
BRICS
Basic Research in Computer Science

From Reduction-Based to
Reduction-Free Normalization

Olivier Danvy

BRICS Report Series RS-04-30

ISSN 0909-0878 December 2004

B
R

IC
S

R
S

-04-30
O

.D
anvy:

F
rom

R
eduction-B

ased
to

R
eduction-F

ree
N

orm
alization



Copyright c© 2004, Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/30/



From reduction-based

to reduction-free normalization∗

Olivier Danvy

BRICS†

Department of Computer Science
University of Aarhus‡

December 30, 2004

Abstract

We present a systematic construction of a reduction-free normalization function.
Starting from a reduction-based normalization function, i.e., the transitive closure
of a one-step reduction function, we successively subject it to refocusing (i.e., de-
forestation of the intermediate reduced terms), simplification (i.e., fusing auxiliary
functions), refunctionalization (i.e., Church encoding), and direct-style transfor-
mation (i.e., the converse of the CPS transformation). We consider two simple
examples and treat them in detail: for the first one, arithmetic expressions, we
construct an evaluation function; for the second one, terms in the free monoid, we
construct an accumulator-based flatten function. The resulting two functions are
traditional reduction-free normalization functions.

The construction builds on previous work on refocusing and on a functional
correspondence between evaluators and abstract machines. It is also reversible.

Keywords

Normalization by evaluation, refocusing, defunctionalization, continuation-passing
style (CPS).

∗Extended version of an invited article to appear in the proceedings of the Fourth International
Workshop on Reduction Strategies in Rewriting and Programming (WRS 2004), Aachen, Germany,
May 2004.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
Email: danvy@brics.dk

1



Contents

1 Introduction 3

2 A reduction semantics for arithmetic expressions 5
2.1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Notion of reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Reduction contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 One-step reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Reduction-based normalization . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Reduction-based normalization, typefully . . . . . . . . . . . . . . . . . 7
2.8 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 From reduction-based to reduction-free normalization 9
3.1 Plugging and decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Refocusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 From refocused normalization function to abstract machine . . . . . . . 10
3.4 Inlining and simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Refunctionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Back to direct style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 A reduction semantics for terms in the free monoid 12
4.1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Notion of reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Reduction contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 One-step reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Reduction-based normalization . . . . . . . . . . . . . . . . . . . . . . . 14
4.7 Reduction-based normalization, typefully . . . . . . . . . . . . . . . . . 14
4.8 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 From reduction-based to reduction-free normalization 16
5.1 Plugging and decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Refocusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 From refocused evaluation function to abstract machine . . . . . . . . . 17
5.4 Inlining and simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Refunctionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Back to direct style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusion 21

A On reduction contexts, plugging, and decomposition 22
A.1 Arithmetic expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.2 The free monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



1 Introduction

Normalization by evaluation is a ‘reduction-free’ approach to normalizing terms. Instead
of repeatedly reducing a term towards its normal form, as in the traditional reduction-
based approach, one uses an extensional normalization function that does not construct
any intermediate term and directly yields a normal form, if there is any [22]. Normal-
ization by evaluation has been developed in intuitionistic type theory [14, 37, 44], proof
theory [9,10], category theory [5,16,41], λ-definability [32], partial evaluation [18,19,26],
and formal semantics [1, 29, 30]. The more complicated the terms and the notions of
reduction, the more complicated the normalization functions.

Normalization by evaluation therefore requires one to extensionally define a reduc-
tion-free normalization function, which is non-trivial [6, 7]. Nevertheless, it is our con-
tention that the computational content of a reduction-based normalization function—
i.e., a function intensionally defined as the transitive closure of one-step reduction—can
pave the way to constructing a reduction-free normalization function:

Our starting point: We start from a reduction semantics for a language of terms [28],
i.e., an abstract syntax, a notion of reduction in the form of a collection of re-
dexes and the corresponding contraction function, and a reduction strategy. The
reduction strategy takes the form of a grammar of reduction contexts, its associ-
ated plug function, and a decomposition function mapping a term to a value or
to a reduction context and a redex (we assume this decomposition to be unique).
Thus equipped, we define a one-step reduction function as a function whose fixed
points are values, and which otherwise decomposes a non-value term into a reduc-
tion context and a redex, contracts this redex, and plugs the contractum into the
context:

non-value
term

decompose //

one-step
reduction

���
�
�
�
�
�
�

context × redex

identity × contraction

��
term context × contractum

plug
oo

A reduction-based normalization function is defined as the reflexive and transitive
closure of this reduction function.

Refocusing: On the way to reaching a normal form, the reduction-based normalization
function repeatedly decomposes, contracts, and plugs. Observing that most of the
time, the decomposition function is applied to the result of the plug function [25],
Nielsen and the author have suggested to deforest the intermediate term by re-
placing the composition of the decomposition function and of the plug function
by a refocus function that directly maps a reduction context and a contractum to

3



the next reduction context and redex, if there are any. Such a refocused normal-
ization function (i.e., a normalization function using a refocus function instead
of a decomposition function and a plug function) can be viewed as an abstract
machine.

The functional correspondence: An abstract machine is often a defunctionalized
continuation-passing program [2–4, 13, 21]. When this is the case, such abstract
machines can be refunctionalized [24] and transformed into direct style [17].

It is our experience that starting from a reduction semantics for a language of terms, we
can refocus the corresponding reduction-based normalization function into an abstract
machine, and refunctionalize this abstract machine into a reduction-free normalization
function. We have successfully tried this construction on the lambda-calculus, both
for weak-head normalization and for full normalization. The goal of this article is to
illustrate it with the simple examples of arithmetic expressions and terms of the free
monoid.

Overview: In Section 2, we implement a reduction semantics for arithmetic expres-
sions in complete detail and in Standard ML, and we define the corresponding reduction-
based normalization function. In Section 3, we refocus the reduction-based normaliza-
tion function of Section 2 into an abstract machine, and we present the corresponding
reduction-free normalization function. In Sections 4 and 5, we go through the same
motions for terms in the free monoid.

