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Preface

Sometime during my second year as a student at the Vrije Universiteit, Raymond
Michiels, a fellow student, and I discovered that our course schedule contained a lot
of holes that could be filled with courses from the third year. After passing the exams
for all the courses we took, we had a good look at the schedule for the third year and
decided to combine the third and fourth year. This would allow us to get a doctorandus
degree in just three years. Even then there was plenty of time to become “student
assistant,” to assist (first year) students with their practical work. Raymond actually
managed to get his degree after three years. I made a small scheduling error and had
to wait a couple of months before I could take an exam in an physics course.

A couple of months before graduating, Raymond asked Andy Tanenbaum whether
he could become a Ph.D. student. Andy said yes. I went to Andy a couple of weeks
later but Andy said no: he was booked solid with Ph.D. students. Andy offered the
helpful advise to look for positions in different groups. It was soon clear to me that
Andy was the only option.

I had to stay at the VU for a couple of months anyway for the physics course and
decided to write a TCP/IP implementation for Minix. Minix is a Unix-like operating
system, written by Andy, to teach operating-system internals to students. Writing a
TCP/IP implementation was interesting because I wanted to know whether I could
complete a large and complex piece of software that runs inside an operating-system
kernel.

While I was working on the TCP/IP implementation, the time came for the annual
European regional finals of the ACM programming contest. Raymond, Steven Reiz,
and I had participated before with mixed success. That year, Victor Allis joined us
and added some much needed professionalism. We practiced much more than before
and we developed a good team strategy. We won the European contest as a result. The
next round was the world finals in San Antonio, Texas. We practiced a lot more, under
the supervision of Matty Huntjens. In the end, we were mildly disappointed with a
second place; we were so close.

After the programming contest Andy had changed his mind and I could become
a Ph.D. student. At least one Ph.D. student quit during that time. Raymond Michiels

ix
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quit a couple of years later; he decided that research was too theoretical and wanted to
work on something more practical.

Andy allows a Ph.D. student some time to find a research topic. After some time,
my topic was going to be wide-area distributed systems. This research was carried
out in the context of Amoeba, a distributed system developed at the VU under Andy’s
supervision. However, it became soon clear to me that Amoeba was not suitable as a
basis for a worldwide distributed system. I wanted to design a new system.

This way I fell into the trap that is called “the second system effect1.” This means
that a system that is to replace a successful system with some minor design errors be-
comes much too big, much too complicated, and contains many unnecessary features.
For example, my thesis contains 392 pages whereas the thesis of Sape Mullender,
which describes the design of Amoeba, contains 203 pages. On the other hand, my
thesis describes a worldwide distributed system and Sape’s thesis describes just an
ordinary distributed system; maybe the size difference is justified.

A good example of the second system effect is the object model. Leendert van
Doorn started his Ph.D. studies around the same time as I did. He was going to write
an operating-system kernel, called Paramecium, that could be adapted to different
applications. For example, it should be possible to make the kernel more suitable
for parallel programming or for embedded systems such as televisiona sets. Both
Leendert and I wanted to use objects as a basis for our systems. Andy suggested the
creation of a common object model that could be used for both worldwide distributed
systems and specialized operating-system kernels. Needless to say, this took a long
time to develop. It is not clear if we succeeded. Leendert’s thesis describes an object
model that is slightly different from the one described in this thesis.

From the start Andy made clear that Leendert and I were not supposed to program
until the design was finished. The way I interpreted this is that I would work on the
design for forty hours a week. The rest of the time could be spent on hobbies. Some of
those were unrelated to computers, such as photography, high-end stereo equipment,
and making television. The computer related ones are extending Minix and breaking
the security of computer systems.

Leendert, which whom I shared an office, believes that during the time as a Ph.D.
student one should look at as many different subjects as possible. One of those sub-
jects includes computer security. We spent many evenings breaking NFS, the FlexLM
license manager, hack NIS+, etc. We never managed to duplicate the cracking of
secure NFS: understanding the math took too much time.

Extending Minix is a separate story. When programming is almost a passion and
you are told not to write software as part of the research, you find some other project.
Minix was written for students and is both easy to understand and, in some areas,
hard to change. For example, adding support for virtual memory was supposed to

1This term was coined by Fred Brooks in his book “The Mythical Man-Month.”
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be impossible. Porting the X11 window system was also not realistic. Finally, most
people believe that asynchronous I/O is very hard to use. Needless to say, I just had to
experiment with all three options (and I already had the TCP/IP implementation).

In retrospect, it is more likely that Andy meant Leendert and me to write software
for our research at night and write papers about that software during the day. A similar
approach was used by Robbert van Renesse, one of Andy’s former Ph.D. students.
This allowed him to convince Andy that his designs could be implemented because
the software was already written.

During my time as a Ph.D. student, I was assisted by many people. First, I would
like to thank Andy Tanenbaum and Maarten van Steen. They provided me with feed-
back on ideas that were often incomplete, incomprehensible, or worse. Maarten was
the first person to read draft material of this thesis. He once described my writing style
as a “brain dump.”

Dick Grune helped me on two different occasions. During the early phase of my
research he helped me with structuring my thoughts about flexible naming schemes
for worldwide distributed systems. More recently, Dick was willing to read many re-
visions of Section 4.5.7, the section with the highest density of mathematical symbols
in this thesis.

Richard Golding and Wiebren de Jonge helped with the object model in com-
pletely different ways. Richard created enough confusion about object models to get
us to work on a description of the model. Later, Wiebren kept asking questions about
parts of the model that were unclear. Currently, I enjoy working with Wiebren and
Michel Oey on the LD project.

A disadvantage of spending a long time on writing a Ph.D. thesis, besides leading
to a long preface, is that many people come and go. I would like to thank two of them.
After I graduated, I shared an office with Frans Kaashoek. He showed me how to
conduct research efficiently. Unfortunately, I did not manage to copy his skills. His
research in communication primitives for Amoeba and my attempts to extend those to
wide-area networks taught me a lot about implementations of network protocols.

Hans van Staveren was the local operating-system guru. He knew the answer to
almost every question about the Unix and Amoeba operating-system kernels or behav-
ior of the network. From Hans, it is a small step to the group of system administrators
as a whole. They worked hard to maintain, as well as can possibly be done under
Unix, the much sought after “single system” image. And yet, I got access to whatever
servers or other system resources I wanted when I asked for it. With Kees Bot, I spent
many hours and lunch breaks discussing Minix. He also cleaned up and released my
code as part of Minix-vmd. The discussions with him about Minix probably kept me
sane.

The work of Raoul Bhoedjang and Tim Rühl on Henri Bal’s Orca system provided
inspiration for the implementation of replication. I would also like to thank the people
who read (parts of) this thesis: Chris Hänle, Jussi Leiwo, Guido van’t Noordende,
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Patrick Verkaik, and the members of the reading committee: Andrew Grimshaw, Franz
Hauck, Thilo Kielmann, and Marten van Sinderen.

The quality of the food in the mensa inspired many postdocs to organize dinner
parties at their homes. I would like to thank Aline Baggio, Guillaume Pierre, Thilo
Kielmann, Chris Hänle, and Jussi Leiwo for inviting me.

I do not think that my family suffered more from me during the writing of this
thesis than they would have otherwise. However, I would like to thank them for their
feedback on the design of the cover and for getting this thesis printed.



Chapter 1

Introduction

1.1 Goal

Worldwide computer networks have become increasingly popular over the last few
decades. For example, many research and educational institutions were limited to
UUCP (Unix to Unix Copy) over dialup phone connections in the early 1980s, but
have been connected through high-speed Internet connections in the late 1990s. Much
research is still being done to determine how worldwide computer networks should
be built, and how computers should communicate using these networks. The current
Internet is the result of such research. Unfortunately, the technology to actually use
a wide-area network to create worldwide applications is much less mature than the
(Internet) technology to build the worldwide network itself. This thesis describes
an architecture that simplifies the development of applications that use a wide-area
network.

For a long time, the ultimate goal of operating system software for a (wide-area)
distributed system was to provide a so-called “single system image.” The idea is that
the users and programmers can treat the collection of computers as a single, very
large, virtual computer. This requires the operating system to hide all aspects of data
distribution from the users of the system. An example of such a system for a local-
area network is Amoeba [Tanenbaum et al., 1990]. Amoeba uses a combination of
Remote Procedure Calls (RPCs [Birrell and Nelson, 1984]) and capabilities to provide
transparent access to a particular data item on a possibly remote server. Programming
under Amoeba means that I/O and interprocess communication are performed using
RPCs and capabilities. A distributed directory service is used to store capabilities
under a user-chosen name. These capabilities are used by the Amoeba RPC system to
locate the appropriate servers on the network, to identify the data item on a server that
should be the target of an RPC, and to secure (control access to) those data items. The

1



2 CHAPTER 1. INTRODUCTION

net result is that the user of the system can refer to files, processes, and peripherals
(printers, tape streamers) by name independent of their actual location.

There are two problems that prevent the use of Amoeba (and similar systems such
as Chorus [Rozier et al., 1988] and Mach [Accetta et al., 1986]) on a worldwide scale:

1. Hiding the location of a data item, and more generally hiding any use of com-
munication facilities or I/O primitives, from the programmer or the user works
well only in a homogeneous system with a fast network or I/O system.

The combination of homogeneity and fast networking keeps the system more or
less predictable. In a homogeneous system, it does not matter which computer
is used to perform a computation, and in general the network is fast enough to
ignore data placement issues.1 However, on a worldwide scale we can expect
enormous differences in computing power, ranging from small pocket comput-
ers to large supercomputers, and network bandwidth, ranging from slow dial-up
connections to high-speed backbone links.

2. The second issue is one of system administration. Amoeba, Chorus, and Mach
are complete operating systems. On a worldwide scale it is not practical to re-
place every operating system with a new one, as is done by installing Amoeba,
Chorus, or Mach. Instead, the distributed services should augment existing op-
erating systems (the various versions of UNIX, products from Microsoft, Apple,
etc.).

This thesis describes the architecture of Globe, a GLobal Object Based Environ-
ment. The goal of Globe is the design and implementation of a wide-area distributed
system that provides a convenient programming abstraction and sufficient transpar-
ency. The main contribution of this thesis is the description of a new distributed-object
architecture. In contrast to other systems, a Globe distributed object is completely au-
tonomous with respect to the distribution, consistency, and replication of its state. This
allows for object-specific solutions, and provides the right mechanism for building ef-
ficient and truly scalable systems.

1.2 Example

To illustrate the problems with sharing data in wide-area networks that are caused by
the lack of proper facilities, we look at four information exchange protocols for the
Internet: electronic mail (the Simple Mail Transfer Protocol, SMTP [Postel, 1982]),
electronic news (the Network News Transfer Protocol, NNTP [Kantor and Lapsley,

1This is the case in a general purpose distributed system. In systems used for parallel programming or
distributed databases this is false.
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1986]), file transfer (the File Transfer Protocol, FTP [Postel and Reynolds, 1985]),
and the World Wide Web (Hypertext Transfer Protocol, HTTP [Berners-Lee et al.,
1996]).

From a programmer’s perspective, the Internet is based on three major communi-
cation protocols: the Internet Protocol (IP), the Transmission Control Protocol (TCP),
and the Domain Name System (DNS). The Internet Protocol (IP) makes it possible
to send data from one computer to any other computer on the Internet. However,
this protocol does not guarantee that the data will actually arrive at the other end. In
particular, IP provides a best-effort service. To get reliable communication we need
TCP. TCP is layered on top of IP and provides a reliable byte stream between two
processes.2 Internally, IP uses 32-bit numbers to address computers on the Internet.
DNS, the domain name system, is a distributed name service that maps host names to
IP addresses and vice versa. These three protocols together provide a practical way to
transfer data from one computer to another.

The four information exchange protocols (SMTP, NNTP, FTP and HTTP) have the
following in common:

• They are all designed to support interoperability between different implementa-
tions.

• They handle only the transfer of data between sites, ignoring aspects related to,
for example, data management, replication, or security.

• They are all designed as a relatively simple layer directly on top of the TCP/IP
protocol stack.

The drawback of this approach is that enhancements to a protocol are hard to re-
alize, as it requires worldwide consensus as well as changing many independently
written implementations. In addition, although very different implementations of the
same protocol can easily interoperate, this is not the case for different protocols. Inte-
grating the various protocols is hard.

A solution toward integration adopted in the Web community, is to provide a single
user interface that supports each protocol. However, having such a powerful Web
browser solves only a very small part of the problem. In particular, the distinction
between how data is accessed and manipulated remains: there is no integration of
underlying communication models. In addition, no solution is provided for integrated
data management.

Table 1.1 shows how the four protocols differ, where we distinguish naming, data
distribution, data encoding, grouping of documents, authentication and security, repli-
cation of data, and self-containedness. These differences are discussed next.

2Actually, TCP communication is between ports on two computers. However, the common case is that
a TCP port is used by at most one process.
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Mail News FTP WWW
Naming mailbox

(user@domain)
newsgroup
(comp.os.misc)

host + path
(cs.vu.nl, /pub)

URL
(http://www.
cs.vu.nl/)

Distribution Push Push Pull Pull
Encoding 7 bit + Mime

8 bit extensions
7 bit + Mime 7 bit text or

8 bit binary
(user has to
guess)

8 bit +
content type

Containers mailbox newsgroup directories none
Authentication PEM or PGP None (PGP) Username +

Password
Username +
Password,
SSL

Secrecy PEM or PGP None None SSL
Replication None Flooding Caching +

DNS tricks
Caching +
DNS tricks

Complete No in theory: Yes,
in practice: No

in theory: Yes,
in practice: No

No

Table 1.1. Features of the four Internet protocols

Naming The mail system names users at domains. Although a mailbox is globally
unique, the interpretation of the user name is left to individual mail transfer agents
(MTA). SMTP defines only a mapping from the domain part of a mailbox to the ma-
chine or machines on which the MTA runs that accepts mail for that domain. The
news system names newsgroups. Newsgroup names are valid in a particular domain
(“distribution”). Names for local newsgroups are typically not unique, which causes
confusion if an article is posted in several domains.3 Articles in a single newsgroup
are uniquely distinguished by their message identifier. For FTP, there is no standard
at all for naming documents. The only naming convention adopted is that of the FTP
server, whose name is coupled to the DNS host name on which the server is running.
Finally, the World Wide Web uses Uniform Resource Locators (URLs) for naming
Web pages and other documents. Its distinguishing feature is that a protocol identifier
is part of a URL, allowing documents available under HTTP, FTP, mail, and news, to
be named within a single naming scheme.

Data Distribution With respect to distribution of data, both mail and news actively
push data toward the destination, which is a mailbox, or a peer news server, respec-
tively. On the other hand, for FTP and Web documents, the user is expected to explic-
itly pull the document from a server or a cache to its own location.

3For example, an article posted in the newsgroup vu.general at the Vrije Universiteit ended up in the
newsgroup vu.general at the Vancouver University.
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Data Encoding Data encoding also differs among the various protocols. Mail and
news allow 7-bit ASCII data transfers. MIME (Multipurpose Internet Mail Extensions
[Freed and Borenstein, 1996]) extends this by defining standard encodings for binary
and 8-bit text. Extensions to SMTP allow passing 8-bit data directly from an SMTP
client to an SMTP server if they both implement the extension. In practice, almost
all mail and news transport agents allow 8-bit text encodings such as Latin-1. FTP
supports both text files and data files. Unfortunately, the user has to guess the correct
type, and explicitly configure either a binary or ASCII transfer. HTTP supports 8-bit
binary data, and provides the recipient with a content type that describes the data.

Document Containers Again, there is much difference in the way that documents
are collected and organized. mail, news, and FTP support different concepts of a
directory in which documents are collected. Mail messages are collected in mailboxes;
news articles are collected into newsgroups; and FTP supports the traditional concept
of hierarchically organized directories, and, in contrast to mail and news, provides
the user with full support for manipulating directories. The World Wide Web does
not support document containers at all. It is only possible to have references to other
documents contained in a Web page, but there is no support for collecting pages into
something analogous to a directory.

Authentication and Secrecy Security is primarily supported only in news and mail.
PEM (Privacy Enhancement for Internet Electronic Mail [Linn, 1993]) is a standard
protocol for authentication and secrecy of mail messages. In practice, PGP (Pretty
Good Privacy) is commonly used to authenticate both mail messages and news arti-
cles, and to encrypt mail messages. Authentication for FTP and HTTP is limited to
simple user name/password combinations. Non-standard security extensions exist for
Web documents, which are specific to Web browsers, such as SSL for NetscapeTM.

Data Replication The only system for which replication is defined is news. News
articles are replicated using a flooding protocol; mail messages are not replicated. If a
message has multiple recipients (e.g. a message sent a mailing list), copies are sent to
each recipient separately. FTP and HTTP do not support replication, but some repli-
cation of data is done manually. Entire FTP and HTTP servers can be replicated, and
registered under a single DNS name using round-robin DNS. In the case of Web doc-
uments, caches are typically installed by users to avoid fetching a document multiple
times. This caching scheme works relatively well in practice, despite the lack of cache
invalidation when documents are changed.

Completeness None of the four services is really self-contained, although the news
system comes close. NNTP supports both posting and reading news articles. Fur-
thermore, news articles may contain control fields to create and delete newsgroups.
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Unfortunately, the usefulness of these control messages is limited by the lack of au-
thentication of news articles. There is, however, no standard protocol for introducing
a new news server to neighboring servers.

Initially, the mail system defined only a protocol for sending mail to a mailbox,
but lacked a protocol for reading mail. POP (Post Office Protocol [Myers and Rose,
1996]) was introduced to solve this problem. However, there are no standard protocols
for creating or deleting mailboxes.

FTP provides a fairly complete set of commands for maintaining a file system. For
various reasons these commands are typically not used, and instead the underlying
local file system is modified directly.

Finally, HTTP is also not self-contained. For example, it relies on an existing
file system, and has no commands for creating directories. Also, it has only limited
commands for adding new documents to an existing directory.

Conclusion Many differences between the four services are historical. This is the
case for naming, the 7-bit data limitation for mail and news, and for the lack of au-
thentication. Other differences are part of the underlying model. All four services are
described in terms of transfer protocols. And indeed, this makes the service incom-
plete and often highly inflexible. For example, data management is lacking and where
applicable, replication strategies are hard-wired into a protocol.

Rather than integrating the services directly, or choosing ad-hoc solutions such as
adopted in Web browsers, we advocate the creation of a software layer on which data
sharing services in large-scale internets are to be based. This layer is to be created
on top of existing operating system kernels (which we cannot modify) and below
applications. Because of its place (between the kernel and the application), such a
layer of software is often called middleware. A single paradigm should provide us
with the means to properly integrate the four services described above.

1.3 Requirements

An important goal of a distributed system is to support sharing, exchange, and man-
agement of resources and information such that implementation aspects are transpar-
ent to its users.

A worldwide network basically provides unreliable message-passing between any
two machines on the network. The Internet shows that such a worldwide network
can be built, and that unreliable message passing mechanism can be used for reliable
end-to-end communication between processes (TCP).

For a distributed system to be useful on a worldwide scale, it has to be (1) scalable,
(2) flexible, (3) and secure. Scalability is necessary to accommodate the large number
of users, machines and data items that can be expected in a worldwide system. In
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addition to the scalability problem due to the number of users, a worldwide system
also has to support geographical scalability. Compared to local-area systems, a wide-
area system has to handle an increase in latency because signals have to travel over
larger distances. Furthermore, network bandwidth over a long distance is in general
more expensive and less reliable compared to bandwidth in a local-area network.

A worldwide system should last a long time. During this time the system has
to be flexible enough to adapt to new technologies, new demands, etc. Furthermore,
information distributed through, and stored in a worldwide system is useful only when
it can be trusted. Secrecy and access control is necessary to ensure that the information
can be stored safely in the system in the first place.

Beyond the three constraints describe above, we would like a system that has the
following properties:

• A uniform (programming) model with support for application programmers

• Location and replication transparency

• Autonomous administration

• Interoperability between independently developed components

• Backward compatibility with existing (legacy) systems

Scalability The most important problem that needs to be solved is that of scalability
[Neuman, 1994]. The rapid growth of the user population on the Internet suggests
that a general-purpose wide-area distributed system should eventually be capable of
supporting a billion users. To manage the complexity of the scalability problem, we
believe it is essential to first devise an architecture in which different solutions can be
embedded.

We define the scalability of a design or architecture as the ability to support smaller
and larger implementations of the design with adequate performance. Smaller and
larger implementations can be distinguished based on the number of objects or users
they support or based on the kind of network (local area or wide area).

This definition makes it possible to verify whether a design is scalable. Create both
a small system and a large system that implement the design and compare the perfor-
mance of the small version with other small systems that provide the same function-
ality and do the same for the large version. The design is scalable if the performance
of both the small and the large implementations of the design is reasonable (i.e., com-
parable to the systems). For example, a scalable design of a network file system can
be compared to NFS [Nowicki, 1989] or products from Microsoft and Novell for the
small-scale version and can be compared to AFS [Howard et al., 1988] and possibly
FTP for the large-scale version.
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A scalable system should not depend on centralized resources or on algorithms
that need global information. For some techniques, the resource usage grows too fast
to be used in scalable designs. For example, the use of broadcasting and multicasting
to locate resources (hosts, objects, services, etc.) on a local Ethernet can be quite
effective but should probably be avoided on a worldwide scale.

However, functionality that can not be provided in a scalable way is still useful
(and often required) in smaller, more local situations. For example, strong consistency
is possible if the network latency is low enough and the number of users of an object is
small. However, in a large system with a high network latency and many users sharing
a single object, strong consistency leads in many cases to unacceptable performance.
Less consistent implementations often work better in large systems.

This suggests that a system should support not only scalable algorithms and imple-
mentations but also nonscalable algorithms for local use. We argue that a scalability
requirement is also a flexibility requirement. There is also an economic argument for
functionality that can be provided only by nonscalable implementations: if provid-
ing such functionality at a larger scale is more costly and those costs can be paid by
the users, then the law of supply-and-demand suggests that a break-even point exists
where the number of customers willing to pay the required amount is equal to the
number of users that can be supported. For example, the phone companies solve a ge-
ographical scalability problem by making long-distance and international phone calls
more expensive than local calls.

Flexibility We can distinguish two kinds of flexibility that are needed in a large
system. The first one is the ability to introduce new services, and to extend exist-
ing services without disrupting the system. For example, most Internet protocols use
version numbers, protocol numbers, and port numbers to support new protocols that
co-exist with old protocols.

The second kind of flexibility is support for completely different implementations
of certain functionality. This is required for scalability, but also to allow the user of
the system to make certain trade-offs. For example, a user may wish to reduce the
time to perform certain operations at the expense of the accuracy of the results.

The second kind of flexibility is hardly supported on the Internet. For example,
there are a number of Internet routing protocols. All those protocols perform basically
the same function: the dissemination of routing information. There is however no
overall architecture that describes how these routing protocols should be used together.
This means that multiprotocol routers designed by different people may differ in their
ability to support new routing protocols. Widespread use of a router with an inflexible
architecture may hamper the introduction of new routing protocols.

Security The basic security functions are secrecy and integrity. A secure system
should prevent unauthorized parties from reading data (secrecy) and from modifying
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data (integrity). The distinction between authorized and unauthorized parties is based
on authentication and access control information. An important issue with respect to
security in a worldwide system is to standardize authentication. Systems where many
applications have there own independent way of authentication often cause the users of
the system to circumvent those security mechanisms. For example, it is possible that
applications for remote login, remote file access, and remote mail access all require
the user to enter his password. It is tempting to add functionality to those applications
to allow the password to be stored in a file on the user’s computer. This relieves the
user from typing his password multiple times but provides other people (co-workers
or family members) with easy access to the user’s files.

Uniform model and support for application programmers Wide-area systems
provide users with facilities for sharing and exchanging information. To that end,
numerous abstract communication models have been adopted. These models gen-
erally provide low-level communication primitives. A large variety of such prim-
itives exist: RPC, point-to-point message-passing, stream-oriented communication,
distributed shared memory, etc. However, these communication models do not pro-
vide solutions to problems that are common to all wide-area systems, such as replica-
tion, data migration, and concurrency control. The effect is that each application has
to invent an ad hoc solution.

Dealing with the wide spectrum of communication demands in complex, wide-
area systems requires high-level operations with an emphasis on optimizing the ease
of use of communication facilities, along with efficient use of those facilities. Real-
izing efficient communication requires that we look at three aspects: maximizing the
bandwidth offered to an application, minimizing latencies observed by the application,
and balancing the processing (CPU time) at various machines. Of these three, latency
and processing are more important than bandwidth for two reasons:

• Even though bandwidth can be increased effectively (as illustrated by gigabit
networks), decreasing latency is more difficult, either because of software over-
head, or due to the speed of light.

• In cases where the processing demands of individual requests can be met easily,
we often still have to deal with a large number of such requests.

What is needed is a uniform model to express sharing and exchange of informa-
tion. The model should be more abstract than those offered by the simple commu-
nication primitives but still be application independent. It should incorporate aspects
common to all wide-area applications, and straightforward implementations.

In effect, we need a high-level description of the application’s intrinsic commu-
nication requirements independent of network protocols, topology, etc. For example,
for mailing systems we have the requirement that when a message is sent, the receiver
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is notified that it is delivered so that it can subsequently be read. These requirements
state only that when the message is to be read, it should actually be available at the re-
ceiver’s side. This means that message transfer can take place before notification, but
possibly also later. It is not an intrinsic requirement that message transfer has taken
place before notification.

Wide-area distributed systems have to deal with a variety in services, functionality,
and interfaces of underlying operating systems and networks. At the same time they
should hide these differences for their clients (i.e., users or applications), leading to
different implementations for similar components.

Hiding the heterogeneity of the environment is a major requirement for any dis-
tributed application, but is a particularly hard one to meet in the wide-area case. The
problem can be alleviated by adopting a common middleware layer [Bernstein, 1996].
Such a layer presents a single interface to the underlying system, hiding differences
with respect to operating systems and networks.

Although this approach is attractive, there is a danger that the interface to the mid-
dleware and its implementation is simply too general to be useful for applications. In
particular, it should be avoided that policies are hard-wired into the middleware rather
than that they can be adapted per application. A middleware layer should therefore
offer a framework for implementing applications.

A question that needs to be answered then is what this framework should look
like. To this end, several object-based models have been proposed. Implementations
of these models allow application developers to describe interfaces and objects. They
provide support for placing objects in a heterogeneous environment and offer means
for transparently invoking methods in that environment. Additional support may be
provided for storing and retrieving objects, object creation and destruction, etc.

Location and replication transparency A problem with many wide-area systems
is the lack of location transparency. In practice, names are tightly coupled to the loca-
tions of the objects they refer to. Location-dependent names make it difficult to deal
with migration. If a name specifies where an object is located, migrating that object
cannot be done without either changing the name or interpreting it as a forwarding
pointer. Location-dependent names also cannot be used straightforwardly when re-
ferring to replicated data. Effectively, applications are forced to keep track of which
objects are replicated, where the replicas are located, and how consistency between
these replicas is maintained. A wide-area system should offer a naming facility that
hides all aspects concerning the location of data. Users should not be concerned where
a data item is located, whether it can move, whether it is replicated, and if it is repli-
cated, how consistency between replicas is maintained.

There are two main reasons for trying to isolate application programmers from
having to deal with data placement, replication, and consistency. The first reason is a
software engineering one: replicating data and maintaining the consistency of data is
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complex and the implementations of replication algorithms are often not application-
specific. This suggests that a collection of replication protocols should be provided by
system software.

The second reason is that good choices for data placement, replication strategies,
and consistency guarantees depend on the environment in which the application is
deployed. For example, if an application is used to share information on a single
LAN, it is possible to provide very strict consistency guarantees and data placement
is often not an issue. However, if the application is also used in a wide-area network,
the situation is quite different. In that case, data placement is an issue, replication has
to be used to increase availability and fault tolerance, and due to the higher latency,
may even be so that the application’s semantics have to be weakened to come to a
satisfactory implementation.

Going one step further, we can envision a situation in which a new replication
protocol has to be used in an application that is already widely deployed. For example,
a new replication protocol may have been discovered or the environment in which
the application runs has changed. In this line of thought, we can say that to benefit
from specific circumstances as offered by the underlying communication network,
it is important to support run-time selection of implementations for communication
protocols, replication strategies, and consistency guarantees.

Backward compatibility and interoperability In some cases, a new system can be
introduced without the need to be backward compatible with an existing system. For
example, many sites that are connected to the Internet did not previously have any
wide-area network connection, so backward compatibility at the network level was
not an issue. On the other hand, the Internet mail and news system had to connect
to the existing UUCP network as well as various other mail systems. This required
the mail transport agents on the Internet to understand UUCP style addresses. With a
sufficiently flexible system, backward compatibility is usually no problem.

The disadvantage of a flexible system is that ensuring interoperability is much
harder. A flexible system allows independently developed components to be tailored
to specific needs. This freedom works against interoperability between those compo-
nents.

Autonomous administration A worldwide system requires the cooperation of
many organizations. A system that allows autonomous administration allows those
organizations to operate more or less independently. The alternative, where large parts
of the network are centrally controlled, or where different parties need to trust each
other tends to limit the growth of the system.
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1.4 Limitations of Current Systems

The four example protocols in Section 1.2 (SMTP, NNTP, FTP and HTTP) are built
using a single paradigm: explicit message passing. Message passing is just one of the
paradigms used to build distributed systems. Other paradigms are based on the shared
memory abstraction or on remote objects. Each of these paradigms has advantages,
but they also have serious disadvantages. Note that this section does not provide an
overview of the current state of the art. See Chapter 6 for an overview of related work.

The paradigms can be described as follows:

• Synchronous data exchange.

With synchronous we mean that data can be exchanged only if both the send-
ing and receiving processes are executing at the same time. Examples include
low-level data exchange based directly on TCP and UDP implementations, dis-
tributed computing based on communication libraries such as PVM [Sunderam,
1990] and MPI [MPI Forum, 1995], group communication systems such as ISIS
[Birman, 1994], and RPC-based systems like DCE [OSF, 1992].

Synchronous data exchange is primarily concerned with moving data from one
process to one or more other processes. Naming is provided at the granular-
ity of hosts or processes, but not individual data items or objects. The main
limitation is that the data placement, replication, consistency, and persistence
management are left to the application. This paradigm hides the topology of
the underlying network and provides a virtual network in which every host (or
process) is connected to every other host.

Advantages of low-level message passing systems, such as UDP and to some
extent TCP, are that the programmer can choose between many different com-
munication protocols. This allows a programmer to select the appropriate repli-
cation protocol, group communication protocol, distributed checkpointing algo-
rithm, etc., for his application. Furthermore, some message-passing protocols
can be implemented almost directly on top of the hardware, which leads to
primitives with low overhead.

Unfortunately, with synchronous data exchange primitives, it is hard to hide la-
tency and the application developer has to take explicit measures to handle it.
Another disadvantage is that the use of these communication primitives leads to
applications with hard-wired communication patterns. If the original program-
mer selects the wrong replication protocol or if the environment changes, it is
very hard to adapt the application.

• Predefined operations on shared state.

Typical examples of systems that fall into this category are network file sys-
tems [Levy and Silberschatz, 1990] (NFS [Nowicki, 1989], AFS [Howard et al.,
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1988] and Alex [Cate, 1992]), and distributed shared-memory (DSM) imple-
mentations, originating with the work on Ivy [Li and Hudak, 1989].

Solutions in this class generally offer a small set of low-level primitives for read-
ing and writing bytes. These primitives generally do not match an application’s
needs. For example, in file systems data must often be explicitly marshaled,
while in heterogeneous DSM systems, special measures have to be taken by the
application developer (see e.g. [Zhou et al., 1992]). In addition, attaining data
consistency is often not that easy. For example, file systems generally offer only
course-grained locks or otherwise expensive transaction mechanisms. In DSM
systems, the situation can be even worse as memory consistency is often re-
laxed for the sake of performance [Mosberger, 1993]. Although this does allow
a reasonable transparency of replication and location of data, the application
developer is confronted with a model that is much harder to understand and to
deal with.

Current distributed file systems have almost no support for replication trans-
parency, although the placement of files is generally hidden from users. How-
ever, it is mainly the limited functionality provided by file systems that poses
severe problems. For example, streams for communicating continuous data such
as voice and video are hardly supported.

• Operations on remote shared objects.

These paradigms are centered around user-defined operations on remote state,
such as offered by objects in CORBA [Object Management Group, 1999],
Spring [Mitchell et al., 1994], and Network Objects [Birrell et al., 1993b].

Solutions that fall within this paradigm implement remote objects, where a dis-
tinction is made between clients and servers. Clients issue requests (invoke
methods), and servers implement methods and send back replies. This limits
communication patterns to the asymmetrical client–server model, for example,
prohibiting clients to communicate directly among themselves. A disadvantage
of remote objects is that every method invocation on a remote object results in
the exchange of a request and a reply message between the client and the server.
This problem is typically tackled by ad hoc caching strategies at the client side.

Of the systems cited, Network Objects simply offers a remote-object system.
Clients in one address space can invoke methods on an object in another address
space. CORBA does not specify how exactly a request is forwarded over the
network. Instead, a part of the run-time system of a CORBA implementation,
which is called the object request broker (ORB), handles method invocations.
In theory, these request brokers can hide replication and fault tolerance from the
application, but general efficient solutions that do so have not yet been proposed.
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Spring provides another mechanism to extend the remote-object model. This
mechanism, called subcontracts, provides support for transparent caching and
replication, but which seems to be very limited when it comes to adaptability.
For example, replication is handled by mapping an object reference to several
object instances, and maintaining the mapping at the client side. This approach
does not scale.

Conclusion Current paradigms for interprocess communication are not sufficient to
describe the exchange of information at an adequate level of abstraction. The main
drawbacks can be summarized as follows:

• Inflexible once deployed (message passing)

• Cannot capture application semantics (file systems)

• Rigid communication patterns (simple object models)

Our goal is to combine the advantages of each paradigm:

• The efficiency (low overhead) of low-level message passing primitives.

• The transparency of actual communication as it appears through read and write
operations on shared state.

• The possibility for user-defined operations on shared state as allowed in object-
based systems.

1.5 Approach Taken in this Thesis

We propose an object-based approach, in which important items in the system are
modeled as objects. Typical objects include Web pages, mailboxes, news articles, files,
machines, etc. Associated with each object is a set of methods that authorized users
can invoke regardless the relative location of the user and the object. In particular,
a special kind of object, which we call a distributed shared object, is be used to
achieve transparency in wide-area distributed systems.

In this architecture, applications communicate by invoking methods on distributed
shared objects they share. Changes to a distributed shared object’s state made by one
process are visible to the others. An important distinction with other models is that,
in our case, objects are physically distributed, meaning that copies of an object’s state
can, and do, reside on multiple machines at the same time.

Distributed shared objects are constructed using a second kind of object, which
we call a local object. A local object is an object that exists in only one process.
Local objects are not only the building blocks for distributed shared objects, they also
provide the application interface to the operating system kernel.
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Figure 1.1. Topology of a distributed shared object

We describe many aspects of our architecture as operations on address spaces. An
address space is a segment of (virtual) memory. Address spaces are part of processes
and of operating system kernels. It is possible that processes contain multiple address
spaces, for example parallel or distributed processes. We assume that processes in
different address spaces interact only through explicit communication primitives.

Distributed shared objects are implemented as a collection of local objects that
communicate and provide the user of the object with the illusion of shared state. This
is shown in Figure 1.1. Four processes share a distributed shared object. Each address
space contains two local objects: a class object and an instance of the class object.
These instances communicate over the network to keep the state of the distributed
shared object consistent. A local object that is part of a distributed shared object is
called a representative of the distributed shared object.

The distributed shared object can use any communication protocol, replication
protocol, etc. as long as the right local objects are available that implement these
protocols. This is an improvement over the remote object model because it is not re-
stricted to a small set of predefined communication patterns. Furthermore, there is no
a priori distinction between client and server roles within a distributed shared object.
We take the approach that processes that communicate through method invocation on
the same distributed shared object are treated as equals. In particular, they are said to
jointly participate in the implementation of that object.
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Both local objects and distributed shared objects offer one or more interfaces, each
consisting of a set of methods. At run time, the interfaces are implemented in the form
of interface tables. An interface table is a table with one entry per method. Objects
in our model are passive; client threads use objects by executing the code for their
methods.

The main advantages of distributed shared objects are:

• A distributed shared object provides well-defined interfaces to its users (appli-
cations). The user is isolated from the way that communication, replication, and
consistency are implemented.

• Persistence and communication are completely encapsulated in a distributed
shared object. This means that an implementation of a distributed shared object
is not limited to a small set of communication protocols or consistency algo-
rithms built into a run-time system.

• Object implementations can be loaded at run time.

• Invocations on distributed shared objects are just ordinary method invocations:
a process has a local implementation of the object’s interface in its own address
space. In other words, to a process, a distributed shared object appears the same
as a local object.

Before a process can use a distributed shared object it has to bind to the distributed
shared object. Objects have names that are used to bind it to a running process (address
space). During the bind process, code and data needed to support the object is loaded
into the process’ address space.

The code that is loaded during the bind process is a new class object that is ini-
tialized with marshaled state (the code) stored on a class repository. Class objects are
local objects that contain the implementations of the methods of other local objects.
This class object is used to instantiate a new local object. The bind process maps a
name to a class identifier and a set of network addresses that can be used by the local
object to connect to the distributed shared object. The class identifier is used to load
a class object which is then used to create a new instance: the local object. Next, the
local object is initialized with the set of network addresses.

