the following question: is it possible to enrich equational
logic with further proof rules to capture the initial semantics of an equational theory? In the
following section we discuss two solutions to this problem, and later show how we may adapt
one method as the basis of the software tools for the verification of STs that we require.

7.1.4 Equational Logic and Induction

While it is possible to enhance equational logic by the addition of further proof rules to give a
sound and complete calculus that captures the initial semantics of an equational theory, unfortu-
nately in general this requires the use of an infinitry deduction rule: the w-rule (see for example
Meinke and Tucker [1992]). We use the word ‘unfortunately’ again as the w-rule requires an
infinite number of premises to be discharged during a deduction and therefore is not suitable for
implementation.

However, one technique that can be used to (partially) address this problemn is to augment
equational logic with induction. While this does not have the power of the w-rule in the sense
that it will allow us to capture the initial semantics of an arbitrary equational theory with a
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sound and complete calculus, we can make use of the fact that equational logic plus induction is
sound with respect to the initial semantics (see Goguen [1988] and Goguen [1990]). Moreover,
what we will demonstrate in this chapter is that despite the fact that equational logic and in-
duction cannot in general provide a complete deduction system with respect to initial semantics;
we can identify a syntactic class of correctness statements relating ASTRAL programmes and
their implementations for which equational logic and induction is a decidable calculus and hence

provides the basis for a total proof tool.

7.2  Formalizing Primitive Recursive Arithmetic

In this section we present the underlying technical results of this chapter concerning a formal-
ization of primitive recursive arithmetic over arbitrary first-order equations.

7.2.1 General Preliminaries

We begin the section with some basic definitions and some results from the literature that we will
require. To conserve space where either a result is straightforward or the result is well-known
we will not give a proof, but will include a reference from which the result is taken or in which

the interested reader can find a suitable proof.

Notation 4. We make the usual assumption that ¥, ¥’ and ¥“ are any non-void S-sorted,
S'-sorted and $"”-sorted signatures respectively and that X, X’ and X” are any S-indexed §'-
indexed and S”-indexed collection of variable symbols respectively such that & and X, ¥ and
X" and ©” and X" are pair-wise disjoint. In addition, the symbols A, A’ and A” always denote
any S-sorted Y-algebra, any S’-sorted Y'-algebra and any 5”-sorted ¥'-algebra respectively.

Recall the definition of terms from Section 2.3.9. In the sequel in order to make our definitions
effective we will need to place an ordering on the sub-terms of a term that share a particular
Property of interest. More specifically, we will need to identify the left-most sub-term of a term
that has some property of interest. This idea is made more rigorous in the following definition.

Definition 93. Let P C T(Z,X) and let 7 € T(X, X). We define the left-most sub-term of +
satisfying P by induction on on the structural complexity of T as follows:

If either 7 = c€ Ey,or 7 =1 € X,, for some s € § then if P(r) then: 7 is the left-most
sub-term of 7 satisfying P; otherwise 7 has no left-most sub-term satisfying P.

Ifr=0(r,...,7y), for some o € Ty, for some w € 5% and for some s € S; and for some
% €T(,X),, fori=1,...,|w| then: if P(r) then 7 is the left-most sub-term of r satisfying P;
otherwise if P(r;) for some t € {1,..., |w]} then the left-most sub-term of satisfying P is the
Smallest value i € {1,...,|w|} such that P(7;); otherwise 7 has no left-most sub-term satisfying
P,

For example, if 7 = f(0,z,1,y) then z Is the left most variable of .

Lemma 34. (see Meinke and Tucker [1992]).)  Let E C EQ(Y, X) be any system of
€quations. If e € FQ(L) then

Ay, E)E e <= [, E) e

229



Lemma 35. Let E C EQ(S, X) be any system of equations and let R be any complete TRS
equivalent to E. If e = (7 = ') € EQE, X) then

(NF(7) = NFR(1)) <= Alg(S,E) = e.
In particular, notice that by Lemma 34 if ¢ € EQ(Y) then

(NFR(r) = NFR(r")) = (3, E) = e.

Lemma 36. (The Constants Lemma - Goguen [1987].) Let E C EQ(E, X) and let x
be some constant of sort s such that x ¢ L. Also let ¥ = 21U {x} and let E' C EQ(Y', X)) be
defined such that E' = E. If (1 =T1') € EQ(Y', X)), for some ' € § then

E'F(r=1) e EF(rlx/z] = '[x/7])

wherein z € X, is some variable that does not occur in T or T'.

Lemma 37. (Bergstra and Tucker [1987].) Let & C ¥/, let £ C EQ(L,X) and E' C
EQ(Y,X) be defined such that E & E'. IfA = IL,E), A € Alg=, E), Ally 2 A and
(%, EY|e = (S, E) then A' = I(X', E).

7.2.2 Signatures of Constructors

We introduce the idea of a signature that may be used to finitely generate (inductively generate)
a representative of each member of the carrier of an algebra. The reader can consult Meinke
and Tucker [1992) and Goguen [1987] for more details.

Definition 94. Let A be any algebra such that A, < |N| for each s € S. Also let I' C X be

defined for each s € S as follows: If |A,] = n, for some n, € Nt and A, = {a,1,..-,85n,}
then I, = {c, 1,...,C,n, } Wherein ¢, € Ty, fori=1,...,n, € Nt is some constant such that
¢}; = a,;; otherwise if |4, = [N and A, = {50, Q5,15 8s,2,- -} then Ty = {{b,}, {g,}} wherein

b, € %\, and g, € L,,, are some constant and some unary operation respectively such that

b;l = Uy and the function g; : As — A, for each 1 E N* is defined by g;(b;‘) = Gy wherein

A A . .
i g (b) if i =1, and
g,(bf) TN g i-ipA .
gMgiT (b)) otherwise.

If there exists a I defined as above then we either say that [ is inductive for A or that T’
IS a signature of constructors for A or just a signature of constructors if A is understood or

unimportant.
Example 19. If A is a standard algebra with no carriers other than N and B then I' = {I', =
{{0}, {Suce}}, Ty, = {1, ff}} is inductive for A.
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Note that in the sequel for convenience we will we write I',, = {(),Succ} to mean [';, =

{{0}, {Succ}} and more generally T, = {b,,g,} to mean I', = {{b,}, {9:1}.

Discussion. We note that this is not the most general definition of a signature of construc-
tors found in the literature (see Goguen [1988]). However, in the context of primitive recursive
equations, in particular primitive recursive equations when used to specify hardware, we find it
convenient to use this more restrictive definition. Moreover, the results that we present easily
generalize to the use of a more general signature of constructors for countably infinite carriers.

It is also important to note that the initial model of every equational theory with either
finite or countably infinite carriers has at least one minimal and finite signature of constructors
(see Goguen [1988]) and hence inductively generating the members of the carriers of an algebra
Is a general purpose technique.

Finally, in the sequel we will need to generalize the use of signatures of constructors to alge-
bras wherein some carriers are not countable (stream carriers are not in general countable). In
particular, if an algebra has an uncoutable carrier then we will use the convention that for each
s € S such that |A,| > |N| we have I', = @. Thus, for any stream algebra A we have P, = @ for

each s € §.

7.2.3 Using Signatures of Constructors to Identify Classes of Equations

We now identify two classes of equations CEorFC C EQ(E, X)) and ComTRS C TRS(E, X) x
EQ(T, X) that will play a significant role in the sequel. The first class is the union of all closed
equations extended with equations whose variables range over finite carriers. The second class is
the same as the first class, but also extended with equations that when orientated as left-to-right
re-write rules form a complete TRS R’ when adjoined to some given TRS R.

Definition 95. For each T, for each I' C L and for cach X we define the predicate
CEorFC®I* C EQ(E, X)

(ambiguously denoted CEorFC) as follows: for each e € EQ(E, X) the predicate CEorF(C(e)
holds if and only if either
(1) ec EQ(Z); that is, e is a closed equation; or

(2)ee EQ(E, {z1,...,z,}) for some z; € X,,, for some s; € 5 such that foreachi=1,...,n ¢

N* we have I'y, = {c,,1,- - > Csyn,, } fOT SOMeE constants ¢, ; € Xy, forj =1,...,n, € N*;

that is, e is defined over variables that range over finite carriers.

Definition 96. For each ¥, for each I' C ¥ and for each X we define the predicate
ComTRS=IY C TRS(E, X) x EQ(Z, X)
(ambiguously denoted ComTRS) as follows: for each ® C TRS(E, X) and for each

¢=(r=7') e EQ(Y, \) the predicate ComTRS( R, e) holds if and only if either
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(1) CEorFC(e) holds; or

(2)e=(r=1) € EQ(S.{z1,...,2,}), forsome z; € X, , forsomes; € §fori=1,...,n e N+
such that z, is the left-most variable of 7 and I';, = {b,,,¢,,} for some b,, € U, ,, and for
some g,, € S, ,,; and the TRS R’ defined by

R' = RU{r'}

is complete wherein 7’ is formed by orienting ¢’ as a left-to-right re-write rule; and ¢’ is
any equation defined by
e = 6[$1/X][$i//>i]i?
D¢

wherein y is some constant of sort s; such that x ¢ ¥ and p; € T(£”, X),,, for some
" C S U {x} are defined such that p; 2 x fori=1,...,n.

EXample 20. Let ¥, I and A be defined as in Example 19 and let y be some constant of type
n such that y ¢ ©. If ¢, is some closed term of sort n and #y, is some closed term of sort b then

(1) CEorFC(not(or(z,y)) = tb) holds because both z and y are of type b and T'y, = {tt, ff}.

(2) CEorFC(add(z,0) = z) does not hold because x is of type n and 'y = {0, Succ}. However,
if the TRS R is defined by R = {add(0,z) ~ z,add(Succ(z),y) — Succ(add(z,y)} then
ComTRS(R, add(z,0) = z) holds because R' = RU {add(x,0) — x} is complete.

We now present two key results concerning the predicate ComTRS and sets of primitive
recursive equations. Indeed, while for convenience we present them in ‘reverse’ order, the first
result is the basis of our proof of Statement (B) in the introduction. The second result is the

basis of our proof of Statement (A).

Lemma 38. Let T C X such that Ty = {0, Suce}. Also, let ¥ € PREQ(X,X), let R =

TRC'ON(\I') C TRS(Z', X) wherein ¥’ is as defined in Definition 66. If f is one of the functions
symbols of type (nu,s) appearing in R, for some u € S* and for some s € S; and ¢ € ¥, , then

ComTRS(R, f(z,t1,... b)) =¢)

holds for any variable x € Xn and for any terms t; € T(X", X),, such that t; 2 x for i =
L., |u| wherein " D ¥/ U {x}-

Lemma 39. Let T C ¥ such that 'y = {0, Succ}. Also let ¥ € PREQ(L, X), let R =
TRCON(W) C TRS(Y',X) wherein &' is defined as in Definition 66. If f and g are two of
the functions symbols of type (nu,s) and (nu',s) respectively for some u, v’ € S* and for some

8 € S appearing in R such that f # g then
ComTRS(R, f(l', 1y - -:tlul) = g(z:,tll, < '7t]/u‘}))

holds for any variable = € X, and for any ferms i € T(X", X)., such that t; 2 x for i =
L. lul and for any terms t; € T(E",Axy)ug such that t; 2 x for j = 1,...,|u/| wherein " D

U {x}.



We prove Lemma 39 using the following result from Knuth and Bendix [1970] and leave the

similar proof of Lemma 38 to the reader.

Theorem 12. Let R be any strongly normalizing TRS. If all the critical pairs of R are conver-

gent then R is complete.
Proof of Lemma 39. Notice that by hypothesis the left-most variable z of f(z,t,,..., ) is
of type n and I'y, = {0, Suce}. Therefore we must show that
R' = Ru{r'}
wherein / ,
T'/ = (f(Xv Tiye- e T[u() = g(,\/a Tiy-- -,7"“/‘))

is complete for any terms 1; € T(Z", X)u, such that ¢; 2 x for i = 1,...,]u| and for any terms
€ T(S. X )n such that £ 2 x for j = 1., |u] wherein & 2 £ {x}.
First, notice that by the definition of TRCON the only rules in R of the form

f(ﬁ’lv' . '7/{]u|+1) = p

and /

G(RLy oy K1) 7 P
for some k; € T(X,X) for i = 1,...,[ul +1 and for some p € T(¥', X); and for some & €
T(X,X) for j = 1,...,|w| + 1 and for some p' € T(Y, X) must be of the form

Ty = f((),zl,...,;r(u{) == 71

and
Ty = f(Succ(:z:),wu . -'azlu|) e
and '
= 0,5 )
and

ry = f(Succ(x),a:'l, e ) ”7;

. . "o
for some variables z; € X, fori=1,.. ., |ul, for some variables ¢ € X, forj=1,..., {u/], and
3 =tu, —

for some terms ny, 12, 75 74 € T(x', X). Notice now that R is comple.te by Theorem 11. a'n(l 0
it is by definition strongly normalizing. As a consequence clearly R’ 1s.strongly no/rmrahzmg as
90X, p1y .- -, puy) is @ normal form under R’ for any p; 6 T, X) fori=1,...,|u|. Therefore
as we cannot by definition make a critical pair with dwer‘gent nOfmal forms from any of the
rules in R (as R is complete) the only potential critical pairs are either vy and »' or 7, and r'.

Hence, as by observation it is clear that we cannot make a critical pair from either r, and ' or
Y v <

Ty and r R’ is complete by Theorem 12. .

Systems of primitive recursive equations also have one further useful property with respect

to particular terms:
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Lemma 40. Let T C T such that I'n = {0, Suce}. Also let ¥ € PREQ(Y,X), let R =
TRCON(W) C TRS(E', X) wherein S is as defined in Definition 66. If f and g are lwo of
the functions symbols of type (nu,s) and (nu',s) respectively for some u,u' € ST and for some

s € S appearing in R such that f # g then
R/ = RU {f(01t17"'7t]u|) = g(O’t/h"'?tiu‘!)}

is strongly normalizing for any terms & € T(E", X)u, for i = 1,... |u|l and for any terms

t; € T(;’L,QQU; forj = 1,...,u| wherein vy,

Proof. Similar to the proof of Lemma 39

7.2.4 TFormalizing Primitive Recursive Arithmetic

We now define a formal calculus that extends equational logic with additional rules for induction

and cases analysis. In the context of systems of equations that are primitive recursive this

calculus is essentially a formalization of primitive recursive arithmetic and, as far as we are
aware, in the context of reasoning about STs is new.

Definition 97. For each ' C ¥ and for each £ C EQ(Z, X) we define the calculus EQWILM®
(EQuational calculus With Inductive Logic — pronounced ‘equal’) uniformly in E to be the four

rules of many-sorted equational logic over E:

Rule (i) - Reflexivity. If 7 € (%, X), for some s € S then

EQWIL" k1 =1

Rule (ii) — Symmetry. I{ 7,7" € T(%, X), for some s € 5 then

EQWIL™ 1 =17
EQWIL' P b o/ =1

Rule (iii) — Transitivity. ifr, 7, 7" € T(%, X), for some s € S then

EQWILT® Fr =7 EQWIL™ k7' = 7"
EQWIL"? k7= 17"

Rule (iv) — Substitution. For any terms r,m € T(E,X), and t,t' € T(E, X),. for some

s, € SifyCroryC 7 forsomey€ X, then
EQWILTP Fr =7 EQWIL™Fi=t
EQWILN? b rly/t) = '[y/¢]

extended with the following two additional rules:
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Rule (v) — Case Analysis. For any terms r,7 € T(X,X), forsomese SifyCroryCr
for some variable y € X, for some s’ € S5 and I'yy = {e1,.. . ea,} for some constants
¢ € Sagfori=1,...,ny € N* then

EQWILTE b rly/eon] = lu/evn] - EQWILTY b rly/ec ] = 7[y/ ¢y, ]
EQWIL"Y + 7 =1

Rule (vi) — Induction. For any terms 7, e T(E,X), forsomese SifyCrorycCr
for some variable y € X,/ for some s € §and Ty = {b,,g,} for some b, € Y, and for
some g, € ¥, 4 then

EQWILDE F rly/by] = 7'[y/bs] EQWILY® + rly/g.00)] = 7'[y/ 9, (x)]
EQWIL"Y b r =1

wherein

E = Eu{rly/x] = 7'ly/x]} € EQ(Y', X),

Y is some constant of sort s’ such that y ¢ &, and ¥ = Y U {x}.

We conclude this section with some basic definitions and three basic results about the struc-

ture of proofs in EQWIL that we will require in the sequel.
Lemma 41. IfT C S and E C EQX,X) and e € EQ(X) then
EQWILME Fe <= Ete.

Definition 98. Let ' C T, let &/ C EQ(E, X) and let e,e’ € EQ(L, X).
(1) Let EQWILTE b e. We say that ¢’ is a sub-consequence of e if ¢' is one of the premises
of one of the applications of Rules (i) through (vi) used at any stage in the proof used to

deduce e.
For example, if P was the following proof

EQWILT? b And(tt, f) = [ EQWIL™® & And(ff ff) = ff
EQWILY Y - And(z, ff) = ff
from some appropriate system of equations E then both And(tt, ff) = [fand And(ff, [) = /f

are sub-consequences of And(z, ff) = I

(2) Let P be the proof EQWILF’E I e and € be a sub-consequence of e. We say that P’
is a sub-proof of P if P’ is the part of P used to deduce ¢'; that is, if P’ is the proof
EQWILTE' + ¢ wherein E’ is either £ or some system of equations such that £’ D F as

defined in Rule (vi).

(3) Let P be the proof EQWILF‘E - e. If there exists a sub-consequence e’ of e with corre-
sponding sub-proof P’ such that E'F ¢', but P includes either an application of Rule (v)
or an application of Rule (vi) then we say that P has a trivial deduction. Thus, P has

a trivial deduction if e is provable by using equational logic, but P’ has used either case

. . . ) /
analysis or induction to prove €.



Lemma 42. Let I C ¥ and let E € EQ(E,X). If P is the proof EQWIL'F v ¢ and P has
trivial deductions then there exists a proof P' of EQ WILDE & e with no trivial deductions.

Lemma 43. LetI' C ¥ and let E C EQ(Y, X). If P is the proof EQWILSE & ¢ and P contains
k non-trivial deductions then there exists a proof P' of EQWILTP & e with these k non-trivial
deduction as the last k steps of P'.

Proof. By induction on the number & with a sub-induction in the basis case (k = 1) on the

number of rules ! applied after the application of either Rule (v) or Rule (vi). In turn the sub-
induction basis case (I = 1) requires a case analysis on the last rule of P: symmetry; transitivity

and substitution.
I

7.3 The Soundness, Completeness and Decidability of EQWIL

7.3.1 Soundness and Completeness

We begin with three results concerning the soundness and completeness of EQWIL. However,
notice that as a consequence of the limitations of any formal calculus with respect to initial
algebra semantics, this completeness result is only concerned with closed equations and equations

whose variables range over finite carriers.

Theorem 13. (EQWIL Soundness.) Let A be any algebra such that there exists ' C ¥ that
is inductive for A and let E C EQ(S, X). If A= IS, E) then for any e € EQ(X, X)), for some
se S

EQWIL'EFe= [T, E)E e

Proof. While equational logic and induction is not typically presented as a formal calculus, the
fact that equational logic with induction is sound with respect to the initial algebra semantics
of an equational theory is well-known (see for example Goguen [1988]). Indeed, the proof of
soundness is straightforward making use of Lemma 36 and therefore is omitted.

-

Theorem 14. (EQWIL Completeness.) Let A be any algebra such that there ezists ' C ¥
that is inductive for A and let E C EQT,X). IfA= [, E) then for any e € EQ(Z,X), for
some s € S such that CEorF((e) holds

IS, E) e e=> EQWIL™ Fe.

Proof. e proceed by induction on the number of variables & € N appearing in e.
Basis n = 0. First, notice that by hypothesis we have e € EQ(Z) and hence

(S, E) e = Alg(S, D) = e



by Lemma 34. Also notice that by the completeness of equational logic we have

Alg(S, E)l=e=> EtFe.

Therefore by Lemma 41 we have
EtFe= EQWIL"* Fe
as required.
Induction Hypothesis. Let ' C T. Assume for any system of equations £ C EQ(Z, X') and

for any equation ¢ € EQ(Z, X ), for some s € S’ such that €' is defined cver &’ variables for
some fixed &’ € N: and such that CEorFC(e’) holds then

(S, E) e = EQWIL™Z F ¢
Induction Step. Let I' C ¥. We must show that for any system of equations £ C EQ(Y, X)
and for any equation e’ € EQ(%, X),~ for some s” € §” such that €” is defined over &' + 1
variables; and such that CEorFC(e”) holds then

(S, E) | e = EQWIL™® ¢,

We proceed as follows: choose any variable y = ;i € {z,...,2p 41} wherein z; € X, for
some s; € §" for j = 1,...,k + 1 are the variables over which ¢” is defined. Notice that

as by hypothesis CEorFC(e”) holds it must be the case that I',, = {¢, 1,...,¢s,n, } for some
n,, € Nt.
Now consider the equations €y,...,€n,, defined by

er = e'[y/cs.il
for1=1,...,n, . First, notice that clearly by the hypothesis on T' we have
(5, E)E e =S, E)E=e

for ! = 1,...,n,,. Secondly, notice that as each equation e is defined over &’ variables and
CEorFC(e;) holds by the Induction Hypothesis with ¢’ = e for [ =1,...,n,, that

(S, E) = e = EQWIL™ ey,
Therefore, combining these two facts with Rule (v) of EQWIL"™® we have that

(S, E) e = EQWILFE ¢

as required.

a

Corollary 3. Let A be any algebra such that there exists I' C ¥ that is inductive for A and let
ECEQS, X). IfA= L%, E) then for any e € EQ(Z, X), for some s € § such that CEorF({e)

holds
[%,E) e <> EQWIL™  Fe.

Proof. Immediate from Theorem 13 and from Theorem 14.
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7.3.2 Decidability

Recall the four classes of equations that we identified in the introduction. We now consider the
automation of the deductions necessary to prove such equations. In particular, in the context
of strictly first-order systems of primitive recursive equations we define a function VER that we
can use to automate the deduction of such equations using the calculus EQWIL.

Definition 99. For each ¥, for each I' C ¥, for each X and for each s € § we define
VER®TX : TRS(S, X) x T(Z, X), x T(E, X), ~ B
(ambiguously denoted VERT) as follows:
(VR e TRS(E, X)) (Vr, 7 € T(X, X),)

RED(R,7,7') if 7,7 € T(X)

/\ VER&(R’ T[xl/cﬂx,i]’ T/[II/C“';]) if T, e 71('\:, {mly ey xn})a

VERF(R, 7,7y = ¢
vt and Ty, = {¢;,,1,-++,Ce,,n,, }; and

Bl/\BQ if T,TJGT(E,{JTI,...,xn}),
and Ty, = {b,,,9.,}

wherein
B, = VER,EI(R, T(z1/0,,], 721 /bs,])

and

By, = VEREl(R/,T[Il/gsl(X)]a T/[xl/gh(X)Dv

z; € X,, forsome s; € § fori=1,...,n € Nt are the variables over which 7 and 7’ are defined
such that either z, is the left-most variable of 7 if 7 € T(X, X) or =, is the left-most variable
of 7/ otherwise; y is some constant of type s; such that x € ¥; R' = RU {7[z,/x] — 7'[2:/x]};
and

RED®X : TRS(Z, X) x T(E), x I'(L), ~ B

(ambiguously denoted RED) is defined for each R C TRS(Y, X) and for cach ¢, € T(Z), by

it I NFR(t) = NFR(),

RED(R,t,t") =
ff otherwise.

The following lemma is implicit in our use of VER in the sequel.

Lemma 44. Let T C Y and let t,t' € T(S,X). If R C TRS(Y, X) is complete then

RED(R,t.1')] .

o
[
Vo]



Effectively Simulating Deductions in EQWIL.  We now present a number of results
concerning the use of VER to simulate deduction using EQWIL.

Definition 100. Let I' C © and let £ C TRS5(Y, X). If e = (7 =7/) € EQ(Y, X) and
VERM(R,7,7)|

the we say that either e is weakly decidable with respect to R or just weakly decidable if R is

either understood or unimportant.

Lemma 45. Let [ C ¥ and let E C EQ(Y, X). Alsolet R C TRS(Y, X) be equivalent to E. If
e=(r=71")€e EQ(E, X) then

VERY(R, 7,7} = tt = EQWIL™" I e.

Proof. Obvious from the definition of VER.
O

Lemma 46. Let T C © and let E C EQ(X, X)) such that there exists a complete TRS R equiv-
alent to E. Ife = (r = 1') € EQ(Y) then

EQWILTF & e <= VER"(R,7,7') = tt.

Proof. Notice that as e € EQ(X) we have
EQWIL' P e <= Ete
by Lemma 11. Furthermore,

t¢ if NFE(7) = NFA(7'), and

VERI(R,r,7) = RED(R,7,7') = _
ff otherwise.

Therefore, it is clear that the lemma holds by the Correspondence Theorem and the hypothesis

that R is complete.
]

Lemma 47. LetT' C ¥ and let E C EQ(X, X) such that there exists a complete TRS R equiv-
alent to E. Ife = (r = 7') € EQ(S, X)) 1s defined such that CEorF(C(e) holds then

EQWIL'F e <= VERY(R,7,7') = tL.



Proof. By induction on the number of variables z; € X, for some s; € Sfori=1,....,k €N
appearing in e. Notice in the following proof that by Lemma 43 we may assume, without loss
of generality, that an application of Rule (v) in a proof EQWIL"E F ¢ occurs as the last proof
step.

Basis & = 0. This case follows immediately by Lemma 46.

Induction Hypothesis. Ife = (¢t =t') € EQ(Z, X) is some equation such that CEorFC(¢')
holds and ¢’ is defined over &’ variables for some fixed &' € N then

EQWILM® b ¢’ <= VER'(R,t,1') = tt.

Induction Step. We must show that if ¢/ = (r = ') € EQ(Y, X) is some equation such that
CEorFC(e”) holds and €” is defined over k = & + 1 variables then

EQWILY? F ¢’ <= VERT(R,r, ) = tt.

First, notice that as by hypothesis CEorFC(e”) holds in this case VERY(R, 7, 1') is defined
by

j:n,‘
VERF(R,T‘, 7J> = /\ VERF(R,7‘[:1:1/c“’j],7"[.1;l/c“'j])
j=1

wherein z, € X, for some s; € S is either the left-most variable of r if » € T(X, X') or z, is the
left-most variable of r' otherwise. Also notice that as CEorI'C(e") = CEorl'C(r[z,/c,, ;] =
Mz, /ey, 5]) for j = 1,...,n,, and the number of variables occurring in r{x,/c,, ;] = r'[z\/¢,, ;]

is &/, by the Induction Hypothesis we have
EQWILYE & r[z,/c,, ;] = v'[z1/c,, 5] <= VER'(R, [z /c,, ;] 721 /csr ]) = t

for j = 1,...,n,,. Therefore, as VER'(R, r,r') is defined in this case by

J=n,,
VERF(R,r, )= /N VERY(R,r[z\/c,, ;],7'[z1/c,, ;)
j=1
that is clearly equivalent to an application of Rule (v) of EQWIL"® we have
EQWILTE F e’ <= VERT(R,7,r) = it.
as required.

a

Corollary 4. Let I' C S and let E C EQ(E,X) be some system of equations such that there
ezists a complete TRS R equivalent to I2. Also let T' be inductive for some algebra A such that
AX Y E). Ife=(r=71")€ EQY, X) is some equation such that CEorF((e) holds then

IS, E) e < VER (R, 7,7') = tt.
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Proof. Immediate from Corollary 3 and Lemma 47.
O
The following result formalizes the idea that we may automate deductions in first-order
systems of primitive recursive equations to prove equations that satisfy the ComTRS predicate.
However, for later convenience when we use this result we phrase the premises of the lemma in
a different, but equivalent form using only the predicate CEorI"C.