Sections 2 and 4 might appear as intimidating; however, except that they are ex-
pressed in ML, they describe straightforward reduction semantics as have been devel-
oped by Felleisen and his co-workers for the last two decades [27,28,45]. For this reason,
these two sections have a parallel structure. Similarly, to emphasize that the construc-
tion of a reduction-free normalization function out of a reduction-based normalization
function is systematic, we have also given Sections 3 and 5 a parallel structure.

Prerequisites: The reader is expected to have some familiarity with the programming
language Standard ML [39], reduction semantics [25, 28], the CPS transformation [23,
43], and defunctionalization [24, 42]. In particular, we build on the relation between
continuations and evaluation contexts [20].

4



2 A reduction semantics for arithmetic expressions

To define a reduction semantics for simplified arithmetic expressions (integer literals
and additions), we specify their abstract syntax, their notion of reduction (computing
the sum of two integers), their reduction contexts and the corresponding plug function,
and how to decompose them into a reduction context and the left-most inner-most
redex, if there is one. We then define a one-step reduction function that decomposes
a non-value term into a reduction context and a redex, contracts the redex, and plugs
the contractum into the context. We can finally define a reduction-based normalization
function that repeatedly applies the one-step reduction function until a value, i.e., a
normal form, is reached.

2.1 Abstract syntax

An arithmetic expression is either a literal or the addition of two terms:

datatype term = LIT of int

| ADD of term * term

2.2 Notion of reduction

A redex is the sum of two literals, and we implement contraction as computing this
sum:

datatype redex = SUM of int * int

(* contract : redex -> term *)

fun contract (SUM (n1, n2))

= LIT (n1 + n2)

The left-most inner-most reduction strategy converges and yields a literal.

2.3 Reduction contexts

We seek the left-most inner-most redex in a term. The grammar of reduction contexts
and the corresponding plug function are as follows:

datatype context = C0

| C1 of term * context

| C2 of int * context

(* plug : context * term -> term *)

fun plug (C0, t)

= t

| plug (C1 (t’, c), t)

= plug (c, ADD (t, t’))

| plug (C2 (n, c), t)

= plug (c, ADD (LIT n, t))

5



2.4 Decomposition

A term is a value (i.e., it does not contain any redex) or it can be decomposed into a
reduction context and a redex:

datatype value_or_decomposition = VAL of term

| DEC of context * redex

(No term is stuck.)
The decomposition function recursively searches for the left-most inner-most redex

in a term. It is usually left unspecified in the literature [28]. We define it here it in a form
we have found convenient in our previous study of reduction semantics [25], namely with
two auxiliary functions, decompose’ and decompose’ aux: decompose’ traverses a given
term and accumulates the reduction context until it finds a value, and decompose’ aux

dispatches on the accumulated context to decide whether the given term is a value, a
redex has been found, or the search must continue:

(* decompose’ : term * context -> value_or_decomposition *)

fun decompose’ (LIT n, c)

= decompose’_aux (c, n)

| decompose’ (ADD (t1, t2), c)

= decompose’ (t1, C1 (t2, c))

(* decompose’_aux : context * int -> value_or_decomposition *)

and decompose’_aux (C0, n)

= VAL (LIT n)

| decompose’_aux (C1 (t2, c), n)

= decompose’ (t2, C2 (n, c))

| decompose’_aux (C2 (n’, c), n)

= DEC (c, SUM (n’, n))

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose’ (t, C0)

Lemma 1 A term t is either a value or there exists a unique context c such that
decompose t evaluates to DEC (c, r), where r a redex.

Proof: Immediate. �

2.5 One-step reduction

We are now in position to define a one-step reduction function as a function that (1)
maps a non-value term into a reduction context and a redex, (2) contracts the redex,
and (3) plugs the contractum in the reduction context:

(* reduce : term -> term *)

fun reduce t

= (case decompose t

of (VAL t’)

=> t’

| (DEC (c, r))

=> plug (c, contract r))

6



2.6 Reduction-based normalization

A reduction-based normalization function is one that iterates the one-step reduction
function until it yields a value (i.e., a fixed point):

(* normalize : term -> term *)

fun normalize t

= (case reduce t

of (LIT n)

=> LIT n

| t’

=> normalize t’)

In the following definition, we inline reduce in order to directly check whether
decompose yields a value or a decomposition:

(* iterate0 : value_or_decomposition -> term *)

fun iterate0 (VAL t)

= t

| iterate0 (DEC (c, r))

= iterate0 (decompose (plug (c, contract r)))

(* normalize0 : term -> term *)

fun normalize0 t

= iterate0 (decompose t)

2.7 Reduction-based normalization, typefully

The type of normalize0 is not informative. To make it appear more clearly that the
normalization function yields normal forms, i.e., integers, we can refine the type of values
to be that of integers, and adjust the first clause of decompose’ aux and the reduction
function:

datatype value_or_decomposition = VAL of int (* was: term *)

| DEC of context * redex

...

and decompose’_aux (C0, n)

= VAL n

| ...

(* reduce : term -> term *)

fun reduce t

= (case decompose t

of (VAL n)

=> LIT n

| (DEC (c, r))

=> plug (c, contract r))

The reduction-based normalization function can then return an integer rather than a
literal:

7



(* iterate1 : value_or_decomposition -> int *)

fun iterate1 (VAL n)

= n

| iterate1 (DEC (c, r))

= iterate1 (decompose (plug (c, contract r)))

(* normalize1 : term -> int *)

fun normalize1 t

= iterate1 (decompose t)

The type of normalize1 is more informative than that of normalize0 since it makes
it clear that applying normalize1 to a term yields a value.

2.8 Summary and conclusion

We have implemented in ML, in complete detail, a reduction semantics for arithmetic
expressions. Using this reduction semantics, we have implemented a reduction-based
normalization function.