Example Distributed shared objects can be used to unify the four Internet services
from Section 1.2. We start by making a distinction between document objects that
have the actual data, and container objects which are analogous to directories. A doc-
ument object is suitable for containing information that is now encoded into separate
documents for mail, news, FTP, and WWW, respectively. Document objects are col-
lected into container objects. A container object contains references to document
objects, but also to other container objects allowing for a graph-based organization.
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We use three interfaces to access document and container objects. The main inter-
face of a document object is like a simple file interface with read and write meth-
ods. Container objects provide a standard naming interface with list, lookup, link

and unlink methods. Finally, we have a metadata interface which provides access to
(attribute,value)-pairs. Table 1.2 lists the methods of the naming, file, and metadata
interfaces.

Naming Interface
list return a list of directory entries
lookup look up a directory entry, return the object handle
add add a directory entry
delete delete a directory entry

File Interface
read read the contents of a document
write change the contents of a document

Metadata Interface
setattr set a (name, value) pair
getattr look up a name
listattrs return a list of attributed

Table 1.2. Main interfaces to document and container objects

Document and container objects can be used to implement the four Internet ser-
vices as follows. Mail messages and News articles are implemented as document
objects, whereas the metadata interface can be used to store header information (such
as date, subject, sender, MIME-version, content-type, etc.). Mapping mailboxes and
newsgroups to container objects is somewhat harder, as messages and articles are typ-
ically not named. There are two solutions to this problem: messages and articles are
entered under an arbitrary name, for example their ID, or the implementation of a con-
tainer object can ignore the name argument altogether and simply number messages
in a mailbox and articles in a newsgroup.

Files and directories on an FTP server map quite easily to document objects with a
file interface, and container objects with a directory interface, respectively. The World
Wide Web consists of pages that are linked together through hyperlinks, and there is
no concept of a directory. There are two ways to map WWW pages. The first one
is to store a WWW page in a document object, use a container object to structure
the name space, and treat hyperlinks as symbolic links. This means that the name of
the file containing the WWW page is used as a link. This corresponds with current
practice. A disadvantage of symbolic links is that the target of the link can be deleted
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or renamed without updating the link. The alternative is to implement a WWW page
as an object with both a file and a directory interface. The directory can contain “hard”
links to related documents, and the document itself contains references to its directory
entries. In our model, hard links are object handles which do not change when an
object is renamed.

Our model supports the separation of application programs from object implemen-
tations. A program and an object implementation have only an interface in common.
This allows objects with new implementations to be used by old applications without
recompilation provided that the new implementation supports the interface that the
application expects.

To implement container and document objects for the four services we need sup-
port for different replication algorithms. In Chapter 3, we show how implementations
of replication algorithms can be stored in what we call replication objects. Examples
of replication objects are the following:

• The client/server replication object is the simplest replication object. Actually,
such a replication object provides no replication at all. The distributed shared
object’s state is stored in the address space of a server and replication objects
from other address spaces merely forward requests to the server’s address space.

• A simple extension to the client/server replication object is the primary-backup
approach. The state of the distributed object is replicated and one copy is desig-
nated (or elected) as the primary copy. All operations on the distributed object
are forwarded to the primary. The primary executes the method and updates all
other backup copies before sending a reply to the requesting address space. This
scheme provides increased fault tolerance and availability over client/server
replication.

• Unique to Mail and News systems is that messages and articles are immutable:
they do not change after they are sent or posted. Replication of immutable ob-
jects is trivial: each address space that needs to access the object gets a copy of
its state. Since the object cannot be changed, there is no need for a consistency
protocol.

• To be able to support mutable objects with a large number of replicas, we can
use active replication where changes to the object are flooded. In this scheme,
each replication object maintains a network connection to a few neighboring
replication objects. Local changes to the object’s state are then also forwarded
to its neighbors.

• To improve the performance of accessing WWW and FTP documents, we intro-
duce push/pull replication. Push/pull replication combines a replication scheme
for a small number of copies (such as primary/backup replication) with caches.
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Changes to the state of the object are actively pushed to a relatively small num-
ber of replicas. Processes that use the distributed object fetch a copy of the state
of the object through cache servers. Caches maintain their copy of the state
consistent by discarding copies after some time, and by polling authoritative
replicas of the object.

The appropriate replication object depends on the purpose of a distributed shared
object and on the environment in which the object is used. For example, in general, a
container object for a newsgroup is expected to use flooding. However, a very small
newsgroup for discussing a highly specialized subject may use a primary/backup pro-
tocol or even a client/server approach. For WWW documents that are accessed sel-
domly, a client/server approach may be appropriate. For popular WWW documents,
the use of caches is needed to distribute the load.

1.6 Outline of this Thesis

The next three chapters contain a detailed description of our architecture. The de-
scription is split into three parts: local objects, the construction of distributed shared
objects, and naming. Chapter 2 describes the local object model and the basics of
distributed shared objects. Distributed shared objects can be constructed in different
ways. Chapter 3 describes a structured way of constructing distributed shared objects.
This chapter describes replication, persistence, and security.

To be able to access distributed shared objects, it is necessary to have a naming
and binding mechanism. Naming and binding are described in Chapter 4. Related to
naming is garbage collection. Objects are garbage collected when they are no longer
referenced by other parts of the system, in particular the naming system. For this
reason, Chapter 4 also presents a distributed garbage-collection algorithm.

A prototype implementation is described in Chapter 5 to show that distributed
shared objects can be implemented. An overview of related work is presented in
Chapter 6. Finally, Chapter 7 presents the conclusions.
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Chapter 2

The Object Model

2.1 Introduction

In this chapter, we will discuss our object model. An object combines some amount
of data, the state of the object, with operations on the state. Objects with the same
operations but different state are said to belong to the same class. The collection of
operations (and the semantics of those operations) that are supported by an object is
called the object’s interface. The main advantage of an object-based system is that
it is possible to hide the details of data structures and algorithms. This means that is
does not matter what data structures an object uses internally, as long as the object
provides the right interface.

For a worldwide distributed system, it is necessary to be able to use different im-
plementations for the same interface. With an object-based approach it is possible
to provide encapsulation of state and its operations to allow a clear separation be-
tween services and implementations of those services. Implementation aspects such
as communication protocols, replication strategies, and distribution and migration of
state can be completely hidden behind an object’s interface. The concept of an object
offers us the transparency and flexibility needed for wide-area systems.

The purpose of a wide-area network is to exchange information between different
computers on the network. In our model, information is exchanged using distributed
shared objects. Changes to the state made by one process can be observed by other
processes. Figure 2.1 shows two address spaces that share an object. Communication
between processes (in different address spaces) takes place by invoking methods on
shared objects.

Objects can be divided into two categories: local objects and distributed shared
objects. Local objects are objects that are restricted to one address space. This in con-
trast to distributed shared objects that can span multiple address spaces. Distributed

21
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"/uk/co/www/index"

Object shared by
processes A and B

Address space of
process A on
machine #1

Address space of
process B on
machine #2

Object
"/nl/vu/cs/home/philip/mbox"

Object

Object
"/edu/mit/lcs/info"

Object currently not
in any address space

Figure 2.1. Sharing objects

shared objects are built out of local objects, as is shown in Figure 2.2. Local objects
are layered on top of the actual hardware and the local operating system.

Hardware

Local operating system

Local objects

Distributed shared objects

Applications Services

Figure 2.2. Software layers

Before a process can invoke an object’s method, it has to bind to the object. Bind-
ing involves installing and initializing one or more local objects in the process’ address
space. These local objects offer an implementation of the interface used by the pro-
cess. In contrast to many other object models which essentially follow the client/server
approach, we support a symmetric model of computation. Once a process is bound to
an object, it forms part of the object’s overall implementation. We therefore say that a
process participates in the implementation of a distributed shared object.
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Processes can communicate by binding to a common distributed shared object.
Sharing a distributed shared object can be done concurrently or sequentially. For
example, a video stream in a multimedia conference can be implemented as an object
that is concurrently shared between a sender (camera) and one or more receivers.
Alternatively, we can store a video stream on disk (a movie) to read and display it
later. In this case, the object is shared sequentially.

In our model, an object logically consists of three parts:

• The object’s current “value” or state.

• The object’s methods. These methods are the only way to inspect or modify an
object’s state.

• A collection of interfaces. An interface is a collection of pointers to methods
implementations. Methods can only be invoked via interfaces.

Interfaces are represented at runtime as interface tables. An interface table is an
array of (method pointer, state pointer) pairs. Multiple copies of the state pointer
are stored in an interface table to support composite objects (objects that are an ag-
gregation of one or more subobjects). The method pointer points to the start of the
executable code that implements that particular method, and the state pointer points
to the state of the object on which the operation should be invoked. This scheme al-
lows multiple objects to share the same method implementation, and also gives some
freedom as to where a particular method implementation is stored.

Objects in our model are passive. A passive object relies on an external source
of activity (such as a thread) to execute its methods. In contrast, an active object
typically contains a thread that executes code to accept method invocations and to
execute them. In our model, activity is provided by processes that invoke an object’s
method, and through pop-up threads that handle, for example, incoming messages that
arrive over a network.

Classes have runtime existence in the form of class objects. The object model
supports dynamic configuration of applications by loading class objects at run time
from an object repository. An application loads implementations for any distributed
shared objects it tries to access. This dynamic loading is supported by a flexible object
naming system.

2.2 Local Objects

Local objects are the basic building blocks of the object model. They are used for
three purposes: (1) as a basis for the construction of distributed shared objects, (2)
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as a platform-independent operating system interface, and (3) by applications to store
their (private) data structures.1

A local object may belong to zero or more of the following overlapping object
categories:

1. Composite objects: objects that consist of subobjects

2. Class objects: objects that create other objects and usually contain the method
implementations of their instances.

3. Built-in objects: objects that are part of the run-time system (in contrast to
objects that are created or loaded at run time)

4. System objects: objects that provide an interface to operating system function-
ality

An object that does not fall into any of those categories is just an ordinary instance
of a class. An object which belongs to four classes, a composite, built-in, system, class
object is theoretically possible, but not used in practice. Composite, class and system
objects will be discussed in the Sections 2.2.4, 2.2.3 and 2.2.5 respectively.

The main requirements for the design of local objects are:

• Relatively light weight

The overhead of a local object should be low enough that many user-defined
data structures can be implemented as objects.

• Language and operating system independent, binary interfaces

A strict binary interface for an object allows object implementations to be used
on all platforms that use the same processor, independent of the programming
language used to generate them, or the operating system that is used. In con-
trast, source code compatibility, such as used by CORBA and POSIX, requires
recompilation on different platforms.

• Run-time existence for classes and interfaces.

Run-time existence of classes and interfaces is required for flexibility reasons.
The flexibility of local objects is very important to allow the system to evolve and
to adapt to different environments. Our model for local objects makes it possible for
programmers to deal with flexibility in a controlled way.

To support adding new object implementations (classes) to a running process, we
need to be able to identify those implementations and have to ensure type compatibil-
ity between the type of the loaded implementation and what is expected by the running

1The local object model has been developed together with L. van Doorn and with input from R. Golding
and W. de Jonge. Van Doorn uses this object model to implement an extensible operating system [van
Doorn et al., 1999].
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process. Identifying implementations can be simplified by storing executable code in
(class) objects, as will be discussed in Section 2.2.3.

As a comparison, in C++, classes do not have explicit run-time existence. Instead,
the compiler translates operations to create new objects, as well as method invocations
on an object, into ordinary function calls. This approach makes it impossible to add
new object implementations at run-time. To avoid calling specific functions directly,
the C++ programmer can specify methods to be virtual. A pointer to the implementa-
tion of a virtual method is stored in the object. This allows different objects to have
different implementations of the same method. Although this provides some support
for loading new object implementations at run-time, it requires the programmer to
declare all methods as virtual methods. No support is provided for identifying imple-
mentations, and, worst of all, no support is available for ensuring type compatibility.

Some programming languages are more flexible than others. In Pascal, all data
structures used by a program have to be known (defined) when the program is com-
piled. Furthermore, the definition of a new procedure requires the programmer to
specify the number and type of the arguments. In contrast, variables in a Python pro-
gram are not typed and can refer to any kind of object. Methods of an object are
stored in an associative array which can be changed at run-time.2 Type compatibility
is checked at run-time when a method is invoked. An exception is raised if the method
is not in the object’s dictionary, or if the method is called with the wrong number of
arguments. This approach allows very flexible systems, but makes static analysis of
the system almost impossible.

2.2.1 Interfaces

An interface is simply an ordered collection (list) of methods. An example of an
interface for a lock object is shown in Figure 2.3. This mutex interface contains four
methods: lock, unlock, read, and await. These methods respectively lock, or unlock the
object, read the state of the lock, and wait until a particular state (locked or unlocked)
is reached.

interface mutex
{

void lock(void);
void unlock(void);
int read(void);
void await(int);

} = "396900003ba7424735adfdbd000e3ba8"
"000000000000000000000000c01fe7ae";

Figure 2.3. Mutex interface

2except for instances of built-in classes
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Every interface is identified by a 256-bit worldwide unique identifier. This identi-
fier is allocated by the person who creates the interface. The identifier is large enough
to allow people to create new interfaces independently.

The interface identifier uniquely identifies both the syntax and the semantics of
an interface. This means that an interface should get a new interface identifier when
the syntax is changed, for example by adding a new method, but also when the seman-
tics of a method is changed. This approach contrasts others (such as Modula-3) that
compute identifiers (called signatures) based only on the syntax of an interface.

Interface identifiers can be allocated in a distributed fashion by delegating parts
of the 256-bit number space hierarchically. This is similar to the delegation of host
names in DNS and the delegation of filenames under UNIX. An efficient way to dele-
gate parts of the number space is to incorporate other number spaces that are already
delegated. Examples include 32-bit Internet addresses,3 48-bit Ethernet addresses,
160-bit OSI addresses, and, in the future, 128-bit IPv6 addresses. The interface iden-
tifier in Figure 2.3 is generated based on the 32-bit IP address of a UNIX workstation,
the current time, and process identifier.

The concept of an interface can be viewed in two different ways. In one way, a
collection of interfaces defines the service provided by an object. An application can
use interfaces to access or update the state of an object.

From another perspective, we view interfaces as a design tool. By designing in-
terfaces that support a wide variety of implementations (in different objects), a system
gains flexibility. Interfaces can be defined at different levels of abstraction. An inter-
face at a low level of abstraction is a file interface which simply defines read, write and
locking operations on a linear sequence of bytes. For example, such a low-level in-
terface can be used by applications to create a mailbox. Alternatively, special objects
can be created that offer mailbox interfaces directly. The difference between the two
approaches is that in the first case, applications do not have to rely on special objects,
standard (file) objects are sufficient. Furthermore, standard utilities, for example, the
equivalent of the UNIX grep command, can be used. The main disadvantage of the first
approach is that it is very hard to change the format used to store the mailbox in the
file because all mail applications have to be changed to use the new format. With the
second approach, the internal structure of the mailbox is hidden from the applications,
and can be changed easily.

Some features present in other systems, such as interface inheritance and version-
ing, are left out of our object model. For the most part they can, however, be emulated
using the support for multiple interfaces per object, and the worldwide unique inter-
face identifiers. Inheritance comes in two flavors: interface inheritance and property
inheritance [Taivalsaari, 1996]. Interface inheritance allows an interface to be de-
fined as an extension to one or more other interfaces. Implementation inheritance,

3With the exception of private use addresses[Rekhter et al., 1996].
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the most common form of property inheritance, allows an object to be implemented
as an extension (or, more general, modification) of some other object implementation.
Implementation inheritance is supported by composition (see Section 2.2.4). An inter-
face that is defined using interface inheritance can be replaced with one interface for
each of the original interfaces, and a new interface for the methods that were added.
The main drawback of this approach is that the user of the object may have to deal
with multiple interface references.

Versioning of interfaces means that (version) identifiers are associated with inter-
faces to identify different versions of an interface. Over time, an interface can be
extended or changed and version identifiers can be used to make sure that applications
and objects use the same interface. This problem can also be solved by assigning
different interface identifiers to different versions of a single (abstract) interface. To
interoperate, applications and objects have to support multiple interfaces. This allows
a “new” application to use “old” objects, and the other way around.

Interface
definition

Client side
language
binding

Interface
table

Object
implementation

language
binding

Figure 2.4. Interface compilation

Interfaces are defined in an interface definition language. An interface compiler
compiles an interface definition into different programming languages. This is shown
in Figure 2.4. The user of an object (client side) needs language-specific routines
called client stubs that allow method invocation using the interface. Similarly, the
object implementor need server stubs that accept a method invocation and implement
a routine that actually implements the method. The complexity of the stubs depends on
the mismatch between the calling conventions used in the application/implementation
language and the interface definition.

The client and the server stubs have to agree about a common layout of the inter-
face in memory. Figure 2.5 shows the interface table that corresponds to the mutex
interface. An interface table contains two pointers for each method: a method pointer
and a state pointer. The method pointers are the fields with suffix _m after the method
name, and they point to the method implementations. The state pointers (suffix _o4)

4points to the object
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1 soi unused

2 lock_m lock_o

3 unlock_m unlock_o

4 read_m read_o

5 await_m await_o

Figure 2.5. Interface table

point to the state of the object(s) on which the method implementation should oper-
ate. The reason for storing a copy of the state pointer with each method is related to
composite objects, as we describe in Section 2.2.4.

An interface table contains two additional fields labeled soi and unused. The first
field is a pointer to the “standard object interface” and the unused field is there to
provide alignment and to allow future extensions to the interface table.

interface stdObj
{

int init(ctx t, error p);
void cleanup(int how);
struct noInf ∗getinterface(uniqid p, error p);
interface class release(void ∗infp);

};

Figure 2.6. Standard object interface

The standard object interface is a standard interface provided by all objects.
Figure 2.6 shows the definition of the standard object interface. The methods init

and cleanup are used to initialize and to cleanup an object’s state. The method init is
invoked just after an object is created and cleanup prior to the destruction of an object.
The getinterface method provides access to other interfaces. The worldwide unique
identifier of an interface is passed to getinterface to indicate which interface is desired.
The object either returns a pointer to the right interface table or an error indicating
that the object does not support that particular interface. This way the pointer to the
standard object interface of an object can also serve as a generic object pointer.

Reclaiming unused, local objects can be implemented in three ways:

1. Explicitly by the “owner” of the object

2. Using reference counts on the objects or on interfaces

3. Using a garbage collector

A garbage collector is the most convenient solution for an application program-
mer but is hard to implement (a conservative garbage collector is needed to support
traditional languages such as C and C++, and the garbage collector needs to promptly
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collect system resources such as file-descriptors). Explicitly freeing objects is compli-
cated in larger systems where objects may have multiple owners. Reference counting
is the solution that remains.

Counting references for objects is implemented by keeping track of the number of
references to each interface of the object. The getinterface method increments the ref-
erence count and the release method decrements the reference count. The getinterface

and release methods are the reason that every interface table contains a pointer to
the standard object interface for an object. Access to getinterface is needed to obtain
access to other interfaces, release allows the user of an interface to indicate that the
interface is no longer needed.

The main problem with reference counts (apart from the accuracy required to
maintain the correct count) is to reclaim garbage with cyclic references. Cyclic ref-
erences appear when, for example, two objects hold a reference to each other. In
Section 2.2.5 we will see that to avoid deadlocks, we need to make a distinction be-
tween “normal” interfaces and call-back interfaces. This distinction makes it possible
to create two acyclic graphs, one containing the normal interfaces and the other with
the call-back interfaces.

In practice this means that after the total number of references on all its normal in-
terfaces drops to zero, an object can release all references it holds to normal interfaces
of other objects. However, the object should continue to process method invocations
that are invoked on call-back interfaces. After all references to normal interfaces are
released, we have a collection of objects that have only references to call-back inter-
faces of other objects. By construction, these objects and references form a directed
acyclic graph (DAG). In this DAG, there is at least one object with a reference count
of zero. This object can be destroyed, and it releases its references during the cleanup.

The standard object interface is one of a collection of “standard” interfaces. Other
standard interfaces are the class interface to create new instances, various interfaces to
system objects (memory, thread), and interfaces for distributed shared objects. Other
interfaces are application specific, such as the mutex interface that was shown above.

2.2.2 Primitive Objects

A primitive object is an object that does not contain other objects. This in contrast to a
composite object which is composed out of multiple subobjects. The implementation
of a primitive object uses three different kinds of data structures: the object’s state,
its interface tables, and the implementation of object’s methods. Figure 2.7 shows
a primitive object and its class object. In this example, the object’s state is stored
(contiguously) in one place and the methods are stored in the object’s class object.

The example shows five interfaces: three (“Standard Object Interface,” “Interface
1,” and “Interface 2”) belong to the object,. The other two (a second “Standard Object
Interface,” and a “Standard Class Interface”) belong to the class object. As described
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Figure 2.7. A primitive object and its class object

before, each interface table contains two pointers per method (a state pointer and a
method pointer) as well as a pointer to a standard object interface.

The object model does not impose restrictions on where an object stores its state,
or where its methods are kept. In general, an object’s state consists of a fixed sized part
with references to dynamically allocated data structures, or references to (interfaces
of) other objects. The methods of an object can be stored in three different places.
They can be (1) linked with an application, (2) stored in the object itself, or (3) stored
in the object’s class object. Methods of built-in objects are linked with an application.
Figure 2.7 shows that the methods for both the object and its class object are stored in
the class object. This is the case when the class object is dynamically loaded.

2.2.3 Class Objects

Class objects are used in three different roles. The first role, and which is the one
how a class object is defined in our object model, is that of an object that implements
the class interface. This requires the class object to create and destroy other objects.
The second role of a class object is to store the method implementations for its in-
stances. The third role for a class object is to explicitly identify a particular object
implementation. For example, a system can contain multiple memory allocators, or
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support different communication protocols. To refer to a particular implementation, it
is sufficient to pass a reference to the relevant class object.

interface class
{

interface stdObj create(error p);
void destroy(interface stdObj);

};

Figure 2.8. Class interface

Figure 2.8 shows the class interface. This interface has two methods: create and
destroy. The create method creates a new object and returns a pointer to the standard
object interface of the newly created object. Before the object can be used, the user
of the object has to invoke the init method of the object to allow the object to initialize
itself.

The destroy method requests a class object to destroy a particular instance identi-
fied by the standard object interface pointer passed as an argument. Before destroy is
invoked, the object should be given the opportunity to release any dynamically allo-
cated resources. This is done by invoking cleanup, using the standard object interface
pointer, which is part of every interface table.

As described in Section 2.2.1, garbage collection of (local) objects is done by
reference counting. The first reference to an object is returned by the create method,
and additional references are returned by the getinterface method. References can be
released by invoking the release method. When the reference count drops to zero, the
release method returns a reference to the class interface of the class object that was
used to create the object.

Some class objects are built-in, but most class objects are loaded on demand from
some class repository. The implementation of the class object and the method im-
plementations of the instances of the class are stored in marshaled form in the class
repository. Dynamically loaded class objects are instances of a super class object. A
super class object creates instances without a standard class interface, but with a pickle

interface. The pickle interface is a standard interface to save and restore the state of an
object. The marshaled state of a class object is generated by a compiler, and can be
stored into the newly created class object by invoking the unmarshal method.

2.2.4 Composition

Composite objects are objects that are built out of other objects. The primary purpose
of a composite object is to construct, at run-time, an object from a number of smaller
objects. For example, in the next chapter we will see that a distributed shared object
needs (among others) a replication object and a communication object. The use of a
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composite object allows the decision about the specific replication and communication
objects to be made at run-time.

The main requirements for a composite object are:

1. A composite object should behave like a normal object with respect to method
invocation, interfaces, and instantiation.

This requirement ensures that a primitive object can be replaced with a compos-
ite object and vice versa.

2. The methods provided by a composite object should be implemented by the
subobjects of the composite object. Exceptions are the methods that are part
of the standard object interface, or of interfaces specifically designed to control
composite objects.

The idea here is that code for a composite object can be generated by a com-
piler only based on a listing of the subobjects, their interfaces and the interfaces
exported by the composite object.

3. An object should not be aware that it is part of a composition.

This requirement allows an object (implementation) to be used both as part of a
composition and as an independent object.

4. A composite object should not add much overhead to method invocations.

Object-based systems often lead to implementations that contain many layers
of abstraction when compared to systems designed using more traditional lan-
guages. These extra layers of abstraction can be used to create a more flexible
system. However, it is important to keep the extra overhead of these layers
as low as possible. Some systems go quite far in reducing this overhead. For
example, the SELF compiler dynamically optimizes (through inlining) method
invocations based on type feedback [Hölzle and Ungar, 1996]. The performance
goal for composite objects is to reduce (or eliminate) the extra overhead created
by using compositions.

The fourth requirement is met by storing state pointers along with the method
pointers in interface tables. This approach introduces extra overhead for every method
invocation (an extra memory reference to fetch the state pointer). The advantage is that
methods are directly invoked on primitive objects without going through the compos-
ite object. This is also the case if one of the subobjects is a composite object itself.

Figure 2.9 shows the components of a simple composite object. This composite
object consists of two subobjects: object A and object B. The figure shows the three
parts of all objects: their state, methods and interfaces. The state of the composite
object consists of the state of the two constituent objects and a small amount of extra
state. The methods of A and B are placed in their class objects, which is the normal
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Figure 2.9. A composite object, it’s interfaces and class objects

case. An extra class object is present to implement the composition. This object
provides the class interface for this composition. Methods that are specific to the
composition such as the init and cleanup methods, are also stored in the class object of
the composition.

Finally, there are the object-specific interfaces. The “A Interface” is just an inter-
face provided by object A. But the “AB Interface” is more interesting. Some of the
methods in this interface are invoked on object A and other methods are invoked on
object B. Note that the example does not include a “B interface.” In general, com-
positions can provide arbitrary interfaces based on collections of methods from their
constituent objects. Because interfaces tables store both method pointers and state
pointers, it is no problem to provide interfaces that are a mixture of methods from
different objects.

A composition has a small managing part, called a compositor, which has three
functions:

1. To create and destroy subobjects

2. To create interface tables based on the interfaces of the subobjects

3. To support the creation of references from one subobject to another

An object that is part of a composition can be private to the composition or it can
be shared with other users. Only objects that are private to a composition are created
by the compositor.
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The requirement that objects should not be aware that they are part of a compo-
sition is met using a local name space. In general, local objects are expected to use
names in a local name space to obtain references to other objects. This local name
space is manipulated by compositors to make sure that subobjects of a composition
obtain references to other subobjects in the same compostion. In this scheme names
are associated with objects with they are instantiated. The name space provides a set
of global bindings with the option of overriding those bindings within a composition.
This will be described further in Section 4.3.

2.2.5 System Objects

Figure 2.10 shows the relation between the hardware, operating system, application
and various objects. The operating system is layered on top of the hardware as usual.
The application is in turn layered on top of the operating system. Normally, an ap-
plication uses system calls, or shared libraries to access the operating system. In
Globe, access to the operating system is also provided by system objects. Exam-
ples of system objects are communication objects (for reliable/unreliable point-to-
point/multicast communication), memory allocation, threads, locks, file (I/O) objects,
and class loaders.

Application

Thread

Distributed
object

Pop-up
thread

System objects Libraries

Operating system

Hardware

Figure 2.10. Process model

For applications (as well as for distributed shared objects), the advantage of using
system objects is that they provide an abstraction of the underlying operating sys-
tem, and thus increase the portability of the application to different operating systems.
However, the main reason for system objects is to provide dynamically-loaded class
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objects with access to operating system services. Avoiding the use of system calls or
explicit library calls simplifies the implementation of the dynamic loader.

Thread Objects Figure 2.10 shows two kinds of threads: a “normal” thread and
two pop-up threads. As we have already mentioned, the model of shared state with
operations on that state leads to passive objects: activity is provided by threads running
in processes. A normal thread is implicitly created when the application is started
and is controlled by the application. An application can create additional threads
when necessary. These threads execute functions that belong to the application. These
functions can invoke methods on (distributed) objects.

A pop-up thread is created by a system object in response to some asynchronous
event. To integrate communication cleanly with the model of passive objects, we
associate pop-up threads with incoming messages: when a message arrives, the com-
munication object will create a new thread to handle the incoming message. In this
new thread, the communication object invokes a method on the call-back interface of
the distributed shared object. Further details of thread objects are described in Sec-
tion 5.10.3.

Communication Objects The communication object is the main system object used
by a distributed shared object. In the next chapter we will see that a single set of
interfaces should be offered by all communication objects to allow a distributed shared
object to use different communication objects.

A communication object, as used by a distributed shared object, typically consists
of two parts: a system object that provides an interface to low-level communication
facilities with on top of that object other objects (layers) that implement higher level
communication primitives. For example, the system object offers access to UDP/IP
and another object implements an RPC protocol on top of a datagram service, in this
case UDP/IP. In addition to protocol layers, communication objects can also provide
certain security services such as link-level encryption.

Existing approaches to composite communication stacks are the x-Kernel [Hut-
chinson and Peterson, 1991], and Horus [van Renesse et al., 1996]. The standard
UNIX socket interface attempts to provide an interface independent of the underlying
communication protocol.

To implement communication interfaces that are more or less independent of the
communication protocol they provide access to, it is necessary to create a protocol-
independent address data structure. For example, the UNIX socket system calls use
the sockaddr data structure. The first field of this data structure describes the “ad-
dress family” to which to address longs. All other fields are specific to the particular
“address family.”

The two main problems with this approach are that (1) in general, the size of an
address is not bounded, and (2) there is no easy way to convert the data in an address
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structure to and from a human readable ASCII representation. The first problem re-
quires a programmer to assume an upper bound with the risk of failure if an address
exceeds that bound, or dynamically allocate address data structures, which is both in-
efficient and often error prone. Another problem is that relatively large data structures
are passed between different protocol layers.

The solution adopted in the interface to a communication object is to install the
ASCII representation of an address in the communication object. The object returns
an integer that represents the address. This integer is used to specify source and desti-
nation addresses of datagrams, data streams, etc.

Communication objects can be classified as follows:

• Unicast or multicast

A unicast communication object delivers data to one recipient. A multicast or
group communication object delivers data to multiple recipients, in some cases
even including the sender.

• Reliable or unreliable

A communication object that provides reliable data delivery attempts to ensure
that the data are actually delivered to the intended recipient(s).

• Connection oriented, connectionless, request/reply

A connection-oriented communication object provides a connection setup pro-
cedure that is executed before any data is sent. Connectionless communication
objects send the data without any prior arrangements. Request/reply style com-
munication is special in that a single segment of data (the request) is sent to a
remote party which in turn replies with a single segment of data.

• Addressing: explicit or implicit

For communication objects, explicit addressing means that each send operation
requires a destination address, and received data is delivered along with the
source address. In contrast, with implicit addressing the remote address is stored
in the communication object and is not supplied with the send operation.

These four aspects of communication objects allow for a wide range of possible im-
plementations, ranging from a relatively simple unreliable, connectionless, unicast
service (for example UDP) to reliable, request/reply multicast objects. The com-
munication objects provide a common set of interfaces, which will be described in
Section 5.10.5.

The group communication provided by multicast communication objects is dif-
ferent from group communication in ISIS. In ISIS, group communication is between
a group of processes. All communication, both multicast and unicast is causally or-
dered. This means that if process A multicasts a message, which is received by process
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B, and subsequently B sends a unicast message to C, then C will receive the multicast
message from A before the unicast message from B. The problem with this approach
in a wide-area network is that it requires global coordination to be able to order mes-
sages (for causal order, all processes in the world would have to participate in the
virtual clock algorithm). In contrast, in our model group communication objects join
a multicast group and order messages only within a that group.

There is a distinction between open and closed groups. Systems which provide
open groups allow any process to send a message to a group. In a system with closed
groups, a process has to join a group before it can send messages to the group. In both
cases, receiving messages requires joining the group. Open groups can be simulated
in a system with closed groups by joining a group, followed by sending a message
and leaving the group. For this reason, our groups are closed. Note that explicit join
requests in a closed group provide a communication object with more opportunities to
optimize the traffic between the various group members, because it allows the com-
munication object to maintain a list of group members.

Group communication objects that support groups with a large number of group
members can not be expected to maintain a consistent group membership list. Without
group membership lists, it is relatively easy to construct hierarchical groups to provide
scalability. Within a group, a group communication object may support point-to-point
communication with a group member.

Pointer returned
to caller

realloc size links

Figure 2.11. Memory segment datastructure

Memory A simple memory allocation system object is provided to allocate seg-
ments of memory. Figure 2.11 shows the layout of the memory segments returned by
the memory allocator. These segments start with a small header. The size and links

fields contain respectively the size and the number of references to the segment. The
realloc field is a function pointer which is used to grow, shrink and delete the segment.
Storing a realloc function pointer in the segment header allows the use of multiple
memory allocators in a single system.

A library that provides packets for communication objects is layered on top of the
memory allocator. These packets are designed to minimize copying of data. All data is
stored in buffers, which are simply segments allocated by a memory allocator object.
Access to a buffer goes through a data structure that is called pkt, which contains a
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Figure 2.12. Communication packet datastructure

pointer to a buffer, the offset and length of the data in the buffer, and two pointers to
other pkt data structures. This data structure is shown in Figure 2.12. The first pointer
is used to create a linked list of buffers. A linked list of packet “parts” makes it easy
to append, or delete data without copying the data to a new buffer. The second pointer
is available to the user of the packet to create a linked list of “complete” packets, for
example for a transmit or receive queue. Further details of memory allocation are
described in Section 5.10.2.

Locks Synchronization primitives are necessary in a multithreaded environment to
protect data structures that are accessed by multiple threads, and to allow threads to
wait for other threads to complete an operation. Many kinds of synchronization prim-
itives have been defined: semaphores, mutexes, monitors with condition variables,
mailboxes with messages, wait-free (or lock-free) data structures.

A standard approach to synchronization within a single address space is necessary
for interoperability between separately developed components. For example, the caller
of a method should know whether the invoked object performs concurrency control
(thus allowing the caller to invoke the method from multiple threads). Alternatively,
the caller has to perform concurrency control if the object does not allow concurrent
access.

The approach taken in Globe is that by default objects perform concurrency control
for their own data structures. The semantics of an interface are such that methods
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can be invoked simultaneously from different threads. The advantage of concurrency
control on a per object basis is that it makes objects relatively independent: each object
is responsible for its own resources. An alternative approach is that a “container”
object performs concurrency control for the objects it encapsulates. However, this
requires the container object to mediate all accesses to encapsulated objects.

Control
object

SemanticsReplication

Communication

Thread

User

Pop-up

thread

object

object

object

object

thread

Deadlock

Figure 2.13. Deadlock

The main disadvantage of concurrency control performed by individual objects is
risk of deadlocks. Figure 2.13 shows two threads and a composite object. The first
thread is a user-level thread which tries to invoke a method on a distributed shared
object. At the same time, a pop-up thread is created to handle an incoming message
over the network. It is possible that the user thread locks the control object and the
replication object, while at the same time, the pop-up locks the communication object.
The two threads deadlock when the user thread tries to lock the communication object
and the pop-up thread tries to lock the replication object.

We can solve this problem by associating three locks with each object. The idea is
that each object may provide two kinds of interfaces: “normal” interfaces that allow
other objects (or the application) to use an object, and call-back interfaces that are
used to report certain events such as the arrival of a packet over the network.
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The object uses one lock to perform concurrency control for method invocations
on normal interfaces, a second lock to perform concurrency control on the call-back
interface, and a third lock to perform concurrency control on the state shared between
normal interfaces and call-back interfaces. This is shown in Figure 2.14.

This approach solves the problem shown in Figure 2.13: the user thread uses the
“normal” lock, the pop-up thread uses the call-back lock, and shared state within an
object is updated by briefly locking (and unlocking) the common lock.

To guarantee that a collection objects cannot deadlock, it is important that three
constraints are met:

1. The graph that consists of objects and method invocations by one object of
methods in normal interfaces of other objects should form a directed acyclic
graph (DAG). This prevent deadlocks on normal locks. Invocations on call-
back interfaces form a separate DAG.

2. For normal method invocations, an object may wait for an event to occur before
completing the method invocation. On the other hand, methods in call-back
interfaces are not allowed wait for other events, and should complete promptly.

3. A thread holding a call-back lock is not allowed to lock a normal lock. This
means that a pop-up thread can not reverse direction. Figure 2.15 shows that
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the replication object in the middle tries to use the same communication object
that delivered the request to send a message to another address space. A dead-
locks results if the communication object blocks during the send operation, for
example, to wait for an acknowledgment of previously sent data. The reason
for the deadlock is that the same thread that waits for the acknowledgment also
holds the call-back lock, which means that no new messages can be delivered
to the communication object.

Figure 2.15. Reversing the direction of a thread

The most flexible solution is to implement synchronization primitives as objects.
For example, this allows a semaphore to be implemented either directly as a system
object, but it is also possible to implement semaphores on top of a message passing
system. The main disadvantage of this approach is the (memory) overhead: three
lock objects per “regular” object would result in a lot of memory wasted on interfaces
tables, administration, etc. In other words, lock objects are too heavy weight. A
better approach is to have a single locking module (implemented as an object) which
provides a collection of locks.

The locks provided by a lock module implement a combination of a mutex with an
associated condition variable. This allows the lock to be used for mutual exclusion and
for condition synchronization. Further details of lock implementations are described
in Section 5.10.6.