Lemma 48. Let ' C S and let E C EQ(Y, X) such that there exists a complete TRS R equiv-
alent to E. Also, let e = (1 =7') € EFQ(X, X) be defined such that 7 € T(Z, X) wherein z € X,
for some s € S is the left-most variable of 7. If either I'y = {¢,1,...,¢, .} for some ¢y €50,
and CEorF(C(e[z /e, ;]) holds for j = 1,....,n, € N* or I'; = {b,,4,} for some b, € Yy and for
some g, € ¥, , and CEorFC(e[z/b,]) holds and CEorFC(e[x/g,(x)]) holds and

R=RU{r[z/x]— 7[z/x]}
wherein v is some constant of type s such that x € ¥ is complete then

EQWIL"E + e <= VER"(R,7,7") = tt.

Proof. We consider the two cases:
(1) Ty = {cy1,..-,Csn,} for some constants ¢, ; € ¥ for j =1,...,n,.
(2) I, = {b,,g,} for some constant b, € £, , and for some algebraic operation g, € X, ,.
Again notice that by Lemma 43 we may assume without loss of generality that any application
of either Rule(v) or Rule (vi) occurs as the last step of a deduction.
Sub-Case (1) I, = {c,1,...,¢sn,} for some constants ¢, ; € ¥ for j = 1,...,n,.. This case
follows immediately by Lemma 47.
Sub-Case (2) I', = {b,,g,} for some constant b, € Xy, and for some algebraic operation

9s € ¥, ;. In this case

VER(R,7,7") = B, A By

wherein
B, = VERE(R,T[x/bs],r’[x/b,])
and
By = VERL (R, 7[z/g.()) 7'[2/ g.(X)])
wherein

R = RU{r[z/x]~ T'[z/x]}.

First, notice that as by hypothesis CEorFC(r[z/b,] = 7'[z/b,]) holds and R is complete, by
Lemma 47 we have

EQWIL™E F r[z/b,] = 7[z/b,] <= VER(R, 7[a/b,] = r'[z/b,]) = 1t



and hence B, = tt <= EQWIL"" F 7[z/b,] = 7'[¢/b.].
Also notice that as by hypothesis CEorFC(r[z/g,(x)] = 7'[z/g,(x)]) holds and R’ is complete
by hypothesis we have

EQWIL"E + rlz/g,(x)] = 7'[2/g,(X)] <= VERY(R',7[z/g,(x)] = T'[z/g.(\)]) =

wherein

E'=Eu{r[z/x] = r"[z/x]}

and hence B, = it <= EQWILF'E For{z/gs(X)] = T'[2/9,(Xx)]. Therefore as VERUE(R,7,7) =
B A Bs in this case, that is clearly equivalent to an application of Rule (vi) of EQWILDE, we
have

EQWIL™® ¢ <= VERY(R, 7, 7)) = tt

as required.

7.3.3 Simulating Deductions in Primitive Recursive Arithmetic

We are now in a position to state formally the first of our main results concerning the use of the

calculus EQWIL in the context of primitive recursive arithmetic.

Lemma 49. Let ' C ¥ be defined by Ty, = {0, Suce}, Ty, = {18, ff}. Also, let ® € PREQ(Z, X),
let R = TRCON(®) C TRS(Y', X) wherein ¥ is defined as in Definition 66. If f and g are two
of the functions symbols of type (nu,s) and (nu',s) respectively for some u,u’ € S* and for
some s € S appearing in R such that f # g then

f(matls .. -’tlul) = _(](:E,tll, .. ’?t{u/[)

is weakly decidable for any variable z € Xy, for any terms t; € T(X, X),, fori=1,...,|u| and
Jor any terms t; € T, X)u forj=1,..., /]
Proof. By the definition of VER using Lemma 39 and Lemma 40
a
Notice in particular that Lemma 49 states that VER is appropriate as a total proof assistant
in the context of primitive recursive equations. However, while Lemma 49 is a useful fact from
the perspective of automated verification it is limited result in the sense that Lemma 49 does

not mean that

VERN(R, f(z,ti,- - tu))s (2, 8, .. -’tfuq)) =ff
implies ’

EQWILNE ¥ f(z,ty, - t) = g(, 8, 80)
wherein E = EQCON(®) C EQ(Y', X).

As we have already stated, while in general we cannot define a total proof tool for systems
of primitive recursive equations, with respect to the four classes of equations we identified in
the introduction, initial truth is decidable with respect to EQWIL using VER. This statement
is formalized in the following theorem.
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Theorem 15. Let ® € PREQ(E.X), let R = TRCON(®) C TRS(Y', X) and let
E = EQCON®) C FEQIY', X)

wherein ¥/ is defined as in Definition 66. Also, let ' C X' be defined such that T, = {0, Succ},
Ty = {tt, ff} and let e = (r = ') € EQ(X', X). If e satisfies either

(4) 7.7 € T(); or

(B) r,7 € T(Y,X) and if x € X, for some sort s € S occurs ine then I'y = {c,,...,¢c,,.}

for some constants ¢, ; € Sy, forj=1,...,n, € N*; or

(C) r = a(x,m,....,7,) and 7" = ¢ wherein o € Y/ is some algebraic operation, ¢ € ¥ is
any constant, r € X, and for i = 1,...,n if y C 7, wherein y € X, for some s € S
is some variable then y # = and T'y = {c,1,...,¢,0,} for some constants ¢, ; € ,, for
j=1,...,n, € N*; or

(D) r = o(z,7,...,7n) and 7 = o'(z,7{,...,7,) wherein 0,0’ € ¥’ arc some algebraic

operations such that o £ o', t € Xpand fori=1,...,n€Nand forj=1,....me N if
either y C 1; or y C 7] wherein y € X, for some s € S is some variable then = # y and
T, = {¢s1,--.+Csn,} for some constants ¢,y € Ly, forl=1,...,n, € N¥

then EQWILY'E & ¢ is decidable.

Proof. We consider each particular set of hypothesis in turn.

Case (A) Notice that in this case CEorl'C(e) holds. Therefore, by Lemma 47 we have that
EQWIL"® I ¢ is decidable by virtue of the fact that VERF(R, 7,7) = tt «= EQWIL" F e.
Case (B) Again notice that in this case CEorFC(e) holds. Therefore, by the same argument

as Case (A) we have that EQWIL™” I e is decidable as required.
Case (C) First, notice that by Lemma 38 we have that ComTRS(R, e) holds and hence

R = RU{r[z/x]— c}

is complete for any constant y of sort s such that x ¢ ¥’. Therefore, as by hypothesis for cach

¥ C 7 wherein y € X, for some s € 5 is some variable such that y # z and I'y; = {¢,1,...,¢,,}
for some constants Cy j € S/\,s for ] = 1, L.,y € Nt by definition CEO[‘FC(C[.L‘/O]) hO}.dS, and

CEorFC(e[z/Suce(y)] holds and hence by Lemma 43
EQWILY - e <= VER(R,1,¢) = tt;

that is, EQWIL" % + ¢ is decidable as required.
Case (D) This case follows by a similar argument to Case (C) using the fact that ComTRS(R, e)

holds by Lemma 39 and hence
R = RU{r[z/x] — 7'[z/x]}

Is complete for any constant Y of sort s such that x ¢ .
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Discussion. Notice that for each of the class of terms above Theorem 15 states that VER
is suitable as a total proof assistant; that is, with respect to EQWIL the function VER can
find a proof of a hypothesis if and only if such a proof exists. While at an abstract level it is
relatively straightforward to visual the class of terms that are identified by Cases (A) to (D) of
Theorem 15, the practical use of this result is not so clear. Therefore, in Section 7.5 we return
to this point when we identify one of the practical implications of this result.

Finally, one fact that it is important to re-iterate at this point is that EQWIL is not complete
with respect to initial truth and hence in general even with respect to the classes of equations

identified in Theorem 15
VERN(R. 7, 7)) = ff A= US E) e (r=1');

that is, even though VER behaves as a total proof tool for EQWIL for such equations, because
EQWIL cannot be complete it may be the case that e is true in the initial model, but e is not
provable by EQWIL. However, in the case that CEorl'C(e) holds we do have provability if and
only if I(X, F) = e; that is,

Corollary 5. Let ' C ¥ be defined such that Ty = {0,Succ}, I'y = {it,ff}. Also let & €
PREQ(E, X), let R = TRCON(®) C TRS(Y', X)) and let E = EQCON(®) C EQ(Y', X') wherein
Y’ is defined as in Definition 66, and I' is inductive for some algebra A such that A = (¥, E').
Ife=(r=1")€ EQ(Y, X) is some term such that CEorF({e) holds then

(S, E = e <= VER'(R,7,7) = tt.

Proof. Immediate by Theorem 15 and by Lemma 47.
a

In the following section we will show how we may use and generalize these results in the
context of reasoning about STs, by relaxing our requirement that variables range over finite
carrier to the requirement that variables may also range over streams of the form [T' — A]

wherein A is a finite carrier.

7.4 The Automated Verification of ST's

Drawing on results developed in previous chapters we now examine the use of the calculus
EQWIL to reason about initial truth in stream algebras. In particular we develop a function
AV to verify the equality of two STs using an extended version of the function VER (EVER),
and identify certain classes of STs, including a broad class of hardware devices, for which AV is

a total proof tool.



7.4.1 Using EQWIL to Reason About Stream Algebras

Recall the discussion following Definition 94 concerning the use of signatures of constructors in
the context of stream algebras. In particular, recall that for any carrier A such that |A] > 2
the function space [T — A] is uncountable, and hence we cannot find a finite I' to inductively
generate the set of all streams over A. However, we can make use of the following positive

result.

Lemma 50. Let E C EQ(Y,X) and let £ C FQE,X). IfT' C X is inductive for some algebra
A such that A= [(X, E) then for any e € EQ(X, X)

Lemma 50 provides the theoretical basis for the development of the function AV that we will
use to verify the correctness of ST's specified in ASTRAL.

7.4.2 Extending VER

Notice that Lemma 50 guarantees the soundness of VER with respect to stream algebras. How-
ever, while VER remains an useful tool in this context it is not as effective in its capabilities as
we would like as the following example demonstrates.
Example 21. Given the following (informally presented) system of primitive recursive equa-
tions F defined by
ff ifz=ffand y = ff,
, ff ifz=ttand y = ff,
And(z,y) = ] '
ff ifz=ffand y = tt, and

tt otherwise,

notice that clearly
EQWIL"™ + And(eval(0,X), ff) = ff.

However, notice that for any I' D Ty, = {tt, ff} that
VERY(R, And(eval(0, X), ), f) = ff

wherein R is the TRS created by orientating E as left-to-right re-write rules and X is some
stream variable of sort b. Therefore, even by moving from first-order equations to weak second-
order equations we lose some of the properties of VER that we identified in the previous section.
While in this simple example it is possible to modify £ to give E' such that (S, E') ¥ (T, )
and to generate a complete TRS R’ equivalent to £’ so that

VERT (R, And(eval(0, X), ), ff) = tt



we cannot in general expect this to be the case as the problem of finding such an E’ is essentially
equivalent to finding an w-complete specification (see Example 22). Moreover, as in the sequel
we are interested in working with equational specifications that are automatically created from
ASTRAL programmes, wherever possible we do not wish to place further restrictions upon the
form of equations we must work with to guarantee the effectiveness of our verification techniques.
As a consequence, in the context of stream algebras and their defining equations we prefer to
modify the function VER to give the function EVER that is a more appropriate as the basis of
a verification tool.

The formulation of EVER requires some further preliminary definitions. We begin by refor-
mulating the predicates CEorFC and ComTRS in the context of stream algebras.

Definition 101. For each I, for each I' C ¥ and for cach X we define the predicate
CEorFCEME C EQ(E, X)

(ambiguously denoted CEorFC) as follows: for each e € EQ(X, X) the predicate CEorEFC(e)
holds if and only if either

(1) e € EQ(X); that is, e is a closed term (notice that this implies that e € EQ(X)); or

(2) e € EQ(Z, {zy,...,2,}) for some z; € X, for some s; € S such that foreachi=1,...,n¢€
N+ either Ty, = {¢,,15---»Cs.n,, } fOr some constants ¢, ; € y,, for j = 1,...,n,, € Nor
I,,=0and I, = {c/,1,.-1Cr,n, } fOr some constants ¢, ; € Ny, forj=1,...,n, €N
wherein r; = s;; that is, e is defined over variables that either range over finite carriers or
that r:mg; over streams whose co-domains are finite carriers.

Definition 102. For each I, for each I' C ¥ and for each X we define the predicate
ComTRS®™% C TRS(Z, X) x EQ(X, X)

(ambiguously denoted ComTRS) as follows: for each # C TRS(X, X) and for each e = (7 =
) € EQ(Z, X) the predicate ComTRS(R, e) holds if and only if either

(1) CEorI’C(e) holds; or

(2)e=(r=1") € EQZ {z1,...,2,}) forsome z; € X, forsomes; € Sfori=1,...,n e Nt
wherein z, is the left-most variable of 7 such that 'y, = {b,,,9,,} for some b,, € ¥, , and
for some g,, € &, ,,; and the TRS R’ defined by

R = RuU{r'}

is complete wherein 1’ is formed by orienting e’ as a left-to-right re-write rule; and ¢’ €
EQ(X”, X) is any equation defined by

¢ = e[z /X][zi/piliZh

wherein ¥ C £ U {x}, Y is some constant of sort s, such that y ¢ ¥ and the terms
€ T(Z”,X), are defined such that p; Zxfori=1,...,n
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Lemma 51. Let T C %, let RC TRS(Y,X) and lete = (1 =7') € EQ(Z, X). If ~ CEorF((e)
holds, but ComTRS(R,e) holds then ComTRS( R, e) holds.

Proof. TLmmediate from Lemmata 38 and 39.
O

To define EVER we require the following two sub-functions. The first sub-function enables
us to count sub-terms of the form eval(t,z) for some ¢t € T(X, X), and for some x € X, for
some s € 5. The second sub-function allows us to replace sub-terms of the form eval(t, y) with

a new variable symbol z.
Definition 103. For each £ and for each X we define

AnyEvals®% : T(2, X) — B

(ambiguously denoted AnyEvals) for each 7 € T'(%, X) by AnyEvals(7) = ¢t if and only if there
exist a term 7 = eval,(r,y) C 7 for some s € S and for some y € X,.

Definition 104. For each © , for each T' C ¥ and for each X we define

SubEvals® ™ : T(Z, X) x T(E, X) - T(E, X)) x T(Z, X)

(ambiguously denoted SubEvals") by
(i, € T(L, X))

, £t if AnyEvals(t) = AnyEvals(¢) =
SubEvalst(¢,¢) = (t,¢) § y' ®) Y (&) =1F
SubEvals™(r,7') otherwise
wherein 7 = t[/z] and 7' = t'[n/z] wherein if AnyEvals(t) = tt then 5 is the left-most sub-term
of t such that n = eval,(p,y) otherwise 7 is the left-most sub-term of ¢’ such that n = eval,(p, y)
for some p e T(S,X), and for some y € _\_’_6_, and r € X, is some variable such that z € ¢ and

T g,
Lemma 52. Let T C S and let E C EQ(X,.X). For any equation e = (¢t =t') € FQ(E, X)
EQWILVE b e = EQWILTF I e

wherein ¢ = (r=r1") and
(r,7") = SubEvals (t,t').

Proof. By induction on the number k € N* of occurrences of a term 7 = eval,(p,y) such
that either n C t or n C t'. We sketch a proof. The key step is to observe in the case wherein
k =1 that as equational logic is a sub-logic of EQWIL if we can prove ¢’ then e is provable by
an application of the substitution rule as follows:
tn/z]=1t[n/z] n=n
t{z/n] = t'[z/n].

J
Indeed, this fact is the basis for the definition of an extended version of the function VER.

247



Definition 105. For each X. for each [ C Y, for each X and for each s € § we define
EVERDT* : TRS(Z, X) x T(Z, X), X T(S, X), ~ B
(ambiguously denoted EVERF) as follows:
(VR € TRS(Z, X)) (¥r, 7' € T(Z, X),)

ERED(R,7,7") fr,relT()or
for each z € X, for some s € S
such that either ¢ C 7 or z C 7/
I's=0

EVERT(R,7,7) = { =n= ) , P
( 7) /\ EVER] (R, 7[zi/c,, ], m'[e/e,:)) i rm € T(S, {zy,. ...z, )

i=1

and I';, = {e,, 1,. oy Csym, }; and
.Bl/\BQ if T,TIET(E,{xl,...,ZEn})S
and I'y, = {b,,,9,,}

wherein

By = EVER] (R, [z/b,,],7'[z1/b,,])
By = EVER; (R, 7[z1/g.,(X)), 7'[z1/9,, (X))

and z; € X,, for some s; € § for i = 1,...,n € NT are the variables over which 7 and 7
are defined wherein either z, is the left-most variable such that z; C 7 and Iy, # @ if such a
variable exists or z, is the left-most variable such that z; C v’ and [y, # @ otherwise; X Is some
constant of type s; such that x € £; R’ = RU {r[z1/x] — 7'[z,/x]}; and for each ¥, for each
I'C %, for each X and for each s € S we define

ERED®DX : TRS(E, X) x T(Z, X), x T(Z,X), ~ B
(ambiguously denoted EREDF) for each R, 7 and 7/ as above by

RED(R,,7’) if AnyEvals(NF?(1)) = AnyBvals(NFR(r')) = [f

TREDT N =
EI{IJD (R\ T, T ) {EVERF(R7 t’ tl) otherWiSC

wherein (¢,¢') = SubEvalsT(NFA(r), NFR(r")).
Discussion. Notice that using this extended definition of VER given I and R as defined in
EXample 21 that

EVERT(R, And(eval(0,X), ), ) = tt
and hence in general the class of weak second-order equations for which EVER can simulate
EQWIL is strictly larger than the class of weak second-order equations for which VER can

simulate EQWIL.
We now use Lemma 52 to establish formally that EVER is both terminating and sound with

Tespect to the calculus EQWIL.
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The Soundness of EVER. We begin by defining two functions that enable us to identify
and count the number of non-stream variables and stream variables respectively that occur in

equations and terms,

Definition 106. For each ¥ and for each X we define NonStrVars=X : T(Z, X)) — ¢(X) and
NumNonStrVars®X : T(E, X) — N {ambiguously denoted NonStrVars and NumNonStrVars

respectively) by
(Vr € T(%,X)) NonStrVars(r)={z € X |z C7}

and
(Vr € T(Z,X)) NumNonStrVars(r) = |NonStrVars(r)|.

We also ambiguously define NumNonStrVars : EQ(Z, X) — N by
(Ve = (r = ') € EQ(Z, X))

NumNonStrVars(e) = [NonStrVars(7) U NonStrVars(r')].

Thus, NumNonStrVars counts the number of distinct non-stream variables that occur in

either a term or an equation.

Definition 107. For each T and for each X we define StrVars®& : T(8, X) — p(X ~ X) and
NumStrvars2X : T(¥, X) — N (ambiguously denoted StrVars and NumStrVars respectively)
by

(Vr € T(8,X)) StrVars(r)={r € (X -X)|zC7}

and
(Vr € T(X,X)) NumStrVars(r) = |StrVars()|.

We also ambiguously define NumStrVars : EQ(Z,.X) — N by

(Ve = (r =7') € EQ(Z, X)) NumStrVars(e) = [StrVars(7) U StrVars(r')|.

Thus, NumStrVars counts the number of distinct stream variables that occur in either a

term or an equation.

Using the function NumStrVars we now define an important concept that we will require in

the sequel.

Definition 108. Let R C TRS(E, X). If for each 7 € T(%, .X)

NumStrVars(7) > NumStrVars(NFR(r))

then we say that R is stream variable reducing.

The identification of TRSs that are stream variable reducing allows us to identify certain
classes of equations for which VER and EVER have the same behaviour and hence conveniently
enable us to make use of some of the results of the previous section.
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Lemma 53. Let ' C ¥ and let R C TRS(X, X)) be some TRS that is strcam variable reducing.
Ife=(r=171")¢e FQZXZ,X) and NumStrVars(e) = 0 then

EVERY(R,7,7") = VER'(R,T,1").

Proof. Immediate from the definition of EVERT and the hypothesis that R is stream variable
reducing.
8]

Lemma 54. Let ' C ¥ and let R C TRS(E, X) be some TRS that is stream variable reducing.
Ife=(r=71")¢e EQXZ,X) and NumStrVars(e) = 1 and NumNonStrVars(e) = 0 then

EVER'(R,7,7") = VER"(R,T,7").

Proof. By induction on the number & € Nofoccurrencesof z € Xin e’ = (NFA(r) = NIF(7')).
The key step is the basis case wherein & = 0 that follows by Lemma 53. Again we leave the

details of a full proof to the reader.
a

Lemma 55. LetT’ C %, let EC FQ(E,X) and let R C TRS(X, X)) be some TRS that is stream
variable reducing and that is equivalent to E. Alsolete = (1 =1") € FQ(Z, X). If e is weakly
decidable and NumStrVars(e) = 1 then

EVER'(R,7,7')|

and
EVER'(R,7,7") = tt = EQWIL"* F e.

Proof. By induction on the number £ = NumNonStrVars(e).
The key step is again the basis case that requires a sub-induction on the number | € N of
occurrences of sub-terms of the form eval(8, z) in the normal forms of 7 and 7’ produced during

the iteration of the process of defining
EVERF(R,r,7') = EVERT(R,t,¢)

wherein
(¢,t') = SubEvals" (NF"(r), NF*(+')).
(Notice that [ is guaranteed to be finite by the hypothesis that R is stream variable reducing.)
The basis case of this sub-induction follows by Lemma 53 and by Lemma 45. As before we leave
the details of a full proof to the reader.
O
We are now in a position to establish the termination and soundness of EVER with respect

to systems of primitive recursive equations defined over stream signatures.
1
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Lemma 56. If R = TRCON(®) for some & € PRECQ( X, X) then R is strcam variable reducing.

Proof. Immediate by Lemma 7, Theorem 10 and the definition of TRCON.
O

Theorem 16. Let I' C X, let & € PREQ(E, X) and let E = EQCON(®). Also let B =
TRCON(®). If the equation e = (1 =7') € FQE, X) is weakly decidable then

EVER'(R,7,7)]

and
EVER(R,7,7") = tt = EQWIL"F I ¢,

Proof. By induction on the number & = NumNonStrVars(e) + NumStrVars(e). We consider
two basis cases:

Basis £ = (. This case follows immediately by Lemma 56, and by Lemma 45.

Basis £k = 1. There are two sub-cases two consider:

(1) NumNonStrVars(e) = 1.

(2) NumStrVars(e) = 1.

Sub-Case (1) NumNonStrVars(e) = 1.  As by hypothesis NumStrVars(e) = 0 again this
case follows immediately by Lemma 56 and by Lemma 45.

Sub-Case (2) NumStrVars(e) = 1. This case follows by Lemma 56 and by Lemma 55.

If NumNonStrVars(e) > 0 then the rest of the proof now follows by a routine application
of the Induction Hypothesis and by Lemma 56. If NumNonStrVars(e) = 0 the the rest of the
proof follows by Lemma 45. Again the details are omitted.

a
Decidability. Using the predicates CEorF'C and ComTRS we now extend the results of
Section 7.3.2.

Lemma 57. LetT C E, let EC EQE,X) and let R C TRS(E, X) be a complete TRS that is

equivalent to E and that is stream variable reducing.
Ife=(r=1")€ EQX, X) is some equation such that CEorF({e) holds then

EQWIL'E v e = EVER"(R,7,7') = 1t.

Proof. By induction on the number & = NumNonStrVars(e) + NumStrVars(e). We consider
two basis cases.
Basis Case (1) k = 0. This case is obvious as by Lemma 41

EQWIL' P Fe= EFe

and by definition
EVERT(R,r,7") = RED(R, T, 7").
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Basis Case (2) & = I. We now consider two sub-cases:
(1) NumStrVars(e) = 0.
(2) NumNonStrVars(e) = 0.
Sub-Case (1) NumStrVars(e) = 0. First, notice that as by hypothesis NumStrVars(e) = 0
by Lemma 53
EVERY(R,7,7) = VERY(R, 7, 7).
Also notice that if NumStrVars(e) = 0 then by definition CEorl’'C(e) = CEorl'C(e). Thereflore

by Lemma 47 we have
EQWIL™* + e = EVER"(R,7,7) = tt

as required.

Sub-Case (2) NumNonStrVars(e) = 0. Let z € X, for some s € § be the variable such
that either z C 7 or 2 € 7. We now proceed by sub-induction on the number n € N of the
applications of Rule (v) in EQWIL™? I e. (Notice that we cannot have used Rule (vi) by the
hypothesis that CEorFC(e) holds.)

Sub-Basis n = 0. In this case

EQWIL'" Y e = Et ¢

and
Ete= NF&r1)= NFR(T/)

by the hypothesis that I is complete, and
NFR(r) = NF&(r") = RED(R,7,7") = tt
by the definition of RED. Therefore, as by hypothesis NumNonStrVars(e) = 0 we have
EVERY(R,7,7") = RED(R, r,7)

and hence

EQWIL"® F e = EVER(R, 7, 7")

as required.
Sub-Induction Hypothesis. Assume for any ¢ = (t = t') € EQ(X, X) that if

NumNonStrVars(e') = 0,

CEorFC(e’) holds and EQWIL™® € using n' applications of Rule (v) for some fixed n’ € N
that

EQWILDE b ¢ = EVER'(r, ¢,t) = 1.

Sub-Induction Step. Lot ¢/ = (8 = #) € EQ(Z,X), let CEorFC(e”) hold and let
BEQWILEE + ¢ using n = n' + 1 applications of Rule (v). Notice that as by hypothesis
NumNonStrVars(e”) = 0 if we have used an application of Rule (v) to show EQWIL" - ¢~

then it must be the case that we have shown

EQWILDE F 7= (p,p)
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for some equation 1 € EQ(X,.X) such that either
eval(k,z)Cp

or
eval(k,z) C p';

and we have used Rule (v) to deduce that
EQWIL™Z F nleval(k, z)/y]
for some y € X such that y does not occur in 7 and deduced ¢” using substitution as follows:

EQWILN? F pleval(k,z)/y]  eval(x,z) = eval(k, )
EQWILYE F e,

Also notice that by Lemma 42 without loss of generality we may assume that in the proof
EQWILIE b ¢ there are no trivial deduction and hence any applications of Rules (i) to (iv)
of EQWIL were applied before Rule (v) was applied. Therefore, as by hypothesis EQWILDE ¢
n[eval(n, z)/ylin n’ applications of Rule (v) and by hypothesis R is stream variable reducing z is
the only stream variable that can occur in nfeval(s, z)/y]. Thus, if 2 does occur in pleval(x, z)/y)
then by the Sub-Induction Hypothesis

EQWIL™? F pleval(x, z)/y) = EVERY(R, pleval(s,z)/y), p'leval(k, z)/y]) = tt

and if z does not occur in nleval(x,z)/y] then by definition NumStrVars(nleval(x,z)/y]) = 0
and by Case (1) we also have that

EQWIL"® + pleval(x, z)/y] = EVERT(R, pleval(k,z)/y), p'leval(k,z)/y]) = tt.
Consequently, as by definition in this case
EVERT(R,6,8) = EVER'(R, 6,6
wherein (4,6') = SubEvals"(NF#(8), NFR(#)), since R is complete by hypothesis we have
5= 8 = pleval(, 2)/y] = pleval(x, 2)/y]

and hence
EQWILD? F ¢’ = EVERT(R,0,0') = ¢t

as required.
The rest of the proof now follows by a routine application of the Induction Ilypothesis using

a similar argument to that in Lemma 7.
0
Using Lemma 57 as promised we can now generalize Lemma 48 and Theorem 15 to the

context of stream algebras.