8



3 From reduction-based to reduction-free normaliza-
tion

In this section, we transform the reduction-based normalization function of Section 2.7
into a reduction-free normalization function, i.e., one where no intermediate term is
ever constructed. We first refocus the reduction-based normalization function [25] to
deforest the intermediate terms, and we obtain a ‘pre-abstract machine’ implementing
the transitive closure of the refocus function. We then simplify this pre-abstract machine
into an abstract machine, i.e., a state-transition system. This abstract machine is in
defunctionalized form [24], and we refunctionalize it. The result is in continuation-
passing style and we re-express it in direct style [17]. The resulting direct-style function
is a traditional evaluator for arithmetic expressions; in particular, it is reduction-free.

3.1 Plugging and decomposition

In the reduction-based normalization function of Section 2.7, decompose is always applied
to the result of plug after the first decomposition. Let us add a vacuous initial call to
plug so that in all cases, decompose is applied to the result of plug:

(* normalize2 : term -> int *)

fun normalize2 t

= iterate1 (decompose (plug (C0, t)))

3.2 Refocusing

As investigated earlier by Nielsen and the author [25], the composition of decompose and
plug can be deforested into one refocus function to avoid the construction of interme-
diate terms. In addition, this refocus function can be expressed very simply in terms
of the decomposition functions of Section 2.4 (and this is the reason why we chose to
specify them precisely like that):

(* refocus : context * term -> value_or_decomposition *)

fun refocus (c, t)

= decompose’ (t, c)

The refocused evaluation function therefore reads as follows:

(* iterate3 : value_or_decomposition -> int *)

fun iterate3 (VAL v)

= v

| iterate3 (DEC (c, r))

= iterate3 (refocus (c, contract r))

(* normalize3 : term -> int *)

fun normalize3 t

= iterate3 (refocus (C0, t))

The refocused normalization function is reduction-free because it is no longer based on
a (one-step) reduction function. Instead, the refocus function directly maps a reduction
context and a contractum to the next reduction context and redex, if there are any.

9



3.3 From refocused normalization function to abstract machine

The refocused normalization function is what we call a ‘pre-abstract machine’ [25] in
the sense that decompose’ and decompose’ aux form a transition function and iterate3

is a ‘trampoline’ [31], i.e., another transition function that keeps activating the two
others until a value is obtained. Let us fuse iterate3 and refocus (i.e., decompose’ and
decompose’ aux, which we rename refocus4 and refocus4 aux for the occasion) so that
iterate3 is directly applied to the result of decompose’ and decompose’ aux. The result
is a (tail-recursive) state-transition function, i.e., an abstract machine [40]:

(* iterate4 : value_or_decomposition -> int *)

fun iterate4 (VAL v)

= v

| iterate4 (DEC (c, r))

= refocus4 (contract r, c)

(* refocus4 : term * context -> int *)

and refocus4 (LIT n, c)

= refocus4_aux (c, n)

| refocus4 (ADD (t1, t2), c)

= refocus4 (t1, C1 (t2, c))

(* refocus4_aux : context * int -> int *)

and refocus4_aux (C0, n)

= iterate4 (VAL n)

| refocus4_aux (C1 (t2, c), n)

= refocus4 (t2, C2 (n, c))

| refocus4_aux (C2 (n’, c), n)

= iterate4 (DEC (c, SUM (n’, n)))

(* normalize4 : term -> int *)

fun normalize4 t

= refocus4 (t, C0)

The form of this machine is remarkable because iterate4 implements the reduction rules
of the reduction semantics and refocus4 and refocus4 aux implement its congruence
rules—a distinction that usually requires a non-trivial analysis to establish for existing
abstract machines [34].

3.4 Inlining and simplification

Since iterate4 and contract are only pedagogical devices, let us inline them to stream-
line the abstract machine. Inlining contract, in the last clause of refocus4 aux, yields
the following clause:

| refocus4_aux (C2 (n’, c), n)

= refocus4 (LIT (n’ + n), c)

Since refocus4 is defined by cases on its first argument, this clause can be simplified as
follows:

| refocus4_aux (C2 (n’, c), n)

= refocus4_aux (c, n’ + n)

The resulting simplified machine is an ‘eval/apply’ abstract machine [36]

10



3.5 Refunctionalization

Like many other abstract machines [2–4, 13, 21], the abstract machine of Section 3.4 is
in defunctionalized form [24]: the reduction contexts, together with refocus4 aux, are
the first-order counterpart of a function. The higher-order counterpart of the abstract
machine reads as follows:

(* refocus5 : term * (int -> int) -> int *)

fun refocus5 (LIT n, c)

= c n

| refocus5 (ADD (t1, t2), c)

= refocus5 (t1,

fn n1 => refocus5 (t2,

fn n2 => c (n1 + n2)))

(* normalize5 : term -> int *)

fun normalize5 t

= refocus5 (t, fn n => n)

3.6 Back to direct style

The refunctionalized definition of Section 3.5 is in continuation-passing style since it
has a functional accumulator and all of its calls are tail calls [17, 23]. Its direct-style
counterpart reads as follows:

(* refocus6 : term -> int *)

fun refocus6 (LIT n)

= n

| refocus6 (ADD (t1, t2))

= (refocus6 t1) + (refocus6 t2)

(* normalize6 : term -> int *)

fun normalize6 t

= refocus6 t

The resulting definition is that of the usual evaluation function for arithmetic expres-
sions, i.e., a traditional reduction-free normalization function.

3.7 Summary and conclusion

We have refocused the reduction-based normalization function of Section 2 into an
abstract machine, and we have exhibited the corresponding reduction-free normalization
function.

11



4 A reduction semantics for terms in the free monoid

To define a reduction semantics for terms in the free monoid over a given carrier set, we
specify their abstract syntax (a distinguished unit element, the other elements of the
carrier set, and products of terms), their notion of reduction (oriented conversion rules),
their reduction contexts and the corresponding plug function, and how to decompose
them into a reduction context and the right-most inner-most redex, if there is one.
We then define a one-step reduction function that decomposes a non-value term into a
reduction context and a redex, contracts the redex, and plugs the contractum into the
context. We can finally define a reduction-based normalization function that repeatedly
applies the one-step reduction function until a value, i.e., a normal form, is reached.

4.1 Abstract syntax

Given a type elem of carrier-set elements, a term in the free monoid is either the unit
element, an element of type elem, or the product of two terms:

datatype term = UNIT

| ELEM of elem

| PROD of term * term

Terms in the free monoid obey conversion rules: the unit element is neutral for the
product (both on the left and on the right), and the product is associative.