2.3 Distributed Shared Objects

The local objects described so far are limited to a single address space. This implies
that all state and the interface tables are in one address space. To be able to create
objects that span multiple address spaces we introduce distributed shared objects. A
distributed shared object is an object that can have interfaces in multiple address
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spaces, or can have its state spread out over multiple address spaces, or both. Dis-
tributed shared objects are an extension to local objects, and from a client’s point of
view, do not differ from local objects.

Distributed shared objects are structured as a collection of local objects that com-
municate with each other. These local objects are responsible for establishing com-
munication channels between the different address spaces in such a way that a user of
the distributed shared object is provided with a (consistent) view on the object’s state.
Local objects are thus responsible for hiding distribution, replication, and migration
of the object’s state from the user.

Using this approach, the implementation of a distributed shared object, in terms
of communicating local objects, can use arbitrary communication patterns, as well
encapsulate data placement, replication, etc. In other words, the approach allows
for efficient implementations of different communication paradigms. Also, because
interfaces are entirely user defined, we are not confined to a limited set of predefined
operations.

Our model provides four features to support the separation between a program and
the implementation of a distributed shared object.

1. Access to a distributed shared object is provided by a local object which rep-
resents the distributed shared object. This isolates the program that uses a dis-
tributed shared object from the implementation of the distributed shared object.

2. The run-time system supports downloading of new local objects into the address
space of a running process. Both state and code are downloaded on demand,
during execution.

3. Method invocation is done through interface tables, each listing one or more
methods. Interface tables decouple the application from the implementation of
the local object.

4. The local object which represents the distributed shared object is conceptually
selfcontained. This means that the implementation of a distributed shared object
is completely separated from the application. The only part that the application
and the object share is the layout of the interface table and the syntax and se-
mantics of the methods in that interface table.

Figure 2.16 shows the basic architecture of a distributed shared object. We see
a distributed shared object which spans four address spaces: A1 through A4. Each
of these address spaces contains a local object that represents the distributed shared
object, by providing the interfaces of the distributed shared object. Together, these
local objects implement the distributed shared object. To distinguish local objects that
represent a distributed shared object from other local objects, we call those objects
representatives.
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Figure 2.16. Topology of a distributed shared object

Method invocation on a distributed shared object is possible in a given address
space only if that address space contains a representative of the distributed shared
object. Each representative is typically an instance of a class object which is present
in each address space. However, these class objects are not considered to be part of
the distributed shared object.

It should be noted that the current architecture does not support automatic world-
wide distribution of class objects and interfaces. Even though a distributed shared
object is available worldwide, it is not specified how class objects are made available
at remote sites or how new interfaces are published. More research is needed to deter-
mine how class objects can be downloaded automatically from remote implementation
repositories.

Binding Address space A5 does not contain a local object connected to the dis-
tributed shared object. Before the program that runs in A5 can access the distributed
shared object, it first has to bind to the object. Binding to a distributed shared object is
a three-step process. First, name resolution is performed to translate a high-level name
into the object’s low-level name (an address). This step will be discussed in Chapter 4,
where it will be split-up into four substeps (a name lookup, a location lookup, destina-
tion selection, and implementation selection). The second step is the creation of a new
local object. This involves locating and loading the appropriate class object, which
is subsequently used to create the local object. The information needed to locate the
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appropriate class object is provided by the naming system. Finally, the new local ob-
ject uses network addresses, which are also provided by the naming system, to setup
a network connection to a representative in one of the address spaces that are already
bound to the distributed shared object.

The representatives that are part of a distributed shared object collectively perform
the following three tasks: (1) they store and maintain the state of the distributed shared
object, (2) they provide processes with access to the state of the distributed shared
object, and (3) they allow processes to bind to (i.e., setup network connections with)
the distributed shared object. Not all local objects have to perform all three tasks. For
example, a distributed shared object that uses a client/server architecture internally,
would have one “server” representative that stores the state of the object and accepts
network connections, and zero or more “client” representatives that merely forward
method invocations to the server.

TCP/IP

CA B

21

ATM

Address space Address space

Protocol stacks

Distributed object

Address space Address space Address space

Contact points

Figure 2.17. Contact points

To bind to a distributed shared object, a local object connects to a contact point.
A contact point is a communication endpoint provided by a distributed shared object
to allow binding. Figure 2.17 shows a distributed shared object with representatives
in two address spaces (labeled 1 and 2 in the figure). Three other address spaces (A,
B, and C) are connected to two different networks, an ATM network and a TCP/IP
network. The representative in address space 1 provides two contact points, one on
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each network, and the representative in address space 2 provides a second contact
point on the TCP/IP network.

Associated with each contact point is a contact address. A contact address con-
sists of two parts: a protocol identifier and a network address. The protocol identifier
not only specifies the network protocol and the transport protocol used by the con-
tact points, but identifies the complete protocol stack that is needed to bind to the
distributed shared object. For example, the current Internet e-mail protocol would
be identified as SMTP/TCP/IP (i.e., the Simple Mail Transfer Protocol on top of the
Transmission Control Protocol on top of the Internet Protocol). The address part of
the contact address consist of a network address and any additional demultiplexing in-
formation that is needed to locate the right object on a particular machine. To identify
an e-mail address on an SMTP service this would be an IP address, TCP port 25, and
a login name.

A distributed shared object may provide multiple contact points. These contact
points can use different network protocols (ATM versus TCP/IP) or support differ-
ent application level protocols (FTP versus HTTP). Another possibility is that a dis-
tributed shared object provides multiple contact points that use the same protocol on
a single network. Multiple, equivalent contact points for a single network improve
reliability, allow better locality5 and better load distribution. Contact addresses are
stored in a location service that will be described in Section 4.4.

Note that if we bind to the distributed shared object from address space A, we need
a local object that can communicate using ATM. If we bind from address space C we
need a local object that speaks TCP/IP. Depending on the communication protocols
we may need different implementations of the local objects, but the interface which is
presented to the user of a distributed shared object is always the same.

A distributed shared object can choose between different styles of communication
to connect a representative to the distributed shared object. Alternatives include the
use of connection oriented protocols (e.g., TCP), RPCs, and group communication.
For simplicity, we assume the use of a connection oriented protocol when we describe
some aspects of the system. For example, connection oriented protocols are assumed
in the description of binding to a persistent object in Section 3.3.3 and in the section
on security. The distributed shared object is, however, free to use one of the other
styles of communication.

Distributed shared objects are generally registered with the name service. This
name service will be described in Section 4.2.1. The name service maps one or more
user-chosen names to an object handle. An object handle consists of two parts: an
object identifier and location information. An object identifier is a unique identi-
fier assigned to a particular (distributed) object. An object identifier is a worldwide
unique 256-bit number, similar to the interface identifier described earlier. The most

5Using a nearby site often results in higher throughput, lower delay, and better use of available network
resources.
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Method name Description
init Initialize a distributed shared object with its

name and contact addresses
gethandle Return the object’s object handle

Table 2.1. Distributed object interface

important properties of an object identifier are that they uniquely identify an object,
and that the object identifier is never reused after the object is destroyed. The object
identifier allows different address spaces to check whether two object references refer
to the same distributed shared object or not. This can be verified by exchanging the
object identifiers that correspond to the objects that the references refer to. Further-
more, the object identifier is used to avoid a problem with stale caches, which will
be described in Section 4.4.5. To avoid this problem, the local object that tries to
connect to a distributed shared object sends the object identifier of the desired object
over the communication channel. The distributed shared object verifies that the object
identifier corresponds to its own object identifier.

An object identifier is completely location independent. For some implementa-
tions of the location service, it is necessary to associate some extra information with
the object identifier to be able to find the contact addresses for the object. The extra
information in an object handle is called the location information.

Table 2.1 lists the methods of the distributed object interface. This interface pro-
vides two methods, init and gethandle. The init method is used during binding to inform
the new local object about the distributed shared object’s name, object handle, and set
of contact addresses. The gethandle returns the distributed shared object’s object han-
dle.

Factory Objects To create new distributed shared objects, we need something anal-
ogous to a class object. We call an object that creates distributed shared objects a
factory object. The two main differences between a class object and a factory object
are:

1. A class object is always in the same address space as the caller, and creates its
instance also in that address space.

In contrast, a factory object is typically a distributed shared object which (also)
creates part of the distributed shared object in a remote address space.

2. The creation of a local object consists for most part of allocation and initializa-
tion of a memory segment.

A factory has to allocate a least a contact point for the distributed shared object
to allow binding. The contact address that belongs to the contact point has to
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Method name Description
start Start a factory for a specific distributed

shared object
create Create a new distributed shared object and

register the object with the name service
createRep Create a replica of a distributed shared

object on this object repository
deleteRep Delete a replica of a distributed shared object
startObj Activate a persistent distributed shared

object
gc Run a garbage collection cycle

Table 2.2. Factory interface

be registered with the location service. Many distributed shared objects require
additional resources such as disk space, and registration with security services.

An application that wishes to create a new object has to select an appropriate class
or factory object. In Section 4.3 we will see how a local, per-process name space is
used to provide access to class objects. That local name space also provides access
to a worldwide name space with references to distributed shared objects, including
factory objects.

However, there is a difference between class objects and factory objects in that a
class object represents nothing more than a particular implementation for a collection
of interfaces. In contrast, a factory object not only creates objects of a particular kind,
but also allocates resources for the object such as contact points, disk space, etc.

For example, it is quite possible to have two factory objects that both create file
objects with the same implementation, but create those objects on different machines.
The user (or application) has to select the right factory object depending on security
issues or disk quota. This issue does not exists for class objects because they only
consume (memory) resources in the application’s address space.

This raises the issue of whether a factory object should combine access to certain
resources with a particular type of object or keep those issues separate. The main
disadvantage of the first approach is that it may lead to an explosion of factory objects:
for every collection of resources (machine, cluster) we need one factory object for each
type of object.

An alternative approach is that a factory object represents only the resources and
that the type of object to create is explicitly passed by the caller. Disadvantages are the
need for a standard way of referring to distributed shared object types, and the need to
pass two names (the factory name, and the implementation identifier).
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Further research is needed to determine which approach is best. At the moment,
the lack of worldwide identifiers for distributed shared object implementations pre-
vents using the second approach. To support the first approach, it is necessary to create
multiple factories on a single machine. This can be done by introducing meta-factory
objects, which create factory objects and are factory objects themselves.

Factory objects implement the factory interface.Table 2.2 lists the methods of the
factory interface. Only the first two methods (start and create) are directly related to
factories. The other four methods support a service related to factories: the object
repository. An object repository provides a distributed shared object with persistence
by storing replicas of the object persistently. Object repositories will be described in
detail in Section 3.3.2.

The start method tells a factory object what kind of distributed shared object it
should create. The create method is the method that actually results in the creation
of a new distributed shared object, which is registered under the name passed as an
argument to create.



Chapter 3

The Architecture of Distributed
Objects

3.1 Introduction

The architecture described in Section 2.3 provides a standard way to access a dis-
tributed shared object, that is to bind to the object and to invoke methods on the object.
Although this architecture shields the user of the object from the underlying commu-
nication technology, data placement, replication of data, etc., it still requires the object
implementor to deal with those issues.

In this chapter, we will focus on a standard architecture for implementing dis-
tributed shared objects. The main reason for a standard architecture for implementing
distributed shared objects is to simplify the construction of new (application specific)
kinds of distributed shared objects. We concentrate on supporting replication, persis-
tence, and security. These three issues form the basics of a distributed shared object.

We focus on objects that provide operations on shared state. Many persistent ob-
jects fall into this category: WWW documents, e-mail messages and mailboxes, news
articles, news groups, and simple databases. Nonpersistent examples include multi-
media broad- and unicasts, and multiperson game servers.

Objects that fall outside this category are: front-ends to legacy systems, such as ex-
isting database systems, specialized objects such as printers, compute servers, mobile
objects, and intelligent agents. These objects will be ignored in this chapter, although
some of the security techniques that will be described also apply to these objects.

49
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3.2 Replication

The goal of the replication part of this architecture is to separate the semantics of a
distributed shared object from the replication protocols used to distribute the state of
the object.

Before we discuss the architecture in Section 3.2.4, we look at various replication
protocols. We recognize three different classes of models that underlie such protocols:

1. Memory coherence models and algorithms, or more generally: models that are
independent of the semantics of an object and that are also independent of the
passing of time.

2. Models independent of the semantics of an object that include a notion of time.

3. Models that depend on the semantics of an object.

Instead of maintaining multiple copies of the state of a distributed shared object,
it is also possible to partition the state. We say that the state of distributed shared
object is partitioned if it is split up in a number of disjunct parts that are stored in
different address spaces. The state is replicated by storing entire copies of the state
of the object in different address spaces. These two techniques can be combined by
replicating partitions.

Objects with partitioned state are not supported by the architecture to be described
in this section for two reasons. First, in simple cases, partitioning is a straightforward
extension to the architecture. All that is needed is a mechanism to identify individual
partitions. Second, operations that involve multiple partitions generally need support
for transactions, lock ordering, etc. These issues are beyond the scope of this thesis.

3.2.1 Memory Coherence Models

Memory coherence models are used to specify the semantics of shared memory mul-
tiprocessors and distributed shared memory systems. These models assume a collec-
tion of memory cells with read and write operations that access individual memory
locations. Some examples of memory coherence models, in decreasing order of pro-
vided memory consistency, are: strict consistency, linearizability [Herlihy and Wing,
1990], sequential consistency, causal consistency, and PRAM consistency [Tanen-
baum, 1995]. In general, the models that provide stronger consistency are more conve-
nient for the (application) programmer, but are much harder to implement than weaker
models.

In an object-based system, we can extend memory coherence models beyond read
and write operations on individual memory locations. One approach is to describe
consistency with respect to synchronization primitives (locks). Examples are weak
consistency [Dubois et al., 1986], entry consistency [Bershad et al., 1993], release
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consistency [Gharachorloo et al., 1990]. and lazy release consistence [Keleher et al.,
1992]. In the release consistency model, propagation of changes (write operations)
can be delayed while a process or thread is in a critical section. The synchronization
primitives used to enter and leave critical sections ensure that pending write opera-
tions of a thread that leaves a critical section are propagated to other processors when
threads try enter a critical section. Weak consistency and entry consistency have
similar but slightly different semantics.

In an object-based system, we can replace read and write operations on memory
locations with a set of object specific methods. We can divide those methods into four
categories:

• Read operations

These operations do not modify the (abstract) state of the object.

• Pure-write operations

The state of the object is completely overwritten by a write operation, and does
not depend on previous states.

• Modify-only operations

The state of the object is only modified and depends on the previous state of the
object.

• Modify-and-read operations

Modify-only operations that also return a value.

Some categories provide additional opportunities for optimizations. For example,
a pure-write or modify-only operation followed by a pure-write operation means that
the first operation can be dropped. Modify-only operations and a pure-write operations
can be executed in the background (asynchronously) because the operations do not
return a value.

Note that there is a difference between a sequentially consistent memory system,
and an individual object that provides sequential consistency. In a sequentially consis-
tent memory system, all accesses to the memory system are globally ordered, whereas
in most object systems (including Globe) accesses to different objects are independent
and unordered.

A replication protocol is a protocol that runs between a collection of address
spaces to keep multiple copies of the state of an object consistent.1 We can classify
various replication protocols using the structure shown in Figure 3.1. In the classifi-
cation of replication protocols that will be presented below, an address space contains
a representative that belongs to one of three possible classes:

1This is the case in a distributed system, in a shared memory multiprocessor the replication protocol
runs between a collection of caches and memory modules.
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Figure 3.1. Different categories of replicas in a distributed shared object

1. The inner ring contains the collection of representatives that actually modify the
state of the distributed shared object. These representatives are called primary
replicas, and use an update technique to maintain the state consistent.

2. The second ring contains representatives that receive notifications from the pri-
mary replicas that the state has changed.

3. The representatives in the third do not receive notifications, instead they ask
representatives in the first or second ring whether the state has changed. In a
voting algorithm, a client would ask multiple representatives to obtain a consis-
tent copy of the state.

These issues apply only to algorithms that actually try to replicate some state.
Without replication, the state is stored in a single location (we ignore partitioning),
which can be either local (a “server”) or remote (a “client”).

Table 3.1 shows the main issues in replication algorithms that are independent
of the semantics of the object and are not time-based. This classification is based
on the integration of four kinds of algorithms: voting algorithms [Gifford, 1979],
master/slave replication [Budhiraja et al., 1993],2 active replication [Schneider, 1990]
and copy/invalidate (called “invalidation approach” in [Li and Hudak, 1989]).

2Also called primary-backup approach in the context of fault-tolerant systems.
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Issue Alternatives Secondary Alternatives

issue

1
Size of
read set

1

> 1

2
Number of
replicas

Constant

Variable

3
Notification
algorithm

Update Change
distribution

Method invocations

State differences

Complete state

Invalidate

4
Number of
primaries

1

> 1
Update
technique

Group communication

Two phase commit

5
Location of
primaries

Fixed

Variable

Table 3.1. Replication issues

The issues listed in Table 3.1 are the following:

1. Do we need to read more than one replica to obtain an up-to-date value or not?
Most algorithms keep all replicas consistent. This means that accessing a single
replica is sufficient to read the state of the object. Voting algorithms are an
exception: the most up-to-date value is obtained by querying multiple replicas.

2. Is the total number of replicas constant or variable? The number of replicas is
variable in a system that uses a copy/invalidate approach. A read access causes
a local copy to be created, and a write operation destroys all copies except the
modified one. An example of a system with a constant number of replicas is a
system that uses a single, migrating copy of the state. On both read and write
accesses, the state is migrated to the process that wants to access the object.

3. Does the notification algorithm update or invalidate other replicas? When up-
dating, there are several alternatives. It is possible to update the state of replicas
in other address spaces by executing the method in those address spaces, by
sending the differences between the old and the new state, or by sending the
complete state. For example, in a master/slave replication system, the master
updates the slaves, whereas in a copy/invalidate system, the current primary
copy invalidates all other copies.
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4. Some algorithms modify one replica first, and then propagate the changes (us-
ing a notification algorithm) to other replicas. Others update multiple repli-
cas together before notifying other replicas. For example, master/slave and
copy/invalidate approaches have one primary. In contrast, systems that use vot-
ing update a collection of replicas called the “write set.” In systems based on
active replication, all replicas are primaries.

When updating more than one replica there is the secondary issue of how to
order different operations that try to modify the state. This is not an issue for a
single primary replica because concurrency control in a single address space is
well understood.

There are two ways to do multiple operations. The first approach is to use or-
dered group communication to deliver the modification requests to the replicas.
Total ordered group communication is used to implement sequential consis-
tency, causal ordered group communication is used to provide causal consis-
tency in some stock exchange applications. The Usenet News system uses a
group communication mechanism which provides no order guarantees.

The second approach is two phase commit. To modify the state in a collection
of replicas, it necessary to first lock the relevant parts of the state in the primary
replicas and distribute the modification request. The second step is to tell the
primary replicas to apply the operation and unlock the state. Two phase commit
is used to update replicas in voting algorithms.

5. Some algorithms use a fixed set of address spaces that contain the primary repli-
cas. In other algorithms this set is variable. For example, master/slave replica-
tion typically uses a primary at a fixed location (the master). On the other hand,
using copy/invalidate, the location of the primary moves to the site that wishes
to update the state of the object.

3.2.2 Time-based Consistency Models

The algorithms that were described and classified in the previous section impose a
certain order on operations that change the state of an object and on the distribution
of those state changes. However, these algorithms do not limit the amount of time it
takes to complete an update operation, or how long it takes to distribute a state change.
In many cases, users expect “soft realtime” behavior from a system, that is, the effects
of an operation should propagate quickly enough. Time-based consistency protocols
are also used when the desired consistency is too expensive. The solution is to allow
the state to be inconsistent, but only for a small amount of time.

Time-based consistency protocols use timers and time-out values to determine
when a certain action should be taken. The semantics of time-out values used for read
operations are different from those used for write operations. For read operations, a
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time-out indicates how long a local copy of the state of the object is considered valid.
The assumption here is that changes to state are made remotely, and that the local copy
has to be updated (or invalidated). For write operations, a time-out delays the propa-
gation of modifications to other replicas. In this case we know that we have to update
other replicas, but we delay the actual propagation to be able to cluster multiple write
operations.

The main issue is where to store time-out values:

• Fixed in the protocol

• Part of the object’s state

• Based on the object’s last modification time. Or, more general, based on the
object’s modification history.

For read operations we have several choices of what to do when the time-out value
expires: delete the copy of the state, immediately verify the validity of the copy, verify
just before the next use, or verify after next use. This last choice (verify after next use)
provides a very weak consistency guarantee, but with a low latency on read operations
and lower overhead than immediately verifying the validity of the copy. This approach
is feasible if the user of the cache can independently verify the correctness of the data.
This is the case in the location service, which will be described in the next chapter.

Two examples of time-based consistency algorithms can be found in the NFS re-
mote file system and in WWW caches. UNIX file systems delay writing modifications
to the actual file system on disk. For a local file system, the inconsistency between
the modifications stored in memory and the contents of the disk can be observed only
after a crash. However, in the case of NFS, if a write operation is executed on one host
then processes on that host observe the effect of the write operation immediately but
processes on another host see the effect after a delay.

Similarly, NFS caches data read from the remote file system for a while. After the
time-out expires, the NFS client asks the server for the modification time of the file
for which data is cached. If the modification time is not changed, the cached data is
kept.

In contrast to NFS, which uses fixed timers, the time-out of cached data is com-
puted by many WWW caches based on the last modification data of a WWW docu-
ment. The time-out is set to a fraction of the amount of time that has passed since the
last modification to the document.

Both NFS and WWW caches provide the user with a limited control over their
caches. In UNIX (and therefore NFS) the user may call sync or fsync to force writ-
ing data to the underlying file system immediately. This allows a user to bypass the
caching of write operations. NFS does not support bypassing the caching of read
operations.
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In the case of WWW caches, the user can explicitly request a WWW cache to
ignore the cached and fetch a new copy of the document. Furthermore, certain doc-
uments are not cached at all (all documents with names starting with /cgi-bin/) and
documents may contain an upper limit on the amount of time they are cached.

3.2.3 Models Based on the Semantics of an Object

In a wide-area system, different objects often have different consistency requirements.
We can say that from the point of view of the entire system, the appropriate type of
replication always depends on the use and semantics of an object. For some objects, it
is sufficient to select a standard replication algorithm that matches to object’s seman-
tics; for others, a custom algorithm is required.

The use of different, but standard replication algorithms for different classes of
objects can be illustrated by the following three examples: information publishing,
groupware (shared whiteboards and software projects), and working documents that
are also accessible to other users.

Objects used for information publishing use a small number of writers that can
change the state of an object and a large number of readers. The read/write ratio is
typically quite high. A suitable replication strategy for those objects is a consistent
core with rings of caches. This architecture will be discussed in Section 3.2.5.

On the other hand, in groupware objects, all participants are more or less equal.
In this case, all processes observe the state of the shared object and modify the state
occasionally. These objects benefit from active replication in combination with group
communication protocols that implement total order, causal order or unordered mes-
sage delivery.

In the third example, the objects are mostly accessed by processes belonging to
the owner of the object, which read and modify the state of the objects. Occasion-
ally, the state may also be read (and sometimes modified) by processes that belong to
other users. The owner of the document requires strong consistency for his processes
but other users will have to do with less consistency. A good replication strategy is
to use a strong consistency replication algorithm, such as master/slave replication or
copy/invalidate. Processes that belong to other users and only observe the state of an
object use polling. This approach allows a user to share its objects with colleagues or
friends without a noticeable performance impact or lower consistency guarantees.

For other objects we need object-specific consistency algorithms. An example
of an object-specific consistency algorithms is described in [Golding, 1992b]. This
consistency algorithm is used to implement REFDBMS, a distributed database for
bibliographic references. The replication protocol uses an anti-entropy algorithm to
distribute changes to the state of the database. In this algorithm, neighbors exchange
updates to the database. These updates contain a timestamp, which is used to order
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those updates. Due to the nature of the replication algorithm, it is possible to get
conflicting updates.

These conflicts are resolved by taking the semantics of the update into account.
For example, two insert operations may specify the same citation key. The solution
is to generate a new citation key for the second record.3 The key Smith90 would be
replaced by Smith90a, or Smith90b, or in general the first one that does not exist.

Another example is the Usenet News system. The News distribution protocol
NNTP uses a flooding algorithm to distribute News articles over the Internet and over
Usenet. This protocol uses an article identifier and date stored in the header of the
article to prevent the flooding algorithm from looping. Finally, some News readers
(application programs) use the References field in the header to present the News
articles in causal order.

Note that object-specific replication algorithms are usually optimizations that pro-
vide higher performance or better scalability than standard algorithms. Cheriton ar-
gues that message ordering should be implemented at the application level, and that
general purpose group communication systems do not work [Cheriton and Skeen,
1993]. Another reason why existing systems use application specific protocols is the
lack of standard replication protocols.

The main disadvantage of using object-specific replication algorithms is that the
object writer, usually an application programmer, then has to deal with replication.
This is also argued by Birman in response to Cheriton [Birman, 1994].

3.2.4 Architecture

The main goal of a standard architecture for implementing distributed shared objects
is to separate the implementation of the semantics of a distributed shared object from
the replication protocols used to keep the state of the object consistent. The idea is
that an application programmer implements only the semantics of a distributed shared
object, and that any replication protocols needed are part of the “system” or written
by systems programmers.

Two ways to meet this goal are: (1) using a special, distributed-object compiler,
or (2) by linking application-specific code with standard implementations taken from
a library.

The first approach is used in the parallel programming language Orca [Bal et al.,
1992a]. This language allows a programmer to assume that his code runs on a virtual
multiprocessor. The compiler analyzes the program for suitable replication policies
and generates code that makes calls to the appropriate communication primitives that
are part of the runtime system.

3The algorithm assumes that the message propagation delay is bounded but high. All operations are
ordered based on their timestamps and the originating host.
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The main disadvantage of this approach is that recompilation is needed to adapt to
changes. For example, when new replication algorithms are introduced, objects have
to be recompiled to take advantage of those new algorithms.
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Figure 3.2. Distributed object architecture

The alternative approach, which is used in Globe, is to combine an object that
implements the semantics of the distributed shared object, with another object that
implements a replication protocol. This approach is shown in Figure 3.2. This ar-
chitecture isolates the developer of a distributed shared object from communication,
replication and consistency management. The developer is responsible for the im-
plementation of the “semantics object” which captures the actual functionality of the
distributed shared object. The replication and communication objects are selected
from a library of standard communication and replication objects.

A communication object provides a simple interface to send data to other address
spaces and to receive data from them. A communication object supports connection-
oriented or connectionless communication and point-to-point or multicast data trans-
fers. A replication object is responsible for keeping the state of the distributed shared
object consistent. It sends marshaled copies of the object’s state, and marshaled in-
vocations (and their return responses) to other address spaces. Communication and
replication objects are generally written by system programmers.
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Note that replication objects and communication objects have to agree about the
desired respectively provided functionality. The two main issues are (1) group com-
munication versus point-to-point communication and (2) reliable versus unreliable
delivery data delivery.

The semantics object is implemented by the application programmer as a single
copy, nondistributed local object. To simplify the implementation of the semantics
object, the architecture hides concurrency control from the semantics object (i.e., the
semantics object does not have to support method invocations from multiple threads
at the same time). The semantics object provides one or more application specific
interfaces to change the state of the object and a standard interface to transfer the state
from one semantics object to another.

To connect the semantics object to a replication object, we need a fourth object,
called the control object. The control object is responsible for handling the interac-
tion between the semantics object and the replication object as the result of method
invocation by an application. Additionally, it marshals arguments to method invo-
cations and unmarshals the results. The semantics object is effectively encapsulated
in a monitor.4 This relieves the application programmer from managing concurrency
control.

The reason that the control object is separated from the semantics object is that
the implementation of the control object can be generated by a compiler, similar to the
generation of RPC stubs. The input to the compiler that generates the control object
is a list of interfaces exported by the semantics object and the particular marshaling
technique to be used.

Because the semantics object is implemented by the application programmer, we
would like to place as few restrictions on the implementation of the semantics object as
possible. Nevertheless, we must impose some restrictions to allow a semantics object
to be used in combination with a large collection of different replication objects:

• A semantics object has to be a finite state machine (i.e., the current state plus
the arguments of a method invocation completely determine the next state of the
object, and the state does not change between method invocations).

This requirement is needed for any replication object that “replicates” method
invocations. For example, the active replication protocol multicasts a method
to all replicas, which execute these methods all in the same order. To keep the
state of the distributed shared object consistent, it is important that all semantics
objects have the same state before and after the method invocation.

4Both the replication object and the control object can implement local concurrency control. The repli-
cation object performs concurrency control for accesses that cross address space boundaries. An advantage
of making the replication object responsible for local concurrency control is that a single object is responsi-
ble for both kinds of concurrency control. However, associating local concurrency control with the control
object allows some extra (local) optimizations and leads to a slightly better local locking model. The pro-
totype implementation for Globe implements local concurrency control in the control object.
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Without a state machine, it is not possible to use active replication, but many
other replication objects do not replicate method invocations. These replication
objects invoke a method on a single semantics object and distribute the new
state to other semantics objects.

• Long-term blocking (i.e., a wait on a condition variable) is not allowed. Instead,
the invocation returns an indication to the caller (the control object) that it could
not continue and the control object should retry later. In this case, the state of
the semantics object should be left unchanged.

To implement this behavior, we split the implementation of a method into two
parts. The first part computes, without changing the state, whether the method
can be executed without blocking or not. The first part returns directly to
the caller when the method blocks. The second part actually implements the
method. Essentially, the first part is a guard for the second part. The second
part is only executed if the guard does not fail (that is, does not return to the
caller).

• The semantics object should be able to marshal and unmarshal its state.

There are three approaches to implement marshaling of the state: (1) the (appli-
cation) programmer who writes the semantics object implements marshaling,
(2) marshaling code is generated based on a description of the object’s state
(the various fields and their types), (3) a standard interface is defined between
the control object and semantics object. The control object gets a list of field
names, their types and their contents and converts this information to a format
suitable for transferring the data over a network.

Currently, the programmer who writes the semantics object has to implement
marshaling. However, this should be changed to one of the two other ap-
proaches.

To be able to use different replication and communication objects with a single
semantics object and derived control object, we need a standard interface between
the control object and replication object and another interface between the replication
object and the communication object. The interface to the communication object is
straightforward. There are methods to setup a connection, to join and leave multicast
groups, and to send data. Incoming data and connect indications are handled by pop-
up threads which invoke methods on callback interfaces exported by the replication
object.

We can structure a method invocation on a distributed shared object as a three-
step process. This is shown in Figure 3.3. The first step invokes the local replication
object, giving it control over the execution of the second step, which deals with global
state operations. In this first step, the replication object may acquire any necessary
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Figure 3.3. Three alternative ways of performing a method invocation

locks, fetch a copy of the state, invalidate other copies, etc. The replication object also
decides which of the three alternatives should be taken in the second step. The three
alternative in the second step (local execution, remote execution, or active replication)
will be explained below.
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Figure 3.4. Performing method invocations without the third step

Finally, as a third step, the replication object is given the opportunity to release
locks, update remote replicas, etc. In the actual implementation, the third step is
integrated with each of the three alternatives. The result is the picture in Figure 3.4.
Two alternatives for step 2 get an extra action (invoked) to replace the third step.

The three alternatives for the second step are:

• Remote execution

This alternative is used, for example, by the client-part of a client/server replica-
tion object to forward the method invocation to the server. In the remote address
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space (or address spaces), the replication object proceeds to execute according
to its specific replication protocol, effectively doing a remote method invoca-
tion.

In the send step, the control object passes the marshaled arguments of the
method invocation to the replication object. Later, the replication object returns
the marshaled results to the control object.

• Local execution

This alternative is used for a method invocation on the server-part of a dis-
tributed shared object that uses client/server replication. Another example, is
a read operation on an object that uses active replication. The control object
simply invokes the appropriate method on the semantics object. Afterward, the
replication object is informed that the method has been invoked.

• Active replication

This alternative is a combination of local and remote execution and is used for
write operations on an object that uses active replication. The control object
provides the replication object with the marshaled arguments of the method
invocation. The replication object executes the protocol to send the arguments
to all replicas and to achieve synchronization with the other replicas. Next, the
control object invokes the appropriate method on the semantics object.

The replication object deals with two kinds of user data. The first kind are mar-
shaled copies of the state of the semantics object. The second kind are the marshaled
arguments and return values of operations. Marshaled state and marshaled arguments
are provided by the control object. The control object marshals the arguments it-
self and obtains the marshaled state from the semantics object. For example, if a
replication object acts as an RPC stub, it does nothing more than sending marshaled
arguments to the remote server and waiting for the marshaled results. On the server
side, the marshaled requests are passed to the control object and marshaled requests
are sent back.

A master/slave replication object may pass around new copies of the state of the
object from the master to the slaves after a write operation has been performed. A
replication object that supports active replication only has to send marshaled argu-
ments around. Note that the replication object decides whether and when any state
is stored in the semantics object. The replication object can, for example, make this
decision based on observed read/write ratios.

To illustrate the interaction between communication, replication, control and se-
mantics objects in different address spaces, consider the following example in which
a distributed shared object uses master/slave replication. Figure 3.5 shows the flow of
control when invoking one of the object’s methods. The method execution consists
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Figure 3.5. A method invocation on a distributed object using master/slave replication

of four phases. In the first phase, the initiator, the replication object in the address
space where the method is invoked, forwards the request to the master. In the second
phase, the master executes the method locally. The master updates the state of slaves
in the third phase, and in fourth phase the initiator receives the results of the method
invocation.

Figure 3.5 shows fifteen steps, some of those steps invoke methods , other steps
send messages over the network. Note that for method invocations, the arrows only
show the invocation and not the return of the invocation.

1. The method invocation starts at the control object in an address space without a
local copy of the state of the distributed shared object.

2. The control object passes the marshaled arguments to the replication object.

3,4. The replication object calls the communication object to send a request to the
master. After the request is sent, the replication waits for a reply.

5. When the request arrives at the communication object of the master, the com-
munication object creates a pop-up thread and passes the contents of the request
to the replication object.

6,7. The replication object passes the marshaled arguments to the control object,
which invokes the method on the semantics object. The semantics object returns
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the results of the method invocation to the control object, which marshals the
results and returns them to the replication object.

8,9. There are three ways to propagate the changes to the slaves: the master can
either send a new copy of the state, send the changes in the marshaled version of
the state, or send the marshaled arguments and tell the other replicas to execute
the method themselves. The last alternative is close to active replication.

Figure 3.5 shows the first alternative, where the replication object calls the con-
trol object to get a marshaled copy of the new state of the semantics object, the
control object in turn calls the semantics object, and returns the result to the
replication object.

10,11. Next, the replication object calls the communication object to send the new state
to the slaves.

12,13. The communication objects of the slaves create pop-up threads and invoke their
replication objects, which pass the marshaled state to the control objects.

14. The control objects install the state in the semantics objects.

15. After the new state is successfully shipped, the replication object of the master
returns the marshaled results to the communication object, which sends them
back to the initiator’s address space.

Finally, the communication object in the originating address spaces returns the
reply packet, which is decoded by the control object, and the results of the
method invocation are returned to the caller.

The scheme described above can be enhanced by allowing requests to be sent to
a slave instead of just to the master. If the request modifies the state of the object,
the slave has to forward the request to the master. However, if the request is a read
operation, it can be executed locally. This increases the throughput and decreases the
latency for read operations.

In Globe, the steps shown in Figure 3.4 are implemented as a finite state machine
executed by the control object with input from the replication object. Figure 3.6 shows
the transitions between the various states of the control object. For each method invo-
cation, the control object starts in the start state. After the start state, the control object
moves to either the invoke or the send state. The control object returns control to the
invoker of the method when it reaches the return state.

Each state has an associated action which is performed by the control object when
it enters the state. Table 3.2 lists the states and the associated actions. The start,
invoke, and send states have corresponding methods in the replication interface. These
methods return the input to the state machine. For example, the start method returns
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start

invoke

send

return

Figure 3.6. Method invocation state machine

State Action
start Invoke the start method on the replication object
invoke Invoke the operation on the semantics object and invoke the

invoked method on the replication object
send Create a packet with the marshaled arguments of the method

invocation. Invoke the send method on the replication object
and pass the packet as an argument. The send method may
return a packet that contains the result of the operation.

return Return the results of the operation to the caller

Table 3.2. States of the control object

whether the next state is the invoke state, or the send state. The replication object thus
decides what the next state should be.

The implementations of the start, invoked and send methods in the replication
object depend on the replication protocol. The various possibilities can be illus-
trated with four example replication objects: a client/server approach, active repli-
cation, a master/slave replication object, and a replication object that implements a
copy/invalidate scheme.

To be practically useful, the control and replication objects have to recognize dif-
ferent kinds of operations. Currently, the control object tells the replication object
whether the operation is a read operation, which does not modify the state of the ob-
ject, or a write operation, which potentially modifies the state of the object. Further
research is needed to determine whether additional categories are needed. Some of
the examples show different implementations for read-only operations and modify
operations, for other examples this distinction does not matter.

The examples are illustrated with figures that show the sequence of states of the
state machine for a particular replication protocol. Additionally, a table lists the im-
plementations of the start, send and invoked methods in the replication object. Some
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implementations of the start only return the next state. In this case the actions are
labeled “(nothing).”

Method invocation on a client

sendstart return

Method Method implementation
start (nothing)
send Marshaled arguments are sent to the “server” replication object. The

marshaled results of the remote method invocation are returned.