Lemma 58. Let T C %, let E C EQ(E,X) and let R C TRS(X, X) be a complete TRS that
is equivalent to E and that is stream variable reducing. Also, let e = (r = ') € EQ(X, X) be
some equation such that 7 € T(X, X)) wherein x € X, for some s € S is the left-most variable
occurring tn 7. [f either I'y = {c,,l,...,c,,,,,} Jor some ¢,; € %\, and Clorl'Clelx/e, 5])
holds for j = 1,...,n, € Nt or Iy = {b,,9,} for some b, € X\, and for some g, € ¥,, and
CEorF((e[z/b,]) holds and CEorFC(e[z/g,(x)]) holds and

R = RU {rlz/x] — r'[z/x]}
wherein v is some constant of type s such that x € ¥ is complete then

EQWILNE b e <= EVER'(R,7,7") = tt.

Proof. Similar to the proof of Lemma 48.

Theorem 17. Let ® € PREQ(Z, X), let R = TRCON(®) C TRS(E', X) and let
E = EQCON(®) C EQ(Y', X)

wherein ¥ is defined as in Definition 67. Also, let T' C X' be defined such that I'y, = {0, Succ},
Ly = {tt,ff} and let e = (r = 7') € EQX, X). If e satisfies one of the following conditions:
either

(A) 7,7 € T(Z"); or

(B) r,7" € T(¥,X) and if x € X, for some sort s € S occurs in e then either T', =
{Cety--vrCsn,} for some constants ¢, ; € Ty, for j=1,...,n, € Nt or s = 1 for some
r€S and T, = {cr1,.-.+Crn,.} for some constants c,; € Ly, for j =1,...,n, € N*; or

(C) r = o(z,T1,...,7) and 7' = ¢ wherein o € ' is some algebraic operation, ¢ € ¥ is any
constant, z € X,, and fori =1,...,n if y C 7 wherein y € X, for some s € S is some
variable such that y # = then either I'y = {cs1,...,C,n,} for some constantsc, ; € ¥y, for
j=1,...,n, € Nt ors =71 for somer € S and [, = {¢;1,...,¢.,} for some constants
¢y EX\, forj=1,...,n, € N*t; or

(D) v = o(z,r,...,7) and 7' = o'(z,7{,...,7,) wherein 0,0’ € X' arc some algebraic

operations such that 0 # o', 2 € Xy and fori=1,...,n€ Nand for j=1,... . m e N if
eithery C r; ory C 7/ whereiny € X, for some s € S is some variable such that x # y then
either Ty = {c,1,...,Csn,} for some constanis ¢,; € Eys forl=1,...,n, e N* s = for

somer € S and T, = {cr1y- .., Crn, ) for some constantsc,; € By _ forj=1,...,n, € Nt
then EQWILSF v e is decidable.

Proof. Similar to the proof of Theorem 15 using Lemma 57 in the place of Lemma 47 and
Lemma 58 in the place of Lemma 48.

a

In addition to the use of Theorem 17 in the following we also present a discussion of its

practical implications in Section 7.5.



7.4.3 A Total Proof Assistant and Total Proof Tool For STs

Using Lemma 58 and Theorem 17 as our theoretical basis we now define the function AV that
has very useful properties in the context of the verification of STs.

AV as a Total Proof Assistant. In the following definition the PREQ specification ¥
allows us to deal with the definition of additional algebraic operations not defined in %, and
Cartesian form stream transformer definitions. The motivation for the inclusion of ¥ was dis-
cussed in Section 6.6 and an example can be found in Section 6.7.1 after the definition of the

concatenation operator.

Definition 109. Let ¥ € PREQ(Z, X) and let ¥’ = ¥ JF be the extended signature of ¥ as
defined in Definition 50. Also let T' C %', For each u, v’ € S* and for each v € 5T we define

AVED CASTRAL(E, X)uw X ASTRAL(E, X)u, — B

uu’y

(ambiguously denoted AV¥'T) as follows: for each ® € ASTRAL(Y!, X)., and for each &' €
ASTRAL(Y, X)., such that ® and ®’ do not share any symbols other than those in ¥’ and X

i=|v]
AVYT(@,®) = /\ EVER'(R™™, 7, )
i=1
wherein
R®®¥ = TRCON(E™®"¥ = (E® |y ,(E* W ,¥)))
wherein

E(b — XASTRAL((I))
EY = YASTRAL('(D/)

and for i = 1,...]v]
Ti = fi(xaxlv""xlul)

and

1 ! !
7 = gi(Z, 2], T)y)

wherein f; and g; are the symbols from E®®*¥ (and hence R®* %) representing the co-ordinate
function of the Cartesian forms of the functions F' and G represented by ¢ and &' respectively,
and z € X, and z; € X, for j = 1,...,|u| and 2z} € iu; for I =1,...,|u'| are some distinct

variable symbols.

Well-Definedness, Termination and Soundness. We first show that AV is well-defined.
The termination properties of AV are considered in Lemma 59. Theorem 18 shows that AV is
sound with respect to the semantics of ASTRAL programmes.

Well-Definedness. First, notice that by the well-definedness of x*STRAL we have \ASTRAL(§)
€ PREQ(Y!, X)¢ v, and \ASTRAY(@') € PREQ(Y!, X)iw,o. Also, notice that as by hypothesis
® and ¢’ do not share any symbols other than those in ¥’ and X and by the fact that yASTRAL

[
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does not introduce any function symbols common to E® = yASTRAL(@) and E® = (ASTRAL($/)
by the well-definedness of W it is clear that E®®"¥ = E? |y (E? |y ¥ is well-defined
as a PREQ(X/, X),., specification. Therefore, by the well-definedness of TRCON we have
R®®.v C TRS(Y, L—) and hence by the well-definedness of EVER it is clear that AV¥®T is

well-defined as required.

Lemma 59. If¥, I', & and ' are defined as above then

AVPL(e o1y | .

Proof. First, notice that by Lemma 49 ¢; = (1, = 7/) for 7 = 1,...,|v] is weakly decidable with
respect to R®®" ¥, Also notice that R®®"¥ is stream variable reducing by Lemma 56. Therefore

by Theorem 16
VERT(R®® ", 7, 7))]

for j = 1,...,|vl. Consequently it is clear that AV®T(®,®’) is a total function as required.

0

Theorem 18. (The AV Soundness Theorem.) Let ¥ € PREQ(E,X) and let &' = S F

wherein F is defined as in Definition 50. Also let A = [(¥', E') wherein E = EQCON(Y)|c and
let T C %' be inductive for A.

If® ¢ ASTRAL(Y, X)y, and @' € ASTRAL(Y, X)u, are defined such that ® and &' do

not share any symbols other than those in ¥’ and X then

AVIT(@, @) = tt = [0]4 = [@'],.

Proof. [Let E®® ¥ R®®. ¥ f and ¢g; for7 = 1,...,|v| be defined as in Definition 109 and
let £ = EQC()N(E‘T’“V»W) C EQ(X”,X). First, notice that (using R to denote R""‘""‘I’) by
Lemma 49 ¢, = r; = riforj=1,..., |v| is weakly decidable with respect to R. Also notice that
R is stream variable reducing by Lemma 56. Therefore by Theorem 16

EVERT(R, 7, 7/) = tt => EQWIL'" F fi(z, 1, s 210) = gil2, 20, ., 2]y

for j = 1,...,]v]. Also notice that as by definition X C ¥" E C E, I' C ¥ is inductive for A

and A = [(¥, E) by Lemma 50 we have
EQWILY F fi(z, 20, 2p)) = 6@, 20,1, 2y)
==

[(YE) = filz, 21, SEMES gi(z, 2. "miu'l)'

Moreover, as 1(£, E)|s = I(Y/, E) by Lemma 37 we have A % [(£",F) and hence

:;l— }: f,’(I,l?l, v "Ilul) = g,'(.’E,:ITII, v ‘vx;u'l).
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Recall now that by hypothesis for j = 1,...,|v| the symbols f; and ¢; are the function sym-
bols representing the co-ordinate functions of the Cartesian forms of F' and (' respectively.
Consequently,

AE filz,zn . cew) = iz, o, 20

fori=1,...,|v| implies that
Al Flry, . ozw)(e) = G,z )(2);
that is, / |
(Va € A*) (Va' € A ) (VteT) Fa)(t) = GXa)(1).

However, by hypothesis F'4 = [#], and G2 = [¢'] 1 and therefore we have
AVIT (@, @) = 1t = [®], =[]

as required.

a
Discussion. Notice that it is the combination of Lemma 59 and Theorem 18 that establish
formally that AV is indeed a general purpose proof assistant in the context of primitive recursive
STs. However, as we promised we can also show formally that in the context of restricted, but
still useful classes of correctness statements AV is also a total proof tool. The implications of

these results are discussed in the following section.

AV as a Total Proof Tool.
Notation 5. Let ¥, ¥’ and I' be defined as above. Also let £ = EQCON(¥) and let

e (E‘f’ ¥ I(E"" W1¥))).

We write .
EQWILT?™ 7 F & = ¢

to mean formally that for ¢ =1,...,]|
L . I
EQWIL™# F iz, ey, ) = g, T 2)

wherein f; and g; are the symbols from E™®"¥ representing the co-ordinate function of the
Cartesian forms of the functions F and G represented by ® and @' respectively and z € X, and
z;e X, forj=1,...,|uland 2} € X, for I =1,...,|u[ are some distinct variable symbols.
Theorem 19. Let U ¢ PREQ(E, X), let Y = SUF wherein is defined in Definition 50 and
let I C X' Also let E = EQCON(Y), let

EM = (B W, (BY 1, 0)))

-1

o
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and for 1 = 1,...,|v| let f; and g; be the function symbols from E representing the co-ordinate
functions of the Cartesian forms of ® and @' respectively. If & € ASTRALY, X),, and
' € ASTRALY, X)., are defined such that & and ®" do not share any symbols other than
those in X' and X and z; € X, forg=1,..., ul and ) € ;,‘(;u/] Jorl=1,... |«| are defined

as in Notation 5 and the equations

filz,zg,. o, 'l'IUI) = gi(‘rvmll’ e "I[/u’])
Jori=1,...,|v| satisfy any of the criteria in Cases (A) to (D) of Theorem 17 then

AVET($,8") = 1t <= EQWILTE""" 1 ¢ = ¢

Proof. First, notice that by Theorem 18 we immediately have
AVET (8, 8') = tt = EQWILTF"" " - & = ¢/

and therefore it is sufficient to show the converse. This follows immediately by Theorem 17.
O

7.5 Discussion: Verifying SCAs and Hardware

Recall from Section 3.10 that by definition every SCA can be represented by a primitive recursive
function. Also, recall that SCAs encompass several broad and useful classes of computational
systems that are used in computer science including: artificial neural networks; cellular au-
tomata; dynamical systems and of course a large class of hardware that is one of our main
interests. As such the implications of the fact that VER, EVER and AV behave (at worst) as
total proof assistants in the context of primitive recursive sets of equations is clear. However,
the forms of Theorems 15 and 17, and Theorem 19 that depends on Theorem 17 are by necessity
technical in nature. Therefore, it is not immediately obvious what the specific practical implica-
tions of the abstract functions VER, EVER and AV may be in the context of their use as total
proof tools. As such, in this final section we discuss how we may make use of these functions’
properties in the context of SCAs and more specifically in the context of hardware devices when

expressed as STs.

7.5.1 Hardware: the Practical Implications of Theorem 19

In highlighting the practical implications of Theorem 19 we focus on the case that the ST to be
verified satisfies the criteria in Case (D) of Theorem 17.

Essentially what Case (D) states is that if we only consider hardware devices with finite state
and that only receive control signals (streams) whose point-wise values are taken from a finite
set then, relative to using equational logic and induction as a proof technique, the equivalence
of a device's implementation and its specification under initial algebra semantics is decidable.

From a practical perspective the class of hardware devices that satisfy these two criteria
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are very broad and include all standard microprocessors and most other basic hardware devices
including our running example the RS-Flip-Flop (see Section 8.4.1). Indeed, we would imag-
ine that the only hardware devices that do not satisfy these criteria would be either analogue
devices or devices with analogue components. Therefore, it would appear that Theorem 19,
implemented using the function AV, provides the most straightforward and general purpose
method of verifying hardware represented as an ST that we can reasonably expect. More specif-
ically, if for no other reason then we believe the implications of this result justify the approach
to stream processing that we advocate in this thesis.

Of course having made such a strong statement we must be careful to quantify it. In par-
ticular, we ourselves admit that even theoretical results specifically tailored for their practical
implications do not necessarily guarantee that they will provide usable software tools. Indeed,
as we discuss in Section 8.5 it by no means trivial to design a practical implementation of AV
that is suitable for use on devices of ‘real world’ complexity. Rather, what we claim is that the
function AV provides a sound theoretical basis for automated verification tools in the sense that
in principle it reduces the problem of verifying hardware to developing a usable implementation
of the function AV.

7.5.2 The Practical Implications of Theorem 15

To conclude this chapter we highlight one practical implication of Theorem 15 outside of the

context of hardware devices.

Cellular Automata. The abstract computational devices known as cellular automata (sece
von Neumann [1966] and Codd [1968]) are finding increasing use in non-linear science applica-
tions (see Farmer et al. [1989] and Gutowitz [1990]) including the study of chaotic and biological
systems. Of the four types of computational device that we have mentioned that are encom-
passed by SCAs the class of cellular automata are distinct in the sense that most examples that
are found in the literature are based on what is referred to as closed computation in Thompson
and Tucker [1994]; that is, apart from a ‘clock tick’ and some preset initial values (initial state)

they do not require any input to generate their output.
More formally, a typical cellular automaton can be specified as a function of the form

C:Tx A" — A

that is, as an SCA without stream inputs, wherein u € S* codes the device’s initial state, and
also codes any subsequent states that are computed from the current time and the current state
as described in Section 3.9.3. Moreover, and most importantly in the context of this chapter, a
cellular automaton’s state (A%) is by definition comprised of a finite number of configurations
and hence can be formalized as elements from finite carriers.

Therefore, an equational correctness statement relating the equality of two cellular automata
is of precisely the form to satisfy Case (D) of Theorem 15 and so we can deduce the following
useful fact.

Corollary 6. Let A be some standard §-sorted Y-algebra, let X be some S-indexed collection
of variable symbols such that © and X are pairwise disjoint, and let I' C ¥ be inductive for A.
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Also let ® € PREQ(Y, X ) wherein ® includes the definition of two cellular automata represented
by the function symbols C' and C' both of type (tu,u) for some u € S*.
If E = EQCON(®), A = [(L,E), and z € Xy and z; € Xy, for i = 1,....|u| arc some

distinct variable symbols then if we wish to show that
I(E. E) # C‘v(l" Iy,.. "‘/Bl“l) = C’(Q:’l'l, N .,.'L'lul)

then equational logic and induction provide a decidable calculus.

Proof. We prove the case where |u| = 1; that is, where v = s € § and leave the case where

|u| > 1 to the reader.
First, notice that under the hypothesis that ' € ¥ is inductive for 4 and that A = (¥, E)

by Theorem 13
EQWIL"P F C(z,zy,. .., 21) = C'(z, 21, .. ., 21y

—
(S, E)E Clz, 2y, 2) = C(2, 20, T)u))-

Therefore, as by hypothesis C and C’ represent cellular automata the equation C(z,zy,...,2},)) =
C'(z,z),...,2),) is precisely of the form to satisfy Case (D) of Theorem 15 and hence

(S,E)EC(z, 2y, zp) = C(2, 20, ., 2yy)

is decidable in the sense defined above as required.
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Chapter 8

Implementing a Proof Tool for STs:
a Case Study

Machines are worshiped because they are beautiful, and valued because
they confer power; they are hated because they are hideous, and loathed
because they impose slavery.

Bertrand Russell
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8.1 Overview

In this chapter we discuss the implementation of the function AV and its application to a small
case study: the RS-Flip-Flop, that we have used as our running example. This provides an
opportunity to demonstrate AV’s effectiveness as a total proof tool.

8.1.1 Simulating a Full Implementation

Recall that the definition of AV requires the development of several large and complex pieces of
software that include: an ASTRAL parser, a PREQ parser, and a PR parser. Moreover, as we
will discuss later, there are several practical considerations that at present limit the capabilities
of a full implementation of AV. As a consequence, what we describe in this chapter essentially
amounts to the development of two of the necessary constituents of AV: the function EVER
and the compiler C, the combination of which is sufficient to demonstrate the effectiveness of a
complete and efficient implementation. .

After some general comments regarding the development of the software, in Section 8.2 we
begin a more detailed discussion with a description of the input that must be supplied to the
implementation of EVER. This is followed in Section 8.3 by a description of the three phases
of the software’s operation. In Section 8.4 we discuss the implementation of the compiler C.

We conclude the chapter with an indication of the practical difficulties that we face in
designing an efficient implementation of AV suitable for the verification of large systems, and
suggests some methods that can be used to overcome these problems.

8.1.2 General Comments

The implementation of the function EVER and the compiler C has been developed on a SUN
SPARC station 2 running UNIX version 4.1.3 under Open Windows version 4.1.1.

This software has been programmed using the Sun cc C compiler and the Berkeley C Shell
programming language. The combination of these two applications has provided a fast proto-
typing environment and has made possible the re-use of previously developed software as we
will describe. A schematic representation of our implementation is shown in Figure 8.1.

8.2 Input

The correct operation of the implementation of EVER relies on the user providing the following

input to the system:

(1) An equational specification E that when orientated as left-to-right re-write rules forms a

complete TRS.
(2) A description of the signature of constructors I

(3) An equation of the form f(ti,... ta) = g(f1s-- - t;,) wherein f and g are function symbols
occurring in £ and t; and t} are some terms of interest for ;1 = I,...,n € N and for

J=1,...,m e N respectively.



We now discuss each of these requirements in more detail using our case study the RS-Flip-I'lop

as an example.

8.2.1 Implementing an Equational Specification Language

The development and implementation of a concrete language for the representation of equational
specifications forms an integral part of any implementation of EVER. As at the time of writing
no implementation of a PREQ parser exists the particular language that we have used for this
purpose is based directly on the language EQ that has been implemented by the author as part
of a previous project (see Stephens [1991]). The relevant features of EQ with respect to the

implementation of EVER are as follows:

(A) EQ provides a general purpose syntax suitable for the presentation of weak second-order
equational specification and hence for the specification of primitive recursive equational
specifications in Cartesian form. In particular, EQ is suitable as a target language for an
implementation of the ASTRAL compiler y*STRAL,

(B) We can compile EQ specifications into an equivalent TRS suitable for input into a first-
order version of the ATLASsystem (see Hearn [1994]) that provides an efficient and flexible

implementation of a first-order term re-writing engine.

(C) The combination of EQ and ATLAS provides an implementation of essentially all of
the constituent functions of EVER with the exception of some very low-level operations.
Moreover, these low-level operations performed by EVER that are not implemented by
EQ and ATLAS can be readily programmed using C shell script. While this reduces
the efficiency of the overall system it is adequate as a demonstration prototype and has

considerable reduced development time.

Example EQ Programme. The RS-Flip-Flop specification can be represented in Cartesian
form in EQ as follows: (notice in the discussion that follows because we are using the syntax
of actual implementation languages that both ‘Eval’ and ‘eval’ are used to represent the basic
stream operation eval and should not be confused with the actual function Ewval discussed in

Section 4.5.6.

SIGNATURE QF RSFlipFlop IS
SORTS
nat, bool, _bool
END_SORTS
OPERATORS
FFlopSpec : nat * _bool * _bool -> bool ;
END_OPERATORS
END_SIGNATURE
EQUATIONS
VAR T : nat ;
VARS S1, S2 : _bool ;
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VARS X1, X2 : bool ;
FFlopSpec( 0, Si, S2 ) = False ;
FFlopSpec( Succ( T ), Si, S2 ) =
True
IF And(Eq{bool}(Eval(T,Si),False),Eq{bool}(Eval(T,SQ),True)),
False
IF And(Eq{bool}(Eval(T,Sl),True),Eq{bool}(Eval(T,SZ),False)),
False
IF And(Eq{bool}(Eval(T,S1),True),Eq{bool}(Eval(T,S2),True)),
FFlopSpec( T, S1, S2)
OTHERWISE ;
END_EQUATIONS

Using an example EQ programme we can also highlight three more specific features that are

relevant to our discussion.

(D) Aside from its use as part of key words, the underscore (‘.") is prefixed to an existing sort
name in EQ to denote a stream carrier.

(E) Although we have explicitly included a sort declaration section in our example, EQ provides
features to automatically include corresponding stream sorts for each sort declared and also
allows the usual constants and operations associated with a particular sort to be included
automatically. For example, the operation ‘Eval’ is automatically included for each sort
as is ‘Eq’ (equality), ‘0%, ‘Succ’, ‘True’ and ‘False’. However, as [Q was not intended to
be a direct user-interface notation, notice that some of these operations must be postfixed
with sort information ‘{sort}’ as EQ does not allow overloading.

(F) Notice that EQ provides the facility to specify functions using case statements. These case
statements are eliminated using definition-by-cases when an EQ specification is compiled
into re-write rules (see Sections -£.2.3 and 6.7.1). In particular, notice that each case
statement must include an ‘otherwise clause’ and hence EQ is strictly limited to proper
equational specification; that is, this facility is nothing more than a syntactical convenience.

As we will see in later examples, EQ also provides the facility for local variable name declaration
that allows the cquations section to be divided in a modular fashion. This feature makes FQ) a
good target language for ASTRAL specifications that also use local variables (see Section 6.7).
Indeed, we note in passing that our practical experience suggests that local variable declaration
and Features (E) and (F) are very convenient from the perspective of the user and would be
included in an implementation of the language PREQ.

8.2.2 Describing I' and Specifying the Equation to be Verified

In the development of a prototype of EVER in order that we may supply the necessary infor-
mation concerning the signature of constructors I' we have found it useful to slightly modify the
original implementation of EQ to derive the language VEQ. In particular, a VEQ programme is

2644



an EQ programme followed by an additional section containing a description of I' together with
the details of the equation that we wish to verify. For example, in the previous EQ programme if
we had also included the equations representing the RS-Flip-Flop implementation in Cartesian
form then the VEQ programme necessary to verify the correctness of this implementation is the
EQ programme itself followed by this additional section:

VERIFY
SORT_INFO
nat : INFINITE : {0,Succ} ;
bool : FINITE : {True,False} ;
END_SORT_INFO
VAR T : nat ;
VARS S1, S2 : _bool ;
VARS X1, X2 : bool ;
FFlopImp( T, Si, S2, X1, X2 ) = FFlopSpec( T, Si, S2 ) ;
END_VERIFY

As the language VEQ is not intended to be a direct user-interface language and given the
straightforward nature of this additional section we simply note at this point that our choice of
syntax is sufficient to code both the structure of any I' and any equation e that are appropriate
for use with the abstract function EVER.

8.3 The Operation of the EVER Implementation

With the three necessary user inputs supplied to our software using a VEQ specification, the
operation of the EVER implementation is fully automatic and behaves either as a total proof
assistant or as a total proof tool depending on the syntactic structure of the equation e to be

verified (see Section 7.1).
The implementation’s operation is divided into essentially three modes of operation:

(1) Generating the Necessary Input for the ATLAS System.
(2) Simulating an EVER Deduction.

(3) Automatically Typesetting a Proof in TgX.

We describe each of these system modes in more detail:

8.3.1 Generating the Necessary Input for the ATLAS System

The generation of the necessary input to the ATLAS system is carried out by the VEQ com-
piler and is basically an ‘information generation phase’ that is further sub-divided into several
operations. However, most of these sub-functions are simply to create files to provide typing
information and lists of name substitutions to eliminate name-mangled identifiers during proof
generation (Mode (3)). Therefore, we will only discuss the most important operations performed
during this mode of execution omitting unimportant details.

The VEQ compiler first analyses the structure of the equation e to be verified. More specifi-
cally, it identifies the distinct variables occurring in ¢ and produces a number of files as output.
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These files hold particular sub-sets of the set of all equations derivable by all possible ground-
term substitutions of all variables in e using appropriate members of I'. For example, in the
context of the RS-Flip-Flop the VEQ compiler produces eight equations to be input to ATLAS:

fflopimp(0,cs15,cs25,true,true) = fflopspec(0,cs15,cs25)
fflopimp(0,cs15,cs25,false,true) = fflopspec(0,cs15,cs25)
fflopimp(0,cs15,cs25,true,false) = fflopspec(0,cs15,cs25)
fflopimp(0,cs15,cs25,false,false) = fflopspec(0,cs15,cs25)
fflopimp(succ(cts),cslS,csZS,true,true) = fflopspec(succ{ctb),cs15,cs25)
fflopimp(succ(ct5),cs15,cs25,false,true) = fflopspec(succ(ct5),cs15,cs25)
fflopimp(succ(cts),cslS,chS,true,false) = fflopspec(succ(ct5),cs15,cs25)
fflopimp(succ(ct5),cs15,cs25,false,false) = fflopspec(succ(cts),cs15,cs25)

wherein these equations are divided into two files containing the first and last four equations
respectively. We now explain the significance of these sub-sets in more detail.

Complimentary Sub-sets. Notice that in the equations above created to verify the RS-
Flip-Flop the variable T of sort nat has been replaced in the first four equations by 0 and in the
last four equations by succ(ct5) wherein ct5 is a name-mangled implementation of the constant
X. (Indeed, we note in passing that the constant ct5 along with any other new constants is also
automatically added to the original signature when the equations from the VEQ specification
are converted into a TRS.) These particular substitutions of the variable 7' are a direct result of
the description of the structure of I' in the verify section of the VEQ programme, that specifies
that nat is to be interpreted by a countably infinite carrier (N is this particular example).

The consequence of this fact is that (in the context of the RS-Flip-Flop) as there is only one
variable of type nat (variable T) we derive what we refer to as two complementary sub-sets of
equations; that is, the first and last four equations form two complimentary sub-sets because
equation e; differs from e;y, for i = 1,...,3 by one substitution that essentially constitute differ-
ent cases in a proof by case analysis; and e; differs from e;14 for i = 1,...,4 by one substitution
that essentially constitute the basis case and an induction case of a proof by induction. Thus,
we have divided the eight equations generated by VEQ into two sub-sets representing the basis
case and induction case of a proof by induction respectively, and both steps in this proof require
four specific cases to be analysed. Indeed, for this reason in the sequel we will refer to the basis
sub-set and the induction sub-set of two complimentary sub-sets of equations with the obvious
meaning. In addition, the specific pair of equations from a basis sub-set and an induction sub-set
that differ by only one substitution are referred to as a specific complement.