4.2 Notion of reduction

We introduce a notion of reduction by orienting the conversion rules into reduction
rules:

PROD (UNIT, t) −→ t

ELEM e −→ PROD (ELEM e, UNIT)

PROD (PROD (t11, t12), t2) −→ PROD (t11, PROD (t12, t2))

We represent redexes as a data type and implement their contraction with the corre-
sponding reduction rules:

datatype redex = LEFT_UNIT of term

| RIGHTMOST of elem

| ASSOC of (term * term) * term

(* contract : redex -> term *)

fun contract (LEFT_UNIT t)

= t

| contract (RIGHTMOST e)

= PROD (ELEM e, UNIT)

| contract (ASSOC ((t11, t12), t2))

= PROD (t11, PROD (t12, t2))

The right-most inner-most reduction strategy converges and yields a flat, list-like term
in normal form.

12



4.3 Reduction contexts

We seek the right-most inner-most redex in a term. The grammar of reduction contexts
and the corresponding plug function are as follows:

datatype context = C0

| C1 of term * context

(* plug : context * term -> term *)

fun plug (C0, t)

= t

| plug (C1 (t1, c), t2)

= plug (c, PROD (t1, t2))

4.4 Decomposition

A term is a value (i.e., it does not contain any redex) or it can be decomposed into a
reduction context and a redex:

datatype value_or_decomposition = VAL of term

| DEC of context * redex

(No term is stuck.)
The decomposition function recursively searches for the right-most inner-most redex

in a term. As in Section 2.4, we define it with two auxiliary functions, decompose’ and
decompose’ aux: decompose’ traverses a given term and accumulates the reduction con-
text until it finds a redex or a value, and decompose’ aux dispatches on the accumulated
context to decide whether the given term is a value, a redex has been found, or the
search must continue:

(* decompose’ : term * context -> value_or_decomposition *)

fun decompose’ (UNIT, c)

= decompose’_aux (c, UNIT)

| decompose’ (ELEM e, c)

= DEC (c, RIGHTMOST e)

| decompose’ (PROD (t1, t2), c)

= decompose’ (t2, C1 (t1, c))

(* decompose’_aux : context * term -> value_or_decomposition *)

and decompose’_aux (C0, t)

= VAL t

| decompose’_aux (C1 (UNIT, c), t2)

= DEC (c, LEFT_UNIT t2)

| decompose’_aux (C1 (ELEM e, c), t2)

= decompose’_aux (c, PROD (ELEM e, t2))

| decompose’_aux (C1 (PROD (t11, t12), c), t2)

= DEC (c, ASSOC ((t11, t12), t2))

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose’ (t, C0)

13



Lemma 2 A term t is either a value or there exists a unique context c such that
decompose t evaluates to DEC (c, r), where r a redex.

Proof: Immediate. �

4.5 One-step reduction

We are now in position to define a one-step reduction function as a function that (1)
maps a non-value term into a reduction context and a redex, (2) contracts the redex,
and (3) plugs the contractum in the reduction context:

(* reduce : term -> term *)

fun reduce t

= (case decompose t

of (VAL t’)

=> t’

| (DEC (c, r))

=> plug (c, contract r))

4.6 Reduction-based normalization

A reduction-based normalization function is one that iterates the one-step reduction
function until it yields a value. In the following definition, and as in Section 2.6, we
inline reduce and directly check whether decompose yields a value or a decomposition:

(* iterate0 : value_or_decomposition -> term *)

fun iterate0 (VAL t)

= t

| iterate0 (DEC (c, r))

= iterate0 (decompose (plug (c, contract r)))

(* normalize0 : term -> term *)

fun normalize0 t

= iterate0 (decompose t)

4.7 Reduction-based normalization, typefully

As in Section 2.7, the type of normalize0 is not informative. To make it appear more
clearly that the normalization function yields normal forms, let us introduce a data type
of terms in normal form:

datatype term_nf = UNIT_nf

| PROD_nf of elem * term_nf

We can then refine the type of values to make it more manifest that a value is in normal
form:

datatype value_or_decomposition = VAL of term * term_nf

| DEC of context * redex

14



We must then adjust decompose’ aux to construct values both as regular terms and as
terms in normal form:

(* decompose’ : term * context -> value_or_decomposition *)

fun decompose’ (UNIT, c)

= decompose’_aux (c, UNIT, UNIT_nf)

| decompose’ (ELEM e, c)

= DEC (c, RIGHTMOST e)

| decompose’ (PROD (t1, t2), c)

= decompose’ (t2, C1 (t1, c))

(* decompose’_aux : context * term * term_nf -> value_or_decomposition *)

and decompose’_aux (C0, t, t_nf)

= VAL (t, t_nf)

| decompose’_aux (C1 (UNIT, c), t2, t2_nf)

= DEC (c, LEFT_UNIT t2)

| decompose’_aux (C1 (ELEM e, c), t2, t2_nf)

= decompose’_aux (c, PROD (ELEM e, t2), PROD_nf (e, t2_nf))

| decompose’_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= DEC (c, ASSOC ((t11, t12), t2))

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose’ (t, C0)

The reduction-based normalization function can then return the representation of the
term in normal form:

(* iterate1 : value_or_decomposition -> term_nf *)

fun iterate1 (VAL (t, t_nf))

= t_nf

| iterate1 (DEC (c, r))

= iterate1 (decompose (plug (c, contract r)))

(* normalize1 : term -> term_nf *)

fun normalize1 t

= iterate1 (decompose t)

The type of normalize1 is more informative than that of normalize0 since it makes
it clear that applying normalize1 to a term yields a term in normal form.

4.8 Summary and conclusion

We have implemented in ML a reduction semantics for terms in the free monoid, given
its carrier set. Using this reduction semantics, we have implemented a reduction-based
normalization function.