(a)

Method invocation on a server

invokestart return

Method Method implementation
start Grab a local, exclusive lock to prevent concurrent method invoca-

tions on the semantics object. As described earlier, in the prototype
implementation, this locking is done by the control object just be-
fore a method is invoked on the semantics object. For completeness,
the lock and unlock calls needed when the replication provides the
locking are included in these examples.

invoked Release the lock.

(b)

Figure 3.7. Method invocations on a client/server replication object

Client/Server Replication Object The simplest replication object occurs in client/
server computing where no replication is provided. The distributed shared object’s
state is stored in the address space of a server and replication objects from other ad-
dress spaces merely forward requests to the server’s address space.

Method invocations on the server can be executed locally. Method invocations
on the client are always forwarded (send) to the server. Figure 3.7 shows the state
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transitions for the client/server replication object. Method invocations always start in
the start state. The control object invokes the start method of the replication object.
If the replication object is a client, the start method does nothing. On the server, the
replication object may grab a lock (this depends on the implementation of the control
and replication objects). The replication object returns the next state.

For the client, the next state is the send state. The control object marshals the
arguments and invokes the send method. This method returns the marshaled results.
On the server, the next state is the invoke state. The control object first invokes the
appropriate method on the semantics object, and afterward invokes the invoked method
on the replication object. The invoked method releases the lock. Both the start and the
invoked method return a transition to the return state. Instead of entering the return

state, the control object returns to the user.

Active Replication A replication object that implements active replication keeps an
up-to-date copy of the state of the object in every address space. The replication ob-
jects keep the state consistent by executing all requests in the same order in all address
spaces. This order is typically provided by a totally ordered group communication ob-
ject. Figure 3.8 shows the schedules for active replication. A read-only operation can
be executed locally because every address space has an up-to-date copy of the state of
the object. For a modify operation, the marshaled arguments are passed around using
total order group communication. The calling thread is suspended until its request is
received from the above mentioned group communication object. At that point, the
send method returns and the control object invokes the corresponding method on the
semantics object. The invoked method is used to signal the replication object that the
method invocation on the semantics object is complete and that the replication ob-
ject can continue processing messages that are delivered by the group communication
object.

A Master/Slave Replication Object A simple extension to the client/server replica-
tion object is master/slave replication. The state of the distributed object is replicated
and one copy is designated (or elected) as the master copy. All operations that modify
the state of the distributed object are forwarded to the master. The master executes the
method and updates the slaves before sending a reply to the requesting address space.
This scheme provides increased fault tolerance and availability over client/server repli-
cation. Note that it is also possible to invalidate the state of a slave instead of sending
updates. The use of invalidations generally provides increased performance. However,
fault tolerance and availability are reduced.

Master/slave replication needs three different schedules depending on the role
(master or slave) and the kind of operation (read or modify). These schedules are
shown in Figures 3.9 and 3.10. The master executes the method invocation locally and
informs the slaves if the method invocation was a modify operation. A read method
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Read method invocation

invokestart return

Method Method implementation
start Grab exclusive lock.
invoked Release lock.

(a)

Modify method invocation

returnstart send invoke

Method Method implementation
start (nothing)
send Marshaled arguments are sent to all replication objects using total

ordered group communication. The send operation blocks until the
current operation is at the head of the queue of requests to be pro-
cessed. At this point, the replication grabs the exclusive lock and
returns control to the control object. The processing of incoming
requests is suspended until the current request has completed. No
results are returned to the control object.

invoked Release the lock and continue processing other (incoming) requests.

(b)

Figure 3.8. Method invocations on an “active replication” replication object

invocation on a slave is also a local method invocation on the semantics object, except
that sometimes the replication object has to fetch the state from the master. Modifi-
cation operations are forwarded from the slaves to the master. The master returns the
marshaled results of the method invocation.

A Copy/Invalidate Replication Object The schedule for a copy/invalidate replica-
tion object is shown in Figure 3.11. The copy/invalidate algorithm starts by obtaining a
copy (read operation), or ensuring an exclusive copy (modify operation). The method
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invokestart return

Method Method implementation
start Grab exclusive lock.
invoked Release lock. After a modify operation, inform the slaves about the

new state, either by sending them the new state or by sending an
invalidate message.

Figure 3.9. Method invocations on the master

Modify method invocation on slave

sendstart return

Method Method implementation
start (nothing)
send Forward the request to the master. The master returns the result of

the operation.

(a)

Read method invocation on slave

invokestart return

Method Method implementation
start Obtain an up-to-date copy of the state, if necessary. Grab exclusive

lock.
invoked Release lock.

(b)

Figure 3.10. Method invocations on a slave

is executed locally, and after the method invocation on the semantics object, the repli-
cation object needs to be told that the state of the semantics object can be passed to
other address spaces.
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invokestart return

Method Method implementation
start Obtain an up-to-date copy of the state. Invalidate all other copies

if the operation modifies the state of the object. Block incoming
invalidate requests or request for a copy of the state. Grab exclusive
lock.

invoked Release lock and continue processing incoming requests.

Figure 3.11. Method invocations on a copy/invalidate replication object

Blocking Operations The implementation of blocking operations in a distributed
shared object is different from the one used in a local object. A monitor like con-
struction is used for local objects. The monitor is implemented using a mutex lock to
protect access to shared state and condition variables to block a thread in a method in-
vocation until a particular condition becomes true. The thread that caused the change
that makes the condition true is responsible for “signaling” the condition variable.

In a distributed shared object, this approach is not always feasible. A large num-
ber of blocked method invocations may result in an equally large number of blocked
threads in a single address space. Furthermore, in a distributed shared object that
distributes method invocations (for example one using active replication), a single
method invocation would result in blocked operations in a lot of address spaces. A
large number of blocked threads leads to scheduling and ordering problems [Langen-
doen et al., 1997], and consumes a lot of memory, both virtual and physical.

The solution is to explicitly queue continuations for blocked method invocations
[Draves et al., 1991]. A continuation is a data structure that contains the necessary
information to allow another thread to continue the execution of the blocked method
invocation. The routine that cannot continue simply returns to its caller after the con-
tinuation is created. This allows the pop-up thread to be deleted.

Creating continuations for method invocations can be quite complicated if the
method invocation has already changed part of the state of the object. For this rea-
son, we require a method invocation that blocks not to change the state of the object
before it blocks. This allows the method to be aborted and retried multiple times be-
fore it succeeds. The information that needs to be stored for the continuation is the
method to call and the arguments to the method.

A method invocation blocks when a semantics object indicates that it cannot com-
plete the operation. Figures 3.12, 3.13, and 3.14 show three different situations in
which a semantics object may report a guard failure. In Figure 3.12 the method is ex-
ecuted by the semantics object in the same address space as the caller. In Figure 3.13
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Figure 3.12. Method invocation — local semantics object first
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Figure 3.13. Method invocation — remote semantics objects first
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Figure 3.14. Method invocation — local and remote semantics

the method invocation is executed in two remote semantics objects. The third alterna-
tive is that both local and remote semantics objects are involved.

Note that these figures show the method invocation only until the execution blocks
in the semantics object. In general, it is quite possible that the entire state of a se-
mantics object is copied from one address space to another, before or after the method
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is invoked on the semantics object. For example, it is possible that control is re-
turned to the caller immediately after the method invocation on the semantics object
in Figure 3.12. Alternatively, control can be passed to the replication object which
distributes the new state to other address spaces. When multiple semantics objects are
involved, we assume that they are consistent: either they report a guard failure or none
of them do (i.e., we assume a “state machine” approach).

We could either store the continuation in the control object or in the replication
object. To keep the semantics object as simple as possible, we do not store the contin-
uation in the semantics object. Furthermore, we use the communication object only
for communication. The replication object is the first choice for storing a continu-
ation: the right place to store a continuation (which address space) depends on the
particular replication protocol used. Therefore the continuation should be stored in
the replication object(s). A disadvantage of storing the continuation in the replication
object is that the control object has to decode the marshaled arguments each time the
method invocation is retried.

Note that the thread that originally started the method invocation has to block until
the method invocation is complete. This means that in some cases, we can avoid creat-
ing a continuation by blocking the caller’s thread. For example, a blocking operation
in the address space that holds the master replica in a distributed shared object that
uses master/slave replication can block in the invoked method.

3.2.5 Highly-Replicated Objects

A distributed shared object with a high read/write ratio and a large number of readers
can benefit from the introduction of read-only caches. A read-only cache executes
read operations locally and forwards modify operations toward a central part of the
object, called the core.

To keep the caches up-to-date we can let a cache poll its parent before each request,
or every once in a while (after some time or after some number of requests). Alterna-
tively, the parent of the cache may inform the cache about a new state by sending an
invalidate message, by sending the state, or by forwarding the modify operations that
are executed on the state.

An important parameter of the update policy is the fault tolerance of an update
operation. A parent may store contact addresses for child caches in its persistent state
and continue sending update notifications until the child reacts, or the parent may send
updates as an optimization and delete information about a child upon failure. We can
distinguish persistent callbacks, where the parent knows about its children and can
wake them up if necessary, and nonpersistent callbacks which are active only when
the cache is active. Figure 3.15 shows a distributed shared object that consists of a
consist core with layers of caches around that core. Note that different objects may
use different layers of caches.
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Figure 3.15. Core with caches

This model can be generalized into a model that groups the local objects of a single
distributed shared object into three classes. These three classes are (see Figure 3.16):

1. Consistent read/write access

2. Consistent read access

3. Inconsistent (read) access

These three classes have been chosen to match three corresponding classes that
deal with the security within an object (see Section 3.4.1).

Representatives in ring 1, the “core,” can arbitrarily modify the state of the object.
These representatives interact using the strongest consistency protocol available in the
distributed shared object. A representative in ring 2 contains a copy of the state of
the object. Update, or invalidate messages are sent to representatives in ring 2 by
representatives in ring 1. A representative in ring 2 cannot change the state of the
distributed shared object directly. Instead, a request to change the state of the object
has to be sent to an representative that belongs to the core. Finally, representatives in
ring 3, the “leaf nodes,” do not contain a copy of the state of the object. Instead, all
requests are forwarded to representatives in ring 1 or ring 2.
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Ring 1:
consistent updates

Ring 2:
consistent reads

Ring 3:
leaf nodes

Figure 3.16. Replication rings within a single object

The relative size of the rings depends on the object. For example, a WWW page is
typically modified on one WWW server and then copied (or cached) by other servers.
Thus, it has a very small core. In contrast, a Usenet newsgroup is modified world wide
by people posting new articles (with the exception of moderated newsgroups).

3.3 Persistence

This section describes the support for persistent distributed shared objects. A persis-
tent object is an object that (after being created) continues to exist until it is explicitly
destroyed.5 Nonpersistent objects do not provide this guarantee: they are typically
destroyed when not in use by any process.

Data can be made persistent at different levels of abstraction. Figure 3.17 shows
the different levels of abstraction that exist in a Globe process. Each of those layers
may provide a “persistence service.” There is a trade-off between the different levels
that can provide persistence. In general, lower levels are more convenient, are more
transparent, and have better access to hardware and other resources. On the other
hand, higher levels provide more control, and can better use the semantics of the data.

5Explicit is taken from the point of view of the object, that is, a global garbage collector explicitly
destroys an object when it is no longer reachable.
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Figure 3.17. Persistence in different layers

In this thesis, we ignore persistence implemented by the application, the language
or the underlying operating system, instead we focus on persistent distributed shared
objects.

3.3.1 Persistent State

In general, objects are made persistent by storing the state of the object on some kind
of nonvolatile medium such as a hard disk. Alternatively, persistence can also be im-
plemented by maintaining enough replicas of the state of an object that at least one
of them always survives a sequence of failures. We will ignore this last (theoretical)
option; hard disk storage is cheap enough to assume that it is always used for per-
sistence. The main issue is therefore how to store the state of an object onto a hard
disk. For convenience, we assume that hard disk storage is represented by persistent
state objects. A persistent state object is a local, system object that can be used to
store some number of bytes persistently. Note that these objects typically use the file
system provided by the underlying operating system. It is quite possible that such a
file system is in fact a network file system mounted from a remote machine.

Figure 3.18 shows a classification of different approaches to make a distributed
shared object persistent. There are two main issues (the dashed arrows in the figure):
(1) what kind of mechanism is used to store the state of the distributed shared object
persistently and (2) where the implementation of persistence is placed with respect to
the local part of a distributed shared object.
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Figure 3.18. Classification of persistent distributed shared objects
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Figure 3.19. Persistence using a persistent distributed state object

The two basic mechanisms to store the persistent state of a distributed shared ob-
ject are:

1. The system provides persistent distributed state objects. A persistent dis-
tributed state object is similar to persistent state objects in that it can be used
to store a linear sequence of bytes persistently. However, these objects are also
distributed shared objects and can be accessed from multiple address spaces.
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Figure 3.20. Persistence using persistent replicas

A persistent distributed shared object can store its state in a persistent distributed
state object. This approach is illustrated in Figure 3.19. Address spaces A1, A2,
and A3 contain local objects that belong to a single distributed shared object.
This distributed shared object uses a persistent distributed state object, with
local objects in address spaces A2, A3, and A4. Address spaces A2 and A4
have an attached local disk. Note that the local object in address space A1 does
not have direct access to the persistent state. When necessary, it gets a copy of
the state from its peers in A2 or A3. Likewise, the persistent distributed state
object’s local object in address space A3 does not have a local disk.

2. One or more representatives independently maintain a persistent copy of the
distributed shared object’s state. Those representatives provide persistent repli-
cas and store the object’s state in a (nondistributed) persistent state object. This
approach is shown in Figure 3.20. The representatives in the address spaces A2
and A3 use a persistent state object to store their states. In turn, each persistent
state object stores it state on a local hard disk.

The main differences between these two mechanisms are:

• When the persistent state is stored in a single distributed state object, it is nec-
essary to use a (distributed) locking mechanism to allow multiple local parts of
the distributed shared object to access the persistent state.

In contrast, in the second mechanism, individual representatives are made per-
sistent independently. Furthermore, the persistent state objects belongs to ex-
actly one representative. Therefore no concurrency control is needed by a rep-
resentative to access its persistent state.
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• The first mechanism is closer to the traditional shared file system approach. In
this approach, data is stored in files and interpreted by applications. All distri-
bution aspects are hidden by the file system implementation. This mechanism
provides some backward compatibility with existing files by allowing them to
be encapsulated in a distributed shared object (i.e., the existing file is treated as
a persistent distributed state object).

• A persistent distributed state object may be replicated internally, but this fact is
hidden from the distributed shared object that uses the state object. The choice
of replication algorithms for the persistent state object is limited because the
semantics of the distributed shared object are not available to the state object.

In contrast, with the second mechanism, it is the distributed shared object that
is responsible for keeping multiple copies of the persistent state consistent. The
distributed shared object can use whatever consistency algorithm is most suit-
able.

A persistent distributed shared object based on persistent replicas (the second
mechanism), can choose between two broad categories of consistency guarantees for
the persistent state of the entire object. Differences between those consistency guar-
antees are observed only in the presence of failures.

1. Global consistency.

All persistent state objects are kept consistent with respect to each other.

2. Local consistency.

The persistent state of a persistent replica is kept consistent only with respect
to the volatile state of the replica and not with respect to the persistent state of
other replicas.

For example, an airline reservation system needs to keep its persistent state objects
globally consistent, even in the event of crashes. On the other hand, the persistent state
of a Usenet newsgroup does not need to be globally consistent.

The implementation of the persistence support can be placed in different parts of
a representative. The three alternatives are: (1) external to the existing representative,
(2) internal to the existing representative, interfacing with system-provided parts of the
object (replication or control object), or (3) internal, interfacing with the application
specific parts of the object (semantics object).

External to the existing representative

Figure 3.21 shows the representative of a nonpersistent distributed shared object which
has been extended externally with support for persistence. Added to a standard local
object for a nonpersistent distributed shared object, are a persistence object and a



3.3. PERSISTENCE 79

Semantics
object

Communication
object

Replication
object

Control
object

State
object

Read/write

Persistence
object

Marshal/unmarshal

Figure 3.21. Persistence, external to a distributed shared objects

persistent state object. The persistence object uses the persistent state object to store
the state of the replica it encapsulates. This state is downloaded into the representative
by invoking an unmarshal method.

The first disadvantage of this approach is that the persistence object knows nothing
about the replication strategy used by the distributed shared object. A second disad-
vantage is that the persistence object can save and restore only the complete state of
the local object. This situation can be improved by extending the interface beyond just
marshal and unmarshal. However, this approach remains inflexible.

Internal, interfacing with system-provided parts of the representative

In the second approach, support for persistence can be tightly integrated with the repli-
cation protocol used. A drawback is that the persistence part still reads and writes the
entire state of the semantics object.

Internal, interfacing with application specific parts of the representative

The third approach is to let the application programmer explicitly deal with saving and
restoring the state of the semantics object. This allows for object specific solutions
(i.e., no need to read the entire state of the semantics object to execute an operation
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that needs only part of the state). A disadvantage is the lack of integration with the
replication object.

The last approach is useful when the semantics objects only communicate through
a shared, persistent state object (i.e., without the use of a replication and communica-
tion object). The semantics objects operate by manipulating the shared state provided
by the persistent state object. This approach is practical when the semantics object is
only a thin layer of interpretation on top of some shared state.

3.3.2 Object Architecture

The persistence architecture in Globe provides persistent replicas and the implemen-
tation of persistence is integrated with the replication object (“state per replica” and
“internal/system part” in the classification of Figure 3.18). Two advantages of this
approach are that it isolates the application programmer from persistence manage-
ment and that it supports tight integration of persistence management with replication
protocols.

A persistent replica can be in one of two states: it can be active or passive. Active
replicas are similar to (nonpersistent) representatives: they have a local object in some
address space that can communicate with other parts of the distributed shared object.
In contrast, A passive replica consists of only the persistent state.

Before a passive replica can be used, it has to be activated. To support activating
passive replicas and passivating active replicas, we need a persistence manager object.
A persistence manager object activates a passive replica in response to some external
events, such as a bind operation from another address space. An active replica can be
passivated when it is idle. A persistence manager object is typically associated with an
address space. Multiple persistent replicas, belonging to different distributed shared
objects can share a single address space when they are active. These replicas are
managed by a single manager.

Figure 3.22 shows the representatives of a persistent distributed shared object.
There are three kinds of representatives: nonpersistent representatives, persistent repli-
cas that are active and persistent replicas that are passive. In most cases, the persistent
replicas form the core of a distributed shared object with nonpersistent representatives
for client address spaces and (volatile) caches. In Figure 3.15, the replicas in the core
and the L1 cache would be persistent.

In general, a persistence manager supports multiple persistent replicas that belong
to different distributed shared objects. Figure 3.23 shows a single address space with
a manager object. For passive replicas, the manager simply holds a reference6 to a
persistent state object that contains the state of the replica.

6In this context a reference is typically the name of a local state object. The manager binds to the state
object when it activates a persistent replica.
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Figure 3.23. A persistence manager process

Figure 3.23 also shows one active replica. An active replica consists of three parts:
(1) the persistent state object that contains the persistent state of the replica, (2) the
nonpersistent representative (typically, the four basic objects) and, (3) an object that
represents the manager object. The persistence implementation in a representative
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uses the state object to initialize the semantics object. The object that represents the
manager is informed when the replica becomes idle.

3.3.3 Binding to a Persistent Distributed Shared Object

Binding to a persistent replica is a two step process. The basic idea is that the persis-
tence manager provides contact points for the persistent replicas. A new (nonpersis-
tent) local object in a client address space sets up a connection to the contact point,
thus establishing a connection with the manager object. The manager object then ac-
tivates the replica and redirects the binding party to a newly created contact point in
the replica. Redirection means that the manager provides the local object in the client
address space with the contact address associated with the new contact point.

The connection to the manager object is terminated and a new connection to the
replica is established. Various optimizations on this scheme are possible (and neces-
sary to reduce latency). For example, the manager object can pass the connection to
the replica instead of redirecting the client to a new contact point. Note that the per-
sistent replica can publish this new contact address (in the location service part of the
naming system), to allow further bind requests to contact the replica directly. Before
the replica is passivated, it should delete the contact address.

This redirection is shown in Figure 3.24. A manager object M holds references
(local object names) to the persistent state of four replicas of four different distributed
shared objects (S1 . . . S4). The manager object also provides four contact points for
binding to those replicas. In Figure 3.24(a), the new local object L1 in address space
A1 sets up a connection to the contact point in the manager object. In the second
step, shown in Figure 3.24(b), the persistence manager has created object L2. Object
L2 creates a new contact point and uses the persistent state object S2 to initialize its
semantics object. L1 sets up a connection to L2 just like it would do when binding to
a nonpersistent representative.

After a while, L1 may drop the connection to L2. If no connections to L2 remain,
L2 will invoke a method on the representative of the manager object to inform the
manager that it has become “idle.” The manager may decide to passivate L2.

So far, the description implicitly assumes that the manager object shares its address
space with all active objects. The manager may activate passive replicas in separate
address spaces for two reasons. The first reason is efficiency. Too many objects in
one address space may lead to huge address spaces, too many threads to be scheduled
efficiently, lock contention, etc. The second reason is fault isolation. A single manager
may support different types of objects and objects belonging to different users. Due
to the lack of protection within a single address space, a malfunctioning object may
harm objects belonging to different users.
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Figure 3.24. Binding to a persistent distributed shared object

Alternatively, it is possible to create multiple managers, each running in separate
address spaces. Note that the new contact address returned by the manager can refer
to a contact point in a different address space.

Figure 3.25 shows the architecture of the representative of a persistent distributed
shared object. The replication object is replaced by the combination of a replication
and a persistence object. The replication object informs the persistence object about
suitable moments to update the persistent copy of the state of the object.

The persistence object uses a persistent state object to store the state of the se-
mantics object. The persistent state object can be a local state object, or it can be a
distributed shared object itself. The persistence object also communicates with the
manager object during initialization and to coordinate shutdown.

This architecture is a relatively straightforward extension of the four-object archi-
tecture described in the previous section. This architecture becomes recursive when
the state object is a distributed state object: the persistent distributed object uses per-
sistent replicas which are implemented using persistent distributed shared objects. The
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Figure 3.25. Persistent representative of a distributed shared object

solution is to bootstrap persistence by implementing persistent state objects directly
using the underlying operating system’s file system or using direct access to a hard
disk.

Contact Addresses of Persistent Distributed Shared Objects The structure of
a contact address provided by a persistent distributed shared object depends on the
mechanism used to store the persistent state. An object that uses a distributed state
object to store its state has to provide contact addresses that refer to the distributed
state object. Similarly, a contact address for a persistent replica refers to the object
manager that can activate the replica.

The contact addresses of a distributed shared object that stores its persistent state
in a single distributed state object are derived from the contact addresses provided
by the distributed state object. The contact addresses for the persistent state object
contain a protocol identifier that refers to a (standard) protocol to access state objects.
Those derived contact addresses contain a different protocol identifier that refers to a
class of local objects that can operate on the contents of the state object. Note that the
distributed shared object may offer additional contact points when it is active, to allow
binding without using the persistent state object.
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A problem with this approach is that a persistent distributed state object is an
independent distributed shared object, which may create additional replicas or migrate
replicas without informing the distributed shared object that uses the persistent state
object. If the distributed shared object simply copies the contact addresses of the state
object, it has to keep this set of contact addresses consistent.

This problem can be solved by using an object handle as a contact address. Us-
ing an object handle as a contact address introduces an extra level of indirection that
isolates the distributed shared object from contact addresses of the state object. This
kind of contact address is called a persistent contact address.

The contact address for a persistent replica refers to a contact point provided by
the manager object and some additional demultiplexing information to identify the
proper replica. In this case the contact address for the persistent replica is derived
from a contact address provided by the manager object.

The problem with the use of a contact address of an object manager is similar to
the problem caused by using a contact address of a persistent distributed state object: a
manager can change its contact addresses without informing the persistent replica that
uses the manager. This problem can also be solved using persistent contact addresses.

For the purposes of binding, a manager object can be treated as an independent
distributed shared object. By binding to the manager object (instead of using an actual
contact address and setting up a connection directly) the manager object gets addi-
tional flexibility to distribute the replicas it manages over different address spaces.

The main disadvantage of the use of persistent contact addresses is the extra over-
head that is introduced. Some of the extra overhead can be avoided if the naming
system returns a contact address for the embedded object handle along with the con-
tact address that contains the object handle. This technique is used by the Domain
Name System and is called “additional information.”

3.4 Object Security

The last part of the distributed object architecture is the security architecture. The
first part of this section describes how to secure communication within an a single
distributed shared object. The second part of this section provides a model for authen-
tication and access control.

A distributed object is called secure if it can defend itself against security attacks.7

A secure object can resist (1) unauthorized changes of its state, invalid replies to re-
mote operations, (2) updates to the state of the object without an audit trail8, or (3)

7Only distributed shared objects can be made secure. We assume that a local object cannot defend itself
against attacks from within the process that the object is part of.

8An audit trail is a set of records that collectively provide documentary evidence of processing used
to aid in tracing from original transactions forward to related records and reports, and/or backwards from
records and reports to their component source transactions [Abrams et al., 1995].
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passing the state of the object, or a request or reply message to unauthorized parties.
Additionally, we would like to prevent denial of service attacks and traffic analysis.
Depending on the object, it may not implement one or more of those features.
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Figure 3.26. Attacks on a distributed shared object

From the point of view of a distributed shared object, we recognize two kinds of in-
truders. External intruders are completely outside and are not part of the distributed
shared object. On the other hand, internal intruders try to compromise the security
of the object from the inside. Figure 3.26 shows the positions of both an external and
an internal intruder.

This distinction between internal and external intruders is different from more tra-
ditional security architectures that distinguish clients and servers. In general, a client
has to verify that it is communicating with an authentic server and not with an im-
poster (someone who assumes a false identity for the purpose of deception). A server
verifies whether a client is authorized to make certain requests. In contrast, an exter-
nal intruder is not part of the distributed shared object at all (it is neither a client nor a
server). An internal intruder does not behave according to its role within a distributed
shared object. For example, a client may pretend to be a server. The distinction
between internal and external intruders is necessary because some distributed shared
objects use a symmetric replication protocol, for example, a replication protocol based
on active replication.

In the case of an external intruder, the distributed object as a whole tries to protect
itself from the intruder. In contrast, the presence of an internal intruder requires the
individual representatives in different address spaces to protect themselves from the
intruder. An example of an internal intruder is an address space with read-only access
to a distributed shared object that tries to modify the state of the object by issuing
malicious state-update methods.
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The security architecture for distributed shared objects is based on the assumption
that an address space is a single protection domain. In theory, all executable code
running in a single address space can access the data structures of all (local) objects in
that address space. With this assumption, we can reformulate the attacks in terms of
communication between address spaces. Firstly, an attack from a external intruder can
be prevented only by discriminating between communication between address spaces
that are part of the distributed shared object and those that are not. Secondly, an attack
from an internal intruder can be prevented only by labeling the rights of the individual
representatives within a distributed shared object.
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Figure 3.27. Low-level security

Figure 3.27 presents a low-level view on sending data from one address space to
another. We look at a message being sent from a sender to a receiver. In an RPC, the
request message and the reply message are different messages with a different sender
and receiver. Note that data in this context can be information, but it can also be a
request to perform a certain operation.

Both the sender and the receive have a trusted computing base. The trusted com-
puting base (TCB) of a process (or a user) is that part of a computer system that has
to be trusted. The minimal TCB for a process running on a UNIX workstation is:

• Everything in the same process.
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• Every process that runs under the same user ID.

• Every superuser process on the same machine.

• The operating system kernel.

• The immediate physical environment of the workstation.

Of course, the TCB may be much larger, including, for example, other (local) com-
puters and system administrators. Everything in the TCB should be cooperating to
protect (or at least, not to violate) the sender’s or the receiver’s security.

The sender’s and receiver’s TCBs may perform access control. For the sender, the
TCB decides whether it is safe/allowed to send this data to a particular destination.
The receiver’s TCB determines whether or not the received data can be trusted.

Note that in many cases the TCB is controlled by the user. For example, most users
of a personal computer can install a new operating system on their computer. This
allows them to determine what the TCB should look like. However, the sender and
the receiver may be part of larger organizations that enforce their own security policy,
independent of the sender’s or the receiver’s wishes. This is shown as Figure 3.27
as “Site access control.” In practice this kind of functionality is implemented using
firewalls. A firewall examines all packets and/or network connections and decides
whether they are allowed according to the site’s security policy. Firewalls can operate
at different levels of a protocol stack. At the network layer, a firewall may pass or
reject packets for specific hosts or networks or packets for certain transport protocols.
At the application level, a firewall may deny, for example, request to modify a database
and allow requests to read the database.

From a security point of view, a packet may travel over three different kinds of
networks: the sender’s local network, a wide-area network, and the receiver’s local
network. Note that in this model, we assume that a wide-area network is controlled
by an untrusted third party. Any networks that are wide-area networks from a network
point of view and that are trusted by either the sender or the receiver are assumed to
be part of respectively the sender’s or receiver’s local network. This model gives an
intruder five different places to attack: the sender’s TCB, the sender’s local network,
the wide-area network, the receiver’s local network and the receiver’s TCB.

In addition to the five different places to attack, an intruder has the choice between
active or passive attacks. At the network level, an intruder can look at data transmitted
over the network, this is called a passive attack, or the intruder can change packets
that are in transit, inject old packets (replay) or generate completely new packets. This
is called an active attack.

From the point of view of an intruder, the most powerful network attack is a com-
bination of passive attacks on the sender’s local network with active attacks of the
receiver’s local network. Remember that in this model, communication is unidirec-
tional: an RPC uses two different senders (client sends the request and the server
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sends the reply) and two receivers. A passive attack on the sender’s local network
allows the intruder to capture requests, replies, or state transfers depending on the role
of the sender. An active attack on the receiver’s local network provides the opportu-
nity to change the state of the object (spoofed request message), or to provide false
information to a client.

An attack from the wide-area network means that the intruder is limited by the se-
curity policy enforced by the sender’s and receiver’s firewalls. Sometimes an intruder
can attack a TCB. This can be done, for example, by changing the access control in-
formation stored in the TCB, by attacks on address spaces that are part of the TCB,
but also by direct physical attacks. Another kind of attack is distrust among the com-
municating parties themselves (repudiation of an action). For example, a client may
deny buying some stock after a collapse of the stock price.

The basic mechanisms to protect against attacks are: encryption, signed and au-
thenticated messages, access control lists, and digital signatures for nonrepudiation.

A problem with combining firewalls that operate at the application level and dis-
tributed shared objects is that the firewall and the distributed shared objects have to
agree on a common communication protocol that allows the firewall to filter traffic
and to provide access control. This reduces the freedom of the object designers.

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

attack

Wide-area
network

Points of

Sender Receiver

Figure 3.28. Simplified low-level security

In many cases, site access control and TCBs are not explicitly recognized. In
this case the low-level security model reduces to a sender who sends a message to a
receiver over a communication channel. This is shown Figure 3.28.

When multiple objects are part of a single TCB, then each object can violate the
security of the other objects. Each of the two distributed shared objects in Figure 3.29
can compromise the security of the other distributed shared object.

It is important to note that in our model, low-level security is hidden inside of an
object. The sender and receiver of Figure 3.27 are part of the same object.

The protection of the distributed shared object as a whole is provided by the in-
dividual representatives that are part of the distributed shared object. This means the
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Figure 3.29. A shared address space

security implementation for a distributed shared object is translated into checks and
encryption performed by individual representatives. The reason for this model is that
ultimately, the security of the entire distributed shared object depends on signed, en-
crypted messages sent between the local parts of the distributed shared object.

If we extend the basic architecture for implementing a local part of a distributed
shared object, we get Figure 3.30. Two new objects are added: a security object and a
principal object. In addition, the communication object is extended to provide secure
communication channels. These secure channels provide secrecy and basic integrity
mechanisms. Sometimes (for nonrepudiation, or in multicast communication chan-
nels) additional signatures are needed. The main function of the security object is
access control. The communication, replication, and control objects ask the security
object whether a particular operation (allocation of resources, accepting a message,
invoking a method on the semantics object) should be carried out or not. The prin-
cipal object9 assists the security object with key management, and site-wide security
policies.

9The term “principal” will be explained in the next section.
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Figure 3.30. Local part of a secure distributed object

Authentication and access control is performed when a communication channel is
established or when a process joins a multicast communication group. The communi-
cation object passes the identity of the sender’s principal along with a message to the
replication object.

Requests can be classified as follows: (1) operations on the semantics object, (2)
control messages of the replication protocol, (3) operations on the state of the security
object (for example an access control list, or a list of valid capabilities), and (4) other
operations for managing the object (for example persistence).
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Within the object architecture shown in Figure 3.30, the replication object is the
most suitable place to perform access control. Performing access control means tak-
ing an access control decision and (optionally) returning an error to the sender if the
decision was negative. The actual access control decision is typically delegated to
the security object. The replication object has detailed knowledge about the source
of the message, the replication protocol and the kind of operation requested (read-
only, read/write, etc). The replication object is the only object that has access to this
information. The communication object is too low-level, it does not recognize differ-
ent message types relating to replication, method invocations, etc. The control object
and the semantics object cannot deal with messages that are part of the replication
protocol.

In theory, it is more efficient to download access control information once into the
replication object, than to have the replication object call the security object for each
message that arrives. However, this distributes security functionality over multiple
objects, which complicates the analysis of the security of the system.

A problem with providing access control in the replication object (or in the security
object for that matter), is that the actual decoding of the arguments of an incoming
method invocation is done by the control object. This means, for example, that the
replication object can control who can withdraw money from a bank account object,
but cannot make a distinction between withdrawing small or large amounts of money.
Moving the application specific part of the access control to the semantics object might
be a solution to this problem. However, the network identity of the caller is not passed
by the replication to the control object. It means that the control object interface and
the interface provided by the semantics object has to be extended with extra arguments
for the identity of the caller.

The security object uses the principal object to deal with (site wide) security poli-
cies. Typically, the actual access control for an object is based on access control in-
formation stored in the object itself, combined with global security policies installed
by the user or the system administration of a particular site. One such policy might be
that all information leaving the site should go through a firewall.

In general, we expect that a process binds to its owner’s principal object soon after
the process is created. The necessary authentication information that is needed to bind
to the object is provided by the creator of the process. Alternatively, the process can
be a login process and executes a login protocol. These protocols will be described
in the next section. Note that after the process has bound to its first principal object,
it can use that principal object to bind to other principal objects. A process may use
multiple principal objects to be able to act on behalf of multiple users.

The control object verifies (by calling the security object) that operations invoked
by the user of the object (as opposed to requests arriving from the replication object)
can be executed. If the control object would omit this check, then the operation might
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fail because messages sent to other parts of the object may be rejected by remote
replication objects.

3.4.1 Authentication and Access Control

The basis for authentication and access control is a security policy. A security policy
describes what resources should be protected, who should be allowed to access those
resources, etc. A security policy is based on a real world security problem (keeping
information secret, privacy, preventing thefts, etc.) that interacts with computer sys-
tems. The of goal of a security model for a worldwide system such as Globe, is to be
able to support as many different security policies as possible.

In the first part of this section, we provided the low level security mechanisms in
a bottom up approach. This section will start at a high level and work toward the low
level security mechanisms.

Principals

We use the following terminology. Principals are allowed to act; computers act on
behalf of principals. A principal is a person, a collection of persons (a group), or a
specific role within an organization. In the system we can create complex derived
principals such as organizations, companies, universities, departments, etc. Princi-
pals with certain roles, for example a head of a department, get additional rights. A
principal is given certain rights but also bears responsibilities.

We need a way to represent principals in the system. In most systems, principal
identifiers are separate from object identifiers. For example, in UNIX, user identifiers
and group identifiers are small integers. Real file object identifiers are not used very
much under UNIX, but consist of a device identifier plus an inode number.

The advantages of associating a distributed shared object with every principal are
the following:

• Object identifiers can be used to identify principals.

• The object that represents the principal can store information about the princi-
pal. For example his public key certificates.

• An object that represents a group principal can store the membership list of the
group.

• A principal can allow other principals to act on behalf of itself. The object can
store who may act on behalf of the principal. For example, a specific role such
as head of a department may be delegated to different principals at different
times.
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A security system based on principals associates a person with every action. In
many real-world situations, this is not the case. For example, the keys that are used
to unlock a door do not always identify the person that entered through the door.
Money allows a person to enter a theater without providing his identity. Both money
and anonymous capabilities (the computer equivalent of keys) can be introduced as
special principals.

A principal may wish to create subprincipals for different roles (at home, at work,
playing a game, hobbies). These subprincipals should have a subset of the rights of
the principal. For example, while playing a game, you do not want the game to be
able to sign a check to order more games automatically.

Access Control

The two basic models for access control are mandatory access control and discre-
tionary access control. In a system that uses discretionary access control, the owner
of an object specifies which principals have access to the object. The system grants or
denies access based on access control information provided by the object’s owner.

Mandatory access control means that the system itself can also impose restric-
tions on the use of an object. For example, mandatory access control is used by the
military to implement the policy that secret documents can only be read by people
with a high enough security clearance. Furthermore, if somebody with a top-secret
security level modifies a secret document, it becomes top-secret. The best known
military security model is the Bell-LaPadula model [Bell and LaPadula, 1973].

Mandatory access control is typically implemented by associating a security label
with every data item in the system. When secret information is stored in an object
with a low security classification, the system increases the security classification of
the object to match the security label of the data to be stored in the object. With
discretionary access control the system protects access to an object independent of the
contents of the object.