More generally, outside of the context of our case study, if z; € X, for some s; € § for
i = 1,...,m are the number of distinct variables (from left-to-right) occurring in an equa-
tion e and Z = {l,,...,L4} € {1,...,m} is defined such that for each j € {1,...,k} we
have I; € 7 <= L, = {b,,j,g,,)} for some constant b,,] and for some unary operation Y,
then VEQ will create |Z| pairs of complimentary sub-sets. In particular, if C’I? and C,’j are
the basis sub-set and inductive sub-set respectively of the [;th complimentary sub-sets then
C',If D) Czl,]“ and C[J D) lem for j = 1,...,k = 1. For example, if the equation to be ‘verified’
were Add(xz,y) = Mult(y,z) and T is defined as in our case study then VEQ would create 4
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equations:
ey & Add(0,0) = Mult(0,0),

ey & Add(0, Suce(x»)) = Mult(Suce(xa),0),
€a e Add(Suece(xy),0) = Mult(0, Succ(y,))

and
€4 def Add(Suee(x1), Suce(xa)) = Mult(Suce(xs), Suce(xy))

that are divided into two pairs of complementary sub-sets: CP = {e,, e,}, C? = {ey), cl =
{es,eq} and CI = {e,}.

In general, the creation of the entire set of ground-term instantiations of the variables in the
equation e to be verified is equivalent to an ‘un-winding’ of the recursive abstract definition of
EVER, that itself implements the successive applications of Rules (v) and (vi) in the calculus
EQWIL. Moreover, the identification the complementary sub-sets of these equations, has several

important practical implications:

(1) First, from the perspective of efficiency, if we use ATLAS to re-write both sides of each
equation in the smallest basis sub-set C{? first, and no common normal forms are found,
then we already know our proof has failed - as the basis case of a necessary induction
has failed. We return to this point in our algorithmic description of the operation of our

implementation of EVER (see Section 8.3.2).

(2) Secondly, the identification of the individual cases in complementary sub-sets enables us
to present a proof based on our our formal deduction that is structured in a more natural

semantic style (also see Section 8.3.2).

(8) Thirdly, as we will discuss in detail in Section 8.3.4 we can use complementary sub-sets to
infer existential quantification over variables defined over finite carriers.

(4) Finally, we note that the verification of the individual cases in complementary sub-sets
can be performed completely independently and hence makes the application of paralle}
techniques during a verification very straightforward. We return to this point in the final

section of this chapter.

The Total Number of Equations Created by VEQ. Returning to our case study, notice
that as boolis to be interpreted by a finite carrier with two elements (B in this case), the variables
X1 and X2 have been replaced by combinations of the constants true and false. However, also
notice that throughout the eight equations the stream variables 51 and §2 of type _bool have been
replaced with the name-mangled constants ¢s15 and cs29 respectively. This is a consequence of
the fact that (mirroring our theoretical assumption that I'y = @ for each s € .S - see Sction 7.2.2)
the implementation assumes that _boolis to be interpreted by an uncountable carrier ([T — BJ)
and hence cannot be finitely generated. In particular, this is the reason that we have 8 = 2°
equations to be passed to ATLAS and not 32 = 2° equations as we would have had, for example,
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if S1 and S2 were of type bool. Indeed, in general for some quation e the number of equations

n, € N to be verified that are passed by VEQ to ATLAS is

n, = IF,,‘| X II‘S_Q X .- "Fs.kl
wherein if as before z; € X, forsomes; € Sfori=1,...,mare the number of distinct variables
occurring in e then {iy,.. Lt € A{1,.. .,m} are the indexes of the variables such that I',, # ©
J
for each j € {1,...,k}. In particular, the replacement of the stream variables 51 and §2 with

constants in our case study is simply to ensure every equation created is defined using ground
terms. This is to avoid possible complications that can arise with open terms during the term
re-writing process.

We also mention in passing that the change in case of the function and constant names in
the equations generated from the original VEQ specification is to accommodate the naming
conventions supported by ATLAS.

Having created all the necessary information concerning the syntactic structure of ¢ and the
complementary sub-sets, the implementation begins its second phase of operation that simulates

the operation of EVER.

8.3.2 Simulating a EVER Deduction: an Overview

The specific way in which EVER is simulated using ATLAS has been strongly influenced by the
desire to automatically generate a readable proof. In particular, the mechanism by which the
abstract functions VER and EVER verify the correctness of an equation is quite different from
the standard proof techniques that would typically be applied in a verification done ‘by hand’.
Therefore, the implementation of EVER has been structured so that it reflects more closely the
structure of a deduction in the calculus EQWIL with the intention that this will give a more
naturally structured output (proof).

In more detail, by generating all possible ground-term instantiations of the equation to be
verified and by further identifying all complimentary sub-sets of these equations, it is possible
to generate a number of separate proof scores representing particular deductions about individ-
ual ground-term equations; that is, within each complementary sub-set each specific equation
represents a particular case of a proof by case analysis; and each pair of complementary sub-sets
represents the basis case and induction step of a proof by induction. Therefore, each individ-
ual proof score that is generated by verifying a particular ground-term equation can be linked
together to form a overall proof structured in a more semantic style. Most specifically, a proof
that is very close in structure to a proof done ‘by hand’ in that it mirrors an essentially semantic
use of the deduction rules of EQWIL.

We argue that the advantage of this approach is that such a proof is much more readily
accessible to human (and machine) verification. Moreover, while the theorems of the previous
chapter guarantee the correctness of the abstract functions VER and EVER, there is no such
guarantee of correctness for our implementation. Therefore, we can significantly increase our
confidence in an automatic verification if we have available a readable proof score of the de-
duction. Indeed, we argue that the generation of such a readable proof provides the maximum
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degree of confidence that can be rcasonably expected from any implementation of such tools

that have not themselves been formally verified.

8.3.3 An Algorithmic Description of the EVER Implementation

Essentially, the software that implements EVER consists of a number of C shell scripts that take
their input from the files created by VEQ: the files containing all the pairs of complimentary
sub-sets of the equations created by VEQ; a file containing the TRS created from the original
EQ specification that is suitable as input to ATLAS; and several files containing information
concerning variable typing and any identifier re-naming that has been necessary. At a very high

level the operation of the this software is as follows.

Let Cllf and Czl, for j = 1,...,k be the pairs of complementary sub-scts as defined in Sec-
tion 8.3.1, recalling in particular that C¥ D P, and O D Cf  forj e {l,....k~1} and
hence by removing an equation from CIIJ+1 (say) that we are also removing an equation from C7..
Also, let R be the TRS created by VEQ in a format that is suitable as input to ATLAS. )

BEGIN
(A) Set j = 2k + L.
(B)

(a) Set j =37 —1.
(b) If j = 0 then typeset a proof and STOP.
(c)
(1) If j > k then set C = ch ..
(II) If j < k then set €' = ct.
(C) Split each equation in C into two terms (the left-hand-side and the right-hand-side) and

use ATLAS to reduce both terms to their normal forms using . Store these normal forms
along with the corresponding reduction sequences output by ATLAS.

(D)
(a) If all the normal forms from Step (C) are the same then GOTO Step (B).
(b) For each equation n = (7 = 7') in C without matching normal forms do:
(1) If there does not exists a term £ = eval,(#, X) for some s € S such that either
t C rort C 7' then remove the equation 7 from C and remove 7)’s specific
compliment from C’s complimentary set (see the following example).
(I1) If there does exists a term ¢ = eval,(0, X ) for some s € S such that either t C 7
or t C 7’ then
(1) Replace each of the terms ¢ with a new variable symbol not occurring in 5
to make a new equation to be verified 7' .
(i) Make a copy of the VEQ programme with the verify section modified by
changing e to 7’ adding the information about the new variable symbols as

appropriate.
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(iii) Recursively call EVER with the new specification as defined above and
record whether EVER was successful in proving this new equation.
(iv) For each equation 7 whose recursive call to EVER was not successful remove

n from C and remove n’s specific compliment from C’s complimentary set.

(¢) If C' = @ then output a diagnostic indicating that the verification has failed and
STOP.

(d) If 1 < j < k then for each equation in ¢’ add an appropriate re-write to R representing
the corresponding induction hypothesis for the ‘basis case’ that has just been proved

(again see the following example).
(E) GOTO Step (B).

END

Example 22. We continue our use of the RS-Flip-Flop as a case study. In particular, we
use the full VEQ specification representing both the Flip-Flop specification and the Flip-Flop
implementation (that unfortunately cannot be included as it is too long). A discussion of how
the equations representing the Flip-Flop implementation were generated can be found in the
next section.

Recall that in this case the equation e to be verified is

FFlopImp( T, S1, S2, X1, X2 ) = FFlopSpec( T, S1, S2 ).

Therefore, in this particular case we have m = 5, {zi,...,zm} = {T,51,52,X1,X2}, k = 1,
I ={}={1},CE = {e,...,es} and Cl = {es,...,es} wherein e; for i = 1,...,8 are the
equations generated by VEQ as defined previously in Section 8.3.1. Notice in the following
description of the operation of EVER that the system automatically deduces that the Flip-Flop
implementation is only correct if the values of variables X1 and X2 are ¢t and ff respectively;
that is, our implementation automatically deduces an appropriate existential quantification on

these variables.
(1) At Step (A) weset j=2k+1=3.
(2) At Step (B.c.I) we set C' = CE = {ey,...,ea}.

(3) At Step (C) we generate eight normal forms - the normal forms of the left- and right-hand-
sides of equations e,...,e4 that we will denote nfl; and nfr; for i = 1,...,4:

nfly = false, nfr = true;
nfly = false, nfr true;
nfly = false, nfry; = false
and

nfly = false, nfry

false.

We also generate the eight corresponding reduction sequences.
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(4) As nfl, # nfr, and nfly # nfr. Step (D.a) fails.

(5) As none of the normal forms contain an occurrences of eval during the first and second
. . . _ (B . 1 -
iteration of Step (D.b) at (I) we set €' = CP = {es,¢e4} and C| = {er, eg} respectively.
Notice that this means that only certain instantiations of variables gave matching normal
forms and hence our resulting correctness statement will contain existential quantification
on the variables X1 and X2.

(6) At Step (D.e) we add the following re-write rules to R:
fflopimp(ctS,cslS,cs25,false,true) -> fflopspec(ct5,cs15,cs25)
and
fflopimp(ctS,csiS,chS,false,false) -> fflopspec(ct5,cs15,cs25)

(7) At Step (B.a) weset j = L.
(8) At Step (B.c.ll) we set C = Cl = {er, es}.

(9) At Step (C) we generate four normal forms - the normal forms of the left- and right-hand-
sides of equations e, es that we will denote nfl; and nfr; for i € {7,8}:

nfl; = nfly =
de(
and(eq(eval(ctd, cs15), false), eq(eval(ct, cs25), true)),
irue,
de(
and(eq(eval(ct\'),cslS),true),eq(eval(ctB,chS),false)),
false,
de(
and(eq(eval(»ctS,6315),t7‘ue),eq(eval(ct5,cs‘25),true)),
false,
f66el(mult{cts, suce(suce(0))),cs15,es25, cs15,¢s825, false, true)

)

eval(ctd, es15),
not(
or(
f66c1(mult(cts, succ(succ(()))), cs15,¢825,¢515,¢825, false, true),
eval(ctd, cs2d)

o
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and

nfry =
not(
or(
eval(cts, cs1),
not(
or(
f66c1(mult(cts, suce(succ(0))), cs1d, ¢s25,cs15,¢525, false, false),

eval(cth, cs25)

)
)

We also generate the four corresponding reduction sequences.

Stepping back from our case study for one moment, at this point we wish to re-
emphasize an important point that we made in Section 7.4.2, and more specifically the
point we made in Example 21 concerning the relative effectiveness of VER and EVER and
w-complete specifications. Notice that in the terms nfr; and nfrg there are sub-terms of

the form

or( f66¢c1(mult(cts, succ(suce(0))), cs15,¢s25, cs15,¢s25, false, true), eval(ct5, cs25))
and

or( f66c1(mult(ct5, succ(suce(0))), es15, 525,515, ¢s25, false, false), eval(ct5, cs25))

respectively. In particular, notice that even with the boolean operation or defined as

follows:
y ifz=ff
r ify=f
D= e = 1t and
tt ify=1tt

that both the above sub-terms are irreducible without the use of the abstract function
SubEvals.

Now returning to our case study.

(10) As nfl; # nfr: and nfls # nfrs Step (D.a) fails.

(11) As both pairs of normal forms contain occurrences of eval at Step (D.b.1I) we recursively

apply EVER to the two equations 7, and 7 defined respectively as follows:
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de(
and(eq(z, false), eq(y, true)),
true,
de(
and(eq(z, true), eq(y, false)),
false,
de(
and(eq(z,true), eq(y, true)),
false,
f66el(mult(ct5, suce(suec(0))), cs15,cs25,¢s15,¢525, false, true)

not(
07‘(\f66c1(mult(>ct5,Succ(succ(O))),0515,cs‘25,c315,cs‘25,fal.se,true),y)
)
)

)
and
de(
and(eq(z, false), eq(y, true)),
true,
de(
and(eq(z,true), eq(y, false)),
false,
de(
and(eq(z, true), eq(y,true)),
false,

f66¢c1(mult(cts, suce(succ(0))), cs15,¢s25,¢515,¢525, false, true)
) .

)
)

i

not

X -

<

not(



or(f66c1(mulz,(’ct5,succ(succ(ﬂ))),c.915,(3325,6315,c52.5, false, false),y)

).

Therefore, we now have two sub-verification to perform: that is, we now need to verify the
following two equations:

nfly[eval(cts ,cslS)/zz][aval(ctS,cs’ZS)/y] = nfryleval(ct5,cs15)/z][eval (ct5,cs25)/y]

and
nflgeval(cts Lcs15)/x][eval(ct5,cs28)/y] = nfrgleval(ctS,cs15)/z]leval(cts,cs25)/y]

wherein z and y are new free variables. Both of these sub-verifications essentially require
a proof by case analysis wherein there are four cases (as we have two variables z and y
of type bool in each equation). The first sub-proof is successful the second is not. Notice
that this means that if the value of variable T is non-zero then the only instantiation of
variables X1 and X2 for which the Flip-Flop implementation is correct is X1 = true and

X2 = false.

(12) Based on failure of the first sub-verification, at Step (D.ILiv) we remove equation eg from
C = C! and equation e; from Cf leaving €' = CI = {es} and CP = {e;}. This indicates
that our proof has been successful in that at least one pair of specific complements from

each complimentary sub-set has given matching normal forms.

(13) At Step (B.b) we are now in a position to deduce the appropriate quantification for our
correctness statement and hence typeset a proof. This process is explained in the following

sections.

Discussion.  To conclude this section we wish to re-emphasize at this point that in the
context of equational specifications created from AV programmes, the abstract algorithm we have
presented above mirrors the theoretical properties of EVER in that its deductive properties are
at worst equivalent to a total proof assistant. Moreover, at best it also behaves as a total proof
tool, as using the RS-Flip-Flop as a case study demonstrates. This is because the correctness
statement relating the Cartesian form of the RS-T'lip-Flop’s specification and the Cartesian
form of its implementation give rise to an equation that satisfies Case {D) of Theorem 17 (sce

Section 7.5).

8.3.4 Deducing Existential Quantification

Using the method we outlined in Section 8.3.2 the final mode of operation of our implementation
(Mode 3) is the automatic generation of a ‘semantic style’ proof based on a successful formal
deduction carried out in Mode (2).

While this aspect of our implementation is quite challenging from a programming perspective
there is only one sub-operation performed in this mode that is of any theoretical interest: the
mechanism by which we may automatically deduce the appropriate existential quantification on
variables ranging over finite carriers. Therefore, we limit our discussion to this aspect of the
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final stage of automatic verification. An abridged version of the proof created by our software
during the verification of RS-Flip-Flop can be found in Appendix C

Existential Quantification. Taking our case study as a specific example, strictly speaking
our implementation of EVER is not correct. More precisely, to achieve a successful proof notice
that our abstract algorithm does not require that every equation in a basis and induction sub-
set need be proved. Rather the algorithm requires that at least one equation in each basis and
induction sub-set can be proved. Essentially, this relaxation of the manner in which the abstract
function EVER makes a deduction amounts to extending the implicit universal quantification
on each variable to both universal and existential quantification on variables that range over
finite carriers.

In the context of hardware, allowing existential quantification is very useful as it is often
appropriate to deduce that a piece of hardware is correct relative to some particular initial values
that are preset before the device begins to receive input. Indeed, this is true of the RS-Flip-Flop
and of many other pieces of hardware that can be expressed as SCAs (see Section 3.10).

The reason we have not implemented existential quantification at a theoretical level is that
if it is allowed as part of the underlying calculus then the four standard rules of equational logic
are no longer sound (see Meinke and Tucker [1992]). While this problem can be overcome by ap-
propriately modifying the basic rules of deduction, this complicates the correspondence between
the deductions carried out in this calculus and the deductions carried out by term re-writing
using a TRS created from our specifications. However, by deducing existential quantification
‘externally’ we avoid this technical difficulty as our implementation is still based on standard
equational logic.

Therefore, it remains for us to explain how we may deduce the appropriate existential quan-
tification when all of the ground-term equations created by VEQ do not give matching normal
forms. For convenicence in the explanation that follows we will use the term ‘quantification’ to

mean ‘existential quantification’ where this does not create any ambiguity.

An Algorithm. Recall the definitions and examples of Section 8.2.1. In particular, recall the
definition of variables z; for ¢ = 1,...,m from equation e and the number of combinations of
ground-term substitutions n, that are derivable from e. Now let X = {zy,...,2,,}.

First, the deduction of the correct quantification on a variable 2 € X requires that we place
some ordering on the members of X. However, this ordering is not significant from the perspec-
tive of the quantification in the correctness statement that will be produced in the sense that
changing this ordering may produce a different quantification, but all possible quantifications
will be equivalent. More formally, all possible quantifications that can be produced relative to
our choice of ordering will share the same prenex normal form representation (see for example
Mendelson [1987]). Therefore, rather than simply make this ordering relative to each variable’s
first occurrence left-to-right in ¢ we find it more convenient to use essentially this order, but treat
stream variables and non-stream variables separately; that is, each variable is ordered as per
its first occurrence left-to-right in e, but we first examine non-stream variables, making stream
variables ‘least significant’. Now let (Ji,...,Jm) be the permutation of the indexes (1,...,m)

of the variables X as per this ordering. For example, if e is the correctness statement f{or the
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RS-Flip-Flop then X = {x,,...,z5} = {T, 51, 52. X1, X2}, but the ordering we impose on these
variables is 7', X;. X, 5,, 5> and hence (J;,...,7s) = (1,4,5,2,3).

Secondly, we need to know precisely which ground-term substitutions have been made for
each variable in X and which of these substitutions produced matching normal forms. In particu-
lar, we need to know all the combinations of ground-term equations that were generated by VEQ
and which of these combinations produced matching normal forms. Now let C; = (¢ 1,...,5 )
fori=1,...,n, wherein ¢ is the particular substitution made for variable z; in equation ¢; for
k=1,...,m by the VEQ compiler and let M = {my,...,m,} C{1,...,n,} be the the indexes
of these substitutions that gave matching normal forms. For example, again using the cor-
rectness statement e of the RS-Flip-Flop as an example, we have C, = (0,cs15,¢525,true, true),
C, = (0,cs15,cs25,false,true). ..., Cg = (succ(cts),esld,cs25, false, false) and M = {3,7}.

In general, given C; for i = 1,...,m, the permutation (ji,...,jx) and M = {my,..., m,_ } the
algorithm to deduce the appropriate quantification €; € {V, 3} for variable z;, fori=1,...,m
is as follows:

BEGIN

(A) Leti=1,and let S = UJ__Ilul{gml,j‘}'
(B)
(a) If 8 = )" {6m, ;. } then Qi = V.
(b) If S C UZ1" {om, ;. } then Q; = 3.
(C) Let S = U']”l”l{é'm,,j.}-
(D) If j; < m then

(a) For each j € {1..... | M|} such that there exists a ¢, ;, € S let
k={M|
R; = U {Gnp jope | such that 3¢, 5 = ¢u, 5.}
k=1

(b) Let § = (V1M R,

j=1
(E) Let i = i + 1.

(F) If i < m then GOTO Step (B).
END

Discussion. Ignoring the special case j; = 1, essentially for each ¢ = 2,...,m the algorithm
deduces the appropriate quantification Q; by checking each substitution of variable z; _, that
gave matching normal forms in the verification to see which substitutions of variable z;, oc-
curred with that substitution - this is done by constructing the sets R;. If all of the possible
substitutions of variable z;, occurred with each su bstitution of variable z;, _, then we conclude
that Q; = V - this will be the case if ﬂj_ll”l R; = UjZi"{6m, ;.}; otherwise lf only some of the
possible substitutions of variable z;, occurred with each substitution of variable z; _, then we

conclude that Q; = 3.



Example 23. Again using the RS-Flip-Flop we show how the algorithm correctly deduces the

quantification @, = V. @, = 3 and Q3 = 3 for variables T X and X, respectively.
(1) At Step (A) we set S = "::2{%],1‘1} = {0, suce(ct5)}.

j=1

(2) At Step (B.b) we set @, = V.
(3) At Step (C) S is unchanged.

(4) As G, j, = a1 = 0 € Sand Gu,j, = 671 = suce(ctd) € S at Step (D.a) we create two
sets: R, and R, defined respectively as follows: R, = true because ¢, ;, = ¢34 = true and

Smygy = S0 = 0 and Ry = true because ¢, j, = <74 = true and ¢, ;, = ¢y = suce(cts).
(5) At Step (D.b) we set S = {true}.
(6) At Step (B.b) we set o = 3.
(7) At Step (C) S is unchanged.

(8) AS 6, jy = s34 = true € S and Gp, j, = 7,4 = true € S at Step (D.a) we create two sets:
R, and R, defined respectively as follows: R; = false because ¢, ;; = ¢35 = false and
Smyja = S34 = true and Ry = false because G, ;, = 575 = false and ¢, j, = ¢r 4 = true.

(9) At Step (D.b) we set S = {false}.
(10) At Step (B.b) we set Q5 = 3.

Thus, the implementation has deduced that the appropriate quantification for the correctness

statement is:

(VT)(3X1)(3X2)(V¥S1)(Vs2) FFlopImp( T, S1, 52, X1, X2 ) = FFlopSpec( T, S1, S2 ).

Example 24. As a final example let us also use the RS-Flip-Flop, but assume now that the
specification has been changed so that M = {3,4,7,8}; that is, so that the initial values of
the boolean pair (.\'}, X2) = (false, false) also gives a correct implementation. We show how
the algorithm correctly deduces the quantification @ =V and @, = V for variables 7" and X

respectively.
(1) At Step (A) we set S = j:'f{g‘ml‘jl} = {0, succ(ct5)}.
(2) At Step (B.b) we set Q; = V.
(3) At Step (C) S is unchanged.

(4) As Gmygy = 30 = 0 €8, Gmyjy = 1 = 0 €8, 6y = a1 = suce(ets) € 8 Smeg =
51 = suce(cti) € S at Step (D.a) we create four sets: Ry,... R, defined respectively
as follows: R, = R, = {true, false} because <n, j; = G4 = true and ¢, ;, = oy, = 0
and G, ,, = saq = false and Gy gy = Smasi = 03 and Ry = Ry = {true, false} because
Smaga = S74 = truc and Gm, g, = Smagy = succ(cts) and ¢m, j, = G4 = false and g, ;, =

Smygy — SllCC((,‘L;).
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(5) At Step (D.b) we set S = {true, false}.
(6) At Step (B.b) weset Q. = V.

Thus, the implementation has deduced that the appropriate quantification for the correctness

statement is:

(VT)(V¥X1)(3X2)(VS1)(VS2) FFlopImp( T, Si, S2, X1, X2 ) = FFlopSpec( T, Si, S2 ).

This concludes our explanation of the implementation of EVER. We now discuss the imple-

mentation of the Cartesian composition compiler C.

8.4 Implementing the Cartesian Composition Compiler

8.4.1 Overview

Recall that the definition of the compiler Y*STRAL from ASTRAL into PREQ makes use of the
generalized Cartesian composition compiler C. Therefore, from the perspective of implementa-
tion, the compiler Y*STR*L makes use of PR as an intermediate representation. As a consequence
and as highlighted by the RS-Flip-Flop as a case study, while an implementation of EVER does
not directly rely on the implementation of the compiler C, a demonstration of its effectiveness
as a total proof assistant and total proof tool does. In more detail, if we wish to specify the RS-
Flip-Flop implementation in EQ in Cartesian form then this requires composing the Cartesian
forms of the RS-Flip-Flop itself and its pre- and post-processing schedules (see Section 6.7.2).
This raises two practical problems: (1) the theory to effect Cartesian composition is stated in
terms of PR schemes and not equations; and (2) at present there is no compiler from EQ into
an implementation of PR. In order to overcome this difficulty we proceed as follows.

(A) First, we specify the RS-Flip-Flop and it pre- and post-processing schedules as CFSTs in

PR as three separate schemes.

(B) Secondly, we combine these schemes into a single equivalent scheme using the implemen-

tation of C.

(C) Thirdly, we convert this single scheme into an equivalent EQ scheme using a PR to EQ

compiler that already exists (see Stephens [1991]).

(D) Finally, we combine the EQ programme representing the RS-Ilip-Flop and the EQ pro-
gramme representing the RS-Flip-Flop specification to produce the necessary VEQ pro-
gramme that we have already discussed and used in the previous sections.

Discussion. One important point that we wish to make at this stage is that this is not an
ad hoc method used in the context of a single example. Rather, this process mirrors the opera-
tions that will eventually be performed automatically as part of the AV implementation in the
following sense: that an ASTRAL programme representing the RS-Flip-Flop’s implementation

)
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would create the required PR representation (that we have created by hand) automatically be-
fore creating the corresponding EQ (PREQ) specification (see Section 6.3.1). Therefore, this
technique provides an effective test to demonstrate the implementation of EVER as it mirrors
any eventual implementation of AV's use of the function EVER as a sub-programme.

Therefore, to complete this chapter we again use our case study the RS-Flip-Flop to explain
cach of the four steps above more precisely.

8.4.2 Implementing Cartesian Composition

In a similar fashion to the way we found it convenient to use the implementation of the language
EQ to represent PREQ programmes, the implementation of the compiler € is also based on soft-
ware previously developed by the author. In particular, the implementation of the compiler C is
based on a PR parser and a PR to EQ compiler that was developed as part of the same project
in which EQ was developed (see Stephens [1991]). Indeed, the implementation of the language
PR is very similar in some respects to EQ and hence we will not describe all the details of the
implementation’s syntax and grammar. Rather, as before we will concentrate on the features of
the language that are relevant to its use in the context of this thesis.

The programme that is used to represent the three components of the RS-Flip-Flop imple-

mentation is essentially three PR programmes presented as a single specification as follows:

SORTS

bool ;
OPERATORS

2 : -> nat ;

Nor{bool} : bool bool -> bool ;
PROGRAMS

<
Eval{bool?} o
<
Mult{nat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] >;
U<nat _bool _bool, 2 >
>
Eval{bool} o
<
Mult{nat} o < U< nat _bool _bool, t >; 2[ nat _bool _bool] >;

U<nat _bool _bool, 3 >

<-(2=23)

*( < U< _bool _bool bool bool, 3 >;
U< _beol _bool bool bool, 4 >



<
o(
Nor{bool},
<
o(
Eval{bool},
<
U< nat _bool _bool bool bool bool bool, 1 >;
U< nat _bool _bool bool bool bool bool, 2 >
>
)5
U< nat _bool _bool bool bool bool bool, 7 >
>
);
o(
Nor{bocl},
<
U< nat _bool _bool bool bool bool bool, 6 >;
o( Eval{bool},
<
’ U< nat _bool _bool bool bool bool bool, 1 >;
U< nat _bool _bool bool bool bool bool, 3 >
>
)
>
)
>
)
<-(2=3)
<

Eval{bool} o
<
Div{nat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] >;
U<nat _bool _bool, 2 >
>
Eval{bool} o
<
Div{nat} o < U< nat _bool _bool, 1 >; 2[ nat _bool _bool] >;
U<nat _bool _bool, 3 >




Discussion.