15



5 From reduction-based to reduction-free normaliza-
tion

In this section, we transform the reduction-based normalization function of Section 4.7
into a reduction-free normalization function, i.e., one where no intermediate term is ever
constructed. We first refocus the reduction-based normalization function and we obtain
a pre-abstract machine. We then simplify this pre-abstract machine into an abstract
machine. This abstract machine is in defunctionalized form, and we refunctionalize it.
The result is in continuation-passing style and we re-express it in direct style. The
resulting direct-style function is a traditional flatten function with an accumulator; in
particular, it is reduction-free.

5.1 Plugging and decomposition

In the reduction-based normalization function of Section 4.7, decompose is always applied
to the result of plug after the first decomposition. Let us add a vacuous initial call to
plug so that in all cases, decompose is applied to the result of plug:

(* normalize2 : term -> term_nf *)

fun normalize2 t

= iterate1 (decompose (plug (C0, t)))

5.2 Refocusing

As in Section 3.2, we now deforest the composition of decompose and plug into one
refocus function:

(* refocus : context * term -> value_or_decomposition *)

fun refocus (c, t)

= decompose’ (t, c)

The refocused evaluation function therefore reads as follows:

(* iterate3 : value_or_decomposition -> term_nf *)

fun iterate3 (VAL (t, t_nf))

= t_nf

| iterate3 (DEC (c, r))

= iterate3 (refocus (c, contract r))

(* normalize3 : term -> term_nf *)

fun normalize3 t

= iterate3 (refocus (C0, t))

The refocused normalization function is reduction-free because it is no longer based on
a reduction function and it no longer constructs intermediate terms.

16



5.3 From refocused evaluation function to abstract machine

Again, the refocused evaluation function is a ‘pre-abstract machine’ in the sense that
decompose’ and decompose’ aux form a transition function and iterate3 is a ‘trampoline’.
Let us fuse iterate3 and refocus (i.e., decompose’ and decompose’ aux, which we rename
refocus4 and refocus4 aux as in Section 3.3), so that iterate3 is directly applied to the
result of decompose’ and decompose’ aux. The result is the following abstract machine:

(* iterate4 : value_or_decomposition -> term_nf *)

fun iterate4 (VAL (t, t_nf))

= t_nf

| iterate4 (DEC (c, r))

= refocus4 (contract r, c)

(* refocus4 : term * context -> term_nf *)

and refocus4 (UNIT, c)

= refocus4_aux (c, UNIT, UNIT_nf)

| refocus4 (ELEM e, c)

= iterate4 (DEC (c, RIGHTMOST e))

| refocus4 (PROD (t1, t2), c)

= refocus4 (t2, C1 (t1, c))

(* refocus4_aux : context * term * term_nf -> term_nf *)

and refocus4_aux (C0, t, t_nf)

= iterate4 (VAL (t, t_nf))

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= iterate4 (DEC (c, LEFT_UNIT t2))

| refocus4_aux (C1 (ELEM e, c), t2, t2_nf)

= refocus4_aux (c, PROD (ELEM e, t2), PROD_nf (e, t2_nf))

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= iterate4 (DEC (c, ASSOC ((t11, t12), t2)))

(* normalize4 : term -> term_nf *)

fun normalize4 t

= refocus4 (t, C0)

5.4 Inlining and simplification

As in Section 3.4, we inline iterate4 and contract to streamline the abstract machine.
Three cases occur:

1. The clause

| refocus4 (ELEM e, c)

= iterate4 (DEC (c, RIGHTMOST e))

after inlining iterate4 and contract, reads as follows:

| refocus4 (ELEM e, c)

= refocus4 (PROD (ELEM e, UNIT), c)

Since refocus4 is defined by cases on its first argument, this clause can be simplified
as follows (skipping two steps):

17



| refocus4 (ELEM e, c)

= refocus4_aux (c, PROD (ELEM e, UNIT), PROD_nf (e, UNIT_nf))

2. The clause

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= iterate4 (DEC (c, LEFT_UNIT t2))

after inlining iterate4 and contract, reads as follows:

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= refocus4 (t2, c)

We know, however, that t2 is in normal form, and therefore we can directly call
refocus4 aux instead:

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= refocus4_aux (c, t2, t2_nf)

3. The clause

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= iterate4 (DEC (c, ASSOC ((t11, t12), t2)))

after inlining iterate4 and contract, reads as follows:

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= refocus4 (PROD (t11, PROD (t12, t2)), c)

Since refocus4 is defined by cases on its first argument, this clause can be simplified
as follows (skipping two steps):

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= refocus4 (t2, C1 (t12, C1 (t11, c)))

We know, however, that t2 is in normal form, and therefore we can directly call
refocus4 aux instead:

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= refocus4_aux (C1 (t12, C1 (t11, c)), t2, t2_nf)

In the resulting definition of refocus4 aux, we observe that the second parameter is
dead, i.e., that it is never used. Eliminating it (and renaming the last parameter to a)
yields the following definition:

18



(* refocus4 : term * context -> term_nf *)

fun refocus4 (UNIT, c)

= refocus4_aux (c, UNIT_nf)

| refocus4 (ELEM e, c)

= refocus4_aux (c, PROD_nf (e, UNIT_nf))

| refocus4 (PROD (t1, t2), c)

= refocus4 (t2, C1 (t1, c))

(* refocus4_aux : context * term_nf -> term_nf *)

and refocus4_aux (C0, a)

= a

| refocus4_aux (C1 (UNIT, c), a)

= refocus4_aux (c, a)

| refocus4_aux (C1 (ELEM e, c), a)

= refocus4_aux (c, PROD_nf (e, a))

| refocus4_aux (C1 (PROD (t11, t12), c), a)

= refocus4_aux (C1 (t12, C1 (t11, c)), a)

5.5 Refunctionalization

The above definitions of refocus4 and refocus4 aux are not in defunctionalized form
because of the last clause of refocus4 aux [24]. To put them in defunctionalized form
(eureka), we need to introduce one more auxiliary function:

(* refocus4 : term * context -> term_nf *)

fun refocus4 (UNIT, c)

= refocus4_aux (c, UNIT_nf)

| refocus4 (ELEM e, c)