One of the drawbacks of the Bell-LaPadula model is need for declassification.
Normally, the security label of a data item can only go up. However, this does not
allow a general to address his troops. The approach taken in [Myers and Liskov,
1997] is to allow the owner of a piece of information to declassify it. All others are
still prevented from violating the mandatory access control policy.

The main drawback of mandatory access control in a worldwide distributed sys-
tem is the need for a trusted computer system to enforce this access control. In a
system that consists of independent users and organizations, it is impossible to guar-
antee that everybody obeys all access control rules. For this reason, we will focus on
discretionary access control.

An access control matrix is a simple way to model discretionary access control
in a system. The principals are listed along one axis of the matrix, and the objects are
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listed along the other axis. The contents of the matrix are the operations a principal is
allowed to perform on an object. A principal may have no access, read-only access,
write-only access, read/write access, etc.

To model an access control matrix in an object based system, it is necessary to cre-
ate a mapping between the operations that can be listed in the matrix and the methods
implemented by the objects. This can be done in two different ways. One approach
is to have a one-to-one correspondence between operations and methods. Effectively,
the set of all possible operations in the matrix is the union of all methods provided
by different objects. The second approach is to have a standard set of operations,
for example read, write, and append, and map the methods of an object onto those
operations.

The advantage of the first approach is that it makes fine-grained access control
possible. The main disadvantage of the first approach is that it makes analyzing the
security of a system harder. For example, it is in general not possible to compute
which principals can modify the state of an object if it is not known which methods
are read-only and which ones modify the state. The opposite is true for the second
approach. Analyzing the security of the system becomes easier, but access control
will be more coarse-grained. The choice between the two approaches requires further
research.

Two obvious ways to distribute the access control matrix are: (1) store the list of
principals that have access to an object along with the object itself. This is called an
access control list. (2) Provide a principal with a set of capabilities that provide access
to the various objects the principal is allowed to access. A capability is a protected
identifier that both identifies a object and specifies access rights to be allowed to the
accessor who possesses the capability [Abrams et al., 1995].

Advantages of access control lists over capabilities are:

• In a distributed system, capabilities suffer from the so-called confinement prob-
lem: it is hard to prevent a capability from being passed from one principal to
another without the object’s approval.

• In a capability-based system, a principal has to manage his capabilities. This
presents two problems:

1. An additional security risks because it provides additional ways to attack
an object.

2. When a principal has access to a large number of objects, it becomes nec-
essary to structure the name space in which the capabilities are stored.

The advantages of capabilities are:

• Access control lists may become large if a large number of principals has access
to an object.
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This problem can be reduced by the introduction of groups. In UNIX file sys-
tems, the access control “list” contains three entries: one for a principal (called
the owner of the object), one entry for a group, and one entry for all other prin-
cipals in the system.

• An operation on an object with an access control list cannot be anonymous. In
capability-based system, authentication of the acting principal is independent of
access control.

Finally, off-line security analysis for a system based on access control lists is different
from a system based on capabilities. In a wide-area system that uses access control
lists, it is relatively easy to compute which principals have access to an object. It is
much harder to compute the set of objects that a specific principal has access to. In a
capability-based system, the reverse is true.

The confinement problem for capabilities can be solved in centralized systems
but is very hard to solve in a wide-area system with independent administrative or-
ganizations. For example, ICAP solves the confinement problem by adding identities
to capabilities [Gong, 1989]. Due the lack of confinement in pure capability based
systems, we mainly focus on access control lists. However, we can always augment
access control lists with capabilities, for example, for performance reasons.

Access Control Predicates

As described above, an access control list stores the access rights of the principals that
are allowed to access an object. This approach has two limitations: the number of
principals that is allowed to access the object can be very large, and sometimes the
rights of a principal depend on other factors such as the time of the day (access only
during working hours). The first problem can be solved with the introduction of a
group principal that represents a collection of other principals. The second problem
can be solved by generalizing access control lists into access control predicates. An
access control predicate (ACP) uses logical propositions to combine authentication
information with other sources such as the current time, the machine issuing the re-
quest, etc. Note that in theory, an ACP can also include restrictions on parameters
that can be passed in a method invocation, or even depend on the current value of
the object’s state. However, in the current object security architecture, access control
checks are executed by the replication object before the arguments are unmarshaled.
The replication object also sees the state of the object only in marshaled form. This
means that restrictions on arguments, or on the state of the object cannot be enforced.
To support restrictions on parameters, the architecture has to be extended to execute
application specific access checks in the semantics object.

We can implement an access control predicate as an ordered set of tuples, where
each tuple adds or deletes access rights for a set of principals if the predicate specified
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Op Principals Predicate Rights
+ Ed, Kees, Ruud true Read, write
+ Helpdesk time > 8am and time < 6pm Read, write

(a)

Op Principals Predicate Rights
include “ . . . /acp/sysadmin”

+ * true Send
+ owner true Read, write
– spammer true Send

(b)

Table 3.3. Example access control predicates: (a) system administrator ACP, (b) mailbox ACP

in the tuple is true. Elements in the predicate are statements about the environment
of the object, such as the current time, or the location of the process that tries to gain
access. Using a list of tuples also allows an object to use common access control
information with additional object-specific refinements. This can be implement by
first processing a common list of tuples, followed by the tuples stored in the object
itself.

Table 3.3 shows two examples of access control predicates. The first column con-
tains a plus sign (+) when rights are added, and a minus sign (–) when rights are
removed. The second column lists the set of principals that a granted or denied any
rights. The third column specifies when the entry is valid, and the fourth column lists
the rights that should are or removed.

The first ACP defines a group of system administrators. Three people (Ed, Kees,
and Ruud) are listed explicitly, and have full access. In this example the access right
“read” should be interpreted as the set of all methods (implemented by the distributed
shared object) that do not modify the state of the object; all other methods require the
“write” access right. Read and write access should allow any method to be invoked.
The second entry allows members of the group “helpdesk” access during office hours.
An ACP does not distinguish between principals and groups of principals. The ACP
just contains the object handles of the relevant principal objects (in this case, for Ed,
Kees, Ruud, and Helpdesk).

The second ACP first includes the system administration ACP. The object specific
entries grant everybody the right to send mail to the mailbox (“*”). The owner of the
mailbox is granted full access. Lastly, a group of principals that are known to send
spam are denied access.
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Authentication

We need authentication mechanisms to verify that a particular process acts on behalf
of a specific principal. When a process tries to bind to a distributed shared object, it
provides authentication information to the object. The object uses this information to
compute the access rights for the binding process. The reverse is also possible: during
binding the distributed shared object provides its identity to the binding process. The
process verifies that it is binding to the real object and not to an imposter.

Popular authentication mechanisms are:

• Mechanisms based on secret key encryption.

The basic idea is to use a trusted key server that is shared between communicat-
ing parties. Each party shares a key with the key server. Both parties indicate to
the key server that they would like to set up an encrypted communication chan-
nel. The key server generates a new session key and returns this key to them,
along with the identity of each party’s peer. The best-known example of this
approach is Kerberos.

• Mechanisms based on public key encryption

Public key encryption is based on the idea that every principal has a private key
that is kept secret and a public key that is made public. A certification authority
publishes signed statements called certificates that link a particular public key
to a principal. Using these certificates it is sufficient for the party that needs
to provide its identity to encrypt a message with his private key. The recipient
decrypts the message with the public key listed in the certificate.

The best known public key algorithm is RSA [Rivest et al., 1978]. X.509 [ITU,
1997] is a standard for certificates. X.509 allows only relatively simple certifi-
cates. More general certificates that contain logical expressions and multiple
principals are described in [Rivest and Lampson, 1996]

A serious problem with certificates is how to revoke them when a private key
has been stolen. Two common approaches are to use a certificates with a limited
life time or the use of revocation lists. A disadvantage of the first approach is
that the certification authority has to constantly generate large numbers of new
certificates to replace expired ones. A certification authority that generates new
certificates on-line is relatively easy to compromise. Generating certificates off-
line is more secure but is complicated if new certificates have to be generated to
replace expired ones. The main problem with the second approach is the timely
distribution of updates to the revocation list to all parties that use certificates, in
the case of Globe this includes at least all contact points provided by distributed
shared objects.
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Note that in both cases the user remains vulnerable for some period of time. In
the first case, the stolen key can be used until the certificate has expired and in
the second case, the key can be used until the new revocation list is installed
everywhere. Both approaches can be combined to reduce the size of revocation
lists: a key can be deleted from the revocation list after the associated certificate
has expired.

One approach to prevent private keys from being stolen is to store private keys
that are valid for a long time in a vault. These long term private keys are used to
sign certificates for online keys with a much shorter expiration date. These on-
line keys are in turn used to generate private keys for login sessions. Individual
processes may get their own short term keys.

Some mechanisms, such as capabilities and digital money, can be used for autho-
rization without authentication. In other words, access to a distributed shared object
is granted without establishing the identity of the user who issues the request.

• Capabilities

A capability is a special ticket provided by an object that allows a process that
holds the ticket to access the object. In contrast to the two previous mechanisms,
this approach is not based on principals. Instead, every process that holds the
right “key” is allowed to access the object.

Capabilities can be implemented in two different ways. In centralized systems
they can be implemented in the kernel or even in dedicated hardware. In a
(wide-area) distributed system, capabilities have to be protected cryptographi-
cally. Amoeba uses a secure hash-function to compute a checksum value which
is stored in the capability [Tanenbaum et al., 1986]. Any change to a capability
will invalidate the checksum. The secure hash-function, which is keyed with a
per object random number ensures that it is infeasible to compute the required
checksum for the modified capability.

Kernel-managed capabilities are not very useful in a wide-area system. The
“kernel” has to be trusted by the object, and has to be easily accessible by a
process that tries to invoke a method on the object. This situation is rare in a
wide-area distributed system.

The main problem with cryptographically protected capabilities is the confine-
ment problem: it is too easy to pass a capability from one process to another.
The object can no longer control who is allowed to access the object, other than
by invalidating the capability. Capabilities with a limited lifetime can be useful
to speed up access to an object. The idea is to authenticate using some other
mechanism. After the authentication phase, the object returns a capability with
a limited lifetime that also provides access to the object [van Doorn et al., 1999].
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Note that in this case, confinement is less problematic because objects are free
to expire capabilities at any time (forcing the processes that are using them to
authenticate using other mechanisms).

• Digital money

Digital money can be seen as an anonymous authentication mechanism that al-
lows access in exchange for some amount of money. Many forms of digital
money exist ranging from true digital “coins” to secure credit card transactions.
Most governments try to prevent the use of truly anonymous digital money be-
cause it allows people to freely move large amounts of money around the world.
In some schemes, banks know all details of a transaction but the identity of the
client is hidden from the merchant.

The mechanisms that are most useful in a wide-area distributed system are the
ones based on public key encryption and digital money. Systems based on secret key
encryption are hard to scale mainly due to the large number of keys that have be kept
both secret and on-line by key servers. Capabilities are useful as an optimization
technique that is mostly hidden from the users of the system and can be introduced
when needed.

Secure Binding to a Distributed Shared Object

As described above, an object stores access control information to be able to verify that
a bind request is allowed and that a method invocation can be executed. In general, the
binding process also needs access control information to protect itself from intruders
who try to impersonate an object. The process that binds to an object needs to verify
that the bind function returns the right object.

Often, this access control information is the identity of the owner of the object.
Alternatively, it is possible to use host-based access control. In general, we can say
that the user needs an special reverse-ACP for the owner/provider of the object. This
reverse-ACP requires the object to authenticate itself to the user of the object. How
does the user get the right ACP? Different alternatives are:

1. The name service stores the ACP together with the object handle. Note that
if the name service cannot be trusted then we cannot trust the object handle
returned by the name service either.

2. The location service stores the ACP along with the contact addresses.

3. The ACP is computed based on the contact addresses returned by location ser-
vice.

4. The ACP is stored locally (with respect to the application).
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5. A separate service maps an object handle to an ACP.

6. A public-key certification authority signs tuples consisting of a pathname, ob-
ject ID, a public-key and a textual description of the organization, its (postal)
address, etc. These tuples link a particular object (pathname and/or object ID) to
a real-world entity (organization and postal address). The certification authority
defines also the lifetime of a certificate: a limited time, or forever and whether
a blacklist is used or not.

Storing the ACP locally (alternative 4) is very secure because only the local en-
vironment needs to be trusted. For example, a user may store his bank’s public key
locally to ensure that the objects used by his banking applications are run by the right
bank.

The first alternative (storing an ACP along with the object handle) is the most
convenient for worldwide communication. In general, the name service is trusted to
return the object handle of the right object. Storing access control information in the
name service eliminates the need for trusting the location service (alternative 2). Note
that the use of a trusted location service also requires a trusted name service because
the location service cannot tell whether the name service returned the correct object
handle or not. Alternative 5 is similar to alternative 2, but uses a separate service that
provides security information about an object handle.

Alternative 3 is similar to the host-based security used in the current Internet.
Access control is not based on authentication information, but instead access control
lists contain lists of Internet addresses that can be trusted. This approach assumes that
the network is secure, an assumption that is invalid for most networks.

The last alternative provides additional security because it removes the need to
trust the name service. The application has to demand a certificate which can be
returned by the name service or by the object itself (after binding). The application
compares the pathname stored in the certificate with the pathname used to bind to
the object. Additionally, the application may also check the textual description of the
organization. A disadvantage of this approach is that an object cannot be registered
in the name service without contacting the certification authority to get a certificate.
This approach is useful for objects with a well-known name.

Login Protocol

The security model requires a process to authenticate itself. Most authentication
mechanisms require the use of secret information (shared keys, private keys, digi-
tal coins). For the purpose of this discussion we can assume that (at least part of)
those secrets are stored in the process’ address space. In practice it is possible to store
keys in a separate process on the same machine. However, this approach only moves
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the problem to the process that does store the keys, and introduces a need for secure
communication between two processes on the same machine.

A process can obtain the necessary keys in different ways depending on whether
the process is a foreground process or a background process. A process is called
a foreground process when it is (indirectly) attached to a terminal and controlled
interactively by a user. Other processes are called background processes and provide
services, for example, they manage persistent objects.

Three ways in which a process can obtain its keys are: (1) secrets can be passed
by the parent process when the process is created, (2) secrets can be read from a
local file, or (3) secrets can be derived from interaction with the user (password).
The last option is available only to an interactive process. On the other hand, the
second option is usually available to background processes, and is available only to
foreground processes after the user has provided his password.

Interactive users expect to be able to use terminals (here defined as the combi-
nation of an input device, an output device, and a computing device connected to an
untrusted network over which the user wishes to communicate) anywhere in the world.
The assumption is that users may carry smartcards and/or memorize small passwords.
A login protocol is needed to provide the user’s first process in a session with the
necessary keys.

Standard (UNIX) login protocols are not suitable for use over a wide-area network:
many provide no protection against attacks such as password guessing, relaying infor-
mation, or impersonation of the server. Furthermore, these protocols provide a login
service; this login process starts a new process that is connected to the user’s terminal.
In Globe, we need a service that provides a process with the necessary secrets that can
be used for authentication.

As described above, we can rely on users to carry a smartcard and/or to memorize
a small password. In theory, biometric authentication is also possible, but it is not clear
whether it can be used as a general purpose authentication mechanism in a worldwide
system. Some issues are:

1. Are the input devices required to be tamper-proof? In many places, such as
automatic teller machines, it is possible use tamper-proof devices that, for ex-
ample, scan a person’s iris. For communication over a wide-area network, it is
possible that an intruder tries to use his computer to fake an iris scan.

2. How to avoid privacy violations? Most existing systems allow a person to have
multiple identities, to share a access with other people, or to remain completely
anonymous. Money, login/password combinations, ATM cards, and, in some
countries, bank accounts are not directly tied to a single person.
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3. Support for nonrepudiation? Public-key encryption can be used to actually sign
a request. With biometric authentication it is not possible to directly tie a par-
ticular request to an authentication procedure.

A smartcard can be used to store a strong key. In contrast to a password that can be
guessed, a strong key is “unbreakable.” The smartcard can use this key to setup a se-
cure, authenticated channel over the untrusted network. The necessary keys are passed
over this channel to the smartcard, and from the smartcard to the user’s process. Al-
ternatively, the user’s process can use the information stored on the smartcard directly.
This is slightly less secure because it allows the smartcard’s keys to be leaked.

A disadvantage of smartcards is that they can be lost or stolen. Note that it is hard
to make smartcards that are tamper-proof. For example, since around 1994, almost ev-
ery type of smartcard processor used in pay-TV systems has been successfully reverse
engineered [Kömmerling and Kuhn, 1999].

Without a smartcard we have to use a password. We can use a secure, shared
password protocol such as described in [Gong, 1995]. These protocols use random bits
for padding and masking in such a way that a legitimate user can authenticate using a
weak password, but the message exchange does not leak any information that allows
an adversary to guess the user’s password. Such a secure, shared password protocol
can be used to setup a secure (encrypted) communication channel to the login server.
The login server sends the user’s private key over this channel to the login process.
A disadvantage of these protocols is that the user’s password has to be available in
cleartext to the login server.

This problem can be solved by replacing encrypted nonces or timestamps with a
list of challenge-response pairs stored at the login server. This approach involves the
following steps:

1. The user’s process looks up the public key of the login server.

2. A secure communication channel is established between the user’s process and
the login server using the login server’s public key. Note that only the login
server is authenticated at this point.

3. The login server sends the user’s process a challenge.

4. The login process returns the challenge encrypted with user’s password.

5. The login server verifies the encrypted challenge and sends the user’s private
key encrypted with users password.

This algorithm assumes that the public-key of the login server can be looked up
reliably. The user can trust his terminal to store or obtain this key reliably or the user
can carry for example a small piece of paper with a secure checksum (message digest)
of the login server’s public key.
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The user should refresh his password after too many failed login attempts. Note
that increased security comes at the cost of reduced availability. In this protocol, the
login server has to stop when it runs out of challenges. It is thus quite easy for an
intruder to mount a denial of service attack. The shared password protocols provide
better resistance against denial of service attacks.

After a break-in, an intruder can directly steal the list of passwords when a shared
password protocol is used. With a challenge-response scheme, the intruder gets a
list of private keys encrypted with their owner’s passwords. The intruder can try a
password guessing attack to recover one or more of the private keys. A user can
protect himself from this attack by using a good (hard to guess) password.

Using a smartcard is in most cases the best solution. Without smartcards, one has
to choose between the possibility of denial of service attacks and the increased risk of
a stolen password file.

Large, Secure Distributed Shared Objects

Figure 3.16 shows how large distributed shared objects can be structured using three
rings with different consistency guarantees. A similar structure can be designed for
security. Figure 3.31 shows three different levels of trust within a large distributed
shared object. The core, level 1, is completely trusted and can arbitrarily modify the
state of the object. Level 2 is trusted to keep the state of the object secret but is
not trusted to modify the state of the object. Address spaces in level 2 have to send
requests to modify the state of the object to level 1. Level 3 is, in general, not trusted.
Operations have to be forwarded to a replica in ring 1 or ring 2.10 This rings structure
provides some containment of security breeches: malicious representatives in ring 2
cannot directly modify the state of the entire distributed shared object. They can,
however, return incorrect replies to requests from representatives in ring 3.

In general, a representative may belong to different rings for security and consis-
tency. The security ring required by a representative that provides inconsistent read
access (replication ring 3) depends on whether the object needs a complete copy of
the state of the object or not. To get a copy of the state of the distributed shared object
requires the representative to be in security ring 2, otherwise it can be in ring 3. In
more or less the same way, consistent read access can be provided in both security ring
2 and 3. However, representatives in the first ring have to be able to perform consistent
updates which requires them to be in the first security ring where they are trusted with
respect to integrity of the object.

10It is possible that some replicas in ring 2 are trusted to keep the state secret, but cannot be trusted to
serve or forward request from ring 3. This problem can be solved using digital signatures.



3.4. OBJECT SECURITY 105

Ring 1:
integrity

Ring 2:
confidentiallity

Ring 3:
partially trusted

Figure 3.31. Security rings within a single object

3.4.2 Examples of Authentication

This section provides some examples of the interaction between different objects to
execute an authentication protocol. Figure 3.32 shows the parties involved in the au-
thentication of a (remote) method invocation on a distributed shared object. Local
object L2, in address space A2 is part of a distributed shared object. Local object L1,
in address space A1 tries to perform an operation on the distributed shared object. This
operation is typically a bind request, but can also be a request to transfer or update the
state or a method invocation.

Objects P1 and P2 are respectively the user’s and the distributed object’s principal
objects. A principal object stores the public keys and certificates of the principal they
represent. The object ID of the principal object is used to represent the principal
worldwide. Figure 3.32 also shows three trusted third parties that may participate in
the authentication protocol. A trusted third party is (by definition) trusted by both L1
and L2 (and their principal objects).

RSA The data flow for an authentication protocol based on RSA public key cryp-
tography is shown in Figure 3.33. The protocol consists of the following steps:

1. There is a single trusted third party, the certification authority, that signs cer-
tificates binding the name and unique identifier of a principal to the principals
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Figure 3.32. Three parties

public key. These certificates are created, and transfered to P1 and P2 long be-
fore L1 binds the distributed shared object. Both P1 and P2 know the public key
of the certification authority.

2. The local object L1 sends a hash of the current session key (or a Diffie-Hellman
public key [Diffie and Hellman, 1976]) to the user’s principal object P1.

3. The principal object signs the hash with the user’s private key, and returns both
the signature and the certificates it got from the certification authority to L1.

4. This information is forwarded to the local object L2 in address space A2.

5. L2 asks P2 for the certification authority’s public key which is used to verify the
validity of the user’s certificate. Finally, local object L2 verifies the certificate
and the signature on the session key.
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The unique identifier listed in the certificate is used to extract the access rights from
the access control list. Note that no authentication information is encrypted. The
authentication protocol involves computing (and verifying) only digital signatures.

Certification
authority

Object’s security domain
User’s security domain

Trusted third parties

2

3

4

5
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A2

P2

L1

L2

1

1

1. R.S.A. certificates

2. Session key

3. Signed session key and
certificates

4. Signed session key and
certificates

5. Public key of certification
authority

Figure 3.33. RSA authentication

Kerberos In contrast to RSA, the Kerberos authentication protocol depends on pass-
ing encrypted information between a key server and the communicating parties, as
shown in figure 3.34. The Kerberos protocol uses the following seven steps:

1. In the first step, local object L1 passes a request for a session key to its principal
object P1.

2. P1 passes the request to the key server along with a so-called “ticket granting
ticket”.

3. The key server shares secret keys with P1 and P2. These keys are called KP1

and KP2
. This allows the key server to generate a new session key Ks and to

create two messages M1 and M2 that contain the session key and the identities
of the communicating parties (P1 and P2) and are encrypted with KP1

and KP2
,

respectively. These two encrypted messages are returned to P1.
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4. P1 decrypts M1 and returns Ks and M2 to L1.

5. L1 sends M2 to L2.

6. L2 forwards M2 to its principal object P2.

7. P2 decrypts M2 and returns the session key Ks and the identity of the user (P1)
to L2.

L2 uses Ks to communicate with L1 and computes the access rights based on P1.
The authentication protocol described here is similar in structure to the one used by
Kerberos, but leaves out many details that prevent the replay of messages.

Object’s security domain
User’s security domain5

7

4

6

1
L1

P1

P2

L2

Key server

3

2

1. Request new session key

2. Request new session key

3. Session key encrypted with the
user’s key, and the session key
encrypted with the object’s
(server’s) key

4. Session key and the session key
encrypted with the object’s key

5. Session key encrypted with the
object’s key

6. Session key encrypted with the
object’s key

7. Session key and user’s identity

Figure 3.34. Kerberos authentication

Digital money The protocol described here creates an electronic check that is passed
from a customer to a merchant, as is shown in Figure 3.35. In step 1, the user’s bank
creates a new check. This is simply a signature on a message. In step 2, local object
L1 asks user’s principal object P1 to fill-in the check and sign it. The signed check
is passed to L2 and L2 passes the check to P2. The check is endorsed by P2 and
forwarded to bank B2. Finally, bank B2 forwards the check to the user’s bank B1.
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Figure 3.35. Digital check

Note that L2 either has to wait for confirmation from bank B1 that the check is
valid, or it has to be able to verify the validity of the check in some other way. In
general, L1 has to link a promise of L2 to deliver certain goods to its signature on
the check. After all, L2 receives the check before the purchased goods are shipped.
L2 may crash and lose all knowledge of the transaction after the check is cached but
before any goods are shipped. The use of digital money for authentication means that
L2 does not have to perform any additional access control based on the identity of P1:
the transfer of money is sufficient.

3.4.3 Examples of Secure Communication

In the previous section, we described three authentication mechanisms. These authen-
tication mechanisms combined with secure communication channels provide secure
method invocations. Now, we present three examples: a simple client/server approach
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to explain the basics, an object that uses active replication, and an object that uses
active replication for the primaries combined with other replicas (caches) that have
read-only access to the state.

The examples assume that RSA public key authentication is used. The use of
Kerberos shared key authentication results in a different protocol to setup a secure
communication channel. The difference is that the Kerberos protocol provides both
parties with a shared secret key. Using RSA, it is possible to create a shared secret
key. However, a more interesting approach is to setup a secure channel first, and
authenticate later. Two advantages of the latter approach are that the RSA private key
is used only to sign information and not for encryption. The second advantage is that
a passive intruder cannot observe the authentication protocol.

Client/Server In an object structured using the client/server approach, we have one
representative that contains the state of the object and accepts network requests to read
or modify this state. Other representatives are clients stubs: they only translate opera-
tions on the distributed shared object into network requests sent to the representative
at the server.

Security can be provided as follows (see Figure 3.36):

(a) The communication objects of the client and the server setup a secure channel.
This secure channel uses a fresh key to encrypt all traffic going over the channel.
The encryption algorithm is a shared key cipher, such as triple DES or IDEA.

The key is generated by the communication objects themselves, using the Diffie-
Hellman public key algorithm. Diffie-Hellman works as follows [Diffie and
Hellman, 1976]:

1. Part of the protocol is a large prime number p that is used as a modulus to
create an algebraic group, and a generator for that group g. It is possible
that the protocol allows multiple pairs p and g.

2. Both sides pick a secret key, respectively x and y.

3. They send “gx mod p” and “gy mod p” to the other side, respectively.

4. Now both sides can compute gxy mod p.

5. This last value is used as the basis for their shared key.

Diffie-Hellman provides a secure communication channel. An extension to
Diffie-Hellman, called ElGamal, can be used when nonrepudiation is needed.

(b) The next step is authentication and access control. The client signs its Diffie-
Hellman public key (gx mod p) with his RSA private keys and sends this along
with any certificates to the server. The server signs its Diffie-Hellman public key
with the RSA private key of the object.
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Figure 3.36. (a) Establishing a secure channel. (b) Authentication. (c) Replication object gets
access control information. (d) Method invocation.
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As described in the previous section, the RSA signature is computed by the
principal object. Both parties need access to certificates to verify that the right
RSA key pair is used for the signature.

(c) The security object in the server part of the distributed shared object, informs
the replication object about the access rights of the client at the other end of the
communication channel.

(d) A method invocation flows normally through the client and the server parts of
the distributed shared object. The only difference is that the replication object
also performs access control (i.e., does not pass illegal requests to the control
object).

Active Replication With respect to security we can consider a distributed shared
object that uses active replication to be equivalent to a collection of (equal) peers that
communicate using a group communication protocol. The details of the implementa-
tion of the protocol (especially with respect to message ordering) can be ignored.

Secure group communication can be implemented as a straightforward extension
to the client/server approach. For the group as a whole there is one secret key that is
shared between all parties. This secret key is generated when the group is created, and
should be changed when access control information is changed.

Figure 3.37 shows a join of a new group member to an existing group:

(a), (b) During binding, a new process sets up a secure, point-to-point channel to one of
the group members using the client/server approach.

The first two steps, setting up a secure channel and authentication are the same
as in the client/server approach.

(c) The group member informs the new member of the group’s secret key. Usually,
the group member also sends (part of) the state of the object.

(d) The new member sends a join message to the group encrypted with the key
obtained in step (c).

There are two ways to join the main communication group:

1. A single communication object executes the complete protocol.

After access control has been performed, the existing group member directs its
communication object to allow the new member to join. This involves sending
the secret key for the group over the established point-to-point channel.
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Figure 3.37. (a) Establishing a secure channel. (b) Authentication. (c) Distribution of the state
and the group key. (d) New member joins the group.
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2. Two different communication objects are used.

The first communication object is used to setup a point-to-point channel to a
group member. The second one is the multicast group communication object
that is used to actually join the group. In this case, the secret key is sent over the
point-to-point channel to the security object in the local object trying to join.
The security object passes the key to the group communication object.

Read-only Access combined with Active Replication In the previous example, all
peers were equal. In this example, all peers have read access to the state of the object,
but some peers are not allowed to execute modification operations.

C C

R S R S

Co CoSec Sec

P P

Figure 3.38. (e) Download access control information into the replication object

We setup a group similarly to the active replication example. The main difference
is that a fifth step is added (Figure 3.38) in which the security objects of all members
update the access rights stored in the replication objects. All existing group members
update their information about the new group member. The security object of the new
member computes the access rights of all other members.

However, to discriminate read-only members from read/write members, all mes-
sages need to be signed. Note that read-only members should not get access to the
object’s private key to prevent them from impersonating the object.



Chapter 4

Naming and Binding

4.1 Introduction

A system that contains a large collection of objects needs a structured way to refer to
an individual object. We can distinguish two different approaches. The first approach
is to use specialized access methods for specific application domains. For example,
e-mail addresses refer to mailboxes in e-mail systems, and tables and records refer
to specific data items in relational databases. The second approach is to introduce
a generic mechanism to refer to an object independent of the application using the
object.

A system which is used to refer to objects independent of their type is called a
naming system. Standard naming systems are especially important to systems that
provide a unifying paradigm for storing and manipulating data. A unifying paradigm
for accessing data promotes interoperability between applications because different
applications can share a single object. For the same reason, we also need a standard
way to refer to those objects.

For example, in UNIX, files are used as the main paradigm for I/O. Ordinary files
are used to store information which has to be kept on disk, and so-called special files
provide access to terminals, network devices, printers, etc. Both ordinary files, special
files, and, in modern versions, even processes are made accessible through a single
naming system in which all files are essentially treated the same. This approach allows
a UNIX shell to redirect the output of UNIX programs to ordinary files, special devices,
etc. In most cases, programs are not aware that their output has been redirected and
can use a single set of system calls to read and write data.

The object model described in Chapter 2 uses distributed shared objects as the
unifying paradigm. In general, a distributed object is created in one address space, and
registered under a certain name with a name service. After that, other address spaces
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can bind to that distributed object. The bind function, which implements binding,
accepts the name of a distributed shared object, and returns a pointer to a standard
object interface that can be used to access the object.

In general, naming services can be provided with different levels of abstraction.
At a very low level of abstraction, close to the hardware, a naming system refers
to individual bits and bytes. At higher levels of abstraction, we find objects and data
structures in processes, processes and files on a single machine, machines in a network
and worldwide distributed structures such as distributed shared objects.

At a very high level of abstraction, a naming system might be oriented toward
a human user of the system. An example of a very high level name is the query
‘Give me the address of a nearby bookstore that sells ‘The Hitchhiker’s Guide to the
Galaxy.” This high-level query may ultimately refer to a collection of bytes with the
very low-level reference “bytes 163 – 205 of object 10 in process 23 on machine
10.3.1.5.” which contains the address of a nearby bookshop. Going from this high-
level name to a low-level name usually involves different naming systems at different
levels of abstraction. For example, the first query may return the name of the bookstore
object which contains not only the name of the bookstore but also the catalogue. A
lower level name service may return the network location of a distributed object that
represents the bookstore. Further down, the network routing tables (another naming
system) return a route to the machine, and on the machine itself, the right process is
located, and so on.

Below we present a collection of issues that influence the structure and semantics
of a name space. Later, we will focus on issues that influence the implementation of a
name service.

• Location transparency versus location dependence

Names that have to be valid for a long time should not embed information about
the location of the object or data item they refer to. Location-independent names
are sometimes called pure names [Needham, 1993]. A pure name is just a label
and does not contain any information about the item or items it refers to. An
impure name, on the other hand, does contain location information, or semanti-
cal information about the item it refers to. An impure name prevents an object
from being moved, or requires an object to get a new name when it is moved.

• Human-readable versus machine readable

Humans are quite good at dealing with context sensitive or ambiguous names.
On the other hand, computers can easily deal with arbitrary, fixed-length bit
strings, which are hard to remember for humans. Programmers, and other com-
puter professionals are somewhere in between: they typically use names based
on words and abbreviations (instead of arbitrary bit strings) that contain a certain
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amount of syntactic sugar. For example, http://www.cs.vu.nl/globe/ is an accept-
able way for a computer programmer to refer to “The Globe home page at the
Vrije Universiteit.”

• Unique object identifiers versus variable object references

Unique object identifiers satisfy three requirements: (1) there is a one-to-one
correspondence between an object and its object identifier (i.e., an object has
exactly one object identifier and a valid object identifier is associated with ex-
actly one object). (2) Unique object identifiers are never reused. After an object
has been destroyed, its object identifier becomes invalid forever. (3) An object
is never assigned a new object identifier [Wieringa and de Jonge, 1995].

In a distributed system, unique object identifiers provide an easy way to verify
whether two object references refer to the same object or not. Two object refer-
ences refer to a single object if and only if the object identifiers associated with
the objects, to which the two references refer, are equal.

Without unique object identifiers, it is quite hard to distinguish between two
references to a single object and to two objects of the same class with exactly
the same state. Another problem is that an object reference may possibly be
reassigned to a different object without notice of the holder of the reference.
Without unique object identifiers, it is hard to make sure that an object reference
continues to refer to the same object.

A naming system based on unique object identifiers provides an easy way to
refer to a particular object over a period of time. For example, NFS uses unique
object identifiers in the form of file handles.1 An NFS client can continue to
use a specific file even if the file is renamed or if the server reboots.

On the other hand, the UNIX file system does not provide unique file identifiers.
It is in general not possible to reopen a particular file because it may have been
moved to an unknown directory. Furthermore, the same inode number may be
reused for a different file after the first one is destroyed.

Note that in a program, the memory address of a global variable would be a
unique identifier. In contrast, a pointer variable can refer to at most one object
at a certain time but can refer to different objects at different times.

• Precise versus imprecise

A name may refer to a single, well-defined object, or it may refer to (one of)
a collection of objects. We call a reference to a single object “precise,” and a
reference to a (possibly empty) collection of objects “imprecise.”

1Well almost. Sun uses a generation number to identity files that sequentially share the same inode.
However, the generation number is 32 bits and can overflow. Furthermore, it is possible to destroy an old
file system and create a new one on the same disk device.
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X.500 DNS URLs URNs UNIX files SSP chains
Location
transparent

Yes Yes No Yes Yes/No Yes

Human-
readable

Yes Yes Yes Yes Yes No

Unique OID No No No Yes No No
Precise No Yes Yes Yes Yes Yes
High-level Yes Yes/No No/Yes Yes Yes No
Relative No No No/Yes No Yes/No Yes

Table 4.1. Features of various naming systems

• The level of abstraction

We have already discussed name-lookup operations at different levels of ab-
straction. In general, we can assume that a name service accepts lookup oper-
ations at one level of abstraction and the result it returns is at a lower level of
abstraction. This allows multiple name services to be stacked hierarchically to
translate one request at a high-level of abstraction into a reference to a collection
of bytes in a data structure.

• Relative versus absolute names

Relative names are names that are interpreted relative to a specific starting point,
a naming context. A name in a naming scheme that uses relative names may
refer to different objects depending on the naming context used when the name
is looked up. An absolute name always refers to the same object until the name-
to-object mapping is changed.

UNIX combines these two schemes by using absolute and relative pathnames.2

If the first character of a pathname is a slash character (‘/’), the pathname is
absolute, otherwise it is relative. Relative pathname are resolved relative to a
context called “current working directory” which is per process and is set with
the chdir system call.

Table 4.1 shows the features of some example naming schemes. X.500 [Heker
et al., 1992] is an ISO standard naming service. The main characteristic of an X.500
name is that it is a collection of attribute/value pairs. For example: “c=us, o=Merit,

cn=Chris Weider.” This name means: country equals U.S., organization equals Merit
and name equals Chris Weider. X.500 names are location-transparent, human-read-
able, imprecise, high-level, and absolute.

2Ignoring the chroot system call which changes the root directory for a process.
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The Domain Name System (DNS) [Mockapetris, 1987] is an Internet standard for
naming hosts and mail exchange servers. DNS names are location transparent, human-
readable, precise.3 DNS is designed to map host names to Internet address and is not
designed to find the machines, for example a WWW server, to belong to a particular
company or organization. DNS is only somewhat high-level.

Uniform Resource Locators (URLs) [Berners-Lee et al., 1994] are the basic nam-
ing mechanism for the World Wide Web. A URL consists of a naming scheme fol-
lowed by a name in the naming scheme. In this comparison we ignore name schemes
other than HTTP and FTP. In the HTTP and FTP naming schemes, a name consists of
two parts: a host name and a filename. A name is therefore not location-transparent.
This is done on purpose: a URL is a resource locator. URLs are human-readable and
precise. URLs exist in both absolute and relative forms. Absolute URLs are typically
used to access an initial WWW page and relative URLs can be used in a WWW page
to refer to other WWW pages on the same site. A URL provides the current location
of a resource. In the design of the World Wide Web, a URL is not indented to be high-
level, instead a URL is designed to be returned as the result of a lookup operation on a
higher level name. However, these higher level services are not commonly used, and
URLs are used as a high-level name.