(A) First, notice that in the Programmes Section each of the basic operations and each of

(B)

(C)

the function building tools are implemented in a straightforward way. However, two small
points that we wish to make are that: (a) as formally PR uses an infinite signature,

hl

constants are postfixed with an expression of the form ‘[.]' wherein .” represents the
constants particular domain in the context in which it is being used; and (b) for convenience
during parsing the symbol *; is used to separate schemes in vectorizations and is also used

as the programme terminator.

Secondly, notice that as we indicated in this particular case the Programme Section is
divided iuto three schemes: a;,ay,as that represent the post-scheduling function, the
Flip-Flop itself and the pre-scheduling function respectively. In particular, notice that
these schemes are separated by two expressions of the form ‘¢ ( 2 = 3 )’. This indicates
that each of the schemes are to be treated as CFSTs and that we want to generate a
single PR scheme representing the result. More specifically, this syntax indicates the
vector-valued Cartesian composition of scheme a3 with co-ordinates two and three of «,
‘simultaneously’ with the vector-valued Cartesian composition of a; with co-ordinates two
and three of scheme «a;. The informal use of the word ‘simultancous’ in this context
simply means that the order in which the Cartesian compositions are to be performed
is not important relative to the semantics of the resulting scheme. However, it can be
very important from the perspective of efficiency relative to the size of the scheme that
is created, although unfortunately a discussion of this topic goes beyond the scope of this
thesis (see Point (C) below).

We also note in passing that for convenience during the design of our software the
implementation of C is also capable of performing Cartesian composition using just specific
co-ordinates of schemes that may be ‘applied out of sequence’. For example, considering
the schemes a» and a in isolation for a moment, if we had separated schemes «, and
g with the expression ‘€ ( 3, 2 )’ then this would have created the scheme representing
the ‘simultaneous’ single-valued Cartesian composition of co-ordinate one of a; with co-

ordinate three of a»'s domain and co-ordinate two of a3 with co-ordinate two of a,'s

domain.

As the operation performed by the compiler C is highly technical the schemes that it
creates are generally very large and highly complex even if the schemes supplied as input
are straightforward. This fact combined with the inefficiency of the prototype implemen-
tation of ¢ means that using the general Cartesian composition method of the compiler
(on which C is based) we cannot, for reasons of the memory required, generate the single
scheme representing the RS-Flip-Flop from the programme above.
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However, we can observe that the generality, and hence the complexity, of the com-
piler C is not necessary for any of the examples (of hardware) that we have encountered as
part of our work. More specifically, we have designed a formal function that can test PR
schema to see if the full generality of the compiler C is required to perform the necessary
Cartesian composition, and incorporated this function into our implementation of C. As
such if the full generality of the compiler C is is not required to perform the Cartesian
composition of two schemes then we can apply a much more efficient version of Cartesian
composition that can be more readily implemented.

Unfortunately, due to considerations of the space needed to present these ideas for-
mally, they will not be included in this thesis. However, as a practical indication of the
increase in efficiency gained relative to the size of PR scheme created by the efficient C
compiler (and hence the number of equations created when this scheme is compiled into
EQ) we note that: the single PR scheme created by this efficient compilation method
to represent the RS-Flip-flop when it is only composed with its pre-scheduling function
(the Cartesian composition of schemes a, and a3 above) is a scheme composed of 4 of
constants, 10 of algebraic operations, 27 of projections, 15 compositions, 17 vectorizations
and 1 primitive recursion; whereas the direct implementation of C creates a scheme com-
posed of 21 of constants, 50 of algebraic operations, 233 of projections, 77 compositions,
79 vectorizations and 1 primitive recursion. Hence, in this specific example the efficient
implementation of C is capable of creating a scheme that requires only 8% of the memory

required by the general method.

8.4.3 Compiling PR into EQ

The PR to EQ compiler that we have made use of is based on the compilation technique presented
in Thompson and Tucker [1991] (see Section 5.2) and hence also suffers from some limitations
from the perspective of efficiency. However, in the context of the RS-Flip-Flop this is not a
major problem.

We conclude this chapter with some further comments on the development of a full imple-
mentation of AV, but this time from the perspective of the overall efficiency of the software

relative to its speed and memory use.

8.5 Designing an Effective Implementation of AV

In the particular context of this chapter we have chosen the RS-Flip-Flop as a case study as our
experimentation with larger case studies, including the PDP8 (sce Harman and Tucker [1993)),
has shown that while our implementation of AV can in principle verify the correctness of many
classes of hardware device automatically, developing an implementation of practical use is by no
means straightforward. For example, our work with the PDP8 has shown that there are in excess
of 102.000.000 individual cases that need to be checked to complete a verification! Moreover,
based on our smaller case studies we estimate that the time and memory necessary to complete
this verification using the current implementation of AV is approximately 3,000 years and 5,000

giga-bytes of storage respectively!

282



While this may at first appear to make the theoretical verification methods that we have
presented in the previous chapter intractable for all but trivial examples, we note that ex-
perimentation with executing our current implementation on alternative hardware has already
shown that an immediate increase of between one and two orders-of-magnitude in the speed with
which a formal verification may be completed is possible. We also state that it is reasonable to
expect a further increase of one order-of-magnitude in speed by improving the efficiency of the
implementation of our abstract algorithms. In particular, it is reasonable to expect an increase
of one order-of-magnitude in speed by eliminating the use of interpreted code (see Figure 8.1).
Therefore, as in principle we can imagine that an amount of memory in the order of 5,000
giga-bytes could be made available with current technology, let us explore hypothetically the
practical steps necessary to make our implementation of AV usable. However, to be realistic in
our assumptions let us first take into consideration that a typical modern microprocessor will be
of significantly greater complexity than the PDPS, perhaps requiring between ten times and one
hundred times as many cases need to be tested (say). Hence, let us examine hypothetically the
steps necessary to achieve an increase in speed of between five and six orders-of-magnitude in
the combined performance of the current software and underlying hardware to derive an effective
implementation of AV.

First, recall that by incorporating the two improvements to our software we have suggested
above we concluded that we will immediately obtain between two and three orders-of-magnitude
increase in the speed with which a verification is performed. Secondly, also recall that every case
within a complimentary sub-set can be verified completely separately and hence we may readily
perform each mode of operation of our software in parallel (see Section 8.3.1). Consequently,
consider the situation where we perform our verification on the latest version of the connection
machine (see Hillis [1985]) that has already been constructed and is essentially equivalent to a
parallel connection of in excess of 64,000 machines that are each between one and two orders-of-
magnitude faster than the machine on which our current implementation of AV was developed
(see Section 8.1.2). Based on our conjectures the connection machine would make the formal
verification of a current ‘real-world’ device possible in approximately four hours. Moreover, even
if this speed-up was slowed by two orders-of-magnitude due to data transfer overheads and other
considerations the verification of a ‘real-world’ device would still be possible in two-and-a-half
weeks. Therefore, since this period of time is significantly less than the design phase of a modern
microprocessor (see Stavridou [1993]) we conclude that the development of a practical imple-
mentation of AV is certainly not out of the question within the near future.

This chapter completes the development of the research agenda that we set in Chapter 3. As
such we now conclude this thesis with some general observations on the work we have presented.
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Figure 8.1: A Schematic Representation of the AV Implementation
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Chapter 9

Concluding Remarks

Accuracy is the enemy of pedagogy.

Obviousness is the enemy of correctness.

Richard Feynman

Bertrand Russell



9.1 Thesis Overview

This thesis has presented the basis of an alternative and essentially first-order theory of stream
processing based on algebraic techniques. In particular, this theory has developed and extended
ideas taken from the theory of synchronous concurrent algorithms and generalized recursion
theory based on the work of B C Thompson, J V Tucker and J I Zucker. Our main motivation
has been: (1) the development of a user-friendly specification language for STs with a straight-
forward denotational semantics; and (2) the development of theoretical and practical tools for
the automated verification of STs when expressed in this language. More specifically, the devel-
opment of tools that are suitable for the automated verification of safety-critical hardware, but
not limited to this application.

In Chapter 3 we identified what we believe are the weaknesses of existing approaches to
stream processing. In particular, we highlighted weaknesses from the perspective of the applica-
tion of automated verification techuiques for STs. Moreover, we set an agenda of research that
was sufficient to address each of the problems we identified.

In Chapter 4 we presented an effective solution to the first of our rescarch problems that
demonstrated formally the practical applicability of our alternative method of specifying STs in
Cartesian form. We also analysed the scope and limits of Cartesian form computation.

In Chapter 5 we designed an abstract equational specification language PREQ based on
the class of primitive recursive functions, and showed formally that it has desirable properties
from both a practical and theoretical perspective. In more detail, we showed that PREQ can
be given a straightforward denotational semantics using algebraic techniques; and that PREQ
specifications can be easily converted into complete term re-writing systems.

In Chapter 6 we presented our formal specification language ASTRAL designed specifically
for STs and showed that the semantics of ASTRAL can be derived using Cartesian form spec-
ification in PREQ. We also presented a prototype implementation of ASTRAL and discussed
its features as a high-level programming language.

In Chapter 7 we demonstrated that by using equational logic as the basis of our formal ver-
ification techniques it is possible to identify non-trivial classes of STs that can be automatically
proved correct using term re-writing techniques. In particular, we showed that in principle the
correctness (in the initial model) of a broad class of hardware devices can be verified completely
automatically.

Finally, in Chapter 8 we discussed the implementation of some of the theoretical tools that
we have presented. We concluded the chapter by discussing certain techniques that are appro-
priate to increase the efficiency of our prototype software to make it suitable for the verification

of complex modern electronic devices such a micro-processors.

9.2 Further Work

There are two obvious areas of the work that we have presented that require further research.

I'hese are: (in order of presentation)

|8
[v.2]
<



9.2.1 ASTRAL

We believe the language ASTRAL has much potential as the basis of a usable high-level pro-

gramming language. However, in order for ASTRAL to reach its full potential in this respect

the following aspects of the implementation of ASTRAL need to be investigated more fully:

(1) From the perspective of the specification of hardware ASTRAL’s BNF can be improved

using further case studies as examples. In particular, we need to identify any additional
primitives that would be useful for the specification of hardware devices. Some specific
arcas where ASTRAL is underdeveloped in this respect where mentioned in Section 6.7,

(2) The specification of a formal compiler from the BNE into abstract ASTRAL specifications

is required. In particular. from the perspective of automated verification, to avoid the need
to check every case individually an investigation of efficient techniques to simulate least
number search with bounded least number search is required. One possible method might
be partial automatic w-enrichment of the resulting specification (see Heering [1986]).

(3) The formulation of a compiler from abstract ASTRAL specifications into a high-level

programming language is required, with an emphasis on the generation of efficient code to
allow the non-symbolic simulation and testing of programmes.

9.2.2 Automated Verification

The investigation of techniques to provide a usable implementation of our automated proof tool
AV based on the suggestions in Section 8.5 needs further investigation. Three specific arcas of

research in this respect are:

(1)
(2)

(3)

The investigation of parallel programming techniques for which AV is particularly suited.

Techniques for identifving which abstract functions in an ASTRAL specification have
caused a formal verification to fail. In general, this is by no means obvious as the automated
verification is achieved using equations which in some cases may have no straightforward

resemblance to the specification from which they were gencrated.

An investigation of term graph re-writing techniques (see Sleep [1994]). These appear to
be particularly appropriate for primitive recursive specifications and could significantly

improve the efficiency of our verification techniques.



Appendix A

Proof of Theorem 9

In this first appendix we prove formally Theorem 9, concerning the correctness of the compiler

C, that we used to prove Theorem 8 in Chapter <.

A.1 Intermediate Lemmata

To prove Theorem 9 we use the following results whose proofs we defer until Section A.3.
Lemma 60. Let - be any standard S-sorted S-algebra, let s € S, let ¢ be some w/u-permutation
for some w,u € St such that [¥* # @, let p,r € [**, and let 3 € pPR(Y), ., for some z € §".
(1) If r = p then
(¥t € T) (Va{p/b} € A¥ {7/}
[EL’([Zw’:'pﬁi(i, Hi,w,p,:,r(al’ ey aP—Iv aP+17 Ty a|w|v b)) - ﬂ:dﬂi(tv b)

and

(2) If r # p then
(Vt e T) (V(z{p/[)} c AW{P/Z})

[Eval® P (60575 (ar, ooy Qe ta Gty - - o Gy D)) = eval(i, a,).

Lemma 61. Let A be any standard §-sorted S-algebra. For each s € S, for each w/y-permutation
v for some y,x € St such that ¥ # O, for cach p € I*¥, for each v € pPR(Z); .+ for some

r,r' e St for cach 3 € pnPR(Y). ., for some = € 5" and for each v € pPR(Y), . if

() for cach j & [¥* we have that

F;ﬁ";j_g/,u*,p_ qwle/el ir

[
oL

\



(ambiguously denoted F7) satisfies
(V(L{[)/b} € il—zu{l’/l}) [47 ,p(a{p/[)}) = ([7']]{1( L((L{[)/l)})))
7

wherein
Lia{p/b}) = (ayys-- -, s’(U(\p)—l)'M]]-'l(b)’“w(?p'(p)ﬂ)’"'*‘Lu’)('lyl)>?

and

(B) for each j € I+*" we have that
Fjj',d,w,wzn . \w{p/ S 16-'” ()
(again ambiguously denoted F,"j) satisfies
(Va{p/b} € AP/ FF2(a{p/b}) = 627" (ar, .y 01, Gy -y gy, b)
for some r € I*" such that

(L{a{p/0}))5ry = ([r'la(L(a{p/b})));

then if we define
F—y B8 — (1;1{7 yﬁ [EI B)
then
(1) if i & 127" then

(va{p/b} € 27070y ({072 (DaF (alp/81) = (Ir o 7La(Llaip/o})))
and
(2) if i € I+*' then
(Va{p/b} € A/
(107 (4 )ﬂi(zf*""(a{p/b})))i = 02 @y, e, gy e Q) b)
for some r' € I+ such that

L(a{p/bD)gen = (I © 71a(Lia{p/b}) .
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Lemma 62. Let A be any standard S-sorted Y-algebra, let s € S, let ¢ be a w/w'-sort permu-
tation over S for some w such that [¥*¥ # @ and let p € I=Y. Also, lct 6 € PR(X)y: . Jor some
€ St let 3€ PR(Y),., for some z € St and let P : Aw{p/ } i“’ be defined by

(Ya{p/b} € A0) Pla{p/b}) = (auiys- s tygimo1y BLAB) gz 1y -2 Giyn)-
For each a{p/b} € AP and for each o' = (al, .. "“fw’l) €AY if
X = (X Xp) € A7
is defined by

{“; if i@ I, and
Xi =

BLE PTGty Qs - - o Dol b) otherwise
for some r; € [2¥ fori=1,...,[w'| and
p= (Ph""/’lw’l) € Alwl

is defined by
- {a; ifj ¢ I+, and
Pj =

z; otherwise
for some z; € A* such that z; = (P(a{p/b}))g(r]) forj=1,...,|w'| then

(1) for each | & Jov
(10°+2()400), = (161a(0))

and

(2) for each | € I+Y

({[OS‘W)?(‘S)HL\_(.X’))I = Hi‘w’p’l'ql(ala < Qp1y pity e oy Qay)y b)

for some q € [+ for i = 1,...,|w'| such that (P(a{p/b})).(b-(ql) = (P(a{p/b}))x for j =
e

For convenience we now re-state the theorem.

Theorem 9. Let 4 be any standard S-sorted S-algebra. For each s € S, for each w,u & §*
such that [+% # @, for each w/u- permutatlon b, for cach p € ¥, for each a € pPR(Z),, for
some v e ST, far each 3 € pPR(X):,, for some = € S" and for each i =1,... |v|:

(1) if i ¢ I2° then if we definc
F‘d,ﬂ.#’,wﬁ :A’U{P/J} — A
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(ambiguously denoted F” ) by
R = ([Ca, )],
wherein ji = (i = [[20 4=t ) (|10 0= o (8297 (2)]) 4 L then
(Va{p/sh € A1) B (a{p/o}) = ([ea(Plap/t})))

wherein
P oAy o oqutlp/c]

is defined by e
Pla{p/b}) = (%(1% <o Qo(p-1)s [[/6}].4({))’(%(%1), e Q) );

wherein p = o(p); otherwise
(2) if i € I¢V then if we define

Frdswr ; gwib/sh 48
(again ambiguously denoted F&° ) by
F900 = ([ D)o+ ([0 D), e, )
wherein j; | = ji as defined above and jiy = jip—y + 1 for k =2,... |§5¥?(2)| then
(Va{p/b} € A/} F™(a{p/b}) = 627" (ar, .., p_1,@pyns - .., 0y, b)
for some r € I+* such that

P(a{p/b}))zs = ([a]a(P(a{p/b}))):.

A.2 Proof of Theorem 9

Proof of Theorem 9. By induction on the structural complexity of the scheme « € ;L.PR(_L:),‘YU
uniformly in (u, v).
Basis Cases. We have three cases to consider:

(1) Constant Functions. In this case a = ¢* for some c € X, ,, forany s’ € §.
Since in this case ¢’ € § it is sufficient to show that

7 (a{p/b}) = [e]a( P(a{p/b})).

A e . . 3w . ALWP(y,z)
Fhis is obvions as {7« P(c¥) = ¢ :
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(2) Algebraic Operations. In this case @ = o for some o0 € ¥, ,, forany ¢ € S . Again
since s € 5 as with the previous case it is sufficient to show that

F{ 2 (a{p/0}) = [a]a( Pla{p/b})).

We have two sub-cases to consider:
(a) o # eval, and
(b) o = eval,.

Sub-case (a) o # eval,. We calculate as follows:
L.H.S.

F 7 (a{p/b}) = [C(a. Bl ala{p/b})
by the definition of F{? with the hypothesis that v € §
= [[0*9'“’"’(a)]]it_(fnit“""'i"’(a{p/b}))
by the definition of C
= [o]a(Init**+?(a{p/b}))
by hypothesis on @ and the definition of ¢
= [o]al@sy, - -5 agqup)

by the definition of I'nit with the hypothesis that o # eval, and

hence that /2% = &

= [o]a(P(a{p/b}))

by the definition of P since as I** = @ it must be the case that ¢(p) = 0.

Sub-case (b) ¢ = eval,. We calculate as follows
L.H.S.

2 (a{p/b}) = [Cle, )] ala{p/b})

by the definition of Ff”ﬂ with the hypothesis that |v| = 1

= [0 P ()] a(Init® P (a{p/b}))

by the definition of €

= [Eval* Pl (Init®**"(a{p/b}))
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by hypothesis on « and the definition of ¢

= [[Eval;u,:,pﬂi(t’01.w,}?,:,r<a1,. sealp 1 pyy, .- .,(L|w|,/)))

by the definition of Init for some t = ay1y and for some r = ¢$(2) € [+¥. We now
have two sub-sub-cases to consider:

(I) r = p, and

(I1) r # p.

Sub-sub-Case (I) 7 = p.

KEL‘(L[:"':'pﬂi(ts0iyw'p':'r({l1" ceyQpot, Qpgls- oo Qw|, b)) = [[ﬁﬂl(tw b)

by Lemma 60

[814(0)(1)

by the definition of ©
= [eval,] o (¢, [BL4(b))

by definition

= [a]a(P(a{p/b}))

by hypothesis on «, the fact that t = ag1y, 7 = p = &(2) and by the definition of
P.
Sub-Sub-case (II) r # p.

HEm[:u.:.p]]i(_t,Oi-w,p.:,r(al,...,ap_l,a,,H,...,alw,,b)) leval,JA(t, a,)

by Lemma 60

= [a]a(Pla{p/b}))
by hypothesis on «, the fact that t = agy, ¥ = ¢(2) and by the definition of P.

(3) Projection Functions. In this case @ = U4 for any v € ST and for any k€ {1,...,]ul},
and consequently we have two sub-cases to consider:
(a) k & I¥* and
(b) k& [+,



Sub-case (a) k ¢ J**. Since k ¢ I** and |v| = |ug| = 1 it is sufficient to show that
FEP (a{p/b}) = [ala(P(a{p/b})).

We calculate as follows:
L.H.S.

7 (a{p/b}) = [Cla, 3)]a(a{p/b})
by the definition of F*? with the hypothesis that v € §
= [0 (@)]a(nit** =" (a{p/b}))
by the definition of C
= U7 Lanit =22 (a{p/b}))
by hypothesis on a and the definition of ¢
= (UL, 5l ealnit® 2% (a{p/b}))

by the definition of A and A" wherein for j =1, .. - |ul,

{uj if g &I,
Cj =

§*%i(z)  otherwise

= [[Ur;lc;:11|+1]]i(yla LR 7./|u[)

by the definition of fnit wherein for 7 = 1,..., |u]

v = (la(’j) lf.] g Ia,u’
J = e (s .
g2 w PN @y, oyt Gy - s G, b)) otherwise

= Yk
since by definition y; is of type ¢; for ¢ = 1,...,|ul, and |y | = 1 since & g e
= Qy(k)
by the hypothesis that k & I**.
= [Uslalasys - 5 Cp-1 ﬂgﬂ\i(b), Qo(apr+1)r -+ Colu)y)
by hypothesis on & and the definition of [.]4
= [e]a(P(afp/b}))

by hypothesis on a and by the definition of P.
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Sub-case (b) & € [**. Since k € I** and |v] = || = 1 it is sufficient to show that
1;‘1(1,;‘3([1{1)/1)}) — gi,lu,p,z,r((zl, ceeallp 1, 0p gy, iy, [))
for some r € I*" such that
(Pla{p/b}))7, = [ela(Pla{p/b})).

We calculate as follows:
L.H.S.

F2(a{p/b}) = (([C(a. )] ala{p/B}))ji s - - ([C e, Bl a(a{p/b}));, .

WPy n

by the definition of /¥ with the hypothesis that [v] =1

= (e B)alalp/B})ns . (C(ats B alalp /8] sswoncor)
again by the hypothesis that |v[ =1

_ (107 (@)alInit? 22 (a{p/0}))s ..
([O’a’w’p(a)ﬂi(fnit"b':’i’p(a{P/b})))léi»wv(z)( )

by the definition of C

( ([Uijw;:fZ’ Ugjp %,>MﬂA (Init?*2# (a{p/b})))y, ...,
[U . U'LHH!SS \uy( )J]A(I7th¢2 !p(a{])/b})))?élwp( )2 )

by hypothesis on @ and the definition of ¢

[[Uk, e U;?/;wwv( )J a(Init®**2(a{p/b})
€1 Cyy

B SRR b8P
= U S o Vieerd sy Ja(Znit 27 (a{p/b}))
by the definition of A and &" wherein for j = 1,..., ul,

{w it g I
Cj: .

§*%(z) otherwise

Cr Gy

- {[UC\-~.CIuI ) -~"U{clA-.ck-1{+161-‘”~P(:)1+1]]i(3/17'"’?/lu()

[CTRERT PR B R

by the definition of /nit wherein for j =1,..., [

{w ifj ¢ 1,

v = i .
o p 20l (ay, . Bpmty Qpls -« - Gl 0)  otherwise

= Uk

N
Nt
[, ]



since by definition y; is of type ¢; for i = 1,...,|u|, and el = |82 (2)]

as k € [*" by hypothesis

— ps,w.p,z,0(k)
=f (al""7ap-l‘ap+1""3a|w]7b)

again by the hypothesis that £ € [,
[t now remains to show that

(Pla{p/b}))zouy = [a]a(Pla{p/b})).

We calculate as follows:
(P(a{p/b}))5iacy = (Pla{p/b}))e
by Lemma 3
= [Ux]aP(a{p/b})
by the definition of [.]4
= [a]aP(a{p/b})

by hypothesis.

Induction Hypothesis. Assume for any scheme &’ € pPR(X)y . of « for any v',v' € 57 of
less structural complexity than a such that w 2 u’ that for each w/u'-permutation ¢’

(A)ifi ¢ I+¥ then
(Fa{p/b} € A7) T (adp/0}) = ([ L(P'(e{p/b})
wherein

Pl((l{p/b}) - ((Lo’(l)y - "a‘ca’(y('p)—l)’ [[.BHA([)), atf)’(a’—'(;’)-f-l)’ ey G¢:([u/|));

and

(Byif i € I2* then
Salpfb) € AW E A alp/BY) = 0P a1y o)

for some r € &% such that

(P/(a{l’/b}))?(r) = ([a'].(P'(a{p/o})))
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Induction Step. We must show for any scheme " € P R(E)yn yn of o for any u”,v” € §*
such that w D u” that for each w/u”-permutation ¢”

(A)if i ¢ 12" then

(Va{p/b} € A"y P (a{p/b}) = ({[&"]]A(P"(G{P/b})))
wherein
P(a{p/b}) = (agnays - 1 @y mpy- 1y 1814 (B), Lo (@ (py+1)7 -+ Qer(jun)y );

and

(B)if i € I2*" then

(\V/(l{p/l)} € Lt_w{p/:}) Ra”'ﬁ(a{p/b}) = gg,w,p,z,r(’al’ R aP—lv (]’P+17 ceey alwlv b)
for some r € I&* such that

(P"(a{p/6}))zmry = ([a"]a(P"(a{p/b}))):

We have four cases to consider:

(4) Vectorization. In this case @ =< ay,...,a, > for some q; € pPR(X),,,, for any s; € §

(5)

fori=1,...,m.
This case follows directly from m applications of the Induction Hypothesis and is left to

the reader.

Composition. In this case @ = ay o o for some a; € puPR(Y), , and for some
y € pPR(D)w , for any u,u/sv e S*.
We calculate as follows:

L.H.S.
F*?(a{p/b}) = [C(a, B)] a(a{p/b})

by the definition of F**?

= {07 ()] Tnit? 22 (a{p/b))

by the definition of C

= [0 (el o 107" (a)]alInit®>** (a{p/b})

3]
[$o)
-1



(6)

by hypothesis on « and the definition of C
= [07 P (a2)]al[C(e1, Bl ala{p/b})))
by the definition of

= [07" " (@) a(F* 7 (a{p/b})

by the definition of F**?. Now by the Induction Hypothesis with o’ = «! yYy=u, ¢ =¢

and P’ = P, we have for each i g J+¥

F%(a{p/b}) = [en]a(P(aip/b}))

- ¢
—~ 3, u

and for each i € [+
Fr2(a{p/b}) = 0P (ay, .. ay_p, gyt .y gy b)
for some r € 2 such that
P(a{p/b} )5,y = ([en]a(P(a{p/b})))..

Therefore by Lemma 61 withy =ag, s =v', 2" = v,y = a,y=u, v =dand L = P we

have for each ¢ g /2

(1077 (a2l k™ (alp/0))), = (Ieda(P(a{p/5}))
and for each i € [*" that

(0" (@LaF o (a{ofD), = 6757 (a1 tp sty )
for some ' € [+% such that
(P(a{p/b} )z, = ([a]a(P(a{p/b}))):

as required.

Primitive Recursion. In this case & = «(ay, a») for some a; € pPR(Y),, and for some

(}76[113[{ )tuvu
We calculate as follows:
L.H.S.

Fo?(a{p/b}) = [C({a, B)]ala{p/b}))
by the definition of ¢ 8

[09# ()] all nit*><P(a{p/b}))
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by the definition of C
= [0 P(ay), 0"-wrp(ag))]]i(['nil"':'i"’((L{p/b})')
by hypothesis on a and the definition of ¢

= [+(07 (), 07 (o)) 4y, - s Ylug)

by the definition of Init®* P wherein for i = 1,...,|u]

Ay if 4 Lu
U:’:{o() if i ¢ 1% and

G (g, g, gy G b) i G € 54
R.H.S.

