22 research outputs found

    Typeful Normalization by Evaluation

    Get PDF
    We present the first typeful implementation of Normalization by Evaluation for the simply typed lambda-calculus with sums and control operators: we guarantee type preservation and eta-long (modulo commuting conversions), beta-normal forms using only Generalized Algebraic Data Types in a general-purpose programming language, here OCaml; and we account for sums and control operators with Continuation-Passing Style. First, we implement the standard NbE algorithm for the implicational fragment in a typeful way that is correct by construction. We then derive its call-by-value continuation-passing counterpart, that maps a lambda-term with sums and call/cc into a CPS term in normal form, which we express in a typed dedicated syntax. Beyond showcasing the expressive power of GADTs, we emphasize that type inference gives a smooth way to re-derive the encodings of the syntax and typing of normal forms in Continuation-Passing Style

    Program Extraction from Proofs of Weak Head Normalization

    Get PDF
    We formalize two proofs of weak head normalization for the simply typed lambda-calculus in first-order minimal logic: one for normal-order reduction, and one for applicative-order reduction in the object language. Subsequently we use Kreisel's modified realizability to extract evaluation algorithms from the proofs, following Berger; the proofs are based on Tait-style reducibility predicates, and hence the extracted algorithms are instances of (weak head) normalization by evaluation, as already identified by Coquand and Dybjer

    From Reduction-Based to Reduction-Free Normalization

    Get PDF
    We present a systematic construction of a reduction-free normalization function. Starting from a reduction-based normalization function, i.e., the transitive closure of a one-step reduction function, we successively subject it to refocusing (i.e., deforestation of the intermediate reduced terms), simplification (i.e., fusing auxiliary functions), refunctionalization (i.e., Church encoding), and direct-style transformation (i.e., the converse of the CPS transformation). We consider two simple examples and treat them in detail: for the first one, arithmetic expressions, we construct an evaluation function; for the second one, terms in the free monoid, we construct an accumulator-based flatten function. The resulting two functions are traditional reduction-free normalization functions. The construction builds on previous work on refocusing and on a functional correspondence between evaluators and abstract machines. It is also reversible

    From Interpreter to Compiler and Virtual Machine: A Functional Derivation

    Get PDF
    We show how to derive a compiler and a virtual machine from a compositional interpreter. We first illustrate the derivation with two evaluation functions and two normalization functions. We obtain Krivine's machine, Felleisen et al.'s CEK machine, and a generalization of these machines performing strong normalization, which is new. We observe that several existing compilers and virtual machines--e.g., the Categorical Abstract Machine (CAM), Schmidt's VEC machine, and Leroy's Zinc abstract machine--are already in derived form and we present the corresponding interpreter for the CAM and the VEC machine. We also consider Hannan and Miller's CLS machine and Landin's SECD machine. We derived Krivine's machine via a call-by-name CPS transformation and the CEK machine via a call-by-value CPS transformation. These two derivations hold both for an evaluation function and for a normalization function. They provide a non-trivial illustration of Reynolds's warning about the evaluation order of a meta-language

    Nominal Equational Logic

    Get PDF
    AbstractThis paper studies the notion of “freshness” that often occurs in the meta-theory of computer science languages involving various kinds of names. Nominal Equational Logic is an extension of ordinary equational logic with assertions about the freshness of names. It is shown to be both sound and complete for the support interpretation of freshness and equality provided by the Gabbay-Pitts nominal sets model of names, binding and α-conversion

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    An Operational Foundation for Delimited Continuations in<br><br> the<br><br><br> CPS<br><br> Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. We also present new applications of delimited continuations in the CPS hierarchy: finding list prefixes and normalization by evaluation for a hierarchical language of units and products.Comment: 39 page

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for
    corecore