A URN is a Uniform Resource Name [Sollins and Masinter, 1994]. URNs are
resolved to URLs. URNs are not widely used but the design criteria include location-
transparency, easy to transcribe by humans, and uniqueness. A URN refers to a single
(logical) document and is therefore precise.

Files in a UNIX file system are somewhat location-transparent: (distributed) file
systems can be mounted and integrated in the name space. A UNIX filename does not
imply a location. However, files that belong to a single file system are stored on a
single disk device. UNIX filenames can be absolute or relative (to the current work-
ing directory), but even absolute names are relative to the root on the local machine.
Filenames provide the highest level of abstraction for object names in a UNIX system.

A Stub-Scion Pair chain (SSP chain) [Shapiro et al., 1992] is a naming scheme
for distributed objects. In this scheme, a (distributed) object reference is always a
local object pointer, either to the object directly (if it is local) or to a local stub (if
the object is remote). The stub communicates with a scion in a remote address space.
Object pointers are location-transparent because they either point to a local object
or to a local stub. Pointers are not human-readable, not unique, and not high-level.
Furthermore, those object pointers are always relative (to the current address space)
and refer to one object.

3A single DNS name can refer to multiple hosts (round-robin DNS), but this is not how the system was
intended to be used.
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Object-Based Naming Figure 4.1 shows a hierarchy of name spaces. High-level
naming schemes are at the top, low-level ones at the bottom. High-level naming ser-
vices are, for example, white and yellow page systems for human users and factory
finders for computer systems. Low-level naming systems that refer to smaller, per
process data structures are layered below the local object that implements part of a
distributed shared object. For example, within a process objects are referred to by
interface pointers. Within composite objects, subobjects can be referred to. Between
the high-level and the low-level naming schemes is the naming system for distributed
shared objects.

Distributed
shared object

Local object
internals

White pages, yellow pages, document indexes,

Pathnames

Object identifier / object handle

Contact address, class object

Interface pointer

Composition structure

Search engines
and

yellow pages
Object name

Contact point

resources brokers, factory finders, traders

Figure 4.1. Naming a distributed shared object

To structure naming in Globe, we will concentrate on two different name spaces
that refer to distributed shared objects: a pathname that refers to a distributed shared
object as a whole, and a contact address to actually bind to the object.4 All high-level
naming schemes, such as white pages, yellow pages and resource brokers should be
designed to return a set of pathnames as the result of a query. These high-level name
services will not be discussed further in this chapter. The Globe naming services
will translate such a pathname into the low-level set of contact addresses and class
objects. Below this low-level name, we no longer deal with distributed shared objects
but with objects and data structures in a single process. Low-level name services will
be discussed in Section 4.3.

The use of a contact address as the low-level name for a distributed shared object
is part of our distributed object model. For a process to bind to a distributed shared
object, it has to install a suitable, local object which can then connect to the distributed
shared object using the contact addresses published by the distributed shared object.
The naming scheme for distributed shared objects in Globe should therefore provide
three functions:

• Provide a way to refer to (to name) distributed shared objects.
4Together with a suitable implementation that implements the right communication protocol for the

contact address.
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• Determine the location (in terms of communication endpoints) of the object.

• Select, based on the communication protocol used by the distributed shared
object, a suitable implementation (class object) for a local object to connect to
the distributed shared object.

The name space for naming distributed shared objects is not constrained by the
object model. However, we have the following requirements:

• We want location-transparency, as this is needed for replication and for object
migration.

• We would like a naming scheme for objects. Therefore, the naming system
should be precise. References to collections of objects can be implemented in
higher level naming systems.

• We need absolute names, as they allow the users of the system to exchange
names without explicitly or implicitly specifying the naming context.

What remains is to select whether the name should be human-readable or not, and
whether unique object identifiers should be used.

Using a unique object identifier can be an advantage or a disadvantage. The ad-
vantage is that higher level naming systems can refer to one particular object; there
is no risk that the object identifier is reused and refers to a different object. The dis-
advantage is that it is impossible to replace an object with a different object, only the
contents of the object can be updated. Note that human-readable, unique object iden-
tifiers are almost impossible. A unique object identifier has to remain unique forever,
where as humans prefer to use names with semantic content which are likely to be
reused for different objects at different times (imagine a programming language, or a
file system where you can use a particular identifier or pathname only once).

Using human-readable names also has advantages and disadvantages. Human-
readable names for objects simplify referring to those objects in day-to-day conver-
sations. The main disadvantage of human-readable names is that it is harder for a
program to use, store and compare them. Furthermore, internationalized character
sets (e.g., Unicode) are needed to satisfy many users.

Human-readable names, combined with a sufficiently powerful naming service can
be used to provide a way to integrate unique object identifiers. Part of the name space
can be reserved to provide access to objects referenced by unique object identifiers.

Hierarchical name spaces have nice scaling properties compared to alternatives
such as flat name spaces and name spaces with attributes. These scaling properties in-
clude a virtually unlimited collection of names, support for distributing and partition-
ing the name space over multiple servers, machines, organizations, etc. Furthermore,
hierarchical name spaces support delegating responsibility for parts of the name space
to different users or organizations.
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For example, the UNIX file system name space can easily support millions of
objects. A typical Usenet-news file system alone stores a million news articles. The
mount system call allows a large name space to be constructed from smaller name
spaces in file systems. Individual users or projects are given their own private portion
of the name space by creating home directories, for example /home/globe.

On a worldwide scale, DNS (Domain Name System) is used to name a large num-
ber of computers on the Internet. In DNS, distribution over multiple machines and
delegation of authority are combined in a single mechanism. A DNS NS record del-
egates a part of the name space to a new “zone,” on a different name server; a SOA

record at the root of a “zone” describes the responsible person or organization.

4.2 Binding to Distributed Shared Objects

Binding to a distributed shared object consists of translating a path name into a contact
address and a class object, followed by the creation and initialization of an instance
of the class object. The newly created object is the local part of the distributed shared
object (as described in Section 2.3) and uses the contact address to connect to the rest
of the distributed shared object.

It is important to realize that input to the binding process is only a (possibly pure)
name for the object, no other information about the object is available. In contrast,
in the case of a URL, the protocol is explicitly encoded in the first part of a URL by
means of the protocol identifier (HTTP, FTP, MAILTO, etc.).

In most distributed systems, the naming system maintains a mapping from names
to network addresses. This approach has two disadvantages: the naming system does
not store information about the communication protocol that is to be used, and a
name resolves to only one contact address. For example, in the URL http://centaur.cs.

vu.nl:80/, the name of the computer to be contacted is centaur.cs.vu.nl. This hostname
resolves to the Internet address 192.31.231.174. The parts that identify the protocol
(HTTP) and the TCP port to be used (80) are part of the name and are not stored in the
name service. This means that changing the TCP port number of the WWW server
requires changing the name of the object.

The same hostname to address mapping is also used by other programs such as
telnet for remote login, NNTP for news, finger for login information, etc. This means
that, adding an extra address to host centaur, for example the address 168.100.189.97,
to replicate the WWW server means that the other protocols (Telnet, NNTP, etc.) also
start using the extra address. The solution that is currently used on the Internet is to
use special hostnames such as www, mail, and news that resolve to the addresses for
the real WWW, mail and news servers.
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Figure 4.2. Mapping object names to contact addresses

Another issue is how to register an object under multiple names. Figure 4.2 shows
three approaches to map multiple names for a single object to a set of contact ad-
dresses. The first approach shown in Figure 4.2(a) simply duplicates the set of contact
addresses for each name of the object. The second approach recognizes one primary
name (Name 1) which directly maps to a set of contact addresses, and zero or more
secondary names (Name 2) which point to the primary name. The third approach in-
troduces an extra level of indirection: the object’s names are first mapped to a (unique)
object identifier, called object handle, which is subsequently mapped to the set of
contact addresses.

We compare the three approaches in three areas:

1. Changing the set of contact addresses.

It is quite hard to change the set of contact addresses when the first approach is
used. The reason is that in a worldwide system, it is not possible to find all the
names in the name service that refer to a single object, unless the system also
contains a complete reverse index that returns all the names for a single contact
address. In this respect, the second and third approach are better because the
contact addresses are stored in one place.

2. Creating and deleting names for an object.

In the first and the third approach, different names for an object are quite inde-
pendent. New names can be added by either copying the set of contact addresses
(first approach) or by simply referencing the object handle (third approach). In
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the second approach, deleting the primary name when there are still secondary
names around is a problem. It is necessary to select a new primary name, and
to update the remaining secondary names. Otherwise the secondary names are
left dangling. Adding a new name using the first approach is somewhat less ef-
ficient than the third approach for objects with a large set of contact addresses.
The reason is the each new name requires copying the set of contact addresses.
In short, the third approach is the preferred alternative.

3. The cost of a complete name lookup.

Of the three alternatives, the third approach always has an extra level of indirec-
tion, which tends to increase the cost of a name lookup. The first alternative is
the most efficient.

For Globe, we chose the third approach, for two reasons. The first reason is that
compared to the other two alternatives, this approach provides the most flexible way
to deal with (possibly large) sets of contact address and objects with multiple names.
Furthermore, handling path names separate from sets of contact addresses provides
an opportunity to use different technologies for the two services. A separate name
service, called the location service, is introduced that maps object handles to sets of
contact addresses. The regular name service maps object names to object handles.
The separation of the name service from the location service allows the name service
to focus on adding and deleting names for an object. At the same time, the location
service deals with mobile objects, which frequently replace one address with another,
and highly replicated objects (with possibly large sets of contact addresses).

The first step of the binding process, that is, mapping a name to a contact address,
can be subdivided into four smaller steps: a name-service lookup, a location-service
lookup, destination selection and implementation selection (see Figure 4.3). We will
describe each step briefly before going over the details.

Step 1: name lookup

In the first step, the path name passed as an argument to the bind call is resolved
to an object handle. This effectively decouples the name of an object from the
actual location of that object.

Step 2: location lookup

In the second step, the object handle is resolved to a set of contact addresses.
Each element of this set describes the network address, port number, etc., where
the object can be reached, and the protocol stack that has to be used to commu-
nicate with that particular destination.

A protocol identifier combined with actual address information is similar to a
URL: in the URL http://www.cs.vu.nl/~philip, http is the protocol and the remain-
der is the address. In other name services, the protocol is implicit. An example
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Figure 4.3. Four-step naming of a distributed shared object

of the latter is a DNS MX record. The contents of the record is an IP address
and a priority. The protocol and TCP port are implicitly specified as SMTP and
port 25.

Step 3: destination selection

In the third step, one contact address is chosen. In general we expect that there is
more than one contact address for two reasons: a single object may use different
protocol identifiers to support different protocols for binding to the object, and
objects with replicated or partitioned state offer multiple contact addresses for
the same protocol to increase availability and locality. This selection should be
made, based on locality, security constraints, and the set of protocol implemen-
tations that are available in the address space from which binding takes place.

Step 4: implementation selection

In the fourth step, a suitable implementation for the selected protocol is chosen.
Implementations are stored as class objects; new ones can be added dynami-
cally. Once a class object is loaded, it can be used to access multiple distributed
shared objects of the same class. To access a single object from all over the
world, we use worldwide unique protocol identifiers that are resolved locally to
a class object that implements that protocol.

After the class object, selected in step 4, has been loaded, it is used to create a new
local object. This local object is then initialized with the distributed shared object’s
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object identifier and the contact address of the chosen communication endpoint. To
complete the binding process, the new local object sends the object identifier over the
communication channel to the distributed shared object. The distributed shared object
verifies that the object identifier corresponds to its own object identifier. The object
identifier is sent by the new local object to avoid a problem with stale caches. This
problem will be described in Section 4.4.5. The local object becomes a representative
of the distributed shared object.
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Figure 4.4. Binding to a distributed shared object

The binding process is illustrated in Figure 4.4. Steps 1, 2, and 3 perform, re-
spectively, the name lookup, the location lookup, and destination selection. Step 4,
implementation selection, uses a class repository. In step 4b, the name of the class
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Existing name spaces Prefix
Telephone numbers /globe/E164/

D.N.S. /globe/dns/

X.400 /globe/X400/

New name spaces Prefix
Geographical /globe/geo/

Companies /globe/biz/

Table 4.2. Globe name spaces

that implements the protocol in the selected contact address is passed to the class
repository. The class repository returns a class implementation, which is returned to
the client process. In step 5, the class object creates a new instance. This new instance
connects to the distributed shared object in step 6 and sends the object identifier to the
distributed shared object for verification.

4.2.1 Name-Space Objects

In the previous section, we saw that in the Globe system a complete name lookup
uses two services: a name service and a location service. The name service maps a
name to an object handle, and the location service maps the object to a set of contact
addresses. In this section we concentrate on the name service. The two main issues we
will discuss are the structure of the name space and the implementation of the name
service as a collection of distributed shared objects.

Table 4.2 shows two approaches to the design of the name space for distributed
shared objects. One approach is to incorporate existing name spaces into a single
Globe name space. Another approach is to create completely new name spaces.

To integrate multiple name spaces into a single name space, we allocate unique
prefixes for each name space. Table 4.2 shows the prefixes allocated for three existing
name spaces. For example, a DNS name cs.vu.nl would become /globe/dns/cs.vu.nl/.

All names for distributed shared objects start with “/globe” for two reasons: it
makes names of distributed shared objects easy to recognize, and it makes them easy
to embed in other name spaces. The first reason is similar to the use of the ‘@’
symbol for Internet e-mail, http:// and ftp:// for URLs and even www.domain-name for
home pages. The second reason is that this approach allows the Globe name space to
be incorporated into the name space for local objects (Section 4.3) or the UNIX local
file-system name space. A similar approach is used by AFS, which uses the prefix
/afs/DNS-name/

A good reason for re-using existing name spaces is that the creation of a global
name space is complicated by nontechnical issues. An example of a global name
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space is the global telephone numbering plan (ITU recommendation E.164). Two
other examples of worldwide name spaces are X.500 addresses and DNS.

An example of a nontechnical issue is trademark conflicts. A flat name space,
combined with user-chosen names may limit the name space to the point where there
are too few names to name a large collection of objects. This problem occured on
the Internet in the .com DNS domain. Internet users are used to finding compa-
nies, trademarks and sometimes even products in the .com domain. For example,
the WWW-server of a company called Apple is expected to be at www.apple.com. Un-
fortunately, trademark laws allow multiple companies to use the same trademark as
long as they sell different products or operate in different areas. In the case of Apple,
www.apple.com refers to the WWW-server of the company that makes Apple comput-
ers. However, there are other companies that are also called Apple, for example, the
Beatles’ record company. In general, only one company can register a particular trade-
mark as trademark.com. Even worse, it is not clear whether a trademark is required at
all to register a name in the .com domain [Oppedahl, 1997b].

The main problem here is not one of trademarks, but that users use a naming
scheme that was designed for programmers and system administrators to name hosts
on the Internet, as a white pages service to locate companies. Users prefer to en-
ter just a single word or abbreviation to refer to a particular company. This worked
well when few companies were present on the Internet. However, the name space of
easy-to-guess and easy-to-remember words is quite small compared to the number of
companies in the world and collisions were bound to occur.

The solution to this problem is to use longer names, which are still relatively easy
to remember but are harder to guess. To assist users in finding the Internet name for a
particular company, product or individual, we need an interactive white pages service.
Users provide this service with some initial information, such as company name, or an
individual’s last name. The white pages service then provides list of matching entries,
or if there are too many matches, asks the user to refine the query by adding for
example, geographical information. Without such an interactive white pages service,
managing a worldwide name space can be quite complicated, especially if the name
dispute policy is flawed [Oppedahl, 1997a].

There are two different ways to integrate an existing name space into the Globe
name space:

1. Use the “values” of the name space (for example the telephone numbers of
E.164).

This approach treats the existing name space as nothing more than a collection
of values. This is necessary for telephone numbers, which are just that: a col-
lection of values without support from any accessible, distributed name service.

2. Actually incorporate the existing distributed name service for a name space in
the Globe name service.
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Both approaches to the integration of existing name space have drawbacks. The
main drawback of the first approach is that the name server used by Globe has to
be kept synchronized with the official allocation of the name space. A problem with
the second approach is that existing name servers (such as DNS and X.400) use a
completely different technology to distribute, replicate, and update their information.

Both approaches can be integrated into a single system. If we take, for example,
the DNS name space, we can use the first approach to create a hierarchical collection
of directories that follows the structure of DNS. Each DNS domain becomes a sep-
arate directory. An example of a name would be /globe/dns/nl/vu/cs/.... The nl, vu.nl,
and cs.vu.nl DNS names map onto the directories /globe/dns/nl, /globe/dns/nl/vu, and
/globe/dns/nl/vu/cs. With the second approach the lookup is redirected to a DNS re-
solver. Note that the result of this lookup operation has to be an object handle. An
object handle can be stored in DNS using the TXT fields. In this case, the name looks
like /globe/dns/cs.vu.nl/.... The cs.vu.nl part is passed to the DNS resolver.

In addition to using existing name spaces, we can also use new ones such as the two
name spaces shown in Table 4.2. /globe/geo is the start of a geographically allocated
name space, starting with the two letter country codes, and followed by entries for
states, provinces and cities. /globe/biz is for the promotion of products and services.

Implementation We can use two different approaches to build a name service in a
system based on distributed objects: treat the name service as a separate entity which is
completely independent of the object technology used, or implement the name service
as a collection of directory objects that are linked together. An example of the first
approach is the World Wide Web. The name server used for WWW documents is
a combination of existing name services such as DNS and local (e.g., UNIX) path
names.

An example of the second approach is NFS [Nowicki, 1989]. In NFS, both files
and directories are identified by 32-byte identifiers called file handles. NFS direc-
tories implement a name-lookup operation which returns the file handle for a name
in a directory. A complete name lookup for a filename is split up in a sequence of
directory-entry lookups which are performed on different NFS directories.

In their purest forms, both approaches have drawbacks. A completely separate
name service does not benefit from the technology used to implement the objects (sup-
port for persistence, security, replication, etc.). The use of directory objects restricts
either the name space, or the object implementations or both. For example, in some
cases, part of a name space is derived from an external source, such as a (product)
database. Enforcing the rule that each directory is a separate object leads to a large
collection of objects that have to reflect the contents of the database.

For Globe, a combination of the two approaches is the most promising solution.
The name space is implemented as a collection of distributed shared objects. However,
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each object can implement an arbitrary number of directories. Note that these “name-
space objects” are not required to store their contents explicitly. Instead, they are
allowed to compute or to look up the necessary information on the fly.

A name lookup on a directory object is functionally:

o.lookup(pathname) → objectHandle, remainingPath

The lookup method is invoked on a name-space object o to resolve a path name. The
result of this method is an object handle and the remainder of the path name. The
object handle returned by the lookup method can either refer to the requested object
(the object denoted by the name) or to a directory object. The requested object handle
was returned when the remainder of the path name returned by the lookup method is
empty. Otherwise, the object handle should refer to a directory object which is used
for the next lookup. In this case it is necessary to bind to the directory object (i.e., we
get a location lookup, destination selection and an implementation lookup).

This scheme is quite flexible:

• Multiple (independent) name spaces are supported by allowing the name lookup
to start with different root objects. Note that this has to be supported by the
syntax that is used for naming.

• A single lookup-method invocation can process multiple components. This is
an important optimization if the state of multiple directory objects that are used
during a name lookup, is stored in a single address space (or on a single ma-
chine). In that case, the directory object should try to look up the next compo-
nent itself, and return the result of that second lookup. Looking up one compo-
nent at a time, requires forwarding multiple lookup-method invocations to the
same address space. The additional network latency can significantly increase
the total time needed to complete the lookup operation.

• The lookup method returns a new path name. This can be used to implement
something similar to symbolic links. Normally, the lookup-method invocation
replaces a single component with an object reference. However, the lookup
method can also return a reference to a root directory object and prepend some
number of new components to the list of components passed as its argument.
A problem with this feature is that a loop can be constructed that is almost
impossible to detect.

• Storing directories in distributed shared objects provides support for different
replication strategies, and different consistency guarantees for different objects.
But directory objects can also use alternative data structures for storing the di-
rectory. For example, a directory object can support “union mounts” or “filters.”
A union mount is a merge of a number of other directories, a filter provides ac-
cess to part of an underlying directory.
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An alternative lookup method is used by DNS. In DNS, the original, absolute path
name is passed as argument to the lookup request. Each DNS server consumes as
much of the absolute path as it can and either returns the requested information or a
redirect to a different DNS server. This approach is less suited for a name-space object
as it requires the object to know its own name to be able to skip the initial part of the
path name.

The lookup method presented above allows a name-space object to chose between
iterative and recursive name lookups. In an iterative name-lookup algorithm, a name
lookup is performed one step at a time (i.e., a client invokes a lookup operation on
one object, gets a reference to a second object on which the next lookup operation is
invoked, and so on). In a system with recursive name lookups, the client invokes one
operation on the root directory object which invokes a lookup operation on another
object. This object, in turn, invokes a lookup operation, and so on, until the name
lookup is complete. Both algorithms have one serious disadvantage over the other
algorithm. The net effect is that both are needed in different situations.

The major disadvantage of using an iterative lookup algorithm in a wide-area dis-
tributed system is the inherent latency associated with this algorithm. An iterative
lookup which requires n method invocations on remote objects costs at least n round
trip times. The recursive lookup algorithm usually incurs less latency due to locality
in the object placement. The major disadvantage of the recursive lookup algorithm
is that the cost of actually performing a lookup operation is much higher. Instead of
returning information from a table, which is the case for an iterative lookup, the di-
rectory object has to invoke a lookup on another object. Popular directory objects,
usually the ones close the root, may get overloaded as a result. The lookup interface
we presented allows an individual object to decide whether it has sufficient resources
to perform a recursive lookup or not. If it does not have the necessary resources it can
simply return the result of a simple table lookup.

4.2.2 Location Service

The location service provides a mapping from an object handle to a set of contact
addresses. We will give a detailed description of the location service in Section 4.4.
In this section we will present the requirements for the location service.

The main functional requirement for the location service is that it is to provide
a mapping from an object handle to a set of contact addresses. An object handle
consists of two parts. The first part is a 32-byte unique object identifier. The second
part is used by the location service implementation to quickly locate the set of contact
addresses for a particular object. An object handle is created when an object is first
registered with the location service, and remains unchanged for the duration of the
registration. The interface to the location service has to support five operations: a
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Operation Description
lookup(h) → {a} Look up a set of contact addresses {a} for an object handle h

register(o) → h Register a new object o with the location service. This
method returns the object handle h

unregister(h) Unregister a destroyed object
insert(h, a) Insert an address a into the set of contact addresses for object

handle h

delete(h, a) Delete address a from the set of contact addresses for object
handle h

Table 4.3. Location Service operations

lookup operation, registration and unregistration of objects, and changing (insert and
delete) the set of contact addresses. The operations are listed in Table 4.3.

The two main reasons for changing a set of contact address are:

• Migration

An object can migrate on-line or off-line. A mobile agent implemented as an
object typically migrates on-line. During migration, such an object first inserts
a new contact address into its set of contact addresses and later deletes the old
contact address. The original host is expected to forward or redirect any bind re-
quests to the new host. An object located on a notebook is usually disconnected
from the network when the notebook is moved to a different location and then
reconnected the network. These objects get a new contact address the moment
the notebook is turned on again. In this case the set of contact addresses is
simply replaced.

• More or fewer contact points

The set of contact addresses is simply updated to reflect the addresses added or
deleted.

In general, we can expect that the complete set of contact addresses of a highly
replicated object is too big to be dealt with in one lookup operation. Returning the
complete set is not required because we are looking only for a nearby contact point.
The addresses in the set of contact addresses vary in two dimensions: the set may
include addresses for different protocols, or the distance of the various address with
respect to the caller may vary. When the set summarized, it is important to include
maximal variation in the first dimension, and also some variation in the second dimen-
sion. This ensures that at least one address for each supported protocol is returned.
In addition, more than one address for a single protocol can be returned for increased
fault tolerance. In practice, we expect that the location service returns a somewhat
fixed subset of the actual set of contact addresses.
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A major constraint on the design of the location service are the scalability require-
ments:

• The main scalability requirement for network traffic is locality. Informally, we
require that the location service uses only local communication if a process tries
to bind to a nearby object.

• Scalability of storage can be achieved if the storage requirements of the location
service grows linearly with the number of objects registered.

• Scalability of CPU usage is not expected to be a problem. The location service
performs relatively simple operations. We can assume that the location service
will be implemented as a distributed service. In such a distributed service, the
majority of operations are executed in response to requests that arrive over a
network. As a result, the CPU time needed of the location service as a whole is
roughly proportional to the total network traffic.

• Scalable (system) administration.

Ideally, the location service should be designed such that every organization and
every individual is able to provide location services for its own objects. This al-
lows an object owner to decide what performance and reliability guarantees are
appropriate to locate his objects. It also allows an object owner to buy location
services for his objects from a company specialized in location services. The
alternative, one or only a few organizations providing location services for the
whole world, cannot be considered scalable from a system administration point
of view.

Unfortunately, finding the location service run by of an object’s owner is not at
all trivial. A separate location service would be needed to locate to object’s lo-
cation service. This brings back the other solution: only one, or a few organiza-
tions provide worldwide location services. The result of this is that completely
scalable system administration can not be obtained for the location service.

In general, long term stability can be required only from (semi) government
bodies because other organizations can go bankrupt, or they can simply decide
not to provide a certain service anymore. On the other hand, small organizations
that compete with each other often provide better service than governmental
organizations or contractors.

4.2.3 Destination Selection

The destination selection module has to sort the set of contact addresses returned by
the location service. Selection criteria include predicted network performance, for
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both latency and bandwidth, expected reliability of the contact point (a high bandwidth
path to a crashed server process is not very useful), and administrative policies.

Decisions can be based on static information about the system, for example the
network topology, or on the results of performance measurements. Low-level com-
munication latency can be measured on the Internet using ICMP echo requests and
replies, see for example [Golding, 1992a].

A simple destination selection scheme is present in the BIND (Berkeley Internet
Name Domain) DNS implementation. The bind resolver that is part of a DNS server
keeps track of the latency of DNS requests sent to other DNS servers. When multiple
servers for a particular domain exist, the server with the lowest latency has a high
probability of being used first. Furthermore, if multiple address records are returned
as the result of a DNS query, the local resolver in a process sorts those addresses such
that an address on an attached subnetwork will be tried first.

A highly replicated object, with a large number of contact addresses, may have a
very large set of contact addresses. This set may be too large to be passed efficiently
from the location service to the destination selection module. There are two tech-
niques to deal with this problem. One technique is to integrate part of the destination
selection module with the location service. Especially, destination selection based on
network topology is easy to integrate with certain kinds of location servers. Using
this approach, the location service returns only a subset of the set contact addresses.
The other technique is the use of a “stream” to move contact addresses from the loca-
tion service to the destination selection module and further on to the implementation
selection module. In this approach, the destination selection module acts more like
a filter than a sort algorithm. The destination selection module scans the stream for
an address with suitable performance and passes it on to the implementation selection
module.

Further research is needed to determine how important destination selection is,
and whether performance measurements should be preferred over topological or geo-
graphical information.

4.2.4 Implementation Selection

As described in Section 2.3, a protocol identifier specifies the complete protocol that
is used to connected to a distributed shared object. This includes not only commu-
nication protocols, but also data encoding, security, application-level protocols, etc.
Implementation selection involves locating a class object that implements the proto-
col that is identified by the protocol identifier. In general, we expect the class object
to be locally available, either on the same machine or on a nearby file server.

The designer of a distributed shared object can use the protocol identifier for two
different purposes. One approach is to use the protocol identifier to identify the com-
plete protocol used by the distributed shared object: the low-level communication
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protocol, the replication protocol, the encoding of method invocations, how to mar-
shal the state, and the semantics of the object. Another approach is to use a protocol
that implements only the initial handshake with the distributed object. After initial op-
tion negotiations , the real protocol is selected, and an implementation for this protocol
has to be loaded.

There is a trade-off between the two approaches. The first approach leads to a large
collection of protocol identifiers but binding does not incur additional overhead and
the “type” of an object can be inferred from its set of contact addresses. The second
approach results in a much smaller set of protocol identifiers, but an initial handshake
is unavoidable, and binding may fail later on if no implementation for the distributed
object’s protocol is available. Note that a single distributed shared object is allowed
to use multiple protocol identifiers in its set of contact addresses, so, in theory, both
approaches can be used by a single object at the same time.

We would like protocol identifiers to satisfy the following, conflicting, set of re-
quirements:

1. The protocol identifier should uniquely identify the protocol to be used.

2. The protocol identifier should be self describing, that is, in the ideal case the
protocol identifier should point to a precise description of the semantics of the
particular protocol.

3. The protocol identifier should allow run-time protocol composition.

4. The protocol identifier should be small (in number of bits).

The fourth requirement is in conflict with the second and the third. A protocol
identifier cannot be both small and descriptive. The choice between satisfying either
the second and third requirements or the fourth requirement roughly corresponds to
the two different uses for the protocol identifier. It is possible to use small protocol
identifiers and sacrifice descriptiveness, if there are only a few protocols to connect to
the object. On the other hand, if protocol identifiers describe the complete protocol
used by a distributed object then descriptiveness becomes more important.

A protocol identifier that satisfies the first three requirements can be created as
follows. First create a distributed shared object that describes the protocol. The de-
scription can be an informal, human-readable text, or it can be a formal protocol de-
scription. It is also possible that the document refers to existing implementations of
the protocol, or describes how to compose an object that implements the protocol from
different pieces. This distributed shared object has an object handle, which not only
uniquely identifies the document object but also allows binding to the object to read
the document. This object handle is an ideal candidate for a protocol identifier.

In addition, to satisfy the fourth requirement, relatively small protocol identifiers
for well-known protocols can be allocated by numbering authorities such as the Inter-
net Assigned Numbers Authority (IANA) or the ITU.
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Further research is needed to determine how a protocol identifier can be used to
obtain a suitable class object. The case were the class object is locally available is rel-
atively easy: a simple table that maps protocol identifiers to class names is sufficient.
The case where implementations have to be downloaded from a remote repository is
much more complex.

4.3 Local Name Spaces

To invoke a method on an object, the caller needs a pointer to the proper interface of
the object. An interface pointer can be obtained through a call to getinterface using
a pointer to the standard object interface. In some cases, pointers to the standard
object interface are returned by method invocations. For example, invoking the create

method on a class object returns a pointer to the standard object interface of the newly
created object. However, in most cases, the bind library routine is used to look up a
name and return a pointer to (the standard object interface of) the desired object.

The local naming system is designed to provide a flexible way of referring to
local objects in the same address space, and, through delegation, to distributed shared
objects. The use of a proper naming system simplifies combining separately developed
components [Saltzer, 1978].

The bind library routine provides access to:

1. Distributed shared objects.

These objects have names that can be used in a location-transparent way all over
the world.

2. Local class objects.

These objects support the creation of instances of a particular class.

3. Local instances.

Objects that are dynamically created by class objects.

4. Subobjects that are part of a composition.

A single, per-process name space is used to access these objects. This name space
and the name-space implementation have three features to accommodate the object
categories mentioned above: (1) part of the name space can be delegated to an object,
(2) the name space provides both absolute and relative names, and (3) the name space
can be manipulated through overrides.

Basically, the local, per-process name service provides a hierarchical name space
that associates a name with a pointer to a local object’s standard object interface. This
allows a program to refer to local objects by their names instead of passing around
pointers to those objects. Part of this name space can be delegated to a local object.
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Name space Description
/globe/ Worldwide name space for distributed shared objects
/classes/ Class object repository

globe.csRep A client/server replication class object (example)
/builtin/ (Class) objects linked with an application

memory memory allocator (example)

Table 4.4. Standard name spaces

For example, the /globe name space of distributed shared objects is delegated to an
object which knows how to bind to a distributed shared object.

Names are resolved with respect to a context. A context is a set of bindings of
names to objects [Saltzer, 1978]. In the local name space, contexts are explicitly
associated with local objects, the main program, and with libraries. This is different
from most other naming system, which operated more or less independently. For
example, the naming system in a UNIX file system is independent of the processes
that use the file system.

Absolute names are resolved with respect to a global, per-process context; relative
names are resolved with respect to the object’s (or library’s, or main program’s) own
context. Every context has an absolute name. For an object, the name of its context
is equal to the name under which the object has been registered. Special contexts are
created (with their own absolute names) for the main program and for the libraries.
From a name-space perspective, binding to an object using a relative name a from a
context with name /p/q is equivalent to binding using the absolute name /p/q/a.

An override is a feature of the local name space that allows the object associated
with a particular absolute name to be changed for one (or a few) naming contexts.
This means that binding to an object with the absolute name /p/q in one context may
return a different result than binding to an object with the same name in a different
context.

These overrides allow different parts of a process to use a different implementation
for certain functionality. For example, a different object implementing /builtin/memory

may be associated with some local object to provide a special high performance mem-
ory allocator for a particular object (or to keep track of the memory that object allo-
cates such that it can be deleted when the object is destroyed) An override is similar
to a skeleton directory in Jade [Rao and Peterson, 1993].

Class Repositories and Compositions The local name space provides seamless in-
tegration for class repositories and compositions with the local object model. A class
repository provides access to a collection of object classes which are loaded dynami-
cally into a process’ addresses when needed. The class repository is accessed through
part of the local name space: /classes. This part of the name space is delegated to
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an object which has access to a list of class objects on a local or remote file system.
When a class object is needed, the application (or the requesting object) passes the
name of the class to the bind function (for example /classes/globe.csRep). The class
repository object dynamically loads the class object into the address space (if it is not
already there) and returns a pointer to the object’s standard object interface. The caller
does not care whether the class object is already loaded, or whether a class is built-
in or should be loaded from a file system, a simple bind using a name in /classes is
sufficient.

In some object-oriented programming languages, such as C++, classes and objects
are accessible by name only in the program source. In the executable process, only
pointers to objects are available and classes are completely inaccessible. This makes
such a language less suitable for dynamic addition of new classes to a running process
due to the lack of a standard mechanism to refer to those classes. The objects that are
created dynamically and which are to be shared between independent modules have
to be registered with nonstandard, ad-hoc local naming systems.

In contrast, Globe explicitly names local (class) objects. Creating a new instance
of a class involves binding to the class object followed by invoking a create method
on the object returned by bind. In this way, it does not matter whether the caller tries
to create an instance of a built-in class object (for example, /builtin/classes/thread or a
dynamically loaded class object (/classes/globe.csRep, a Globe client/server replica-
tion object). The same thing holds for nonclass objects such as the default memory
allocator (/builtin/memory).

Comm.
object

Replication
object

Control
object

Semantics
object

Figure 4.5. A composite object

Compositions use the local name space for two purposes: to keep track of their
subobjects, and to allow subobjects to obtain references to each other. The compo-
sition in Figure 4.5 contains four subobjects: a control, semantics, replication, and
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Name Value
/.../obj Pointer to composite object
/.../obj/fCtrl Pointer to control object
/.../obj/fCtrl/sem ../fSem

/.../obj/fCtrl/repl ../csRepl

/.../obj/fSem Pointer to semantics object
/.../obj/csRepl Pointer to replication object
/.../obj/csRepl/comm ../tcp

/.../obj/tcp /classes/tcp

Table 4.5. Name space of a composite object

communication object. In this example, three of those subobjects (the control, se-
mantics and replication object) are private to this composition and the communication
object is shared by other compositions. The arrows in the figure show which objects
need references to which other objects. Table 4.5 shows the additions to the name
space after an instance of this composition is created. Name-space entries for subob-
jects are created in the context of the composite object (i.e., if the composite object is
called /.../obj and an subobject is called fCtrl then the absolute name of the subobject
is /.../obj/fCtrl). In this case, the four subobjects are registered under the names fCtrl,
fSem, csRepl, and tcp. The registration of the communication object (tcp) is special:
instead of actually creating this object (as is done for the other three subobjects) we
install an override to the actual location of the object. This is indicated with the string
“/classes/tcp.”

In a composition, overrides are used for two purposes. The first purpose is to
add a reference to an existing object outside the composition. The reference to the
/classes/tcp object in the previous paragraph is an example of this usage. Another use
for overrides is to allow subobjects to obtain references to each other. The replication
object needs a reference to a communication object, which it tries to obtain by binding
to the relative name “comm.” The name-space implementation tries to resolve this
name in the context /.../obj/csRepl, which results in a reference to the absolute name
/.../obj/csRepl/comm. To allow these bind calls to succeed, the composite object has to
install overrides in the contexts of its subobjects. The name “../tcp” simply refers to a
name-space entry (object or override) called tcp in the parent’s context. Note that the
overrides that are used in this example are all relative (to the composition’s naming
context).

The main reason for a fairly complicated, local name space is to provide an ap-
plication with enough flexibility to be used in a heterogeneous environment. In an
heterogeneous environment, we expect an application to run on different operating
systems, and to deal with different implementations of distributed shared objects. The
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local name space in a Globe process combines a single mechanism to refer to other
objects with a mechanism to manipulate this name space (overrides).