[ala( Pla{p/b})) = [+(r, @2)]al@orry, - - @o(ym1y, [BTA (D), togyrn, - S Qg(ju)))

by hypothesis on « and by the definition of P wherein ¢ = $(p). We now proceed by
sub-induction on the value of y; = ayy =k € N.

Sub-Basis &k = 0.

L.H.S. [+«(0?"“?(ay), 07 ?(ca))]alyny -\ Ypuy)

= UO"’“’(al)h(ya, e w'!/lul)
by the definition of [.], with the hypothesis that y, = 0
= [[QJ'W'P(al)ﬂi(lnitc’ B 0 T NPT ST 3 Uy, b))

by the definition of Init wherein v/ = uy---w), and ® is the w/u'-replacement

defined by

(Wle{l,....[«1}) )= el +1).

= F*7(a{p/b})

by the definition of Fo#. Notice now by the Induction Hypothesis with o’ = o, and

v’ = ¢ we have for i = 1,...,]v| that

F‘.""'ﬁ(a{p/b})f = ([al]]i([)’(a{p/b})))i

if ¢ I+ and

[‘V»Ol'b}((l,{p/b}),' = yi,w,p,:,r({ll’ sy Qpoy, App1yeee,y a]lu]» b)

3
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if 1 € I*Y for some 7 € I&" such that
P'(a{p/b})z,y = [ea]a( P (a{p/0}))..

Therefore to complete the proof in this sub-basis case it remains to show that

[ ]a(P(a{p/b})) = [+(ar, a2)]a(0, apiay, -+ gy, [514(8), aggsr)s - s @ (lu]))-
We calculate as follows:
{[aljl(Pl(a{p/b})) = [[alﬂé_(.a¢(3)’ sy Qp(g-1), [[ﬁﬂi(b)v Aolg+1)s - -« (1¢(|u|))
by definition

- {[alﬂé_(a(y(l), sy Qi 1), [[ﬁ]]i(b)’ a¢,(q,+1), R (lqb’([u]))

wherein ¢’ = ¢/(p) since by definition we have ¢'(1) = ¢(l + 1)

forl =1,...,|u|

= [eu]a(P'(a{p/b}))

by definition as required.
Sub-Induction Hypothesis. Assume that if ayy = y; = & for some fixed k& € N then

for cach ¢ ¢ I+ that
(077 (o)Ll [nit**+(a{p/0}), = (lela(P(alp/b}),
and for each ¢ € [+¥ that
(107 7 )] 0t > (a{p/B})), = 657" (@, syt @y, agups )
for some r € /2% such that

P'(a{p/b})z sy = [u]a(P (a{p/b})):.

Sub-Induction Step.
L.H.S. [«(07%?(ay), 07w P () alk 4+ Loyas ooy Ypuy)

= EOF’:“':?((YZ)B;‘L(]C7 .U'J, .. .3y|\l|7 ﬂoﬂvap(a)ﬂi(k, yg, ey ylul))
by the definition of [.14
= {[0*3,u‘»1’((13)ﬁ;‘\_(k, Yoy ooy Yiuls ‘?j;, e y]'vl)
by the Sub-induction Hypothesis wherein for j =1,..., (o]

{@ﬂng@me i j ¢ I5%, and

7
= o
J R C N e PR M I v S C
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for some r € 12" such that
Pla{p/b})z ) = lenla( Pla{p/b}));.
Recall now that by definition for j = 2,...,|u| we have
g = Q) if j ¢ 1%, and
J Hi,w,p,:,o(j)(al, ces Qp1y Apyry oy Ay b) 1f] ¢ [ow

and also that
Qp(5) if j # p, and
Mﬂi(b) if j = p.

Therefore by Lemma 62 if we take § = aq, w' = tu' v, v’ = v,

(Pla{p/6}))50405y) = {

X = (L, Yoy . -,y]uq,yi, .. ”yllvl) € AAL'"’vP(w"x)

and -
( (Ky oy apg-1), [B1a(0), @sg1ys - s agqup,

=l

o= ([[aﬂf_l_(a«p(?)v -y Qgig-1), [[/H:H_L(b)y a¢(q+1), ey (L¢(|ul)))l’
([Qﬂit_(asv(:’)»- <oy Qgg-1) M]]i(b)» Qy(g41)s - - -,(l¢(|u])));u| )
then we have for cach { & [
([[Oﬁvw'p(a'l)ﬂi(l“" Yoy oo s Yy y;a ey ‘I/I/UI))I = ([a’_zﬂi([)))l
and for each [ € [%*
(107 P (@) laksyor- s Yo U0 o)), = 057757 @,y age, )
for some v’ € I*% such that
P(G{P/b})ar') = [aa]alp).
Therefore to complete the Sub-Induction step and to complete the proof of this case it

remains to show that

[e2]a(p) = [a]a(P(e{p/b})).

We calculate as follows:

R.H.S.
[ala(Pla{p/b}))
= [ala(k + 1, as) - - os o) [Blalb)s agrnys -+ aygup)

by the definition of P

HO‘L’HA( (k' Aoy -+ s Qp(q-1) [[Bﬂi_ﬁ_li)’ (l¢(,1+1), R ('I‘Qb([ul),
([e)al@oiys - - s Cota=10o I81a(0)s asy1ys - - s augup))s,s

(Tala(auzy o Cotg=0s I81a(8)s @squny, - - s agup)py )
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by hypothesis on « and by the definition of [.],

= [[Qﬁﬂg(/’)
by the definition of p.

(7) Minimalization. In this case a = p(a’) for some o' € pPR(Y), .
Again this case follows directly from an application of the Induction Hypothesis and is left

to the reader.

A.3 Deferred Proofs of Intermediate Lemmata

Proof of Lemma 60.
[Evalf'“"”]}d_(t, P8P 5T @y, Gy, Gpgy - vy Qo))

= [[E U(Llf'w'p]]i(t, k, ‘/1, b, Vg)

by the definition of 6 wherein k = A7 (r), V; = II&#* " ¥»=1(ay,...,a,_,) and

v’g — II;'_,wP+1...w|w|(ap+1"..’(llwl)
= [.Sll)l'tCh”bwl’s'/\? (}‘)O < Ugfryﬁh---,ﬂlli"”l >]]i(t7kavrlvb"/‘2)

by the definition of Eval wherein z = §+*?(z) and for j = 1,...,|/2¥|

eval, 0o < UL*,UfE, > if 1 <7< AYY(p);
B =480 < UA Uty Uiy > fJ= AP (p);
eval,o < UL®, UJ'tflel > if AT“(p) < j< [Tow |,

= SwitehT 1O g 18, 14(8 K, Viy by Vo), oy [Brrem Dalt, b, V2L b, V2))

by the definition of [.]4

= [[ﬁk]];»i_(tv ka ‘/rls ba V'l)
by the definition of Switch. We now have two cases to consider:

(1) r = p; that is, k = AT (r) = A7 (p)-

3w

(2) r# p;thatis. k = AT (r) # A7 (p) and



Case (1) r = p.

[/}kﬂ l Iw Il,]) (Ljo < L[tl‘ Dkﬁ—"‘"" Dk+l ‘+‘ >]] (t,/ﬁ’ L"\7b7 L’l)

by hypothesis on &
= [B]a(t.b)

by the definition of [.]..

Case (2) r # p. We now have a further two sub-cases to consider:

Sub-case (a) r < p; that is, k < MY (p).

[8e]alt, b, V2,0, Vo) = [evals o < U= ULz, >1alt, b, Vi, b, Va)

by hypothesis on &
= [evalJalt, (Vi)k)
by the definition of [.]x and by hypothesis on k
= [eval,]a(t, ar)

by the fact that k = ASY(r) and by the definition of Vi = TI&* =1 (ay, . . @y ).
Sub-case (b) r > p: that is, & > AP (p). This case is similar to Sub-case (a) and is

omitted.

g

Proof of Lemma 61. By induction on the structural complexity of the scheme a € PR(X), ,

uniformly in (y,z)-
Basis Cases.
Y, for some ¢ € T, , forsome s’ € S and for some

(1) Constant Functions. In this case 7y = ¢
S that it is sufficient to show that

y € ST, Notice t that in this case as T = e

Kod,w.pw)ﬂi(F"""(a{p/[)})) =[yo 7’115_([/@{1)/[)}))-
We calculate as f{ollows:
L.H.S.
[0 ()1l 7 (a{p/1) = [ 1P (ap/0}))
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by hypothesis on v and by the definition of ¢

= ["]4 o [I’y’]],_;_(L((L{p/b}))
by the hypothesis on F7'3

=[¢" o Ya(Lla{p/b}))
by the definition of [.],4 as required.

(2) Algebraic operations. In this case ¥ = ¢ for some ¢ € %,/ for some y € 8 and for
some s’ € 5. We consider two sub-cases:
(A) o = eval,:, and
(B) o # eval,.
We prove Sub-case (A) and leave Sub-case (B) to the reader.
Sub-Case (A) o = eval,. Notice that in this sub-case that y = t s and ¢ = & and
therefore it is sufficient to show that:

1077 ()La((17 L L a{p DDy 07 (s, s G s ) =
[/ Lal(D a2 (a{p/5)) s (17D a( Ea{p/b)))):)

wherein

(L(a{p/0} )z = ([V]D)(L(a{p/b})))..

We calculate as follows:
L.H.S.
[07 ()] al([yDa( L(a{p/O))1, 8 P2 (ar, oo apors @piay oy aguy, b)) =

{[Evalw’;,pﬂi(([’ylﬂé_(L(a{p/b})))la gi‘w%:lr(al’ sty ap—lv U’p+1, Caey alwl, b))

by the definition of Fval and by hypothesis on 7.
R.H.S.
[ )al(Tr1aLla{p/bP))s, (I LalLla{p/0})))2) =

leval, Ja((TYTa(E(a{p/oD)Dh, (L(a{p/b}))g,)

by hypothesis on ' and (L(a{p/b}))x., respectively. The fact that
[[E val‘“”'”I]i,_(([h']]i([,(a{p/b})))h Gi,iu)p,l,r(ah ceey8py, Qpplyeeny a’[u/[7 b)) =

leval, L ([ Lal(L{a{p/b}), (Lla{p/b}))g.)

follows immediately by Lemma 60.

(3) Projection Functions. In this case ¥ = U} for some y € S™ and for some j ¢ {L,..]yl}.
We consider two sub-cases:
(A) y; = s, and
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(B) y; # s

Sub-Case (A) y; = s. In this sub-case as z = y; = s it is sufficient to show that
(077 (1]l *(a{p/b) = 67 a1ty sy g )

such that
(Lla{p/b})z,, = (VT )(L{a{p/b})).

This is straightforward and is left to the reader.

Sub-Case (B) y; # s. In this sub-case as z = y; # s it is sufficient to show that
[07F (MLl F"(afp/b})) = [v o +'[a(Lla{p/b})).
Again this is straightforward and is left to the reader.

Induction Hypothesis. For each s € §, for cach w/F-permutation ¢’ for some 7,7 € S+

such that I*¥ # @, for cach p € I+Y, for ecach ¥ € uPR(X)z# for some T, 7" € ST for each
8 € uPR(Z), ., for some = € 57 and for each 7 € uPR(E)y 7 if 7 is of less structural complexity

than 4 then
(A) for each j ¢ I** we have
(va{p/b} € A°070)  FT7(alp/b}) = (VTa(F (alp/0}))
wherein

L(a{p/b}) = (ap)s -+ > Byu@ip)—1y [BLa(8)s @ yginysny - - -5 aueqan )i

and

(B) for each j € 12T we have
(Va{p/b} € Avie/shy f? P(a{p/b}) = 0+* 7 (.. S Opo15 Qpyry ey Ay, b)
for some ¥ € % such that

(L'(a{p/bN)zm = (7Ll L(a{p/b})));

then

(1yif i & I*¥ then

(Ya{p/b} € Avlrlshy (Hoj'w'pW)HA(FT'ﬂ(a{p/b}))) = ([[7 0 _74]],\([:’((1{[)/1)})))

! i

and



(2)if i € I** then
(Va{p/s} € 4171
(10" DLl Halpfb})), = 652 s ayretpn )

for some ¥ € %% such that

(L(a{p/b})gie = (7 © TLalL (a{p/b})))

s

As with previous proofs the vectorization and minimalization cases follow easily from the Induc-
tion Hypothesis and are left to the reader. Therefore we only consider composition and primitive

recursion.

(5) Composition. In this case v = 75 o 7y for some 3, € PR(X), ; for some 7 € St and for
some v, € PR(X); ,. We calculate as follows:
L.H.S.
[07 P ()] a( £ (a{p/b}))

= [077 (32)La (107 (1)]a(F# (a{p/b})))

bv hypothesis on vy and by the definition of ¢

= 1077 (1)L (107 P (r01a 1077 (¥ ) a Tmit? 2> (a{p/5})))
by the definition of ¢

= [07* P (72)]a[O7* P (11 o ¥ alInit®>=P(a{p/b})))
by the definition of ¢

= [0 (y)a(F™ ° 77 (a{p/b})).

s

by the definition of F™ °7#_ Notice now by the Induction Hypothesis with ¢/ = ¢

1

T=m 079, T=y ¥ =%and L'=1L
[0 (La (P {p/01) = (d,. )
wherein for i = 1,...,y|

I [v2 o 7 o ¥ 1a(L(a{p/b}))i ifi¢ [*Y and
(,’ = t
ga.w-pT (ala . '7(1']“']’1)) if ¢ € [y

such that
Lia{p/b})z.n = ([v2 o 7 o Y']a(L(a{p/b}));

as required.
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(6) Primitive Recursion. In this case ¥ = *(ay, a,) for some a, € PR(E), » and for some
s € PR(E) p pr oo for some 2 € S*. We proceed by case analysis on the value of

F7#(a{p/b}) = k € N.

(Notice that z =t z”.)

Case (A) k = 0. We calculate as follows:
L.H.S.

[07 7 () ]u(F7" 7 (a{p/b}))

= [0% P (+(71, v )] a(F7 P (a{p/b}))
by hypothesis on v
= [07* " (y)]a(F7 P (a{p/b}), .., 7" (a{p/b}))

by the definition of [.] 4, the definition of { and the hypothesis that

FY P (a{p/b}) =
= [07 P (7)) (F* (a{p/b}))

wherein § =< UZ,..., lezll > o4'. The proof is now easily completed in this case by an
application of the Induction Hypothesis with ¥ = 4, and ¥ = §. The details are left to

the reader.
Case (A) k = k&' + 1 for some k' € N. We calculate as follows:

L.H.S.
[0 P ()] £7 P (a{p/b}))

= [07 7 (x(v1, )]l 77 (a{p/b}))
by hypothesis on v

[P (r)lal K ED P (alp/b)), F**’(a{p/b})
= (072 5()a(¥ F5 H(alp/b}).. e alo/t)) )

by the definition of [.]4, the definition of ¢ and the hypothesis that

F7(a{p/b}) = &
= 07 (3)La(F* 2 (afp/b}), 107 "(1)]a( £ (a{p/b}))

’
. - . r JIr r / . e e .
wherein ¢ =< apreq © Ui, Uz.ons U!rl > 07" and .4 is the primitive recursive

307



scheme representing the predecessor function
= 07 (32)La(F7 (a{p/b}), F7° " (a{p/b})
by definition

= [0 P (2)]a(F* 7 (a{p/b}))

wherein 6" =< U o &',...,Uf, o & U7 oy o0 &,....U% oy o0& > As with Sub-case

f=l
(A) the proof in this sub-case is now easily completed by an application of the Induction
Hypothesis with ¥ = 7, and 7' = §”. The details are again left to the reader.

g
Proof of Lemma 62. By induction on the structural complexity of the scheme § € HPR{E), .
Uniformly in (w’, v'). We prove the basis case wherein § is a projection function and the induction
case wherein 6 is defined by primitive recursion and leave the other cases that are either similar
or straightforward to the reader.
Basis Cases.
(3) Projection Functions. In this case § = U7 for some z € S* and for some j ¢ {1,...|z|}.
We have two sub-cases to consider:
(A) z; = s, and

(B) z; # s.
We prove Sub-case (A) and leave Sub-case (B) to the reader.
= 8.

Sub-Case (A) r;
L.H.S.

AIWPJ,‘.,)

w,p _ ALz, )
ﬁoﬁ' ‘}(6)]]_\(Y) - l[< Uj’ UJ Th§LweP(2)|—1 >]]_1(X)
by the definition of ¢
=[< U e Uy o >1alx)

by the definition of A wherein fori = 1,..., [z,

{zj if 1 & 127,
Cy =

§&¥P(z) otherwise

and j' = ICl i 'Cj_1l + 1
= X;j
as \ € AT

2P,
zgi,u}’ J((ll,...,(lp...lyap+11-.-7a|w|1b)

by the definition of \ with the hypothesis that j € J**.
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Induction Hypothesis.  Let - be any standard S-sorted S-algebra, let s € . lo e
a w/w"-sort permutation over § for some w such that I** # @ and lot p € [%¥. Also, let
8" € PR(X), for some w”,v” € S be any scheme of less structural complexity than §, let
B € PR(E)., for some € 57 and let P : A2 4" be defined by

(Ya{p/b} € Avir/ahy Pla{p/b}) = (ay). - - ., ayTip)=1) [[Eﬂ\,x(b), Ay Tp)+1) - s B(ly]))-
For each a{p/b} € AvP/2} and for each a” = (al,. . ) € i
=\, '7X|’w”') € AAi-w.p(w”,:)
is defined by
: {a:’ i ¢ [ and

i = . ‘
GLP T @y L @y, Gpgyy -5 Gy, ) Otherwise

for some r; € 18 for i = 1,...,|w"| and
B = (Pl Pluy) € A1

is defined by

1" . . 3,(1)”
, Jai ifjg I+ and
p; = .
r; otherwise

for some z; € A% such that z; = (P(a{p/b}))&r]) for j = 1, || then

(1) for cach [ ¢ [
(ﬂoﬂrva(é)h(X'DI = <H6]]i(pl))z

and

(2) for cach [ € 1Y
([Oriyw,p(ﬁ)ﬂ;i(/\"))l = Oi.w,p,z,qt(m, sy Qp_iylpyyy. .., e b)

for some q € 1% for i = 1,...,[w"]| such that (P(a{p/b}))a(ql) = (P(a{p/b}))l for j =

L. fuw”|.
Induction Step.

(7) Primitive Recursion. In this case é§ = %(é,,02) for some 6, € HPR(Z)ur o for some
W € 87 and for some 6; € /LI)I{(:E)tu’U',U" (Notice that w' =t u'.) We proceed by sub-
induction on the value of \, = py =k € N.

Sub-basis & = 0.
L.H.S.

[IO'%U.P(/(S)L;_(X) = [[Qﬁ,w,p(ﬁl)]]:i(x.?’ B '?Xw'l)
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by the definition of ¢, the definition of [.]4 and the hypothesis on Y1

= (dl ..... dlull)
by the Induction Hypothesis with &' = 6, w” = ', v = v, ' = (Yo ..
p = (pay...,pu) wherein for j = 1,...,[v/|
d = [[51]]¢(P2s-~-7/)[w'1) if j ¢ I'iv”',
1 . ) ,
gewpid(ay, ., S Qpoty Qpy1y e ooy Ay, b) 0f j € [3v ’

for some ¢ € I** such that

(Pla{p/b}))z,y = ([6:]alpay - - s pru));.
Therefore in this sub-basis it remains to show that

[6:]alp2s s pren) = 161400, pas oo, pru)-

This is obvious.
Th bvious

-»Xw) and

Sub-Induction Hypothesis. Assume that for any fixed value k € N that if y, = p, = k

then for each | ¢ I+¥'
([0 #(O)1aC) = ([6]a(p))

I
sv

and foreach l €1
([[Oj'w’})((s)]]i(,&'))l = gi'w'p':'q”(“h s Qpa1y Gpyty -y Gy, b)
for some ¢” € I+* such that
(Pa{p/}))z,n = ([0]alo)r-

Sub-Induction.
L.H.S.

[[O}jvwlp(é)]]._;\_( \) = {[Oﬁ’w'p(éﬁ)ﬂi(k’ Xoyee s Xlw’]y [Oﬂ'w’p((s)ﬂd_(k, X2y, X|w’|))

by the definition of O, the definition of [.]4 and the hypothesis on y,

= ﬂoﬁ’u/‘})(62)]]i(k7 X2y Xlw’ladl’ BERE d]u'])

by the Sub-Induction Hypothesis wherein j = 1,... v/l

{ [6]4(p) it j g 1o,
dJ =

g psd (alw N (N P LS P .,(llwi,b) lf] € I s

310



for some ¢” € 1% such that

(Pla{p/b}))z,m = ([0]alp));

= (dll.. ey '/v/l)

by the Induction Hypothesis with §' = 65, w"” = tu/v', v" = v/, \(’ = (k, Xo,.. o Xpwps dy
dor) and ' = (k.pae .oy prurs ([61a(0))s - 2 E1a(p) ) wherein for j = 1,. o'

. { [8:0aks oo ppots (1D [ L)) i 5 € 15",

j sw.p.z, 2z . .
gt -pid ((ll,...,(lp_l,(lp*_l,...,a]wl,b‘) . lfJ [ [i.l/l’
for some ¢/ € [+* such that

(Pla{p/b}))z gy = (18] 4l poy s pruy, (18] alPDhs -, [804(0))10));

Therefore to complete the proof it remains to show that
[620a(ky pay - s prots (6] alPis - - - [6]a(P))1on) = [6]4(p).

Again, this is obvious.
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Appendix B

Proof of Lemma 27 and Lemma 28

We now prove formally Lemma 27 and Lemma 28 that we used to prove the soundness and ade-
quacy of PREQ in Chapter 5. As the proofs of both lemmata require several further intermediate
results concerning the correctness the various sub-compilers of C** and CPREQ respectively, we
also state and prove these additional lemmata as appropriate. The reader should refer back to
Chapter 5 for the definitions of the compilers that these results concern.

B.1 Proof of Lemma 27

To prove Lemma 27 we require the following five intermediate results.

B.1.1 Intermediate Lemmata
Let CT be defined as in Definition 57 on Page 155.

Lemma 63. If
=< Gy, ., 014056 > € PREQ(E, X)

and X = {zy,...,2.} C X wherein z; € X,, fori=1,...n > 1 are distinct variables then for

each v € T(%,X), for any s € 5

(Va = ((11’ e ‘(ln) € A”m"') VV“(G)(T) = [[(Cg'x‘“_,,,m,(T)]]A(a).

Proof. Uniformly in s € S by simultaneous induction on the structural complexity of the term
TeT(X,X),.
Basis Cases.

(1) Constants. In this case r = ¢, for some ¢ € Y, forsomeseS.

L.H.S.



by the definition of V
= [elv ] 4(a)
by the definition of [.].

= [[C:i‘,x,sxu-sn,s(T)]]A(a)

by the definition of CT.

(2) Variables. In this case 7 = z; for some z; € X, for some s € 9.
L.H.S.

Vo (1) = v¥(a)(2:)
by the definition of V'
=

by the definition of v

Uit ]ala)

it

by the definition of [.]4

= ﬁcg,x,sl--»sn,s(T)ﬂA(a)

by the definition of CT.

Induction Hypothesis.  Assume for all 7 € T(%,X), for some s € S that for each term
T € T(¥,X), for some s’ € § of less structural complexity than 7 that

(Va € A7) Vixay(T') = [[C:g,x_,(T)]]AG)-

Induction.

(3) Algebraic operations. In this case 7 = o(ry,...,7) for some o € £, , for any w € §+
and for any s € S, and for some 7; € T8, X), for i =1,...,k = |w| such that S sl =

w.

R.H.S.

[CF o (Mlal) = To o <THm), o, € (1) >a(a)

by the definition of CT with the hypothesis that 7 € T(X, X)
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and hence that o € ¥

= o ([CT ()] ala), .. SIC ()] a(a)
by the definition of [.],

= o' (Vospay(10), - - o Voxay (i)
by k applications of the induction hypothesis

= Vix(7)

by definition.

Lemma 64. If
P =< o, i4m6 > € PREQ(S, X)

such that for each
1€P={"))|j€ InTermsOf®,s,F}

wherein F = {f;. | d,e € N} and (k) = ¢ we have
[T (< Dy Giaimie(d) >)]a = [< buve oy B e(d) >4

and X = {z,...,2,} € X wherein z; € X, fori=1,...,n > 1 are distinct variable symbols
then for each v € T(Y",X), for some s € § wherein

Y=Yy (H = U{fi,h' . -7fi,|n"(i)|})

i€l
. — [T
(Va = ((11, .. .,(ln) € At ) Vux(d)(T) = IICJ’,X,slu-s,.,s(T)ﬂA(a)'
Proof. We proceed by induction on the structural complexity of the term 7 uniformly in s.
Basis. e have two cases to consider:

(1) 7 =¢,; and

(2) r=1,€ X,.
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Notice that in both these cases that 7 € T(¥,X), and hence by Lemma 63 we have
-, Iy
“’x(“)(‘r) - [[C‘P,X,sl---s,,,s(T)H:l

as required.
Induction Hypothesis. Assume for any 7 € T(X",X), for some s € § that for each scheme
e T(Y",X), for some s’ € § of less structural complexity than 7 that

(Va4 Vira () = [Cox gy s (7))

Induction.

(3) Algebraic operations. In this case 7 = o(r, .. .,7x) for some o € © | for some w € §+
; S N ~y . ] v/ o
and for some s € S, and for some 7; € T(¥',X), for i = 1,...,k = |w| such that
)-8} = w. We have two sub-cases to consider:

(a) o € &; and

(b) o= f;,; € H.

Sub-Case (a) o € ©. This sub-sub-case follows by essentially the same argument as

Case (3) of Lemma 63 and is omitted.
Sub-Case (b) o = f;; € HL.
R.H.S.
[CF(M)]a(a) = [U] ) 0 C™(byp) o
< CT(ATl),

CT(n) >]a(a)
by the definition of CT with the hypothesis o = f; 5
= ([C™™(6un )l
[CT(r)]ala),
[C(re)lato)) |
by the definition of [.]4
= ([C™ ()l

1"‘,1(0)(7_1),



by k applications of the Induction Hypothesis

= (I8 o (< Buse e i385 5005) >)]al

"'le( a) ( T1 ) ’

Vﬂ(a)(ﬂ)))jl
by the definition of C™®

= ([[< O1y e s B3, u(F) >]al
‘/,LX(J)(TI‘)’,
‘/Z/x@n(?’k))) .,
J
by hypothesis as j € P by the definition of H
= f]:.}]"(I/:,X(a)(TI)v Ceey V'V’V‘(a)(rk))
by definition

= I/LX(G)(T)

by definition.

O
Let € be defined as in Definition 58 on Page 157.

Lemma 65. Let ® € PREQ(E, X). If ¢ € RPREQ(Y', X)gu, for some u = (8,--+8),) and
some v = (s} ---s,) € G+ wherein T is the common signature of ® as defined as in Definition 50
and X = {z,,. -»I;uiyt,yl,.--,Y)vi} C X wherein z; € X, for i = L.y jul, t € Xg, and
Y, € X"; for j=1,...,|vl are distinet distinguished variable symbols then for each T € T (X, X),

for some s € §

{(Vn € T) (\V/(l = {dy,... ,(l,,) £ :lu) Vuz(a,ﬂ\[O]A(”\a))(T) = HGP,x‘u,u,s(T)]]A(n, @, [[(b]],;(n, (l))

Proof. By induction on the structural complexity of the term 7 uniformly in s € §.

