96 research outputs found

    Survey on Deduplication Techniques in Flash-Based Storage

    Get PDF
    Data deduplication importance is growing with the growth of data volumes. The domain of data deduplication is in active development. Recently it was influenced by appearance of Solid State Drive. This new type of disk has significant differences from random access memory and hard disk drives and is widely used now. In this paper we propose a novel taxonomy which reflects the main issues related to deduplication in Solid State Drive. We present a survey on deduplication techniques focusing on flash-based storage. We also describe several Open Source tools implementing data deduplication and briefly describe open research problems related to data deduplication in flash-based storage systems

    Object-Oriented Recovery for Non-volatile Memory

    Get PDF
    New non-volatile memory (NVM) technologies enable direct, durable storage of data in an application's heap. Durable, randomly accessible memory facilitates the construction of applications that do not lose data at system shutdown or power failure. Existing NVM programming frameworks provide mechanisms to consistently capture a running application's state. They do not, however, fully support object-oriented languages or ensure that the persistent heap is consistent with the environment when the application is restarted. In this paper, we propose a new NVM language extension and runtime system that supports object-oriented NVM programming and avoids the pitfalls of prior approaches. At the heart of our technique is \emph{object reconstruction}, which transparently restores and reconstructs a persistent object's state during program restart. It is implemented in NVMReconstruction, a Clang/LLVM extension and runtime library that provides: (i) transient fields in persistent objects, (ii) support for virtual functions and function pointers, (iii) direct representation of persistent pointers as virtual addresses, and (iv) type-specific reconstruction of a persistent object during program restart. In addition, NVMReconstruction supports updating an application's code, even if this causes objects to expand, by providing object migration. NVMReconstruction also can compact the persistent heap to reduce fragmentation. In experiments, we demonstrate the versatility and usability of object reconstruction and its low runtime performance cost

    Doctor of Philosophy

    Get PDF
    dissertationCompilers are indispensable tools to developers. We expect them to be correct. However, compiler correctness is very hard to be reasoned about. This can be partly explained by the daunting complexity of compilers. In this dissertation, I will explain how we constructed a random program generator, Csmith, and used it to find hundreds of bugs in strong open source compilers such as the GNU Compiler Collection (GCC) and the LLVM Compiler Infrastructure (LLVM). The success of Csmith depends on its ability of being expressive and unambiguous at the same time. Csmith is composed of a code generator and a GTAV (Generation-Time Analysis and Validation) engine. They work interactively to produce expressive yet unambiguous random programs. The expressiveness of Csmith is attributed to the code generator, while the unambiguity is assured by GTAV. GTAV performs program analyses, such as points-to analysis and effect analysis, efficiently to avoid ambiguities caused by undefined behaviors or unspecifed behaviors. During our 4.25 years of testing, Csmith has found over 450 bugs in the GNU Compiler Collection (GCC) and the LLVM Compiler Infrastructure (LLVM). We analyzed the bugs by putting them into different categories, studying the root causes, finding their locations in compilers' source code, and evaluating their importance. We believe analysis results are useful to future random testers, as well as compiler writers/users

    HMC-Based Accelerator Design For Compressed Deep Neural Networks

    Get PDF
    Deep Neural Networks (DNNs) offer remarkable performance of classifications and regressions in many high dimensional problems and have been widely utilized in real-word cognitive applications. In DNN applications, high computational cost of DNNs greatly hinder their deployment in resource-constrained applications, real-time systems and edge computing platforms. Moreover, energy consumption and performance cost of moving data between memory hierarchy and computational units are higher than that of the computation itself. To overcome the memory bottleneck, data locality and temporal data reuse are improved in accelerator design. In an attempt to further improve data locality, memory manufacturers have invented 3D-stacked memory where multiple layers of memory arrays are stacked on top of each other. Inherited from the concept of Process-In-Memory (PIM), some 3D-stacked memory architectures also include a logic layer that can integrate general-purpose computational logic directly within main memory to take advantages of high internal bandwidth during computation. In this dissertation, we are going to investigate hardware/software co-design for neural network accelerator. Specifically, we introduce a two-phase filter pruning framework for model compression and an accelerator tailored for efficient DNN execution on HMC, which can dynamically offload the primitives and functions to PIM logic layer through a latency-aware scheduling controller. In our compression framework, we formulate filter pruning process as an optimization problem and propose a filter selection criterion measured by conditional entropy. The key idea of our proposed approach is to establish a quantitative connection between filters and model accuracy. We define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed. The proposed pruning method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within 2% accuracy degradation. In this dissertation, we are going to investigate hardware/software co-design for neural network accelerator. Specifically, we introduce a two-phase filter pruning framework for model compres- sion and an accelerator tailored for efficient DNN execution on HMC, which can dynamically offload the primitives and functions to PIM logic layer through a latency-aware scheduling con- troller. In our compression framework, we formulate filter pruning process as an optimization problem and propose a filter selection criterion measured by conditional entropy. The key idea of our proposed approach is to establish a quantitative connection between filters and model accuracy. We define the connection as conditional entropy over filters in a convolutional layer, i.e., distribution of entropy conditioned on network loss. Based on the definition, different pruning efficiencies of global and layer-wise pruning strategies are compared, and two-phase pruning method is proposed. The proposed pruning method can achieve a reduction of 88% filters and 46% inference time reduction on VGG16 within 2% accuracy degradation