4.4 Location Service

The functions of the location service that were described in Section 4.2.2 can be di-
vided into three categories: (1) looking up a set of contact addresses for an object,
(2) registration and unregistration of an object, and (3) adding/deleting contact ad-
dresses for an object. The design of a location service involves a trade-off between the
efficiency of the three categories of operations. For example, a faster lookup imple-
mentation typically means that adding a new contact address becomes more expensive
(for instance, due to replication). More efficient ways of adding new addresses may
come at the expense of increased costs of registering new objects.

In general, this trade-off requires optimizing the placement of the information
needed to map an object handle to a set of contact addresses such that updates to the
set of contact addresses are cheap (i.e., require only a small amount of preferably local
communication) and that lookup operations are also cheap. Since updates to the set of
contact addresses are initiated by the object itself, it makes sense to store the contact
addresses initially in a part of the location service that is near the object. Note that
a replicated object with contact addresses at different sites requires storing contact
addresses at multiple locations. Furthermore, the location of a mapping should follow
a mobile object after migration.

The right trade-off between the cost of lookup operations and the registration costs
depends on the use of the object. Some objects are registered once, do not change
their contact addresses, and are looked up relatively often (a high read/write ratio for
the contact address). These objects benefit from a location server implementation that
replicates the contact addresses. In contrast, a mobile agent typically moves very often
which suggests moving the contact address with the object at the expense of lookup
operations. Highly replicated objects require a location service that can distribute a
large set of contact addresses.

A straightforward approach to these trade-offs is to divide objects into different
categories and use different algorithms for each category. A hierarchical, DNS like,
structure is sufficient for objects that are located on a single site. These objects may
have a few replicas, but the replicas should not be far apart. We expect that the majority
of the objects will fall in this category. Highly replicated objects require a location
service where different sites cooperate in maintaining location information for a single
object. Mobile objects require a more centralized approach that allows objects to be
found in the network.

The location information of these three categories of objects can be stored in three
independent, worldwide location services. A few bits in the object handle can be
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used to specify which location service is used. A disadvantage of this approach is
that an object cannot move to a different category without changing its object handle.
Another approach is to design a location service that is able to dynamically adapt to
the migration patterns of an object.

Scalability The scalability of the location service requires minimizing the overall
cost of using the location service. This cost has various components, such as the
communication bandwidth used, the amount of storage used, the CPU cycles needed
and the latency observed by a process. Some costs such as communication bandwidth
and latency depend partly on how frequently the various methods are invoked. For
example, in a system with objects that live relatively long and do not change their set of
contact addresses, the cost depends mainly on the execution of the lookup method. In
other systems with objects that live for a relatively short time, or that move frequently,
the total costs associated with creating and deleting objects and with inserting and
removing contact addresses may dominate the total costs of the lookup operations.

In general, we cannot compute reasonable limits on the cost of operations. How-
ever, it is possible to relate the cost of a lookup operation to the overall cost of binding.
One thing we would like to prevent is that when a process tries to bind to an object, it
has to communicate with a location server that is much farther away than the nearest
contact point of the object. In that case, the total cost of the bind operation is domi-
nated by the cost of the location lookup. On the other hand, making lookup operations
much cheaper (at the expense of modification operations) than the initial interaction
with the distributed object is not very useful either. The reason is that location lookup
operations are almost always part of a bind operation, and binding typically requires
connecting to a contact point.5 The result of this is that the communication costs of a
lookup operation should be comparable to the costs of connecting to the nearest con-
tact point of the distributed shared object. The cost of a lookup operation is allowed
to be lower but not at the expense of modification operations.

Comparing Location Servers To compare different architectures for implementing
the location service, we select a number of example objects, based on the following
criteria:

1. Lifetime

For a short-lived object, the cost of registering a new object may be a significant
fraction of the total location costs for that particular object.

5With the exception of certain kinds of caches. But in that case we can cache the location information
as well.
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2. Migration speed

An object may not move at all, move occasionally, or move constantly. For an
object that moves occasionally we expect that many lookup operations will be
performed between two moves. For an object that moves constantly the opposite
is true: there are many more updates on the set of contact addresses than that
there are lookups. We may also have to consider speed at which the object
moves with respect to the network topology. An object like a cellular phone
takes many small steps, whereas a mobile agent might move crisscross all over
the network.

3. Number of addresses in the set of contact addresses

A highly replicated object is expected to have a large set of contact addresses
whereas a nonreplicated object has a small set.

4. Network area covered by the object.

An object with contact points that are far apart covers a large part of a network,
whereas an object with a few closely spaced contact points does not.

We selected the following five example objects:

1. A temporary object

This object lives for a short period of time, does not migrate, and has a single
contact address.

2. A stationary object

This object gets one initial contact address which does not change.

3. A migrating object

This object moves once in a while.

4. A mobile object

This object moves constantly

5. A highly replicated object.

This object has a large set of contact addresses and covers a large part of the
network.

The following four sections contain four approaches to building location servers:
the central server approach, the home-base approach, the distributed search tree, and
an integration of the home-base approach with the distributed search tree. Table 4.6
shows the strengths and weaknesses of different approaches.
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Object types
Architecture Temporary Stationary Migrating Mobile Highly

replicated
Central server – – – – – – – – – –
Home-based
approach

++ ++ – – – – – –

Distributed
search tree

– + ++ ++ ++

Integrated
approach

+ + + + +

Symbols: ++ very good, + good, – poor, – – very poor.

Table 4.6. Compatibility of different object types with various location servers

4.4.1 Central Server

The central server concept is the most straightforward way of building a location ser-
vice. In this approach, all contact information is stored in a single database, on a
single, central server. Although the central server is theoretically quite simple, it does
not scale well. The lack of scalability may overload the CPU, overload the connecting
network, or require too much storage to be connected to a single computer. Further-
more, it introduces a single point of failure.

In general, we can solve these problems by replicating and/or partitioning the
database. Replication is an option if read (lookup) operations occur more frequently
than write operations. In the case of mobile telephones or mobile agents this is not
the case. Partitioning the database is an effective solution for the scalability of the
CPU and storage usage. However, partitioning does not solve scalability problems for
highly replicated objects because the set of contact addresses is stored in one place.

The main scalability problem is the access to the network. From a network point of
view we can either co-locate all partitions (i.e., create a specific place in the network
where location information is stored), or we can spread out the partitions over the
complete network. In the first case, the location service creates a single hot spot which
overloads the network. In the second case, the entire network will be overloaded due
to lack of locality.

The lack of locality is inherent in this model. Even if a process tries to bind to an
object that resides on the same machine, there will be communication over the wide-
area network to (part of) the central server. Optimizing the data placement such that
the set of contact addresses for an object is initially close to the object they refer to
leads to an alternative to the central server which is the home-based approach.

Another problem with such an architecture is not technical but organizational. A
single, worldwide location service based on the central server concept has to be run
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by a small number of organizations that can provide a uniform service all over the
world. Autonomous administration of (part of) the location service is not possible in
this model.

In Table 4.6, we see that the central server approach is expected to perform poorly
in all cases. The reason is that this approach lacks both locality and distribution.

4.4.2 Home-based Approach

The home-based approach is used in a scheme for dealing with mobile computers
on the Internet. In this scheme, a mobile computer (notebook) spends most its time
at one location, and connected to one particular network. This network is called the
notebook’s home network. When the notebook is moved and connected to a different
network, it will continue to use its old Internet address for communication. When
packets destined for the notebook arrive on the home network, a special agent captures
those packets and tunnels them to the notebook.

The GSM standard for mobile phones uses a Home Location Register (HLR), to
locate mobiles phones. The current location of a phone is maintained in the HLR.
Usually, the first part of the mobile phone’s phone number determines which HLR
should be used (i.e., which mobile phone network in what country).

The home-based approach to the location service uses a similar technique.
Records in the location service are allocated near the place where an object is cre-
ated. The location information for the object remains forever at the original location,
the home base, even when the object moves.

The home-based approach can be implemented in a completely distributed fash-
ion. The complete state of the location service is partitioned in a large number of
segments. Every segment stores the mapping for a (relatively small) collection of
objects. The segments themselves are connected by a hierarchical structure. This
hierarchical structure consists of a root node and a number of interior nodes. This
hierarchical structure can be specific to the location service or it can be an existing
hierarchy, for example DNS.

Figure 4.6 shows a hierarchical location service. Segments and interior nodes are
labeled by a sequence of integers. For object 0.1.3.2.4, its set of contact addresses is
stored in segment 0.1.3.2.

A design issue for a home-based location service is whether segments and interior
nodes are distributed shared objects or not. A location service implementation that
implements segments as distributed shared objects stores the set of contact addresses
for segment 0.1.3.2 in interior node 0.1.3. Similarly, the contact addresses for interior
node 0.1.3 are stored in node 0.1.

This approach has two advantages. Firstly, the implementation can fully use the
features of distributed shared objects, especially the flexibility in implementing them.
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Figure 4.6. A hierarchical location service

The root and other top level interior nodes can use implementations that support repli-
cation and caching, whereas leaf nodes use implementation that allow fast and cheap
updates. Secondly, it is easy to have a tree with variable height, or to extend the height
of the tree because all nodes simply store references to distributed shared objects.

An important aspect of a location service is interoperability. The location service
has to be available worldwide, which means that implementations for the communi-
cation protocols that are used to access the location service, and the protocols used
within the location service have to be sufficiently wide spread such that location-
service lookups and registrations do not fail due to protocol incompatibilities. This
limits the freedom for implementing distributed shared objects that are part of the
location service.

The use of distributed shared objects may also suffer from too much data hiding.
For example, a reply to a DNS query (often) contains additional information that was
not explicitly requested by the client. The extra information often saves future queries.
In an object-based system, additional information would be the result of a method
invocation on a different object, which is not available to the object that is currently
serving the request.

An alternative approach is to use a single dedicated protocol within the location
service. The main advantage is tight integration. However, a single protocol provides
only limited flexibility compared to an implementation based on distributed shared
objects. For example, it very hard to add support for replication to an existing protocol.
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Because the home-based location service is a single, hierarchical structure, the
top nodes of the tree have to be provided by an independent organization. However,
the actual leaf nodes (segments) and maybe some interior nodes can be provided by
individual organizations. The advantage of segments that are provided by individual
organizations is that every organization has complete freedom to decide which objects
it should make available worldwide by storing the contact addresses of only those
objects in the local segment.

A problem with this approach is reliability. The organization where the object
was created has to provide a reliable location service for the object, even after an
object has moved. In some cases it is possible to anticipate such a situation. For
example, the location information for all objects that belong to a single person can be
stored in a single segment. When that person moves, the distributed shared object that
implements the segment can migrate with the user. New contact addresses have to
registered higher up in the location service for the segment’s distributed shared object.

The home-based approach performs well when objects do not move and do not
have widely distributed replicas. Temporary and stationary objects are given high
marks in Table 4.6. Migrating and mobile objects suffer from a lack of locality. All
lookup operations and address registrations have to go to the home-base. Highly repli-
cated objects suffer from both a lack of locality but also from a lack of distribution.

4.4.3 Distributed Search Tree

The previous two approaches have two major problems:

1. Information is stored only at the extremes of a tree. The home-based approach
stores all information in the leaves of the tree. In contrast, the central server
stores all information in one place, which would correspond to storing every-
thing in the root of a tree.

2. The complete set of contact records for an object is stored as a whole in one
location.

We can solve both problems by storing information about an object at all levels of
a distributed tree. At the leaves of the tree, we store contact addresses in leaf nodes
close to the corresponding contact points. In interior nodes, we store pointers to the
contact addresses in leaf nodes or to other interior nodes.

Actual contact addresses are found using a hierarchical lookup algorithm. The
lookup operation tries to look up an address for an object handle in the closest leaf
node. If that lookup fails, the operation is forwarded to the parent node, and so on
until a lookup succeeds or the root is reached. If a lookup in the root node fails (au-
thoritatively), the object handle is invalid. Searching with expanding rings provides
the desired locality. If the object has a contact address in the site or region of the
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requesting process, then contact addresses will be found with only local communica-
tion. The result of a successful lookup in an interior node is a collection of pointers
to other nodes, which can be other interior nodes, or leaf nodes. This approach solves
three problems: (1) the lack of locality of the lookup operations, (2) the distribution
of the contact addresses of highly replicated objects, and (3) the migration of contact
addresses of mobile objects.

To actually implement this distributed search tree, we divide the world into a hier-
archical set of domains. At the bottom we have one domain per site. A collection of
sites form a region. An object is registered at each site where it has a contact address.
Furthermore, each object is registered in all regions that contain a site where the object
is registered, recursively up to the top of the tree. The root node stores information
about all objects in the entire system.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Region 3Region 2Region 1

World

Figure 4.7. Distributed search tree

In this respect, the root node is similar to a central server. The main difference is
that the root node stores pointers to other interior nodes (regions) instead of storing
the actual contact addresses. A scalable implementation requires the root node, and
most other interior nodes to be partitioned. An interior node can be partitioned by
distributing its state over its children. This process is repeated until all data is divided
over the participating sites. This is shown in Figure 4.7.

We saw in Section 4.4.1 that main problems not solved by partitioning are the large
sets of contact addresses to belong to highly replicated objects and the lack of locality
that is inherent in the central server model. Both limitations are not an issue for the
root node of the distributed search tree. The root node stores only pointers to other in-
terior nodes, so the maximum number of pointers stored for a highly replicated object
is bound by the fanout at the root node. Furthermore, locality is already provided for
lookup operations by the search mechanism, and update operations mainly take place
in leaf nodes.

Unfortunately, the distributed search tree approach has two drawbacks: there is
no locality in initial object registration and lookup operations are always hierarchical.
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The first problem is that this approach does not provide locality for object creation.
The registration costs are mainly an issue if the object is used only locally and is
destroyed soon after it creation, as is the case for a temporary object.

Object creation involves creating an entry in the root node. The cost of creating
an entry in the root node depends on the organization of the root node. A standard
approach to partitioning is to compute a hash function over the index to a table, in this
case the object handle. The hash is then used to select a partition. An advantage of
using a hash function is that objects are distributed over all partitions and that, with
large numbers of objects, a good load balance will be achieved.

If the goal is to achieve locality for initial object registrations, then a home-based
approach is much better. The reason is that a home-based approach registers a new
object in a part of the location service that is close to the place where the object
is created. We can try to emulate the advantages of a home-based with respect to
registration using an explicit partition identifier. This partition identifier is added to
the object handle and is used to select a partition of the root node. When an object
is to be registered, the object registration algorithm selects a suitable (nearby, and not
overloaded) partition of the root node, and adds the partition identifier of that partition
to the object handle.

A problem with this approach is that the procedure has to be repeated for each level
in the hierarchy. Registering in an arbitrary partition of a “regional node” right below
the root node may cause the same problems with locality. A clever encoding of par-
tition numbers for all interior nodes might solve this problem. One approach to such
an encoding is to use the geographical location of the object and to map geographical
locations to partitions in the location service [Ballintijn et al., 1999].

The second problem is related to the search strategy for lookup operations. The
search strategy exploits maximum locality by starting at a nearby leaf node working
toward the root node. This works well for the system as a whole, but an application
which exhibits poor locality is seriously slowed down compared to a home-based ap-
proach. The reason is that with a home-based approach, looking up an address requires
only one lookup operation on a remote partition of the location service (assuming that
contact addresses for that partition are cached). With the distributed search tree ap-
proach, for an n level tree, n− 1 lookup operations are executed before the root node
is reached, and then n− 1 additional lookup operations are required to reach the right
leaf node.

Looking up Multiple Protocols The lookup algorithm described earlier in this sec-
tion returns the first contact address found. This algorithm is too simplistic for two
reasons: firstly, contact addresses for different contact points are needed to deal with a
network partition or the failure of a contact point. Secondly, multiple contact addresses
with different protocol identifiers are also needed in case a particular protocol is not
supported. Table 4.7 shows how multiple protocols may introduce locality problems.
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Distance
Local Site Region . . . World

P
ro

to
co

l P1 L1 S1 R1 W1

P2 S2

. . .

Pn W2

Table 4.7. Multiple protocols with addresses at various distances

This table classifies the contact addresses for a particular object by protocol identifier
(P1 . . . Pn) and by distance from the perspective of the binding process (local, site,
. . . world). For P1, contact points exist everywhere (both locally and far away), for
P2 a contact address exists somewhere in this site but nowhere else. For Pn a contact
address exists somewhere in the world. Because contact address L1 is the only contact
address that is locally available, the naive lookup algorithm returns only L1, and the
binding process is not informed about the existence of contact addresses for the pro-
tocols P2 and Pn. Another problem is that the binding process does not know what to
do if connecting to L1 fails: there is no indication that other contact addresses exist.

We can solve these problems in two ways:

1. The location service replicates contact addresses.

For example, if two contact addresses for each protocol are preferred then a
lookup operation returns the set {L1, S1, S2,W2}. Note that the contact ad-
dresses S2 and W2 are the only contact addresses for, respectively, protocols P2

and Pn. For protocol P1, the contact address L1 and S1 are returned because
those two contact addresses are the first ones that are found by the hierarchical
search algorithm. This approach has two disadvantages: first, it takes far more
storage. Previously, interior nodes would store only pointers to child nodes with
contact addresses, now interior nodes also store sets of contact addresses. The
second disadvantage is that a low read/write ratio results in poor efficiency. This
means that the location service can waste a lot of resources to replicate contact
addresses for objects that often update their set of contact addresses, and where
lookups are relatively rare (a mobile object for example).

2. The alternative is to replicate metadata.

The metadata that is replicated includes the set of protocols for which contact
addresses exist, and whether remote contact addresses do or do not exist for
a particular protocol. This information does not change as often as the actual
contact addresses themselves, and inconsistencies are less important.

With this approach, a lookup would proceed as follows: the first lookup returns
the contact addresses L1, the set of protocols P1, P2 and Pn, and the existence of



150 CHAPTER 4. NAMING AND BINDING

remote contact addresses for all protocols. If the binding process is not satisfied
with L1, a lookup at the site level would return the contact addresses S1 and
S2, the set of protocols P1, P2 and Pn, and the existence of remote contact
addresses for P1 and Pn.

The lookup method may be extended to accept a set of protocols as an argument
and return only contact addresses in this set.

The second alternative combined with caching is likely to perform better than
the first alternative. The drawback is however that a binding process has to issue
multiple location-lookup requests to get a complete set of contact addresses. However,
in general, one lookup request is likely to be sufficient for two reasons. The first
reason is that processes are typically satisfied with the nearest contact address which
is returned in the first lookup. The second reason is that, due to caching, the set may
contain popular alternative contact addresses.

A generalization of the second approach is to associate arbitrary metadata with a
contact address. Metadata for an object o can take the form of attribute=value pairs and
is distributed to nodes that contain information about o. Whether such a generalization
would be useful is not clear at the moment and requires further research.

An important addition to a contact address returned by a lookup operation is a
distance indication, similar to the distances in Table 4.7, that is whether the contact
point can be anywhere in the world, or in the same site. This simplifies the destination
selection step.

A location service based on a distributed search tree, is capable of dealing with
migration and replication, but due to the relatively high initial registration costs, the
performance for temporary objects is rather poor.

4.4.4 Integrated Approach

The main problem with the distributed search tree is object creation. Creating an
object requires an entry in the root node in the tree, which is expensive due to both
communication and storage requirements. By combining the distributed search tree
with the home-based approach, we can lower the object creating cost, at the price of
reduced flexibility.

Table 4.6 shows that some object categories are better served by a home-based
location service and others are better served by a distributed search tree. It is possible
to construct a location service which combines a home-based location server with one
based on a distributed search tree. For example, it is possible to register an object with
a home-based location service if it is known that the object is a temporary object.

We can combine a distributed search with the home-based approach in two differ-
ent ways. One approach is a home-based location server attached to the leaves of a
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Figure 4.8. A collection of objects

distributed search tree (Figure 4.8). The alternative is a collection of distributed search
trees attached to a home-based location server (Figure 4.9).

tree
search

Distributed

approach
Home-based

node
Regional

Root node

Figure 4.9. Multiple distributed search trees

Attaching a home-based location server to a distributed search tree can be effec-
tive when a collection of objects is homogeneous with respect to distribution proper-
ties (replication, migration, etc.). Object handles for those objects are located using
a home-based approach relative to a single entry in a distributed search tree. An ex-
ample is a hypertext document which consists of a collection of objects but is treated
as a single container object with subobjects. The trade-off here is that independent
registration in the distributed search tree is more costly, but allows the object to have
different distribution properties.
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The other combination (a distributed search tree attached to a home-based server)
reduces the cost of registering a new object because only a regional “root” node is
updated instead of a single worldwide root node. The object handle is first passed
to the home-based service to locate the regional “root” of the distributed search tree.
This allows objects to be replicated and to roam within a single region. The drawbacks
of the home-based server become a limiting factor, when an object migrates (or gets
replicas) outside the region covered by the distributed search tree. In this case, the
trade-off is that cheaper registration limits the migration and replication of an object.

Distributed
search

tree

Root node

Regional node

Object collection

Home-based
apprach

Figure 4.10. A combined location server

One step further is to combine Figure 4.8 and Figure 4.9 into a three-layer hier-
archy. This is shown in Figure 4.10. The root of the location service is based on the
home-based approach, with distributed search trees attached to nodes of the home-
based service. Attached to the search tree is in turn a home-based location server.

The combined location server moves some trade-offs from the design phase of the
location service to the deployment phase. For the design it is no longer necessary
to choose between a home-based approach or a distributed search tree. Furthermore,
deploying an initial, worldwide location service based on a home-base approach is
relatively easy because existing services, such as DNS, can be reused for the root of
the tree.

Multiple Object Handles The first three location servers (central server, home-
based approach, and distributed search tree) treat all objects as equal and use a single
object handle for a particular object. To be able to fully use the integrated location
server, we have to relax those assumptions.
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First, during the initial registration, an object has to decide where to register. For
example, a temporary object should register in a part of the location service that is
mostly home-based. An object which is part of a collection of objects should register
with the (home-based) location service associated with that collection. If we make the
wrong decision, two things can happen: the initial registration cost is too high, or the
registration is too specific and limits the migration or replication of an object.

Further research is needed to determine whether the garbage collection techniques
that will be described in Section 4.5, can provide an object with the ability to start
using additional object handles. Additional object handles can be registered in differ-
ent parts of the location service which better accommodate the object’s needs. The
garbage collector is useful in this respect because it provides the ability to track some
references from the name service to an object. With some extensions to the name
service, this allows an object to update its object handle.

If an object has the ability to update its object handle, it is possible for the object to
expand its scope by registering in a larger area. This allows an object to select a cheap
registration at first and re-register when necessary. Unfortunately, this means that an
object can have multiple object handles during its lifetime. As a result, object names
have to be used instead of object handles to store references to objects persistently.

4.4.5 Caching

In the previous sections, we described four architectures for the location service but ig-
nored one important aspect: caching. In general we can distinguish between two kinds
of caching: caching the results of lookup operations, and delaying write or modify op-
erations (write-back caching). For the location service, there is no point in delaying
write operations. Adding new objects or contact addresses should not be delayed un-
necessarily. Delayed delete operations may result in attempts to communicate with
stale contact points, which should be avoided. As a result, we will consider only read
caches for the location service.

Normal caches cache values, in the case of the location service a value would be a
set of contact addresses for an object. The distributed search tree approach introduces
an interesting alternative: finding the right leaf node which contains a contact address
for an object is a large part of the work of a lookup operation. A so-called “pointer
cache” can be used to cache a pointer to the right leaf node instead of (or in addition
to) the actual set of contact addresses. To use the pointer cache, the user of the cache
sends a lookup request to the leaf node. The leaf node returns either a valid contact
address or an indication that it no longer stores a contact address for the object.

There are two advantages. The first advantage is that the client does not see any
stale contact addresses. Either the leaf node returns a valid contact address or it returns
an error. The second advantage is that a nonpersistent contact address that is inserted
during the activation of a persistent distributed shared object is not ignored, which
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would be the case if the persistent contact address is cached. A disadvantage is extra
communication costs to query the leaf node.

In general, caches have to use a cache consistency protocol to prevent cached data
from becoming stale. A cache consistency protocol can be a simple time-out or a more
complicated scheme in which a cached value is updated. For the location service the
two main inconsistency problems are stale contact addresses and an incomplete set of
contact addresses.

• Stale contact addresses may cause binding to the wrong distributed object, or it
may be impossible to connect to the contact point designated by the contact ad-
dress. To detect a connection to the wrong distributed shared object, we require
the binding party to send the expected object ID over the newly established
communication channel. Upon receipt of a wrong object ID, the distributed
shared object returns a failure indication over the communication channel and
the binding process continues with the next contact address.

A failure to connect to a contact point may cause a much longer delay because
the time-out needs to be set high enough to be able to reach the extremes of the
network before declaring a contact address unusable. Communication failures
due to stale contact addresses may occur at different levels. At the network
level, the network address may be invalid or the host designated by the network
address may be down. At the transport level (for connectionless transport pro-
tocols), it is possible that no process listens to a particular port. At the higher
levels (session and presentation layers) it is possible that the process at the other
end speaks a different protocol, or that the remote process simply does not re-
spond.

One way to deal with this problem is to overlap multiple connect attempts in
time (i.e., a connect attempt to the next contact address is started after a short
period of time).

• An incomplete set of contact addresses may cause two problems. The first prob-
lem is that a contact address for a nearby contact point is not returned to the
binding process. This causes a lack of locality during binding.

Whether this lack of locality can be corrected after binding depends on the struc-
ture of the particular distributed shared object. A simplistic object continues to
use the initial connection between the local object in the binding process and the
contact point specified by the contact address. Lack of locality during binding
results in performance loss for all communication with the distributed shared
object. A more complex distributed shared object can tell the local object to
connect to a different contact point. Alternatively, the distributed shared object
can use a balanced group communication structure based on multicast support



4.5. GARBAGE COLLECTION 155

at the network level. In that case, the multicast routing protocols optimize the
communication paths between different parts of the distributed shared object.

The second problem is that a contact address for a new protocol is made avail-
able by the distributed shared object but is not seen by a binding process. This is
unlikely to be a serious problem because objects are not expected to introduce
new protocols regularly. Instead, multiple protocols are offered from the cre-
ation of the distributed shared object, or there may be a long transition period
from one protocol to another.

To implement a cache consistency protocol we can use two different paradigms:
based on callbacks or based on time-outs. In a scheme based on callbacks, the cache is
updated (or invalidated) when a cached value becomes stale. Such a callback requires
a list of caches that store a copy of a particular variable or multicast mechanism that
reaches all relevant caches. Schemes based on time-outs cache a value only for a
certain amount of time. After that time, the cache needs to verify whether the value is
stale or not.

For a location service, implementing a consistency scheme based on callbacks is
not practical. First, multicasts cannot be used because the number of places where a
set of contact addresses may be cached (possibly in every process) is simply too high.
The alternative, storing a list of caches that keep a copy of the set of contact addresses
is not very practical either. This list can potentially become quite large, and causes
extra traffic when a cache has to remove itself from a list after purging a cached value.
For schemes based on time-outs we refer to the discussion of time-based consistency
models in Section 3.2.2.

4.5 Garbage Collection

Systems that support dynamic allocation of objects (or in general, resources) have to
provide a way to deallocate those objects. Objects can be deallocated in different ways
[Plainfossé and Shapiro, 1995]:

• Explicitly, under the user’s control

In this case, the user of an object is typically an application program. A system
may provide primitives to allocate and free objects (such as malloc and free in
ANSI-C). The advantage of this approach is that only a small amount of support
from the underlying system is required, and that objects can be freed promptly.

Disadvantages include the burden on the programmer to free objects at the right
moment. Dealing with object references that form cycles and objects shared by
different modules is complicated. There is a reasonable chance that the pro-
grammer does not free all objects, which results in “memory leaks”: garbage
accumulating and usable memory being wasted.
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• Reference counting

The system associates with each object a counter that is used to keep track of
the number of “users” of a particular object. The counter is incremented when a
new reference is handed out, and is decremented when a reference is no longer
needed. An object is freed when the reference counter drops to zero.

There are two main problems with reference counting. Firstly, it cannot be used
in a system with cyclic references, and secondly, achieving fault tolerance is
hard. The problem with cyclic references is that the reference count does not
become zero when the last reference to the cycle is deleted.

For example, UNIX file systems use reference counting for both files and direc-
tories. The first problem is solved by simply disallowing cyclic references. The
second problem requires the use of tools such as fsck to recover a file system
after a system crash. The fsck program runs a “mark and sweep” algorithm to
recompute reference counts and to break any cycles that may have been created
accidentally during the crash.

• Reference listing

This approach is an extension to reference counting. Instead of the single
counter that is maintained with the reference counting approach, an object main-
tains a list of all its users. Reference listing is more robust than reference count-
ing because listed references can be verified explicitly, that is, the system can
recover from a lost message and from crashed users.

In a worldwide system, reference listing provides a scalability problem: the
number of address spaces (users) that refer to an object can potentially be very
large.

Note that reference listing needs to detect unreachable cycles. Two techniques
for doing so are:

1. Trial deletion

Try to delete an object and see if it becomes unreachable. If so, delete the
object. The main problems are the selection of suitable candidates for trial
deletion, and, in a distributed system, preventing concurrent attempts in a
single connected collection of resources.

2. Object migration

This technique tries to migrate objects that are part of a cycle to a sin-
gle address space. A local garbage collector can be used to reclaim the
cycle. The main problem with this approach is again identifying suitable
candidates to migrate.
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• Tracing garbage collection

A tracing garbage collector consists of two phases: the first phase marks (or
copies) all reachable objects. The second phase deletes all nonmarked, or un-
copied objects. Note that the second phase cannot be started before the first
phase is finished.

The advantage of this approach is that unreachable cycles can be collected.
However, the main disadvantage in a distributed system is that all processes
in the system have to be synchronized and that they have to be alive.

Tracing garbage collectors can be used to augment reference counting or refer-
ence listing. For example, the UNIX fsck program provides the necessary fault
tolerance that a reference-counting system lacks.

In a distributed system, a tracing garbage collector can be run across a small
collection of address spaces. This allows unreachable cycles to be collected
that fall entirely within the collection of address spaces. By creating hierarchical
groups, a scalable garbage collector can be created that collects cycles in larger
collections of address spaces [Lang et al., 1992]. However, this works only if
the number of objects that have to be traced in larger groups is relatively small.
Grouping address spaces this way may be hard to achieve in a wide-area system.

One problem with tracing garbage collectors in a large distributed system is the
relatively long time it takes to run a complete garbage-collection cycle. Al-
though various local optimizations are possible, a complete cycle still requires
global coordination. Tracing in groups is effective only if most cycles are cre-
ated in relatively small groups. A disconnected cycle that is created in a collec-
tion of processes that have only a large group in common may continue to exist
as garbage for a long time.

Consider, for example, a distributed shared object that acts like a UNIX pipe.
Two processes share such an object to connect the output of one process to the
input of another. If those processes are created by a shell script, and have the
short life time that is common for some UNIX processes (such as grep, wc, etc.),
it is possible that hundreds of those pipe objects are created per minute. These
two processes may be executing on computers that are on opposite side of the
globe. It is almost impossible to use a tracing garbage collector to verify that no
reference to the pipe object exists anywhere in the world after the two processes
are terminated.

This example indicates a mismatch between the rate at which garbage is created
(many objects per minute), and the rate of garbage collection (a complete run
takes a long time). The problem is that we cannot make assumptions about the
locality of unreachable collections of objects. If we assume no locality at all,
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we are left with a garbage collector which requires all processes in the system
to be synchronized and alive.

The purpose of a garbage collector is to reclaim objects that are not reachable from
a set of object references. In garbage-collection literature this set is called the root set
[Wilson, 1992]. Objects that are reachable from the root set are said to be live. The
other objects, which are not reachable from the root set, are called garbage. A garbage
collection algorithm is called safe if it does not reclaim objects that are still reachable
from the root set. A garbage collector that eventually reclaims all garbage is called
complete.

4.5.1 Wide-Area Aspects

To be practically useful, a garbage collection has to be both safe and complete. Ad-
ditionally, a garbage collector for a worldwide system also has to be scalable. In
Chapter 6 on related work, we will see that existing garbage collectors for distributed
systems are safe but fail to combine completeness with scalability.

In the Globe system, the natural unit of allocation is a distributed shared object.
How a (large) distributed shared object performs garbage collection internally will be
ignored; instead we will focus on collecting distributed shared objects as a whole.

An important difference between a worldwide distributed system and most other
distributed systems is that resources, such as disks, memory, communication band-
width, etc., are owned by different organizations. These organizations mainly care
about their own resources and try to be as autonomous as possible. The result is that a
distributed shared object with replicated state may have to deal with different resource
owners.

The world of autonomous resource owners conflicts with the safeness aspects of
garbage collectors. The garbage collector avoids destroying objects that are still ref-
erenced. However, it is quite possible that the owner of the resources wants the object
to be destroyed because the resources are needed for something else, even though
references to it still exist.

A similar problem exists in the UNIX file system. A user can make a (hard) link to
another user’s file on the same device. This link prevents the system from deleting the
file when the original owner removes its link to the file. In systems with disk quota
this can be a problem because the original owner is still charged with the blocks in the
file.

To avoid this problem, we can structure the relationship between a resource owner
and an object as follows. A resource owner is a user that sponsors a distributed shared
object by allowing the object to use some of his resources. A resource owner can
sponsor an object for some time and decide not to sponsor the object anymore if the
object is not needed or when the resources are needed for other objects. The resource
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Figure 4.11. Resources and distributed shared objects

owner specifies which objects are worth keeping by adding and deleting references to
those objects.

Figure 4.11 illustrates the relation between resource owners and distributed shared
objects. This figure shows four distributed shared objects (O1 ... O4). The distributed
shared object O1, the local objects L1 and L3a, and disk D1 are owned by user A.
Likewise, user B owns O2, L2, L3b, and D2. In this example, the resources provided
by users A and B are the disks, the address space, and part of the network.

The distributed shared object O3 uses those resources through the local objects
L3a and L3b, which are part of O3. In addition, O3 uses the references from O1 and
O2 to determine whether it is still reachable from the root or not. The distributed
shared object O4 also contains a reference to O3, but this reference is not used by
O3 to determine whether it is still alive or not. After some time, user A may delete
the reference from O1 to O3. This causes local object L3a to be deleted because it is
completely unreachable (and is, therefore, unreachable from the root set, which is not
shown in Figure 4.11); object L3b continues to exists.
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For example, a collection of distributed shared objects that contain WWW pages
for a single WWW site typically belong to one resource owner. This means that the
garbage collector can be used to delete old WWW pages that are no longer referenced
within the WWW site. By default, references from other WWW sites are ignored.
However, objects can be designed to accept a small number of references from other
resource owners as long as sufficient resources (disk space) are available. This allows
the garbage collector to be used for references between objects of different resource
owners as long as there are enough resources available.

Another possibility is for one resource owner to pay another resource owner for
storing reverse references. For example, the author of an on-line paper may wish to
keep other papers to which his paper refers, on-line.

4.5.2 Solution

Tracing garbage collection algorithms compute which objects are (not) reachable from
the root set. We propose to do exactly the opposite: start with an individual object and
try to see whether a member of the root set can be reached.

In a garbage collector for a programming language, the root set is (usually) de-
fined to be all object references that can be found in activation records (the stack) and
global variables (the data segment). In Globe, we split distributed shared objects into
two groups: objects that are to be garbage collected and objects that have to be de-
stroyed explicitly. Objects know which category they are in, either by their design or
as part of their state. We define the root set to consist of all objects that have to be
destroyed explicitly. A distributed shared object is not garbage collected as long as it
is (indirectly) reachable from an object in the root set.

The garbage collection algorithm will be described as if objects store the refer-
ences to other objects they need for garbage collection separate from references for
other purposes, for example naming. The interaction between references for garbage
collection and naming will be discussed at the end of this section.

The garbage collection algorithm for Globe works by trying to find a path from
an object to an object in the root set. To make this possible, each object stores a set
of reverse references. A reverse reference refers to an object thats stores a normal,
forward reference to the object.

Figure 4.12 shows a collection of objects and object references. Object 0 is a
member of the root set and contains an object reference to object 2. We will call
object 0 a parent of object 2. Object 2 is called a child of object 0. The parents of an
object plus the parents of the parents, etc. are called the ancestors of the object. In
some cases, one parent is special. That parent will be called the primary parent. The
role of the primary parent will be discussed later. Both object 1 and object 2 contain
a reverse reference to object 0. The reverse reference from object 2 complements the
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Figure 4.12. Collection of objects

forward reference from object 0. In contrast, the reverse reference from object 1 is
stale, and will be deleted by the garbage collection algorithm.

Objects 3, 4, 5, and 6 form a cycle. This cycle is connected to the root node
through object 2. Note that in this example, object 3 is the only object with two
parents (object 2 and object 5).

A path to a root object is a sequence of object identifiers. This sequence contains
the object identifier of a parent object, of the parent’s parent, and so on. For example,
the path to the root for object 4 is the sequence of object identifiers for the objects 3,
2, and 0.

Storing these reverse references can be a problem if there are a huge number of
forward references to an object. We think this is not a problem for two reasons:

1. Only references maintained by resource owners that sponsor an object need
reverse references. A study of our local UNIX and Amoeba file-systems shows
that less than 1% of the files (and under Amoeba, also directories) has more
than 1 link. The number of objects with more than 10 links is negligible. Even
though the cost of a link is small in these two systems (just a directory entry),
most files would need only one reverse reference to support the Globe garbage
collection algorithm.