= refocus4_aux (c, PROD_nf (e, UNIT_nf))

| refocus4 (PROD (t1, t2), c)

= refocus4 (t2, C1 (t1, c))

(* refocus4_aux : context * term_nf -> term_nf *)

and refocus4_aux (C0, a)

= a

| refocus4_aux (C1 (t’, c), a)

= refocus4_aux’ (t’, c, a)

(* refocus4_aux’ : term * context * term_nf -> term_nf *)

and refocus4_aux’ (UNIT, c, a)

= refocus4_aux (c, a)

| refocus4_aux’ (ELEM e, c, a)

= refocus4_aux (c, PROD_nf (e, a))

| refocus4_aux’ (PROD (t11, t12), c, a)

= refocus4_aux’ (t12, C1 (t11, c), a)

Now the reduction contexts, together with refocus4 aux, are the first-order counterpart
of a function. The higher-order counterpart of the normalization function reads as
follows:

(* refocus5 : term * (term_nf -> term_nf) -> term_nf *)

fun refocus5 (UNIT, c)

= c UNIT_nf

19



| refocus5 (ELEM e, c)

= c (PROD_nf (e, UNIT_nf))

| refocus5 (PROD (t1, t2), c)

= refocus5 (t2, fn t2’_nf => refocus5_aux’ (t1, c, t2’_nf))

(* refocus5_aux’ : term * (term_nf -> term_nf) * term_nf -> term_nf *)

and refocus5_aux’ (UNIT, c, a)

= c a

| refocus5_aux’ (ELEM e, c, a)

= c (PROD_nf (e, a))

| refocus5_aux’ (PROD (t11, t12), c, a)

= refocus5_aux’ (t12, fn a’ =>

refocus5_aux’ (t11, c, a’), a)

(* normalize5 : term -> term_nf *)

fun normalize5 t

= refocus5 (t, fn a => a)

5.6 Back to direct style

The refunctionalized definition of Section 5.5 is in continuation-passing style since it has
a functional accumulator and all of its calls are tail calls. Its direct-style counterpart
reads as follows:

(* refocus6 : term -> term_nf *)

fun refocus6 UNIT

= UNIT_nf

| refocus6 (ELEM e)

= PROD_nf (e, UNIT_nf)

| refocus6 (PROD (t1, t2))

= refocus6_aux’ (t1, refocus6 t2)

(* refocus6_aux : term * term_nf -> term_nf *)

and refocus6_aux’ (UNIT, a)

= a

| refocus6_aux’ (ELEM e, a)

= PROD_nf (e, a)

| refocus6_aux’ (PROD (t11, t12), a)

= refocus6_aux’ (t11, refocus6_aux’ (t12, a))

(* normalize6 : term -> term_nf *)

fun normalize6 t

= refocus6 t

The resulting definition is that of a flatten function with an accumulator, i.e., an uncur-
ried version of the usual reduction-free normalization function for the free monoid [8,
11, 12, 35].

5.7 Summary and conclusion

We have refocused the reduction-based normalization function of Section 4 into an
abstract machine, and we have exhibited the corresponding reduction-free normalization
function.

20



The resulting reduction-free normalization function could be streamlined by skipping
refocus6 as follows:

(* normalize7 : term -> term_nf *)

fun normalize7 t

= refocus6_aux’ (t, UNIT_nf)

This simplified reduction-free normalization function is the traditional flatten function
with an accumulator. It, however, corresponds to another reduction-based normaliza-
tion function and a slightly different reduction strategy—though one that yields the
same normal forms.

6 Conclusion

There is a general consensus that normalization by evaluation is an art because one
must invent a non-standard, extensional evaluation function and its left inverse [1, 6, 7,
10, 12, 14, 16, 26, 32, 35, 37, 44].

In this article, we have built on the computational content of a reduction-based
normalization function as provided by a reduction semantics, and we have presented a
simple, derivational way to construct a reduction-free normalization function. We have
illustrated the construction on two examples, arithmetic expressions and terms in a free
monoid. Elsewhere, we have successfully constructed weak-head normalization functions
for the lambda-calculus (a.k.a. evaluation functions) and normalization functions for
the lambda-calculus (yielding long beta-eta-normal forms, when they exist), thereby
establishing a link between normalization by evaluation and abstract machines for strong
reduction [15, 33, 38]. We have also constructed one-pass CPS transformations, which
provide an early example of normalization by evaluation.

We are currently continuing to experiment with the construction, and the extent to
which it is invertible.

Acknowledgments: The author is grateful to Sergio Antoy and Yoshihito Toyama
for their invitation to speak at WRS 2004 and to write the present article.

Thanks are also due to Lasse R. Nielsen for our initial joint work on defunctionaliza-
tion and refocusing [24,25], to Mads Sig Ager, Ma lgorzata Biernacka, Dariusz Biernacki,
and Jan Midtgaard for our subsequent joint exploration of the functional correspon-
dence between evaluators and abstract machines [2–4, 12, 13], and to Mayer Goldberg,
Julia Lawall, and Kristian Støvring Sørensen for their lucid and timely comments on a
preliminary version of this article.

Special thanks go to Sergio Antoy for his editorship.
This work is partially supported by the ESPRIT Working Group APPSEM II (http:

//www.appsem.org) and by the Danish Natural Science Research Council, Grant no. 21-
03-0545.

21



A On reduction contexts, plugging, and decomposi-
tion

A.1 Arithmetic expressions

In Sections 2.3 and 2.4, the grammar of reduction contexts, the plug function, and
the decomposition function are in a precise sense unavoidable because they are the
optimized defunctionalized CPS counterpart of the following decomposition function.
This decomposition function recursively descends in the term, searching for a redex,
while inductively building an anonymous plug function that will eventually map the
contractum to a new term:

datatype value_or_decomposition = VAL of int

| DEC of (term -> term) * redex

fun decompose’ (LIT n, f)

= VAL n

| decompose’ (ADD (t1, t2), f)

= (case decompose’ (t1, fn t1’ => f (ADD (t1’, t2)))

of (VAL n1)

=> (case decompose’ (t2, fn t2’ => f (ADD (LIT n1, t2’)))

of (VAL n2)

=> DEC (f, SUM (n1, n2))

| (DEC (f, r))

=> DEC (f, r))

| (DEC (f, r))

=> DEC (f, r))

fun decompose t

= decompose’ (t, fn t => t)

fun reduce t

= (case decompose t

of (VAL n)

=> LIT n

| (DEC (f, r))

=> f (contract r))

A.2 The free monoid

A story similar to that of Section A.1 can be told for the grammar of reduction con-
texts, the plug function, and the decomposition function of Sections 4.3 and 4.4. These
functions correspond to a decomposition function that recursively descends in the term,
searching for a redex, while inductively building an anonymous plug function that will
eventually map the contractum to a new term.