    An accurate prefetching policy for object oriented systems

    Get PDF
    PhD ThesisIn the latest high-performance computers, there is a growing requirement for accurate prefetching(AP) methodologies for advanced object management schemes in virtual memory and migration systems. The major issue for achieving this goal is that of finding a simple way of accurately predicting the objects that will be referenced in the near future and to group them so as to allow them to be fetched same time. The basic notion of AP involves building a relationship for logically grouping related objects and prefetching them, rather than using their physical grouping and it relies on demand fetching such as is done in existing restructuring or grouping schemes. By this, AP tries to overcome some of the shortcomings posed by physical grouping methods. Prefetching also makes use of the properties of object oriented languages to build inter and intra object relationships as a means of logical grouping. This thesis describes how this relationship can be established at compile time and how it can be used for accurate object prefetching in virtual memory systems. In addition, AP performs control flow and data dependency analysis to reinforce the relationships and to find the dependencies of a program. The user program is decomposed into prefetching blocks which contain all the information needed for block prefetching such as long branches and function calls at major branch points. The proposed prefetching scheme is implemented by extending a C++ compiler and evaluated on a virtual memory simulator. The results show a significant reduction both in the number of page fault and memory pollution. In particular, AP can suppress many page faults that occur during transition phases which are unmanageable by other ways of fetching. AP can be applied to a local and distributed virtual memory system so as to reduce the fault rate by fetching groups of objects at the same time and consequently lessening operating system overheads.British Counci

    Surviving sensor network software faults

    Full text link
    We describe Neutron, a version of the TinyOS operating system that efficiently recovers from memory safety bugs. Where existing schemes reboot an entire node on an error, Neutron’s compiler and runtime extensions divide programs into recovery units and reboot only the faulting unit. The TinyOS kernel itself is a recovery unit: a kernel safety violation appears to applications as the processor being unavailable for 10–20 milliseconds. Neutron further minimizes safety violation cost by supporting “precious ” state that persists across reboots. Application data, time synchronization state, and routing tables can all be declared as pre-cious. Neutron’s reboot sequence conservatively checks that pre-cious state is not the source of a fault before preserving it. Together, recovery units and precious state allow Neutron to reduce a safety violation’s cost to time synchronization by 94 % and to a routing protocol by 99.5%. Neutron also protects applications from losing data. Neutron provides this recovery on the very limited resources of a tiny, low-power microcontroller

    Surviving sensor network software faults

    Get PDF
    ManuscriptWe describe Neutron, a version of the TinyOS operating system that efficiently recovers from memory safety bugs. Where existing schemes reboot an entire node on an error, Neutron's compiler and runtime extensions divide programs into recovery units and reboot only the faulting unit. The TinyOS kernel itself is a recovery unit: a kernel safety violation appears to applications as the processor being unavailable for 10-20 milliseconds. Neutron further minimizes safety violation cost by supporting "precious" state that persists across reboots. Application data, time synchronization state, and routing tables can all be declared as precious. Neutron's reboot sequence conservatively checks that precious state is not the source of a fault before preserving it. Together, recovery units and precious state allow Neutron to reduce a safety violation's cost to time synchronization by 94% and to a routing protocol by 99:5%. Neutron also protects applications from losing data. Neutron provides this recovery on the very limited resources of a tiny, low-power microcontroller

    The Architecture of a Worldwide Distributed System

    Get PDF
    • …
    corecore