Basis.
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(1) Constants. In this case » = ¢, for some ¢ € 5, , for some s ¢ §.

L.H.S.

";m('a,n,[«)]_.\(rl,a))(r) = CA

by the definition of V'
= [e;*Ta(n,a, [9] a(n, @))
by the definition of [.] 4

= [[Cg,x,u,v,s(r)ﬂf\(n’av[[¢]]A(7l,(l))

by the definition of C~.

(2) Variables. In this case 7 = z for some ¢ € X wherein z is of type s for some s € §. We

now have three sub-cases to consider:

(a) z =t.
(b) 2 = z; for some 7 € {1,...,{|ul}.

(¢)z =Y, forsome j € {1,....|v]}.

Sub-Case (a) x = ¢.
L.H.S.

""u”-(a,n,[rp],a(n.a))(T) = Ux(av n, [[QS]]A(”" a))(t)

by the definition of V" and by hypothesis on 7

by the definition of v

[Ui**La(n, a,[8])a(n, a))

by the definition of [.]4
= [C‘Kil’,ﬁi,u,v,t(’r)]]/\(na a, ﬁqbﬂ,\(n, (L)

by the definition of 7.
Sub-Case (b) z = x, for some ! € {1,...,|ul}.
L.H.S.

\;zx(a,n,[O]A(n,d))(T) = Vx(a! 1, l[ﬁb]]z\(’l, (l))(l‘,)
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by the definition of V" and by hypothesis on 7

= q
by the definition of v

= [Ui La(n, 6, [8la(n, a))
by the definition of [.Ja

= [[Cg,x,u,v,u.(r)]]xl(n7aa [¢$]a(n,a))

by the definition of .

Sub-Case (c) z = ¥; for some j € {L,...,]v]}.
L.H.S.

Vs olaman(7) = v (a,n, [6]a(n, ))(¥))
by the definition of V' and by hypothesis on 7
= ([{MA("’“))j
by the definition of ¥
= [Upita]a(n, @, [8]4(n, @)
by the definition of [.]a
= [[(Cg,)’i,u,u,u]-(r)]]zi(naaa [¢]a(n,a))

by the definition of C*.

Assume for any scheme 7 € T(Z,X), for some s € S that for each

Induction Hypothesis.
e s’ € S of less structural complexity than T that

scheme 1/ € T(X, X),s for son

I/Vuz\'u,n,[c:>],4(n,a))(Tl) = [Cg,x,:x,v,s’(rl)ﬂr&(naas [[¢1]A(774, (l))

Induction.

(3) Algebraic Operations. In this case T = o(ry,...,7) for some g € £, , for some w € §+ and

for some s € S, and for some 7; € T(%,X)y fori=1,. ..,k = |w| such that s} -- -5}, = w.

R.H.S.
I(JT(T)B\( T, i, {[(;)ﬂ\( , (1))

= {{n o < (C’:(Tl). . -«CT(Tk) >HA(nv a, I[¢HA(nva))
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by the definition of CT and the hypothesis that r ¢ T(%,X) and hence that

agel

= o ([< C(r)]a(n, 4, [0]a(n,a)) . .., [< CF(7)a(n a, [¢).4(n, a)))
by the definition of [.]

= 0 (Vigan folaman(T1)s o Vix(am 161atman(7e )

by k applications of the Induction Hypothesis

= Vix(an,[#]a(n,a))(T)
by the definition of V.

This concludes the Induction Step and concludes the proof.
O

Lemma 66. Let 9 € RPREQ(Y,X)¢u,, for some u = (s - “Spul), v = (s - - “Si,1) € S wherein
L' is the common signature of ® as defined as in Definition 50 and X = {zq,..., Ty 4, Y, Y} C
X wherein z; € X, fori=1,..Jul, t € Xy, and }; € Xs; forj=1,..., |v| are distinct distin-

guished variable symbols. If
b =< ¢y, Pyt 036 > € PREQ(S, X))o

is defined such that for each

i€ P={1j)]Jj€ ImTermsOf ®,¢,F} C {1,...,m}

wherein ¥ = {f;. | d,e € N} and ¢(k) = s we have

[CE (< 01y b (D) ) = [< buse oy B mi (i) >]4

u‘(-)’[,‘(-)
then for cach r € T(¥",X), for some s € S wherein

vVV=YU(H= U{fu, - Simry )

S

(Vn e T)(Va = (ay,...,a,) € A*)  Vixtan [ola(nap(T) = [[Cg,x,u,u,s(T)ﬂ,x(n, a, [#la(n, ).

Proof. By induction on the structural complexity of the term r € T(3" X)), uniformly in s.

Basis. e have two cases to consider:

(1) 7 = ¢ for some ¢ € ¥, and

. . - . 8 / .
(2) 7 =z for some x € X; that is, r € X for some s € {1, 8ty 8, . -,6|',,,}-

319



Notice that in both these cases that 7 € T(¥, X), and therefore by Lemma 65 we have

‘“’(an[tp]\ (n a) [[(Cb“{uvs(r)]] (fl a [[(wb]] (IL (L

as required.
Induction Hypothesis. Assume for any term 7 € T(¥”, X), for some s € S that for each
term 7/ € T(X".X), for some s’ € § of less structural complexity than 7 that

Virgan [olatna)(T') = ﬂ‘cbxuu( /)]]A(nvfl,[[gﬂ],;(n,a)).

Induction.

(3) Algebraic Operations. In this case 7 = o(7y,...,7;) for some o ¢ L., for some w € §+ and

for some s € §, and for some 7; € T(Y",X), fori =1,... k= ]wi such that ¢/ .. s/ = .

We have two sub-cases to consider:

(a) o € ¥; and
(b) g = fp,[)' [ ]HI.

Sub-case (a) 0 € &
R.H.S.
[CT(m)]a(n,a,[]aln, a)

=foo < C(r),....C () >]a(n, a,[8]a(n,a))
by the definition of CF and the hypothesis that 0 €
(T (a0, [Bla(n. ) ., [C (70l 0, [8]a(n, )
by the definition of [.].4
= 0 (Voxam folaman(T1)s -+ Veran [81a (m,a)(72))
by & applications of the Induction Hypothesis

= Vix(an fola(ma)(T)

by the definition of V.
Sub-case (b) o = f,, € H..

R.H.S.
[T (P)]aln,a. [¢]a(n.a))
=[U) %) o CM(oup)o < CH(my), - (1) >1a(n, a,[9]a(n, a))

by the definition of CT and the hypothesis that o € P

= (TGP (0, ) ] (IC7 (7)) (s [o]a(n, @) .. [ (r)]aln, a, [#)a(n, a))) ),
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by the definition of [.] 4

_(TwPR " v i
- (JIC;) (Ot(p) )ﬂ.—{(1’1/1({:,71,[(.7],‘(71@))( T1 )7 L) ‘u"’-(a,n,[(p],\(n,a))('rk)))

p’

by & applications of the Induction Hypothesis

= ([C i wn (< 0103 856 m50(0) >) )i (Vortam folaman(T1)s -2 Vixtam o (7))
- T pl

by the definition of CP®

= <ﬂ< 951’ RS ¢§I§ L ['(p) >ﬂf‘(V”x(d-"-[‘ﬁ],x(‘"»ﬂ))(Tl)7 HERR) I/"“Y‘(d,”vltl’],\(n,a))(rlc)))p,

by hypothesis as p € P by the definition of H

= f_"lp'( ! :/‘(a,n,[o]A(n,a))(TI)y ) I/:/x(u,n,[é],\(n,a)ﬂrk))
by definition

= Voxtam [o1a(n.an(T)

by definition of V.

a
Let C**! be defined as in Definition 59 on Page 158.

Lemma 67. Let ® =< é1,...,¢;4m56 > € PREQ(S, X). If ¢ € RPREQ(X, X),, for some

v € St then
(Va = (ar,...,ax) € A*)  [0]a(a) = [CFF, (#)]a(a).

Proof, Uniformly in (u,v) by case analysis on the structural complexity of the scheme

$ € RPREQ(Y, Y). We have four cases to consider:
(1) General Specifications. In this case
0% flzy,.cyzn) =71

for some distinct z; € X, for i = 1,...,n > 1 and for some 7 € T(¥,X), for any s € §

wherein X = {z,,..., 2}

L.H.S.
[6]4(@) = Vixa(7)

by the definition of [.]

= [[Cg,x,slman,s(r)}]r\(a)
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by Lemma 63
= [Cys; e (@)]ala)
by the definition of [.]..
(2) Vector-Valued General Specifications. In this case
Y & f(zh-”v‘rn) =< Ty T 2>

for some distinct z; € X,, fori=1,..,n > 1 and for some 1; € T(S, {zy,...,z,}), for
any s € Sforj=1,...,k> L This case is similar to Case (1) in that it follows f)y k

1pph(atmnb of Lemma 63 and is omitted.
(3) Primitive Recursive Specifications. In this case

:f (Oaxlv"-yl‘n) =71,
f(t+1,$1,...,$n):T2

for some distinct z; € X, for ¢ = 1,...,n > 1 and for some 7, € T(%,X), and for some
7o € T(5,X), for any s E S wherein X ={z1,.. .2}, X' = XU {t,Y} and t € X, and
Y e X, are dlstmgumhed variable symbols dlstmct from z; fori = 1,...,n.

Notice that as u = t 81+ 5na and therefore a = (ay, @2y .., Gyjs,.- ,,‘l) Consequently, we

proceed by induction on the value of a; € A, using a’ to represent az,..., 1405, 4,

Basis. a; =0.
L.H.S.

MBA(O»“') = H:Cg,x,sr-sﬂn,s(rl)}]i
by the definition of [.]a
= V()
by Lemma 63
= [(Chx.0y 50, A1), Cooxrgrnsnss(T2)]4(0,07)
by the definition of CPR
= [CFR . s(@)]a(0,0)

by the definition of [.]a-

Induction Hypothesis. Assume for some fixed value n € A, that

ol @) = [ s (B0,

322



(4)

Induction Step. We must show that
[éla(n + La) =[G, o, (@)aln + L,a').

R.H.S.

[(C,pn Maln + 1, a’) = [*( b“isl S ,(Tl)>C(Hx;,x/,,l,.4,",,,_,(7”3)]],;(n+l,a’)

u,v

by the definition of CPR

= [CT ()] aln, @, [+(CT (1), C" ()] (2, @)
by the definition of []a

= [CF(2)a(n, @, [CE 2 (#)]a(m, @)
by the definition of C+FR

= [CF(r2)]a(n, a', [9]a(n,a’))

by the Induction Hypothesis

= Voo m eda(n, e (T2)

by Lemma 65
= f[¢ﬂA(n + 1,a)

by definition.

Vector-Valued Primitive Recursive Specifications. In this case

| d ; — .
O éf (}0,1‘1,...,1") =< T1_1,...,T1'm >,
ft+ LZyye ey Tn) =< Ta 1y ey Tom >
for some distinct z; € X, fori = 1,...,n>1,for somer ;€ T(%, {l‘x,-..,rzzn}),; and for

some 7 ; € T(Z, {z1,. - Tnrts Yy, m}) forany s; € § for j = 1,...,m > 1 wherein
t e X, dml Y, \’/,_ Y, € X, are dxstmgmshtd variable symbols distinct from z;

fori=1....,n

This case is a simple generalization of Case(3) that follows by essentially the same argument

and is omitted.
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B.1.2 Proof of Lemma 27

We are now in a position to prove Lemma 27. For convenience we first re-state the lemma.

Lemma 27. If
¢ =< @,..., 05416 > € PREQ(E, X )y,

for some u,v € St then
(Va € A*)  [®]a(a) = [CPF(®)](a).
Proof. By induction uniformly in (u,v) on the size
q = [InTermsOf(®,¢,F)| € N
wherein F = {f,, | p,q € N}.

Basis ¢ = 0.. Notice that since by hypothesis ¢ = 0 we have ¢ ¢ DefOver(¢.,F) fori=1,...,m
and hence ¢, € RPREQ(E, X )y .. We calculate as follows:

[®].(a) = [¢c]a(a)
by definition
= [C3ar (9)]a(a)
by Lemma 67
= [Calo ()]ale)
by definition.

Induction Hypothesis.
that

Assume for each ® € PREQ(X, X),,+ for some u',v' € S+ such

[InTermsOf(®',<",F)] < k

for some fixed & € N that
(Vo' € AY)  [®]ala") = [C°(2)]ala’).
We must show that for each & € PREQ(E, X) v v for some u”,v" ¢ S+

Induction Step.
such that

|InTermsOf(®”,¢", F)| = k + 1

that

ia” € A*) [9"]a(e") = [CH(@")]ala”).
We calenlate by reducing each side of the equality to a common term.
L.H.s,

"

[8]a(a") = [¢1a(a")
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by definition.
R.H.S.
II(CPR((D”)]] |I X’ u” v“ c”)]]:l((l”)

by definition.
We now proceed by case analysis on the structural complexity of Pl € RPREQ(Y, X)
wherein by definition ¥’ = ¥ U H wherein

H={J{firs- fitrcn)

i€P

wherein

P={'(j)|j€ InTermsOf(®, <" F)}.
We have four cases to consider:
(1) General Specifications. In this case
bin < f(remn) =7

for some distinct z; € X,, fori = 1,...,7 > 1 and for some 7 ¢ (¥, X), for any s € §

wherein X = {z,,.. W ZTnl.
L.H.S.
[6c]a(a”) = Vigan(7)

by definition.
Notice now that as by hypothesis

q = [InTermsOf(®", <" F")| =k + 1

it must be the case that DefOver(¢{.,F’) 2 {p} for some p € {1,...,m} therefore by
Lemma 23 for each j € InTermsOf(®”,¢", F) we have

InTermsOf(®”, 7, F)| < ¢ < k

Therefore by the induction hypothesis foreach i € P= {"~!(j) | j € InTermsOf($", ", F))

we have

[CPR(< 6" i s "5 (6) >)a = [< &7, s 550" (6) >,

and therefore by Lemma 64

va(a“)(‘r‘) = [Cgu,x“,slms,.,a(T)]]A(a”)

and

[Chrrzn gy smn(T)]ala a") = [CTR(¢l)]ala”

.. SR e peatr]
by definition of CP! as required.



(2) Vector-Valued General Specifications. In this case

, de f ,
(P:.l// = f(Ila"'v‘rn) =< Ty Ty >

for some distinct z; € X,, fori=1,...,n > 1 and for some 7; € T(E'»X),3 for any s, € §
forj=1,...,m > 1 wherein X = {zy ... 2.}

This case is a simple generalization of Case (1) in that it can he reduced to showing that
for each 7; € T(Y,X)s, for some s; € 5 fori=1,...,k that

(Va € A7) (Vixo(mi)s - Ves (1)) = [ €T (), .., €V (1) >]4(0)

and is omitted.

(3) Primitive Recursive Specifications. In this case

, def
(D/(/n éf(o,lltl,...,;rn) = Ty,

f(t+ l,.’L'],...,(L‘n) = Ty
for some distinct x; € X,, for i = 1,...,n > 0 and for some 7, € T (X, X), and for some

7 € T(Y',X'), for any s € § wherein X = {zi, . 2a} and X' = {z,,...,2,,¢, Y} wherein

t € X, and Y € X, are distinguished variable symbols distinct from z; for i = 1,... n.

, . . r  — /" k .
We proceed by sub-induction on the value r = af € A" using b to represent aj,...,a",

Sub-Basis. r =0.
L.H.S.

[6,4(0.0) = Voz ()
by definition of [.].4
= [CT“,Z‘-{,;y»»sn,s(Tl)HA([))

using essentially the same argument as in Case (1)

= H*(Cg"»xﬁl”"n.’(rl)’(:(‘HI;”,X’,31-‘-s,.,s,s(TZ)]}A(Oab)
by definition of PR
= [C"R(¢()]4(0,)

by definition of CF.
Sub-Induction Hypothesis.

[60]a(r,b) = [CIF (80)]al(r, b).

Assume for some fixed value r € N that

Sub-Induction. ‘e must show that

[0 a(r + 1.6) = [CTH(EE)alr + 1,0).
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L.H.S.
ﬂé//"ﬂ 7'+ 1 b — I w(br,[(pé’,,],‘(r,b))(T'z)

by the definition of [.],.
Notice again that as by hypothesis

q = [InTermsOf(®", ", F')| = k + 1

it must be the case that DefOver(¢¢,,F') 2 {p} for some p € {1,. ..m} therefore by
Lemma 23 for each j € InTermsOf(®”,¢”, F)we have ’

InTermsOf(®”, 7, F)| < ¢ < k

Therefore by the induction hypothesis foreach i € P = {4”~1(j) | j € In TermsOQf( ¢ ¢ )

we have
PR AR / :
[CPM(< 6, 8) )L = [< 6,y bl s () S,
and therefore by Lemma 66

IIC<1>”X'31 Sp,8 s(T’ ]]A(T b [¢”H]]A(f' b)
= &U”,X’,:l--~:n,:,s(T3)BA(7'7by [OPR(Q/)LINJI’A(T’ [)))

"':/.—;l(b‘r’[o ]\(r b) (T’)

by the Sub-induction Hypothesis
= (G tporamena P, (€ (1), © () 1)
by the definition of C**® and by hypothesis on

[I (Cﬂp“xh Sn,S (T[)’Clg",x’,-vl"‘s,.,s,x(T'.’)]]A(r+l,b)

by the definition of PR
= [CPR (gl ]alr + 1,0)
by the definition of CP® and by hypothesis on ¢, as required.
(4) Vector-Valued Primitive Recursive Specifications. In this case

def
(,Zlu = (O Ly ,SE,,) =< L1y Tim >3

f(t+ I,Ilg‘-"zn) =< T?,la"-aTQ,m >

for some distinct z; € X,, fori=1,...,n 20, for some 7, ; € iy X) ~and for some

ray € T(S. X, for any s} € § for] =1,...,d > 1 wherein X = {$1,~--,xn} and
X = XU (.1, .. .Y,,} wherein t € X, and Y e X, forJ =1,...,d are ¢ distinguished

variable symbols distinct from z; for i = L.
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This case is a simple generalization of Case (3) in that it can be reduced to an induction

wherein the basis case requires that we show
(Vb & :{u:mul"ul) ”":/x(b)('rl,l)v R V”x(b)(rl,d)) = ([I(CT(TI,I)HAv sy HCI‘(TI,J)]]A

and an induction case that requires that we show for each r €N

(I/:,x’(b'r,[o:"“ LT, - .,V,,m(b,r,[%'”],\(,,b))(rgyd)) =

(IC (72 a0 L4 (7,8, [ (ra )L, a1, 0))

and is therefore omitted.

B.2 Proof of Lemma 28

To prove the Lemma 28 we require the following nine intermediate results.

B.2.1 Intermediate Lemmata
Let C*PREQ he defined as in Definition 61 on Page 162.

Lemma 68. Let X = {z...., 2y} for some u € §* wherein 2, € w; for i = 1,... |y, If
. EQ
Q€ PRp(S)., for some v € St and ¢ = Cyur v(@) € T(E,X),, for some n € {1,...,|v|} then

(Va = (ay,...,au) € A%)  [a]a(a) = Vixe (o).

Proof, By induction on the structural complexity of the scheme « uniformly in (u, v).

(1) Constant Functions. In this case @ = ¢* for some ¢ € Y, for some w e §+ and for

some s € S and hence n = 1.

R.H.S.
Vixa)(8) = Voxgay(c”)
by hypothesis on a and by the definition of CPREQ

A
=

by the definition of V'

[a]a(a)

by the definition of [.]4.



2) Algebraic Operations. In this cas =
. s case ¢ ) .
( ) g ks P ase « o for some o ¢ Zw', for some w € §+ and for

some s € 5. Again notice that n = 1.

R.H.S.

Viza) (@) = Vizy(o(zr, .., 2p)))

by hypothesis on « and by the definition of CPREQ

[l

a"‘(z/‘“‘i(a)(zl), .. .,z/x“(a)(g;lu,))
by the definition of V

A
=07y, ., Q)

by the definition of v

Il

[e]a(a)

by the definition of [.] .

(3) Projection Functions. In this case « = U} for some w € §* and for some ; with
1 <4< |w|. As with Cases (1) and (2) notice that in this case n = 1.

R.H.S.
Viza) (@) = Vixgay(2:)

by hypothesis on « and by the definition of CPREQ

= Vx“(“)(l‘z')

by the definition of V

= q;

by the definition of ¥

= [a]a(a)

by the definition of [.].4.
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Induction Hypothesis. Assume for any scheme « € PRp(X),, for some u,v € $* that for
. ) ) ¢
any scheme o’ € PRp(Z), . for some w', v’ € 5% of less structural complexity than o that for
. , . L . . RE
some X' = {af,....afy} wherein 57 € Xog for § = L.._,[u/] that if ¢/ — GRS | o soumn
ke {l,....[v'|} then
(Va' € A*)  [a]a(d)) = Vxian(@).

Induction.

(4) Vectorization. In this 'C'dSG a =< a,.. -»anf > wherein o; € PRp(E),... for some u €5t
and for some s; € S fori=1,...,m > 1. This case follows easily by m applications of the

Induction Hypothesis and is omitted.

(5) Composition. In this case @ = oy o @, wherein a; € PR(Y),, and a, € PR(Z)
for some u, v, w € §*. Again this case follows easily by the Induction Hypothesis and tflz

definition of C*PREQ and is omitted.

a

Lemma 69. Let X = {z,,...,2jup 6 Y1, ..., Yy} for some u,v € S+ such that Zi € Xy, for
i=1,. . lu| and Y; € X,, for 7 =1,...,|v| are distinguished variable symbols and t & Xt‘ $ a
distinguished variables symbol, and let v € PR(Z)¢y o for some w € S*. [f o € PRy (E)ewy o
CIREC , (a) € T(Z,X),; for some n € {1,..,|v'|} then |

L tuvy'n

for some v' € §* and ¢ =

(\/k 6 T) (va — ((ll,...,a’ul) E A“)(va/ e (all""7al,w[) € flw)

([ela(k,a,[7]a(k, a)), = Vira,e rrace o (9)-

Proof. By induction on the structural complexity of the scheme o uniformly in (tuov,v).

(1) Constant Functions. In this case a = ¢*** for some ¢ € £, , for some s € § and hence

n=1,
R.H.S.

tuu)

Vora e irlata(8) = Vira i bhak.any(e

by the definition of CP*FQ and by the hypothesis on «

A
=C

by the definition of V

[e**“Lalk, a, [y a(k, )

i

by the definition of [.].4.
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(2) Algebraic Operations. In this case a = :
. s case @ = »
g : P o for some o € &, ,,, for some s € S. Again

notice that n = 1.

R.H.S.

"'L/z(a.k,[’v],‘(L‘,a"))(‘o) = ‘/:/‘z(a,}v',h]»t(kval))(ya(m Ly ey l‘]u[; lea ey /[v’))
by the definition of C-"**? and by the hypothesis on
AUV CONECONINZ e ¥)
by the definition of V'

= a*(k,ay, ..., ap), <[[7]}A(k,a’))l, . ([[“/]]..x(k, a’)) )

]

by the definition of v
= [a]a(k,a, [v]a(k, a")
by the definition of [.]..

(3) Projection Functions. In this case a = U;*" for some i with 1 <4 < |t wv|. Again as
with Case (1) and Case (2) in this case n = L. We have three sub-cases to consider:

(a) i=1,
(b) 1 <i<|ul+1,and
(c) i> |u]+1.

Sub-Case (a) i = 1.
R.H.S.

I/:/Z(a,k,[7],4(k,a’))(¢) = Vioxtak [v]a(k,a)) (1)

by the definition of C*PREQ and by the hypothesis on «
= V'(a, b, [7}a(k, a"))(¢)

by the definition of V

by the definition of v
= [UL " ]a(k, a, [v]a(k, "))

by the definition of [.].1.
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Sub-Case (b) | < i < |u| + 1.

R.H.S.

Vosta b Latean (@) = Vitak byl (e, (25)
by the definition of CPREQ and by the hypothesis on o wherein j = i — 1
= V/(av K, ([7}4("”" a/))(l‘i)

by the definition of 1/

by the definition of v

= [U 2 )alk, a, [v]a(k, o))
by the definition of [.].4

= !IU:: ) UI'A(ka a, [7}],‘(1\:, al))

by the definition of J.
Sub-Case (c) { > [u| + L.
R.H.S.

Voo b rlatkan (@) = Vi placean ()

by the definition of C*PREQ and by the hypothesis on o wherein j = i — (|u| + 1)
= v'(a,k, [v]a(k, a))(Y5)
by the definition of V

= (Irlalk,a)),

by the definition of v

II ]+|u|+l]] (I" a [[7]]1‘1 l" (L

by the definition of [.]a

= U La(k, o, [1]a(k, 0))

by the definition of J.



Induction Hypothesis. Assume for any scheme o € PRp(Z)¢u, . for some v € St that
for any scheme a’ € PRg(2), 4,0 for some v” € S+ of less structural complexity than o that
if ¢ = CPREQ () € T(E,X)yx for some n € {1,...,]v"|} then

Ltuv v n

(VkeT) (Va=(ar,...,qu) € A*) (Va' = (af,...,a],) € A*)
[l (k. a, IrRa(k, @) = Viza s, pace.any (),
Induction.

(4) Vectorisation. In this case a@ =< ay,...,a,, > wherein a; € PR(Y), for som
. . . . ~/tuuv,s, e
si € Sfort=1,...,m > 1. This case follows casily by m applications of the Induction

Hvpothesis and is omitted.

(5) Composition. In this case a = a» o a; where a; € PR(2)uyw and a. PR(Y)
for some w’ € §*. Again this case follows easily by the Induction Hypothesis andwt’]vle

definition of CPREQ and is omitted.

0
Let C°PREQ be defined as in Definition 62 on Page 163.

Lemma 70. Let n € N let @« € PR(Y),, for some u,v € St and let ¢ = CPREQ(o) ¢
RPREQ(Y', X) wherein ¥ is defined as in Definition 50. If either NPPRSS (a) =0 or for each
i=1,..... VPPRSS () and for each j = 1,...,|CoDom(PPRSS (a,1))| the function symbol

Jratiyeny € ¥ ds defined over A by fiyin = (ﬂPPRSS'(a,i)ﬂ[JJ then

(Va € A*)  [ela(a) = [¢]a(a).

Proof. By case analysis on the structural complexity of the scheme o uniformly in (u,v). We
\ A V).

have six cases to consider:

Basis Cases.

(1) Constant Functions. In this case a = ¢* for some ¢ € I, , for some s € $ and for some

w € St. We proceed as follows:

R.H.S.
[olala) = [z, zw) = C%?SE,?(CERE(Q))HA(G)

by the definition of CPREQ wherein X = {z1,..., 21y}
PRE
= [l o) = Glusi(@)]ala)
by the definition of C#

PREQ (@)

= Vux(u)( ¥ ,w,s, 1
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by the definition of [.],

= (/‘A

by Lemma 68 and by the hypothesis on «

= [a](a)
by hypothesis on « and by the definition of [.],.

2) Algebraic Operations. In this cas = y 3
(2) Algebr: P In this case a = o for some ¢ € T, ; for some w € S* and for
some s € 5. This case is similar to Case ( ) and is omitted.

. . " . C i Tw . -
(3) Projection Functions. In this case @ = UP for some w € S§* and for some i with
1 < i< |wl. Again this case is similar to Case (1) and is omitted.
Induction.

(4) Vectorisation. In this case @ =< ay,...,a, > wherein o; € PR(Y), ,, for some u € S+
and for some s; € § for i = 1,...,m > 1. As with Cases (2) and (3) this case follows by a

similar argument to Case (1) and is omitted.