22



References

[1] Klaus Aehlig and Felix Joachimski. Operational aspects of untyped normalization
by evaluation. Mathematical Structures in Computer Science, 14:587–611, 2004.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM-SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’03), pages 8–19. ACM Press,
August 2003.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Information Process-
ing Letters, 90(5):223–232, 2004. Extended version available as the technical report
BRICS-RS-04-3.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween monadic evaluators and abstract machines for languages with computational
effects. Theoretical Computer Science, 2005. Accepted for publication. Extended
version available as the technical report BRICS RS-04-28.

[5] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical re-
construction of a reduction-free normalization proof. In David H. Pitt, David E.
Rydeheard, and Peter Johnstone, editors, Category Theory and Computer Science,
number 953 in Lecture Notes in Computer Science, pages 182–199, Cambridge,
UK, August 1995. Springer-Verlag.

[6] Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for λ→2. In
Yukiyoshi Kameyama and Peter J. Stuckey, editors, Functional and Logic Program-
ming, 7th International Symposium, FLOPS 2004, number 2998 in Lecture Notes
in Computer Science, pages 260–275, Nara, Japan, April 2004. Springer-Verlag.

[7] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional normalisa-
tion and type-directed partial evaluation for typed lambda calculus with sums. In
Xavier Leroy, editor, Proceedings of the Thirty-First Annual ACM Symposium on
Principles of Programming Languages, pages 64–76, Venice, Italy, January 2004.
ACM Press.

[8] Vincent Balat and Olivier Danvy. Memoization in type-directed partial evaluation.
In Don Batory, Charles Consel, and Walid Taha, editors, Proceedings of the 2002
ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Compo-
nent Engineering, number 2487 in Lecture Notes in Computer Science, pages 78–92,
Pittsburgh, Pennsylvania, October 2002. Springer-Verlag.

[9] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization by
evaluation. In Bernhard Möller and John V. Tucker, editors, Prospects for hardware
foundations (NADA), number 1546 in Lecture Notes in Computer Science, pages
117–137, Berlin, Germany, 1998. Springer-Verlag.

23



[10] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation func-
tional for typed λ-calculus. In Gilles Kahn, editor, Proceedings of the Sixth Annual
IEEE Symposium on Logic in Computer Science, pages 203–211, Amsterdam, The
Netherlands, July 1991. IEEE Computer Society Press.

[11] Ilya Beylin and Peter Dybjer. Extracting a proof of coherence for monoidal
categories from a proof of normalization for monoids. In Stefano Berardi and
Mario Coppo, editors, Types for Proofs and Programs, International Workshop
TYPES’95, number 1158 in Lecture Notes in Computer Science, pages 47–61,
Torino, Italy, June 1995. Springer-Verlag.

[12] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foun-
dation for delimited continuations in the CPS hierarchy. Technical Report BRICS
RS-04-29, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, December 2004. A preliminary version was presented at the the Fourth
ACM SIGPLAN Workshop on Continuations (CW 2004).

[13] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by defunc-
tionalization. In Maurice Bruynooghe, editor, Logic Based Program Synthesis and
Transformation, 13th International Symposium, LOPSTR 2003, number 3018 in
Lecture Notes in Computer Science, pages 143–159, Uppsala, Sweden, August 2003.
Springer-Verlag.

[14] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and nor-
malization proofs. Mathematical Structures in Computer Science, 7:75–94, 1997.

[15] Pierre Crégut. An abstract machine for lambda-terms normalization. In Mitchell
Wand, editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 333–340, Nice, France, June 1990. ACM Press.

[16] Djordje Čubrić, Peter Dybjer, and Philip J. Scott. Normalization and the Yoneda
embedding. Mathematical Structures in Computer Science, 8:153–192, 1998.

[17] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–
195, 1994.

[18] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., editor,
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 242–257, St. Petersburg Beach, Florida, January 1996.
ACM Press.

[19] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Torben Æ.
Mogensen, and Peter Thiemann, editors, Partial Evaluation – Practice and Theory;
Proceedings of the 1998 DIKU Summer School, number 1706 in Lecture Notes in
Computer Science, pages 367–411, Copenhagen, Denmark, July 1998. Springer-
Verlag.

[20] Olivier Danvy. On evaluation contexts, continuations, and the rest of the com-
putation. In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN
Workshop on Continuations, Technical report CSR-04-1, Department of Computer

24



Science, Queen Mary’s College, pages 13–23, Venice, Italy, January 2004. Invited
talk.

[21] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck and Frank Huch, editors, Implementation and Application of Functional
Languages, 16th International Workshop, IFL’04, Lecture Notes in Computer Sci-
ence, Lübeck, Germany, September 2004. Springer-Verlag. To appear. Extended
version available as the technical report BRICS-RS-03-33.

[22] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998 APPSEM Work-
shop on Normalization by Evaluation (NBE 1998), BRICS Note Series NS-98-8,
Gothenburg, Sweden, May 1998. BRICS, Department of Computer Science, Uni-
versity of Aarhus.

[23] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[24] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP’01), pages
162–174, Firenze, Italy, September 2001. ACM Press. Extended version available
as the technical report BRICS RS-01-23.

[25] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Technical
Report BRICS RS-04-26, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, November 2004. A preliminary version appears in
the informal proceedings of the Second International Workshop on Rule-Based
Programming (RULE 2001), Electronic Notes in Theoretical Computer Science,
Vol. 59.4.

[26] Peter Dybjer and Andrzej Filinski. Normalization and partial evaluation. In Gilles
Barthe, Peter Dybjer, Lúıs Pinto, and João Saraiva, editors, Applied Semantics
– Advanced Lectures, number 2395 in Lecture Notes in Computer Science, pages
137–192, Caminha, Portugal, September 2000. Springer-Verlag.

[27] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. PhD the-
sis, Department of Computer Science, Indiana University, Bloomington, Indiana,
August 1987.

[28] Matthias Felleisen and Matthew Flatt. Programming languages and lambda calculi.
Unpublished lecture notes. http://www.ccs.neu.edu/home/matthias/3810-w02/
readings.html, 1989-2003.

[29] Andrzej Filinski. A semantic account of type-directed partial evaluation. In
Gopalan Nadathur, editor, Proceedings of the International Conference on Princi-
ples and Practice of Declarative Programming, number 1702 in Lecture Notes in
Computer Science, pages 378–395, Paris, France, September 1999. Springer-Verlag.
Extended version available as the technical report BRICS RS-99-17.

25



[30] Andrzej Filinski and Henning Korsholm Rohde. A denotational account of un-
typed normalization by evaluation. In Igor Walukiewicz, editor, Foundations of
Software Science and Computation Structures, 7th International Conference, FOS-
SACS 2004, number 2987 in Lecture Notes in Computer Science, pages 167–181,
Barcelona, Spain, April 2002. Springer-Verlag.

[31] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In Pe-
ter Lee, editor, Proceedings of the 1999 ACM SIGPLAN International Conference
on Functional Programming, pages 18–27, Paris, France, September 1999. ACM
Press.

[32] Mayer Goldberg. Gödelization in the λ-calculus. Information Processing Letters,
75(1-2):13–16, 2000.

[33] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong re-
duction. In Simon Peyton Jones, editor, Proceedings of the 2002 ACM SIGPLAN
International Conference on Functional Programming, SIGPLAN Notices, Vol. 37,
No. 9, pages 235–246, Pittsburgh, Pennsylvania, September 2002. ACM Press.

[34] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems
within the lambda-sigma calculus. Journal of Functional Programming, 8(2):131–
172, 1998.

[35] Yoshiki Kinoshita. A bicategorical analysis of E-categories. Mathematica Japonica,
47(1):157–169, 1998.

[36] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter
vs. eval/apply for higher-order languages. In Kathleen Fischer, editor, Proceedings
of the 2004 ACM SIGPLAN International Conference on Functional Programming,
pages 4–15, Snowbird, Utah, September 2004. ACM Press.

[37] Per Martin-Löf. About models for intuitionistic type theories and the notion of
definitional equality. In Proceedings of the Third Scandinavian Logic Symposium,
volume 82 of Studies in Logic and the Foundation of Mathematics, pages 81–109.
North-Holland, 1975.

[38] Clement L. McGowan. The correctness of a modified SECD machine. In Proceedings
of the Second Annual ACM Symposium in the Theory of Computing, pages 149–157,
Northampton, Massachusetts, May 1970.

[39] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). The MIT Press, 1997.

[40] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report FN-19, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, September 1981.

[41] John C. Reynolds. Using functor categories to generate intermediate code. In Peter
Lee, editor, Proceedings of the Twenty-Second Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 25–36, San Francisco, California, January
1995. ACM Press.

26



[42] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted
from the proceedings of the 25th ACM National Conference (1972), with a fore-
word.

[43] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, May 1978. Technical report AI-TR-474.

[44] René Vestergaard. The simple type theory of normalisation by evaluation. In
Bernhard Gramlich and Salvador Lucas, editors, Proceedings of the First Inter-
national Workshop on Reduction Strategies in Rewriting and Programming (WRS
2001), number 57 in Electronic Notes in Theoretical Computer Science, Utrecht,
The Netherlands, May 2001. Elsevier Science.

[45] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to inter-
preters: Automating proofs of unique decomposition. Higher-Order and Symbolic
Computation, 14(4):387–409, 2001.

27



Recent BRICS Report Series Publications

RS-04-30 Olivier Danvy. From Reduction-Based to Reduction-Free Nor-
malization. December 2004. 27 pp. Invited talk at the4th In-
ternational Workshop on Reduction Strategies in Rewriting and
Programming, WRS 2004 (Aachen, Germany, June 2, 2004). To
appear in ENTCS.

RS-04-29 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. December 2004. iii+45 pp.

RS-04-28 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Monadic Evaluators and Ab-
stract Machines for Languages with Computational Effects. De-
cember 2004. 44 pp. Extended version of an article to appear
in Theoretical Computer Science.

RS-04-27 Gerth Stølting Brodal, Rolf Fagerberg, and Gabriel Moruz.On
the Adaptiveness of Quicksort. December 2004. 23 pp. To ap-
pear in Demetrescu and Tamassia, editors,Seventh Workshop
on Algorithm Engineering and Experiments, ALENEX ’05 Pro-
ceedings, 2005.

RS-04-26 Olivier Danvy and Lasse R. Nielsen.Refocusing in Reduction
Semantics. November 2004. iii+44 pp. This report supersedes
BRICS report RS-02-04. A preliminary version appears in the
informal proceedings of the Second International Workshop
on Rule-Based Programming, RULE 2001, Electronic Notes in
Theoretical Computer Science, Vol. 59.4.

RS-04-25 Mayer Goldberg. On the Recursive Enumerability of Fixed-
Point Combinators. November 2004. 7 pp.

RS-04-24 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2004. 30 pp.

RS-04-23 Hans Ḧuttel and Jiř ı́ Srba. Recursion vs. Replication in Sim-
ple Cryptographic Protocols. October 2004. 26 pp. To appear
in Vojtas, editor, 31st Conference on Current Trends in Theory
and Practice of Informatics, SOFSEM ’05 Proceedings, LNCS,
2005.

RS-04-22 Gian Luca Cattani and Glynn Winskel. Profunctors, Open
Maps and Bisimulation. October 2004. 64 pp. To appear in
Mathematical Structures in Computer Science.