(5) Composition. In this case « = as o a; where &1 € PR(X),,, and a, € PR(X), , for
some u.v,w € St. Again, as with Cases (2), (3) and (4) this case follows by a snmlar

argument to Case (1) and is omitted.

(6) Simultaneous Primitive Recursion. In this case @ = #(ay, a,) where @, € PR(Y),,
and as € PR(Z)y uv.v for some u,v € S*. We proceed by induction on the value ofa, € N
For simplicity we will assume that [v] = L and leave the simple generalization of the case
where |v] > 1 to the reader.
Basis. a; =0 (using @’ to represent ds, ..., Q).

R.H.S.

[6]4(0.a") = LF(0, 20,y o) = G au T (CH 2 ()
f(t + Lz, .. wxlul) = .rf,}fi(ﬁ,u,l(‘cff“(az))]]A(O,a’)

by hypothesis on a and by the definition of CoPREQ
xan(Crau (CRE ()
by the definition of [.].4
= ([[Cf:RE(%)H:t((l’))l
by Lemma 6%

= (I (11 ] a ))
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by Lemma 22 as we have NPRSS(CPe(a,)) =

and hence by Lemma 21 C"®&(qa,) € PRp(T)

= [2].(0,a)

by the definition of [.] 4.
Induction Hypothesis. Assume for some fixed value & € N that

[ala(k, ') = [@]a(k, ).
Induction. We must show that
ok + 1) = [](k + 1 o),
R.H.S.

[#)a(k + 1,a") = [f(0 21, 2p) = CGFETT (TR ()
flt+Lzy o z) = GRS, (CER e (ao)) ]k + 1, d)

by hypothesis on a and by the definition of C°PREQ
= L"A/x'(a’,k,[a]A(k,a’))(cipltuuQu v I(CSRE(CYZ)))
by the definition of [.] 4
_1 Pl >
— ‘ V(ﬂ.’i.[a]\(ka))((:*" t.{[:vavl (CIRE )))
by the Induction Hypothesis
= ([CT"# (@2)]a(d, &, [ala(k, @),
by Lemma 69 with ¥ = a as by Lemma 21 CERe(q,) € € PRp(%)
= ([ (e’ K, [l alk, ')

by Lemma 22 as we have NPRSS(C*M# () = 0

and hence by Lemma 21 C"*#(a,) € PRp(E)
= Jala(k + L,a")

by the definition of [.]4 as required.
This concludes Case (6) and concludes the proof.
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O
Let CPREQ he defined as in Definition 63 on Page 16.4.
O

Lemma 71. If o € PR(Y),. for some u,v € St such that NPPRSS(«) = 0 then for each
e € N*
(I) — {‘CTPREQ(Q) (- PRE_"Q(_E7‘\')UVU'

AT

Proof. Notice that by the well-definedness of C'P*¥Q we immediately have & ¢ PREQ,(Z, X)us
and therefore it is sufficient to show that @ is totally-defined.
As by hypothesis NPPRSS(«) = 0 by Lemma 13 we have NPPRSS'(a) = 0 and hence
j=i=1
|J InTermsOf(®,,%' - £) =2

j=1

and therefore the fact that @ is totally-defined is immediate by definition.

Lot CYPREQ he defined as in Definition 64 on Page 164.

Lemma 72. Let
b =< d,...,0 > € P’REQ(E,X)I'm"’”'1

u,v

for some w,v € ST be standard. If for some e € {2,...,1} we have

[n’I‘ermsO/(‘b,e,IE‘)ﬂ{c +1,...,0}=0

wherein

F= {fq,p l q,p € N}

(we denote this property by Pe(d)) then if we define ®° by
O =< by 01>

whercin

and

n = n[{l,....¢}]

it

then &° satisfies the following:
()

We have ) -
$°¢ € PH[L’Q(S’ ‘\')ZI,:L ] .1’

(h)

b7 is totally-defined and standard, and
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(c)

For any Y-algebra A

[®° ], = [®]...

Proof. Omitted.

Lemma 73. Let
Q=< 01,...,0 > € PREQ(‘S,X)I"”*"”'1

u,v

for some m > [ and for some u,v € S*. If for some j € {2,...,m} we have

(a)
1,:{J’H1,j+l»——?,...,m»—vm-—(j—l)},

and

(b)

n={i— (e ) j+ L (@0, i+ T= 1 (d,0'))
wherein (u*,v') is the type of ¢; fori=1,...,1
(we denote this property by Q7(9)) then if we define &7t by
B =< ol 0L >

wherein for kb = 1,...,1
oy = Oulfypl fomirripliZy,
V== 122, om=(G-1)—m=-(j-1)}

and
P = {1 ('), 2 (00, m = (= 1) (0}

then the following hold:

(1) We have
' € PREQ(Y, X),.,,

(2) &It s totally-defined and standard, and

(3) For any Y-alyebra A _
[0]4 = [¢7'].4.

Proof. Omitted.
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Lemma 74. [f
P =<on...,&>€ PREQYE, X),,

Jor some 1 > 2 and for some u.v € St such that for cach k =2,... 1

1=l
(U lnTermst((P,i,F))ﬂ{k} =

where
F={fiplapeN}
(we denote this property by Q(¥)) then for d =2,...,1 If we define 4 by

(pd =< ¢da"'7¢1;Ll;71,;l>

wherein
V={d—1,d+ 12, Il (d~ 1)},

n' = {d— (u? v?),d+ L (o = (WD) v!=(d=1yy

wherein for j = d.....0—(d— 1) (w,v7) is the type of ¢; then the following hold:
(1)
®7 € PREQ(S, X )u,;
)

[< ¢, ndind > =[04],.
Proof. OQOmitted.

Lemma 75. If VPREQ/
G =< dy,...,0 >= Cu'v ) (a)

— A 3
Jor some a € PR(Y), . for some w, v e S+ then for cach d € {2,. ‘.,l}

ond >]4 = [CT 7 (PPRSS(ay d = 1)),

i’I< Qi

Proof. Virst. notice that by Lemma 26 on Page 165 for i = 2,...,1 we have
o, = CPREQ(PPRSS (@, i — 1)).
Also, notice that as Q(¢) holds (see Lemma 74) we have

(1) [< o hond>Lo=[P]
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In addition, notice that by definition Q"(fbg) holds (see Lemma 73) and therefore
(2) [0 = [(24)“],
wherein
() =< Oy Sy ey 0] >
=I ; = . —
=< o4l fyp/ fig=nre1plizas @d+1[fq,p/.f(q—dh'-x,p]ngia NN Ol[ﬁ;,p/f(q_d)ﬂvp]3;& >

by definition. Furthermore, by Lemma 26 we have

CYPE(PPRSS(a d — 1)) =< ¢f,... ¢l >
wherein {” = NPPRSS(PPRSS(a),d~1)+1,¢] = (C;I’REQ(PPRSS(Q,(I~ 1))and fork =2,... 1"

&f = C"""S (PPRSS(PPRSS (e, d — 1), k — 1)

= "M (PPRSS(ev, d + & — 2)
by Lemma 16; that is, in [CYPREQ(PPRSS(e,d — 1))]4 we have
,-':‘q = ([PPRSS(a,d + k —~ 2)}},1)4

fork =1,..., ” and for ¢ = 1,..., 7" (k).

Finally, notice that, P ((®4)') holds (see Lemma 72) and therefore we have

) [(®9)%], = [((®7)) ],

but -
(@)

is

CF"™EQ(PPRSS(av, d — 1))
and hence by Equations (1‘)» (2) and (3) we have

[< o on5d>]a = [CTTE(PPRSS(a, d — )]

as required.

B.2.2 Proof of Lemma 28

We are now in a position to prove Lemma 28. For convenience we first re-state the lemma.
: - S . we Gt if ® — CPRE

Lemma 28. For cach a € PR(Y),, for some u,v € 57 if & = C"E9(a) then

(Va e AY)  [a]. = [®]..

Proof. By induction on the number n = NPPRSS(a).

Basis Cases. e consider two basis cases:
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(1) n=0.; and
(2) n=1.

Basis Case (1).
R.H.S.

[[(CPREQ(Q,)H 1(a) — [[CFPREQ(Q)HA((L)

by the definition of CFREQ

= [< G (a) >]aa)
by Lemma 26

=[S ()] (a)

by the definition of [.].

= [a]a(a)

by Lemma 26 as by hypothesis NPRSS(a) = 0 and hence by Lemma 13 NPPRSS («) = 0.
Basis Case (2).

[T (a)La(a) = [C7 % (2)a(e)

by the definition of CPREQ

= [< CM%(a). G Y(PPRSS(a, 1)) >]a(a)

by Lemma 26
=[G (0)]a(a)

by the definition of [.]4.
Notice now that by Lemma 26 CYPEQ(q) is standard and therefore

CPREQ(a) € RPREQ(Y, X)

wherein

Vo= YU {for ) U St U U { fagman}
and by the definition of [dafory=1,.. L infi(2)]
= (1< G G )2 51

J
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Also notice that by Lemma 17 we have 7%(1) = 1 and hence

A __ A
2 T Jre(1)+1,;

and by Lemma 13 we have NPPRSS(a) = L. Therefore, if we can show that
[< GF*E%a), G (a)i2 >] = [PPRSS (@, 1],

then by Lemma 70 we have

[C7% ()] = [l
as required. We calculate as follows:
[< G %a), G (a)i2 ] =[OV (PPRSS(a, 1))
by Lemma 75
= [C"*E(PPRSS(a, 1))].4
by the definition of CPREQ
= [PPRSS(a, 1)]4

by Case (1) as by hypothesis NPPRSS(a) = 1 and hence by

Lemma 15 we have NPPRSS(PPRSS(e, 1)) =0

= [PPRSS(a, r*(1))]4

by Lemma 17
= [PPRSS' (o, 1)]4

by Definition 43.
Induction Hypothesis. Assume for some scheme o' € PR(Z),,» for any «/,v" € S* such

that NPPRSS({a’) < k for some fixed k € N that
(Va' € ;1”1) [@']s = HCPREQ(O‘I)HA-
Induction. \We must show that for some scheme " € PR(Y)yu v for any u”,v” € S+ such
that NPPRSS(a”) = k -+ 1 that
(VU” c :1“:/) !ILY”}]A — HC})REQ(QH)H.J-
We proceed as follows:
R.H.S.

gr\r:l’ﬂiiq ( (}//)r ‘(” = IC}\"l’HHQ(”//')HA((I)

i}
i
5.
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by the definition of CPREQ
PRE 1" YR i . Y .. ' ’
= [< G (a”), G (PPRSS (0", 1), . CTE(PPRSS (0" & + 1)) >]u(a)
by Lemma 26
= [CT % (a")]a(a)

by the definition of [.] .
Notice again that by Lemma 26

G2 (a”) € RPREQ(E”, X)

wherein

S = S L U2 U U fegnren)
Utha Ulfa U U s inren

U fesna} U{fes2} - 'U{fk+2,|y,ﬂ(_k+2)[}
and by the definition of [.]4 for i = 2,...,k+ 2 and for j = 1,...,|pf(i)| we have

= (g< G ), G (PPRSS (a, 1), . QY (PPRSS (o, k 4 1)): 4 >]],,) .

J
In addition notice that

{r (1) + L., r" (NPPRSS/(a") + 1} € {2,..., NPPRSS(a") + 1 = k + 2)

and hence "
i=NPPRSS (a”) j=[n?(r™ (i)+1)|

{fi,J} = Z Z {fr~a”(i)+1,j}

=1 =1 j=1
therefore by the definition of [Jafori=1... . NPPRSS'(a”) and for j = 1,.. - l"?”(raw(’f) +1)|
we have

ey = (1< G0 QMY (PPRSS (@, 1), CEEFH(PPRSS (o, k4 1)) 0™ ()41 ],
J
Consequently, if we can show that for i = 1,..., NPPR3S'(a”)

[< CPREQ ) G PPRSS(a 1)) G (PPRSS (o k41)); 777 () >4 = [PPRSS (0, )]

then by Lemma 70 we have

EC;I’REQ(QU)HA (’(l”) — [[n//]]/‘((LU)



as required. We calculate as follows.
PREQ, | ¢oPRE o : : o
EI< (:;> (a>vq Q(PPRbS(O!,l))., k}:—I‘Z{EQ(PpRSS(Q«}V”{‘ 1)), T‘GH(?:> >]]A

= [CTR (PPRSS(a”, 7)) e
by Lemma 75
— [CPREQ(PPRSS(a”, r*" )))]e

by the definition of CPREQ. Notice now that as by definition re’(i) e {1,... NPPRSS(a")} by

Lemma 15 we have
NPPRSS(PPRSS(a”, %" (i))) < NPPRSS(a”) = k + 1;

that is,
NPPRSS(PPRSS(a”, 7" (i))) < k.

Therefore,

[CPREQ(PPRSS(a”,r" (i)))]a = [PPRSS(a”, 7" (i))] 4
by the Induction Hypothesis
= [PPRSS (", 1)]4

by Definition 43 as required.
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Appendix C

An Abridged Version of the
RS-Flip-Flop Verification

We now present the theorem and an abridged version of the proof that was generated by our
implementation of AV (see Chapter 8) as part of the automatic verification of the RS-Flip-Flop.
In particular, notice the existential quantification ou the ‘initial’ boolean values b, and b,.

We have used the symbol ¥\’ to indicate where parts of the proof have been omitted - the
full proof is approximately one-hundred-and-fifty pages long.
Theorem. Let E be the given system of equations. If A is some S-sorted Y-algebra such that

A= LS E) then
(Vny € A™) (b, € A%°) (3by € A™) (VB) € A™2) (V] € Abeely

fﬂOPSPC’Ci(nla B'.h Bl) = ﬁlopimpli(nl, B'la 8111)27 bl)-

Proof. By induction on n;.

Basis. n, = 02,

We calculate by case analysis on the values of by and b,. There is one Sub-case to consider:
by = trued and by = false®

Calculating for Sub-case 1.1. by = truet and by = falses.

L.H.S.

Hlopspec(02, Ba. By)

= falsed

by applying flopspec(04, s112, §2124) = falsed with: s114 as By and s214
as By,

R.H.S.

Hopimp 12(0%, By, By falsettr wed) , ‘
= fIT6e18 f IR 1104, Ba, [}1‘fals(;i,truei),fl&lc'li‘(()'-, B., By, false?, ...
ety FISEE3 08, Ba, By falset truet), [184e10%, By, By, falsed, .
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cotrued), fIS4eANO0L, By, By, falsed trued), 1846404, By, By, falsed, . ..
ctrued), f184eTA0L, By, By, falsed trued))

by applying flopimp12(nz 124, shlr124, sb2z124 blr124, b2z124) =
S SLT61A(f184c14(nr 1224 sblr124, sb22124 h1r124 221224, F184c24(ne 124 sh1p 194 gpop10 SESCENNISEE

S8 e3 A (ne 124 sble 1224 sh2r 124 blrl 24 b22124), F184cd ]2, sOLr 122 b2 124 p1 12 poppoa
Cf184e5 A (nr 124 shlr 124 sb22124 blrl124 b2r124), FIB4e6Hnr124 sh1r124 sh2r124 plpoa b2 124

18T (nr 124 sb1e124 s622 124 b12124 522124)) with: nel2d as 0t , shlrl2d as B,

sb2r124 as By, blrl24 as falsed and 622124 as truest.

A
V

= false

by applying f2c12(sb12522 sb22524 sb3x524 , sbdz524 bla524 po252: A) = p12524 with:
sb1r5224 as Bo, sb2r522 as By, s632522 as Ba, sb42524 as By, b12524 as

false and 622524 as trued.

Induction Hypothesis. Assume for all n; that:

fopspec(ny, By, By) = flopimp I (ny, By, B, falseX, trued).

Induction Step. We must now show that:

opspect(suce{ny). Ba, By) = fflopimp 1+ (L"UCCA(”O,BQ,Bl,falsei,trucﬁl)‘

Calculating for Sub-case 2.1. b, = truet and b, = false.

L.H.S.

HlopspecM suceny), Ba, By)

= deMand2(cgMevalX{ny, By), falsed), eqevald{ny, B)), trued)), tryes,
.(lc=f‘~(mzdi(ch(evali(nl. B.), truedt), eq?{evald{ny, By), falsed)), falsed, ..
(lri((uzdi'f’qi(l’r‘ali(nv Bo), trued), eq?(eval(ny, By), trued)), false?, . ..
. flopspect{ny, B2, Bi))))

by applying fHlopspect(succity), s114, s214) = de(and(eqevald(ty, s114),
Cfalsety eqMevald(ty, 214, truedt)), trued, def{and?(eqevald(ty, s114), fryed), eqMevald(t,, 5214,

o falsedyy, falsed d(-(aud eqt tmli‘—(h»b‘ll‘ ), trued), eqd (CU(lI‘(fl,sill") trued)), falsed

CMHopspecit(ty ST, s214)))) with: ¢y as ny, sl 14 as By and 214 as B;.
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A
V
= deandHeq(eval®(ny, By), falsed), eq M evali{n,, I ) trued)) tryet,
cdeManddeqMevald{ny, Bs), trued), eqMevald{n,, By), Jalse)), falses,
deMandMeqMevalt(ny, By), trued), eqMeval{ny, By), trued L)), falsed, ...
..f()(‘cl-{multZ—( ny, suce{succ(02))), By, By, By, By, false?, trued))))

by applying ded(falsed, z7, y7) = yr with: r7 as succi(succi(()i‘-)) and y;

as mult2(ny, succM succ(04))).

R.H.S.
flopimp1&(suce{ny), By, By, falsed, ...
cotrued)
= flT()‘(*l'-‘(flR'l('lﬂ( succd(ny), By, By, falsed, trued), f181c‘7’—(buc<'—(nl),BQ
- By, falsed trued), f184c3suce(ny), By, By, falsed, trued), .
. f18 cl—(suw‘(nl) Bs, By, false? trued), f184¢54 éucci(nl),Bg,Bl’
. falsed trued), f184c6d suced(ny), Ba, By, falsed, truei),flSL'lcTi(succi‘{nl),
.. Bs, By, false——, trued))

by applying flopimpI&(nz124, sblx124, s622124 b1r124 522124 =
Cf1T6elA(f184clA(ne 124, sblx 124 5622124, 612124, b22124), F184¢24(nr124, sh1e124, sb22124 blz124 p2,194

1848 (nr 124, sb1r124, sb221224, 612124, 522124, f184cd N ne 124, shlr124. sb22124, b1z 194, b2 124y
18405 (e 124 sb12124 5622124 81124 622124, F18:4c64(ne 124, sb12124, 5622124 b1z 124, p2p194 4.

L f184eTAnr 124 sblz124 5622124 612124, 622124)) with: nel124 as suced Any), sblz124 as B,

abzrlzi as By, blr124 as false and b2z122 as trued.

A

V

= notdordeval{n,. By), notH ord{ f66c1H mult2(n,, succsuced(04))), B, ...
By, B By, falsed trued), evald{ny, By)))))

by applying ded( falsed, z7, y7) = y7 with: z7 as suce™(n;) and y; as

ny.

We now proceed by case analysis on the values of evald{n;, B,) and evald(ny, B;). There
are four Sub-sub-cases to consider:

Sub-sub-case 2.1.1. evald(ny, By) = trued and evald(n;, B)) = trued.

Sub-sub-case 2.1.2. evald(n, By) = false® and eval®(n,, B,) = trues.

Sub-sub-case 2.1.3. cvald(n,. [y) = trued and evalny, By) = falsed.

Sub-sub-case 2.1.4. evald{n,. B,) = false? and evalny, B)) = falsed,

346



Calculating for Sub-sub-case 2.1.1. evald{n,, B.) = true? and evalMn,, B)) = truc.
L.H.S
deMandeqt(trued, falset), eq{trued, . ..

ctrued))trued deMandeqd(trued, trued), | ..

cceqMtrued| falsed)), falsed, ...
cdeMandMeqtrued, trued), eq{trued, . ..
ctrued)), falsed, f66c1Y mult2ny, ...

cosuceM suce(04))), Ba, Bi, Ba, ...
... By falsed trued))))
A
V
= de{ falsed, trued, deX{ falsed, falsed, falsed))

by applying ded(truecd, rs, ys) = rs with: z3 as falset and yg as

f66el(mult2d(n,, suce(succ2(04))), Ba, By, B, By, false, trues).
= ded{ falsed, falsed, falsed)

by applying de( false2, rg, ys) = ys with: zg as true? and yg as

ded(falsed, falsed falsed).
= falsed

by applying ded( false, rs, ya) = ys with: 23 as false and yg as

falsed

R.H.S

notdordtrued, ...
onotord( 661 mult2(ny, ...
coosuce suce(04))), By, By Ba, o
By falsed trued), trued))))

= not(trued)

by applying ord(trued, z,
osuce succd(04))), Bo, By, Ba, By, Satsed, trued), truedy).

) = trued with: ry as not2(ord(f66el M mult2dn, .. .

= falsed
by applying 71()1i(t7‘lu-'i) = falsci .

Calculating for Sub-sub-case 2.1.2. evaldny, By) = false2 and cvald(n,, By) = trued,

L.H.S
det{and™Meqd falsed, falsed), eq{trued, ...



Strued)) trued. deManddeqd{ falsed, trued )
ceqtrued, falsed)) ,false—, .
codeMandMeq falser trued), eq M trued,

ctrued)) falsed, f66e1Y mult2M n,,

cosuceM suce(04))), B, By, B,

By, false trucd))))

.
%

= ded{trued, true, de{ falsed, falsed, de{and?( false, trued), falsed, ..
6612 mult2Y ny, suce{ sucet(04))), By, By, By, By, false?, trucd))))

by applying and( falset, ry) = falsed with: 4 as falsed.

= detrued, trued, de false, falsed, ded{ falsed, false?, J[66c1dmult2dqn,, . ..
csuceH suce(04))), Be, By, By, By, false, trued))))

by applying and2( false?, ry) = false with: r4 as trued,

de{trued, true?, de?( falsed, false?,
coodeA falsed, falsed, f66e1{ mult2d(n,, ...
osuce suceH(02))), Ba, By, Ba, ...
By false trued))))

= trued

by applying ded(trued, rs, ys) = g with: zs as trued and yg as
ded(falsed, falsed, de( false, false?, f66clHmult2d(n,, suce(suce(04))), By, By, By, By, ...
o Salset trued))).

R.H.S

notd(ord{ fals‘(i .
notHord( fo6elH mult. 240, ...
.suce ‘( suec02), By, By, By, oo
lfl,falw“— trued). trued))))

= notdord{ falsed, not(iruct)))

]
i

by applying ord{ry tr wed) = frucd with: rqas f66el2(mult2d(ny, ...
A

suceMsuced(04), By, By, Ba, By, falsed trued 1),

= not ot (true Ay

} Lry) = rg with: zyas not(trued).

=

¥ applying ord( falsed
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= notd( falses)

by applying not(trued) = falsed .
= trued

by applying notd( falsed) = trued

Calculating for Sub-sub-case 2.1.3. eval(n,, B,) = trued and evald(ny, B)) = false.
L.H.S

deMandMeq(trued, falsed), eq{ falsed, ...

trued)), truedt, deMandA(eqi(trued, trued), ...

..eqd( falsed, falsed)), false?, ...

deManddeq{trued, trued), eqd( falsed, ...

.. trued)), falsed, f66c1(mult2d ny, ...

- osuce{suce(04))), By, By, B, ..

... By, falsed truet))))

A

V

= deMand?( falsed, falsed), true?, deH{true?, false®, de{ and2(trued, falsed), falsed, . ..
oo [B6c1 Y mult2 ny, suce succA(02))), By, By, Be, By, falsed, trued))))

by applying and?(truc, true?) = trued .

= ded( false, trued, ded(trued, false?, det{andd(trued, falsed), falsed, |
o f66e1 A mult2d(ny, succM sucet(02))), Ba, By, Bo, By, false, trued))))

by applying and2(false, z,) = falsed with: 14 as falsed.

= de falsed trued, deXtrued, false2, de{ falsed, false?, f66cl(mult2d(n,, . ..
-suce suce(04))), Ba, By, Ba, By, false? trued))))

by applying and®(z4, falsedt) = false with: z4 as trued.

ded{ false trued, de{trued, falsed, ...
o.de falsed, falsed, f66c13{(mult2d(ny, ...
cosueed(suce(04))), Bay By, Ba, ..

tee 1}1, ffl,lb’l":i, {ru(;i))))

= de{ falsed trued, falsed)

. v - (ot
¥ applying rl(‘r’-‘»([mu:i, s, ys) = rg with: rg as false2 and yg as

§
ded{ falsed, falsed, 661 mult2d(ny, succ(suce(04))), Be, By, B2, By, falses, . .

o trued)).
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= falsed

by applying ded{ false rg, y3) = ys with: zg as true? and Y3 as

falses,

R.H.S

noti(ori(truei,
o notord( f66c12(mult2d ny, ...
ssuceM suee(04))), Bo, By, B, ...
Bl,f(zlsc Jtrued), falsed))))

= n()t—‘(t ruet)

by applying ord(trued, ry) = trued with: r4 as not: Aord( f66c- A mult: Ay,
..aucc‘(succ A(04))), Ba, By, Ba, By, false2 truedt), falset )).

= falset
by applying not2(trued) = false .

Calculating for Sub-sub-case 2.1.4. eval®{n,, B,) = falset and evalny, B\) = falses.
L.H.S
deandd(eqd( f(zlsc— falsed), eq falsed, ...

Cdrued)), trued, deandd(eqd( falsed, trued), .
cceq( falsed, falsed)), false?,
codeMandMeqd falsed, truct), eq false2, ...

trued), falsed, f66c1 N mult2M ny, ...

cosuceH suce(02))), B, By Ba, ..

By, falsed trued))))

A
V
= de{ fulsed, falsed, f66e1 N mult2Y ny, suceH{ succ(04))), By, By, By, B, . ..

L false tr m”.f-‘*))

i)_\' Ilpp]}‘ing (‘[C:i(f(l[b‘(}i‘_‘_);g' Ys) = U with: rg as falsei and Y3 as
Y falsed, falsed, f66c1mult2d(ny, succ(succA(04))), By, By, Ba, By, falset,

A.trzu,i))_

= f66c18 mult2 M ny, suce{ suce{02))), By, By, Ba, By, false?, trued)

. : P apsl .
by applving ded( false s us) = U3 with: rg as false?t and yg as

861 (mult22(ny  suceMsuce(02))), Ba, By, B2, By, falsed trued),
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R.H.S

notor falsed, ...

coonotMord( f66clH mult2i n,, ...

cosuceH suce04))), Ba, By Ba, ...

By falsed trued), falsedt))))

= nott(notd{ord( f66c1H mult2?(ny, succ{succ(02))), By, By, B.. B, ...

. falsed trued), falsed)))

by applying ord(falsed, r4) = ry with: z, as n()ti(ori(ffiﬁc]i(muugd(nl, N

suce(suced(04)), Ba, By, Ba, By, false? trued) falsed)).

= not notd( f66c1H mult2d( ny, suceM suec{04))), Bs, By, B, By, falses, . ..

L trued)))

by applying ord{z,, false) = ry with: r4 as f66cli‘—(mult21(n1, o
-suced(suced(04)), Ba, By, Ba, By, false? trued).

= f66clY mult2d n,. succM succ{04))), Ba, By, Ba, By, falsed, trucd)

by applying not(notd(z4)) = ry with: r; as fﬁﬁcli(muu"zi(nl, o

osuee(suceA(02)), By, By, Ba, By, falsed trued).
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