These results are relevant to Globe if we can assume that most distributed shared
objects do not contain references to other distributed shared objects (and are
connected to the root set by directory objects). On the other hand, many WWW
documents contain references to the “home page,” which may lead to a different
distribution of reference counts.
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2. Objects that have a huge number of references worldwide (for example saved
news articles) also have a large number of replicas. So the number of reverse
references per replica is still small. Each replica stores only the few reverse
references for its users. This implies that for those objects, instead of running
the garbage collection algorithm once per object, each replica has to run the
garbage collection algorithm itself.

4.5.3 Algorithm

The garbage collection algorithm is based on the principle that each distributed shared
object independently computes whether it is reachable from the root set or not. An
object verifies its reachability on a regular basis or when triggered from the outside,
for example by a resource manager. To verify its reachability, an object asks its parents
for reachability information and makes a decision based on the information received.
Possible outcomes are that the object is reachable, that the object is unreachable, or
that the information is incomplete or inconclusive. In the latter case, the object waits
for a while and asks the parents again. Effectively this boils down to polling the
parents until a decision can be made. In general, the use of polling is avoided because
it wastes resources. However, in this case the use of polling simplifies the algorithm
and provides some degree of fault tolerance. In an actual implementation it should
be easy to replace polling with callbacks or operations that block until new results
become available.

The presentation of the algorithm is split into three parts. The first part describes
the path algorithm, an algorithm that tries to find a path to the root set. The object
is reachable if a path to the root can be found. However, the path algorithm does not
terminate if the object is part of an unreachable cycle. The second part describes a
graph algorithm that allows an object to find out if it is unreachable from the root
set. The algorithm that will be described in the second part works only if no reference
to objects are inserted or deleted during the execution of the algorithm. The third
part describes an extended version of the graph algorithm that can handle this kind of
concurrency.

Initially, the algorithm will be described without regard to safety or completeness.
The safety and completeness of this algorithm will be described in Sections 4.5.6,
4.5.7, and 4.5.8.

The first part, the algorithm that tries to find a path to the root, is relatively simple.
Each object that knows a path to an object in the root set stores that path as a sequence
of object identifiers, which consists of the object’s own identifier and the identifiers of
the object’s ancestors on the path to the root including the member of the root set. To
find a path to the root, an object asks each of its parents for their paths to the root. An
object has found a path to the root if it gets a sequence of object identifiers that does
not already include its own object identifier. The object appends its own identifier to
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the sequence and stores it as part of its (persistent) state. Upon request, the object
returns this sequence to its children.
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Figure 4.13. Avoiding cyclic paths

Figure 4.13 illustrates the need to avoid paths that already contain the recipient’s
object identifier. Figure 4.13(a) shows a root object (object 0) with references to object
1 and object 2. Object 2 contains a reference to object 3. Object 5 also contains a
reference to object 3. Object 3 is offered two paths: one that lists object 2 and object
0 and another path that lists objects 5, 6, 4, 3, 2, and 0.

In Figure 4.13(b), the reference from object 2 to object 3 is deleted. However,
object 5 still claims to know a path to the root. Object 3 can reject this path because it
already contains the object’s object identifier.

The algorithm consists of three steps:

1. The first step is to verify the set of reverse references. All reverse references
that either refer to a parent that no longer exists, or to a parent that deleted the
forward reference, are removed from the set of reverse references. The object is
unreachable when its set of reverse references becomes empty.

The set of reverse references becomes empty if the object has no parents. For
example, this is the case for object 1 in Figure 4.12 after the reverse reference
to object 0 has been deleted.

2. In the second step, the object invokes a method on each of its parent objects
to get their paths to the root. Each method either returns a possible path to the
root or an indication that the parent does not know a path to the root. It is also
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possible that the method invocation fails, for example due to a network partition.
In that case, the algorithm proceeds as if the parent does not know a path to the
root. Note that these failures cannot cause an object to be deleted prematurely
because only the graph algorithm can declare objects to be unreachable.

3. The third step is to discard any paths that contain the object’s own object iden-
tifier. A path that already contains the object’s own object identifier is not a true
path to the root but a path that the object reported earlier to one of its children
and has returned to the object through a cycle.

Any path that has not been discarded can be used as a valid path to the root
and is stored, after adding the object’s own identifier, in the object’s (persistent)
state. Otherwise, the algorithm has failed to find a path to the root.

These three steps are executed repeatedly until a path to the root is found.
To avoid asking all parents for their paths to the root each time the algorithm runs,

the algorithm is extended with a cache. The object handle of the parent that returns
the path to the root is cached in the object’s state. This parent is called the primary
parent. The next time the algorithm runs, only the primary parent is asked for a path
to the root, and only the existence of a forward reference from the primary parent is
verified. Note that the path contains object identifiers and we need an object handle
to actually contact the primary parent. The cache will be cleared and the full path
algorithm will be executed if either the primary parent does not return a useful path or
if the primary parent has deleted its forward reference.

The graph algorithm is the most complicated part of the complete garbage collec-
tion algorithm. Based on the reverse references we can define a reverse-reference
graph. Nodes in this graph are object and (directional) edges are formed by reverse
references from one object to another. Each node that participates in this algorithm
tries to build a complete view of the reverse-reference graph. Normally, this graph is
far too large to be stored in a single address space. However, if the object is part of
a disconnected subgraph, then the graph will be much smaller. There are two mech-
anisms to limit the amount of data that an object will receive if it is in fact reachable
from the root. First, objects that know a path to the root do not participate in the
graph algorithm and second, information flows only from a parent to its children. This
means that an object can receive information only from ancestors that do not know a
path to the root.

The data structure that is used to represent the reverse-reference graph is a set of
reverse-reference records. Each reverse-reference record contains information about
one object: the object’s object identifier and a set of object identifiers of the object’s
reverse references.

The graph algorithm consists of a graph distribution algorithm and a termination
detection algorithm. The graph distribution works as follows. Initially, each object
that participates creates a record for itself. This record contains the object’s object
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identifier and the set of object identifiers of the object’s parents. Repeatedly, the object
asks all its parents for their sets of records. The records returned by the parents are
added to the object’s current view of the graph. Upon request, the object provides its
children with a copy of its set of records.

The object runs the termination detection algorithm each time it changes its set
of records. The algorithm can terminate when the object has a record for each of
its ancestors. Initially, the object has a record only for itself. It cannot terminate
until it has received a record for each of its parents. After receiving records from
its parents, the object now has to wait for records for its parent’s parents, and so on.
As said before, an object that knows a path to the root (including root objects), does
not participate in the graph algorithm. This means that the graph algorithm does not
terminate if one of the object’s ancestors is a member of the root set since the object
has to object a reverse-reference record from a member of the root set but members of
the root set do not provide one.

The path algorithm and the graph algorithm nicely complement each other. The
path algorithm is mainly useful if a path to the root set exists. The main drawback of
the path algorithm is that it does not terminate if the object is part of a cycle that is
unreachable from the root. The graph algorithm is the opposite: the graph algorithm
terminates if the object is not reachable from the root set. However, if the object is
in fact reachable from the root set, then some object will not cooperate (objects in the
root set and any other object that knows that it is reachable) and the graph algorithm
will try forever to obtain a complete view of the reverse-reference graph. Running
the two algorithms in parallel, in a single integrated algorithm, results in an algorithm
that terminates when either a path to the root set has been found or when the object is
known to be unreachable.

The graph algorithm that was just described, works only if the graph remains con-
stant during the execution of the algorithm. In a worldwide system, we cannot make
this assumption. It should be possible to add and delete object references during the
execution of the garbage collection algorithm. The last part of the description of the
garbage collection algorithm describes how the graph algorithm can be extended to
handle this situation.

To obtain a consistent view of a reverse-reference graph that changes during the
execution of the graph algorithm, it is necessary to add two fields to each reverse-
reference record. The two fields that are added are a version number and a flag. Each
object associates a version number with its set of reverse references. This version
number is incremented each time the object changes its set of reverse references. The
object keeps the record for itself up-to-date with respect to the set of reverse references
and the version number. The use of the flag will be described later on. Note that the
object changes only the record for itself in its own set of records. The object’s new
record is passed to the object’s children whenever the children ask for it.
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The version number is added to make a distinction between older and newer ver-
sions of the record for an object. When an object receives a set of records from its
parent, it adds new records and it updates records that have a newer version number
than the existing record. Records with older versions are ignored. The version number
ensures that, eventually, all nodes get an up-to-date view of the graph.

Unfortunately, even with version numbers, a single object may use inconsistent
data to decide that it is unreachable. For this reason, we need to extend the termi-
nation detection algorithm to become a distributed termination algorithm. This can
be achieved by using the flag that was added to each record. This flag is called the
complete flag.

Initially, each object creates a record for itself with the complete flag set to false.
These records are distributed as described before, until an object discovers that it has
records for all of its ancestors. At that point it sets the complete flag in its own record
to true and continues propagating records to its children.

At some point it starts receiving records from its parents that also have the com-
plete flag set to true. The object sets the complete flags for the corresponding records
in its set of records to true. However, the object has to check whether the records it
received from a parent have the same version numbers as the corresponding records
in its own set of records. If some of the records have different version numbers, the
object has to set all complete flags in both the received set and the object’s own set of
records to false. This ensures that complete flags are propagated only from a parent
to a child if the parent and the child have the same view of the world. Setting the
complete flags to false requires the object and the object’s children to wait until new
records are received from all ancestors.

Clearing all complete flags may seem a bit much; maybe we should clear only the
flags in a few relevant records. The problem is, however, that an object does not know
which flags to clear. Consider the following example. An object detects that one of
its parents deleted a forward reference to the object. As a result, the object deletes the
parent from its set of reverse references and increments its version number. This new
record is distributed to other objects. It is possible that the first object’s parent deleted
the last remaining reference to the collection of objects, which turns the objects into
garbage. It also possible that a new reference to the collection was added before the
other reference was deleted. To distinguish between those two cases, each object has
to ask all other objects for their sets of reverse references. This is implemented by
clearing all complete flags.

The graph algorithm terminates when all records for the object’s ancestors have
their complete flag set to true. At this point, all of the object’s ancestors also have
a complete set of records for all of their ancestors. Note that in case of a cycle, all
objects that are part of the cycle have the same ancestors (all objects in the cycle), and
therefore the same set of records.



4.5. GARBAGE COLLECTION 167

Variable Description
object-id The object identifier of the object.
forw-ref-set A set of forward references (object handles) to objects.
rev-ref-set A set of reverse references (object handles) to parent objects.
path-known A boolean variable that indicates whether a path to a root ob-

ject is known or not.
primary One of the reverse references is designated to be the primary

reverse reference.
path A path to the root object. The path is a list of object identifiers.
version-nr A version number used to propagate reachability information.
graph The current set of records for the disconnect subgraph algo-

rithm.
root A boolean variable that indicates if the object is a member of

the root set.

Table 4.8. Instance variables used by the garbage collection algorithm

The path that is selected in the path algorithm is added to the (persistent) state
of the object to speed up future runs of the garbage collection algorithm. In addition
to the path, the object also stores the object handle of the parent that returned the
path. This parent was called the primary parent. As described above, the garbage
collection algorithm starts by verifying the cached path. If no path is cached, this step
can be skipped and the garbage collection algorithm continues with the path and graph
algorithms. To verify the cached path, the object binds to its primary parent and asks
the parent to return its path. The cached path is invalid if the object fails to return a
path or if the path is not identical to the path stored in the object. If the path is valid,
the object has to verify that the parent object is still a parent. The object invokes a
method on the parent object to ask whether the parent stores a forward reference to
the object. After a positive reply from the parent, the garbage collection algorithm
returns that the object is reachable from the root set. Otherwise, the cache algorithm
failed, the cached path is deleted, and the garbage collection algorithm continues with
the path and graph algorithms.

4.5.4 Implementation

The implementation of the garbage collection algorithm in a distributed shared object
uses a number of methods and instance variables. The instance variables used by the
garbage collection algorithm are listed in Table 4.8. The variable forw-ref-set contains
the set of object handles for other objects. Normally, this variable is shared with other
parts of the object that actually use those references. The variable rev-ref-set stores
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Method Description
add-rev-ref(object-handle) Add a new reverse reference.
check-rev-ref(object-handle) Tell an object to check if a parent object is still

storing a forward reference to the object.
check-forw-ref(object-id) Return whether any of the object handles in forw-

ref-set contains the object identifier object-id.
get-path Return the current path or graph

reachable(interval) Asks an object whether it is still reachable. This
is the main garbage collection method.

Table 4.9. Methods that are part of the garbage collection system

a collection of object handles for parent objects that may contain references to the
distributed object.

The next three variables are used to store the current (cached) path to the root.
The variable path-known is a boolean variable that specifies whether the object knows
a path to the root set or not. The variable primary contains the object handle of the
parent object that returned the path (the primary parent). The variable path stores the
path itself as a list of object identifiers.

The next two variables are used for the graph distribution. The variable version-nr

contains the current version number of the object’s record in the graph. The variable
graph contains the current set of records used in the graph algorithm. This variable is
cleared when a path to the root is found.

The last variable, root, is a boolean variable that specifies if the object is a member
of the root set. An object that is a member of the root set, has to set the variable path-

known to true, and the variable path should be set to an empty list of object identifiers.
Table 4.9 lists the methods that are used for garbage collection. The method reach-

able implements the garbage collection algorithm. This method invokes the methods
check-forw-ref and get-path on parent objects to verify reverse references and to obtain
reachability information, respectively. The methods add-rev-ref and check-rev-ref are
used by users (owners) of the object to maintain the set of reverse references.

The add-rev-ref method adds a reverse reference to the variable rev-ref-set. The
security (access control list) of the object should be such that only resource owners
that sponsor the object can invoke this method. After adding the reverse reference to
rev-ref-set, the method increments version-nr and, if graph is not empty, updates the
object’s record in graph and sets all complete flags to false.

The check-rev-ref method should be invoked after the object’s object handle is
removed from the parent object’s forw-ref-set variable. This tells the object to verify
that it is still reachable and allows unreachable objects to be deleted promptly. The
object can return immediately if the object handle that is passed as a parameter, is not
listed in the object’s rev-ref-set. The object verifies the reverse reference by binding to
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the parent object (using the object handle) and invoking the check-forw-ref method on
the parent object. An object is allowed to ignore invocations of this method. Obsolete
reverse references will be deleted by the garbage collection algorithm.

The check-forw-ref method is invoked on a parent object to verify that a reverse
reference is still valid. The parent returns whether it stores a reference to the object or
not.

Depending of the value of the path-known variable, the get-path method returns
either the current path with the object’s identifier prepended (if path-known is true) to
the root or the current set of records for the graph (otherwise).

The method reachable implements the garbage collection algorithm. This method
computes whether the object is connected to the root set or not. The implementation
of the algorithm consists of 12 steps. The first step limits the amount a time a single
distributed shared object spends on garbage collection. Within a single distributed
shared object, only one thread at a time can execute the garbage collection algorithm.
Furthermore, the interval parameter specifies how long the result of a previous run is
considered valid. Steps 3 verifies a cached path. The remaining steps execute the path
and graph algorithms in parallel. Step 7 executes the path algorithm. Steps 8 and 9
update the graph variable. Steps 10 and 11 compute whether the set of records in graph

is complete and step 12 suspends the execution for a while and jumps back to step 5
to retry the path algorithm and continue the graph algorithm.

1. Return an error6 to the caller if another thread is currently executing this method.
The parameter interval indicates the caller’s idea of how frequently the object
should garbage collect. Return that the object is reachable if the variable path-

known is true and the path has been checked less than interval seconds ago.

2. The verification of the cached path can be skipped if the object does not know
a path to the root. If path-known is false, go to step 4.

3. Verify that the primary parent still knows a valid path to the root and that the
parent also contains a valid forward reference. Use the object handle stored in
primary to bind to the primary parent. Invoke get-path and check-forw-rev(object-

id) on the parent. The object is reachable if the result of get-path is a path, does
not include our object identifier, and check-forw-rev returns true. Update path if
the path returned by the parent is different from the current value of path. Return
to the caller if the object is reachable.

4. Set path-known to false and clear path. Initialize graph with a single record,
containing our object-id, the object identifiers in rev-ref-set, the version number
version-nr, and the complete flag set to false.

6An error is returned because information about the reachability of the object incomplete. Alternatively,
it is possible to return that the object is reachable until it is certain that the object is unreachable.
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5. Invoke check-forw-ref(object-id) on all parent objects listed in rev-ref-set. Delete
all entries from rev-ref-set for parent objects that return false. It is possible that
rev-ref-set becomes empty. In that case, the object is unreachable and can be
garbage collected. Indeed, if none of an object’s parents still points to it, then it
is garbage.

6. Verify that the set of object identifiers in the object handles in rev-ref-set matches
the set object identifiers in the object’s record in graph. In case of a mismatch,
increment version-nr, update to object’s record in graph, and set all complete
flags to false.

7. Invoke get-path on all parent objects in the rev-ref-set.

The result of a method invocation can be a path, a set of records or an error. In
case of a path, we can select the object returning the path as the new primary
parent (provided that the path does not contain our own object identifier). The
object stores the received path in path and the object handle of the parent object
that returned the path in primary. Furthermore, path-known is set to true, graph

is cleared, and the caller is informed that the object is still reachable .

Any paths that include the object’s own identifier are ignored.

8. Every set of records that is returned by get-path is first checked for completely
new records and for records that have a corresponding record (for the same
object) in graph but with different version numbers. All complete flags (both in
the received records and in the object’s current set of records) are cleared if one
or more of such records are found.7

9. Add new records to graph and update records with newer versions, or with com-
plete flags that are set to true. Records for objects which are not ancestors
according to the current information about the graph, are deleted.

10. Compute whether our graph is complete or not. Set the compete flag to true in
our record, if the graph is complete.

11. Check the complete flags in all records. We can conclude that the object is
unreachable if the complete flags are set to true in every record in the graph.

12. At this point we have an incomplete graph. Wait for a while, for information to
propagate and for transient failures to be resolved, and go back to step 5.

7The reason for clearing all complete flags is that the complete flags are used to verify that all objects
in the collection have the same view of the graph. If the parent has records with different version numbers,
then we have to update the relevant graphs first before we continue with the propagation of complete flags.
In theory, we have to clear the complete flags in the received set of records only if that set contains records
with lower version numbers. This optimization is probably not worth the extra effort.
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An object may optionally invoke reachable(interval) on any parent that returns a
path that contains the object’s own object identifier, to trigger a garbage collection
cycle on that parent. The interval parameter should be equal to the interval parameter
that was passed to the object itself.

4.5.5 Example

To illustrate the garbage collection algorithm we analyze two examples. The first
example shows the basic operations of the garbage collection algorithm, finding a path
to the root and detecting a disconnected subgraph. The second example demonstrates
the need for the complete flags in the graph algorithm.

The first example is shown in Figure 4.14. The first figure, Figure 4.14(a), shows
the initial configuration. Objects, numbered 0 through 6, contain references to each
other. Object 0 is the only element of the root set. Note that reverse reference are not
shown in this figure, but they exist. Every reference becomes a reverse reference when
the direction of the arrow is reversed.

0

1 2

3

4 5

6

(a) Initial object collec-
tion

0

1 2

3

4 5

6

(b) Moved object 3

0

1 2

3

4 5

6

(c) Unreachable, cyclic
collection of objects

Figure 4.14. Example

At some point in time, a reference to object 3 is added to object 1 and the reference
to object 3 is deleted from object 2. The result of these two actions is shown in
Figure 4.14(b). Figure 4.14(c) shows the graph after deleting the reference to object 1
from object 0. This creates an unreachable collection of objects that contains a cycle.



172 CHAPTER 4. NAMING AND BINDING

Time t0

OID 0 1 2 3 4 5 6
rev-ref-set {} {0} {0} {2,5} {3} {6} {4}
path-known T T T T T T T
primary 0 0 2 3 6 4
path 0 0 0,2 0,2,3 0,2,3,4,6 0,2,3,4
version-nr 1 1 1 1 1 1 1
graph
root T F F F F F F

Table 4.10. Initial configuration

Time t1 t2 t3 t4 t5

OID 3 3 4 6 5
rev-ref-set {1,2,5} {1,5} {3} {4} {6}
path-known T T T T T
primary 2 1 3 4 6
path 0,2 0,1 0,1,3 0,1,3,4 0,1,3,4,6
version-nr 2 3 1 1 1
graph
root F F F F F

Table 4.11. Moving an object reference from one object to another

Table 4.10 shows the garbage collection state of the objects in Figure 4.14(a).
Table 4.11 shows what happens after the reference to object 3 has been moved to
object 1. At time t1, the new reference from object 1 to object 3 is created. Object 3
is informed about the new reference (a call to add-rev-ref), and adds the reference to
rev-ref-set. At sometime between t1 and t2 the reference from object 2 to object 3 is
deleted. At time t2, object 3 starts a garbage collection cycle and discovers that the
reference from object 2 has been deleted. Fortunately, the reference from object 1 can
be used as a primary reference. The fields primary, path, and version-nr are updated.
Note that version-nr is updated each time the set of reverse references changes. At
some point in time (t3), object 4 discovers that its primary, object 3, has a new path.
Object 4 can simply update its path field. Object 6 and 5, in that order, also update
their path fields.

Tables 4.12 and 4.13 show what happens after the reference to object 1 is deleted.
First (time t6), object 1 discovers that it is no longer referenced by any object. After
object 1 has been deleted, object 3 tries to find a new path to a root object. Unfor-
tunately, the only parent is object 5, which can not be selected as primary (the path
provided by object 5 already contains object 3, see time t5). Object 3 sets path-known
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Time t6 t7 t8 t9

OID 1 3 4 6
rev-ref-set {} {5} {3} {4}
path-known F F F F
version-nr 2 4 1 1
graph {3, {5}, 4, F} {3, {5}, 4, F},

{4, {3}, 1, F}
{3, {5}, 4, F},
{4, {3}, 1, F},
{6, {4}, 1, F}

root F F F F

Table 4.12. Graph distribution (1)

Time t10 t11 t12

OID 5 3 4
rev-ref-set {6} {5} {3}
path-known F F F
version-nr 1 4 1
graph {3, {5}, 4, F},

{4, {3}, 1, F},
{5, {6}, 1, T},
{6, {4}, 1, F}

{3, {5}, 4, T},
{4, {3}, 1, F},
{5, {6}, 1, T},
{6, {4}, 1, F}

{3, {5}, 4, T},
{4, {3}, 1, T},
{5, {6}, 1, T},
{6, {4}, 1, F}

root F F F

Time t13 t14 t15 t16

OID 6 5 3 4
rev-ref-set {4} {} {} {}

path-known F F F F
version-nr 1 2 5 2
graph {3, {5}, 4, T},

{4, {3}, 1, T},
{5, {6}, 1, T},
{6, {4}, 1, T}

root F F F F

Table 4.13. Graph Distribution (2)

to false, and initializes graph. The record in the graph ({3, {5}, 4, F}) consists of the
object ID (3), the set of parents ({5}), the current version number (4), and the value
of the complete flag (False). This record is returned to object 4 as the result of its
invocation of method get-path on object 3. Object 4 creates its own record, and returns
the two records to object 6. At time t10, object 5 is the first object to have a complete
graph. It sets the complete flag in its entry to true. The graph is passed to objects
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3, 4 and 6, which also set the complete flags in their records. Object 6 is the first
object to have a complete graph with all complete flags set. At this point object 6 is
deleted because the entire collection of objects is no longer reachable. After object 6
is deleted, object 5 discovers that it is no longer referenced. In a similar way, object
3 and 4 discover that they are no longer referenced after, respectively, objects 5 and 3
are deleted.
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(a)
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(d)

Figure 4.15. Example with complete flag

To illustrate the need for the complete flag in the graph distribution algorithm, we
give a second example using the object configurations shown in Figure 4.15. Fig-
ure 4.15(a) shows two root objects (object 1 and object 2), two objects that form a
cycle with object 5 (object 3 and object 4) and a reference from root object 1 to object
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3. Figure 4.15(b) shows an additional reference from root object 2 to object 4, and
Figure 4.15(c) shows the result of deleting the reference from object 1 to object 3.

The goal of the complete flags is to avoid the situation that one of the objects be-
lieves that the current configuration is the one shown in Figure 4.15(d) even though the
actual configuration is one of the other three configurations. To show the need for the
complete flag, we assume certain kinds of network failures. In particular we assume
that object 5 cannot communicate with object 3 whenever object 1 has a reference to
object 3. This means that object 5 never learns the path to the root through object 3.
We make the same assumption for object 4 and the reference from object 2 to object 4.

Time t0

OID 1 2 3 4 5
rev-ref-set {} {} {1,5} {5} {3,4}
path-known T T T F F
primary — — 1 — —
path 1
version-nr 1 1 1 1 1
graph — — — {4,{5},1,F} {5,{3,4},1,F}
root T T F F F

Table 4.14. Complete flag example — initial configuration

Table 4.14 shows the initial state of the objects for the configuration as shown in
Figure 4.15. Objects 1 and 2 are root objects, object 3 knows a path to the root (object
1), and objects 4 and 5 have initialized their graphs. At time t1 in Table 4.15, objects
4 and 5 exchange graph records.

Between time t1 and time t2, a reference is added from object 2 to object 4 and the
reference from object 1 to object 3 is deleted. At time t2, object 4 knows a path to the

Time t1 t2

OID 4 5 4 3
rev-ref-set {5} {3,4} {2,5} {5}
path-known F F T F
primary 2
path 2
version-nr 1 1 3 2
graph {4,{5},1,F}

{5,{3,4},1,F}
{4,{5},1,F}
{5,{3,4},1,F}

{3,{5},2,F}
{4,{5},1,F}
{5,{3,4},1,F}

Table 4.15. Complete flag example — continued
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Time t3 t4 t5 t6

OID 3 5 5 3
rev-ref-set {5} {3,4} {3,4} {1,5}
path-known F F F T
primary 1
path 1
version-nr 2 1 1 4
graph {3,{5},2,T}

{4,{5},1,F}
{5,{3,4},1,F}

{3,{5},2,T}
{4,{5},1,F}
{5,{3,4},1,F}

{3,{5},2,T}
{4,{5},1,F}
{5,{3,4},1,T}

Table 4.16. Complete flag example — continued

Time t6 t7 t8

OID 4 4 5
rev-ref-set {5} {5} {3,4}
path-known F F F
primary
path
version-nr 4 4 1
graph {3,{5},2,F}

{4,{5},4,F}
{5,{3,4},1,F}

{3,{5},2,F}
{4,{5},4,T}
{5,{3,4},1,F}

{3,{5},2,F}
{4,{5},4,F}
{5,{3,4},1,F}

Table 4.17. Complete flag example — continued

root and object 3 has created a record for itself and retrieved records for object 4 and
5 from object 5. Without complete flags, object 3 would declare itself disconnected
from the root set because its graph is complete. With the complete flags, object 3
simply sets the complete flag in its record. This is shown in Table 4.16 at time t3.

At times t4 and t5, object 5 retrieves the current set of records from object 3
(including the record with the complete flag) and sets its own complete flag. After t5,
the configuration is changed back to the original configuration. At time t6, object 3
records a new path to the root.

In Table 4.17 and also at time t6, object 4 create a record for itself and fetches a
set of records from object 5. Note that the complete flags are set to true in the records
for objects 3 and 5 that are received from object 5. However, object 4 has to set all
complete flags to false due to the version mismatch in object 4’s own record. Without
this rule, object 4 would have only have to set its own complete flag to true to set a
complete set of records with all complete flags set to true. In other words, without this
rule, object 4 would decide that it is unreachable.
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Time t9 t10

OID 5 4 5
rev-ref-set {3,4} {5} {3,4}
path-known F F F
primary
path
version-nr 1 2 1
graph {3,{5},2,F}

{4,{5},4,F}
{5,{3,4},1,T}

{3,{5},2,F}
{4,{5},4,T}
{5,{3,4},1,T}

{3,{5},2,F}
{4,{5},4,T}
{5,{3,4},1,T}

Table 4.18. Complete flag example — continued

At time t7, object 4 sets its complete flag to true. Next, at time t8, object 5 receives
the set of records from object 4. Object 5 also sets all complete flags to false due to
the version mismatch in the record for object 4.

At time t9 in Table 4.18, object 5 sets its complete flag to true. Both object 4 and 5
now have the same versions of all records. At time t10, object 5 and 4 exchange theirs
sets of records. Note that the set of records in object 5 is similar to the set records it
had at time t5, except that the roles of objects 3 and 4 are reversed.

4.5.6 Safety

A garbage collection algorithm is safe if it does not delete objects that are still reach-
able from the root set. In this section, we give an informal argument why the algorithm
is safe; in the next section we will look at safety more formally. In general, we can
analyze this problem by looking at an object that is referenced by one other object. At
some point in time a new reference to the object is added from a different object and
the old reference is deleted. In a distributed system we have to look at a collection
of objects (in different address spaces) with a single reference from the root set. We
look at the scenario where, in a short period of time, a new reference from the root
set to one of the objects in the collection is added and the old reference is deleted.
We have to deal with two kinds of distributions: different objects run independently at
different machines and a single object may have replicated state. We will first look at
a collection of nonreplicated objects that run on different machines.

We can analyze this problem by looking at an object O, with two ancestors, A

and B, and a root set with two objects R1 and R2. Figure 4.16 shows one possible
configuration. Small circles represent objects, arrows represent object references and
ellipses represent collections of objects. Initially there is an (indirect) reference from
an object in the root set (object R1) to object A. At some point in time, a new reference
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O

M

B

Y

R 2

A

X

R 1

Figure 4.16. No relationship between A and B

is added to object B from Y and the reference from object X to object A is deleted.
The whole process is observed from the point of view of object O.

We can classify different situations depending on the relationship between object
A and object B. In Figure 4.16, A and B are independent. Object M is the first
object that has both A and B as ancestors. In Figure 4.17, A is an ancestor of B. In
Figure 4.18 the reverse is true, B is an ancestor of A. Finally, in Figure 4.19, A and
B are each other’s ancestors. They form a cycle.

Note that in the situations in Figure 4.16 and Figure 4.18, there are no references
to object B and therefore, object B is deleted the next time it runs a garbage collec-
tion cycle. As such, adding a new reference to object B can be considered to be a
programming error, and we can safely ignore those two scenarios.

Figure 4.17 is easy to analyze. Object A receives a path from X , and forwards
this path to both B and O. A is deleted when it detects that the reference from object
X has been deleted. B continues to advertise the path through object A until its next
run of the garbage collector. It detects that the path through A is invalid, but instead it
has a new path through Y and starts advertising this path. Object O eventually learns
about the path through Y .

The analysis of Figure 4.19 requires the propagation of the complete flags. Ob-
ject A announces a path through X as long as the reference from X to A is present.
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Figure 4.17. A is an ancestor of B
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Figure 4.18. B is an ancestor of A
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Figure 4.19. A and B form a cycle

However, it is possible that object B does not know its path through A, and as result
B advertises a graph (at this point without the reference from object Y ). This graph
may reach object O. At some point in time, the reference from Y to B is added and



180 CHAPTER 4. NAMING AND BINDING

the reference from X to A is deleted. A starts advertising a graph because it no longer
knows a path to the root. The graph reaches object O, and object O concludes that
neither A nor B nor any other object near O knows a path to a root object and as a
result the collection of objects should be deleted. However, object O has to wait for
records with the complete flag set to true from all objects. In the mean time, object B

discovered the reference from object Y , and starts announcing a path. Eventually, this
path will reach O, A and every other object in the collection.

4.5.7 Formal Approach to Safety

A garbage collector is safe if it does not delete objects that are reachable from the root
set. In this garbage collector, an object is defined to be reachable from the root set if
a path from a member of the root set through zero or more other objects to the object
can be complemented with a path from the object to the member of the root set using
reverse references. This means that an object can be unreachable from the root, even
though there are still references to the object.

This definition of reachable from the root set leads to another problem: it is possi-
ble that an object is temporarily unreachable from the root set. It is possible to cause
an object to become unreachable by deleting all references to the object’s parents, and
to create a new reference (with the appropriate reverse reference) just before the ob-
ject start a garbage collection cycle.8 We consider this to be an error on the part of the
user of the object. For the safety analysis, objects are required to be reachable from
the root set throughout their lifetime. In fact, we go one step further: to determine
whether, at a certain time, an object is reachable from the root set or not, we ignore
any ancestor of the object that has not been continuously reachable from the root set.

With respect to the root set, we assume that an object cannot become a member
of the root set after it has participated in the graph algorithm. In particular, an object
that has sent graph records to other objects cannot become a member of the root set.
This is a limitation of the garbage collection algorithm; it is not clear whether this
limitation should be addressed or not.

The garbage collection algorithm considers an object to be unreachable from the
root set if one of two conditions is met: either the object’s set of reverse references
has become empty or the graph algorithm has completed. We will start with the first
condition, which is easy to analyze. The second condition is much harder to analyze.

The set of reverse references is updated by both the user (owner) of an object
and by the garbage collector. The user of the object is responsible for adding new
reverse references (by invoking the add-rev-ref method), and the garbage collector
deletes obsolete entries.

8In a traditional single address space garbage collector the same effect can be achieved by writing a
pointer to an object to disk and reading that pointer back into memory at a later time.
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The garbage collector deletes a reverse reference when either the reverse reference
refers to an object that has been destroyed or when it refers to an object that no longer
stores a corresponding forward reference. Below, we will see how the location service
can be augmented to reliably report whether an object exists or not. The existence
of an appropriate forward reference is checked by invoking the method check-forw-ref

on the object that the reverse reference refers to. When the set of reverse reference
becomes empty, after all parents are either destroyed or have deleted their forward
references, the object is unreachable from the root set and can be deleted.

To prove the safety of the graph algorithm we view the algorithm as a distributed
snapshot algorithm [Babaoğlu and Marzullo, 1993]. Each object tries to get a consis-
tent snapshot of the sets of reverse references of its ancestors. We prove that when
an object is unreachable according to its snapshot, the object is in fact unreachable.
To prove this, we first construct a model of the system and prove that the existence of
a snapshot in which an object is unreachable combined with the assumption that the
object is in fact reachable leads to a contradiction.

Model

The set of all object identifiers is called OID. The variables a, b, o, and p refer to
elements of this set. Every object maintains a set of reverse references (also called
parents) and assigns a local version number to different versions of this set. Version
numbers are taken from the set of natural numbers N0. For each object, its version
number is set to 0 when an object is created and is incremented each time the set of
reverse references changes. The variables i, j, n, k, and l are used to denote version
numbers.

A combination of an object identifier and a version number uniquely identifies a
set of reverse references. We introduce we function R : OID × N0 → 2OID which
returns a particular version of the set of object identifiers of the reverse references of
an object.

Each object knows the set of reverse references of some of its ancestors. This
knowledge is called a view. Each object o has a sequence of views Vo,i, where i is
the version number of the view. The views of an object are numbered independently
of the set of reverse references of the object. A view is represented by a function
Vo,i : OID → N0. This function returns for an ancestor object a of o the version
number of the set of reverse references of a in the i-th view of object o.

We define the operator Dom as follows:

Dom(f) = {x ∈ domain(f) | f(x) is defined} (4.1)

For example, Dom(Vo,i) is the set of object identifiers in view number i of object o.
We define the subset relationship between two views as follows:

V1 ⊆ V2 :: Dom(V1) ⊆ Dom(V2) ∧ ∀o ∈ Dom(V1) : V1(o) = V2(o) (4.2)
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Ancestor Version Reverse references Complete flag
OID1 V1 OID(rr1), . . . , OID(rrm) C1

...
...

...
...

OIDn Vn

... Cn

Table 4.19. Collection of reverse-reference records

Object Version Reverse references
OID1 1 OID(rr1), . . . , OID(rrm)

OID1 2
...

...
...

...

OIDn 1
...

...
...

...

OIDn k
...

Table 4.20. Reverse-reference function R(o, i)

In other words, V1 is a subset of V2 if we can derive V1 from V2 by deleting zero or
more values from V2.

In addition to a view, each object also maintains a collection of complete flags.
The collection of complete flags for an object o is represented by a total function
Co,i : OID → {T, F}. A total function is defined for its entire domain. This means
that Co,i(a) is defined for every a ∈ OID. A function Co,i contains the complete flags
that are associated with view Vo,i. Initially, an object starts with all complete flags
set to false (i.e, ∀a ∈ OID : Co,0(a) = F). We define the logical-or operator on two
functions C1 and C2 as follows:

(C1 ∨ C2)(o) = C1(o) ∨ C2(o) (4.3)

Tables 4.19, 4.20, 4.21(a), and 4.21(b) illustrate the difference between the data
structures used by the actual algorithm and the functions that are used to model the
algorithm. Table 4.19 shows a reverse-reference graph for one object at one point in
time. Different objects are likely to have different graphs and their graphs change
over time. The reverse-reference function R, shown in Table 4.20, models the rela-
tion between a set of reverse references and the combination of an object identifier
and a set of reverse references. The view in Table 4.21(a) can be combined with
function R to obtain the first three fields (object identifier, version number, and set
of reverse-references) of a particular version of an objects reverse-references graph.
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Object Version
OID1 V1

...
...

OIDn Vn

(a) Vo,i

Object Complete flag
OID1 T or F

...
...

OIDn T or F
...

...

(b) Co,i

Table 4.21. View and corresponding complete flags

The corresponding complete flags function (Table 4.21(b)) provides the complete-flag
field.

We call the object that has just decided that it is unreachable Ω. The version
number of Ω’s most recent view is M . We will use V̄ to refer to Ω’s most recent view
(VΩ,M ) and C̄ to refer to the corresponding collection of complete flags (CΩ,M ).

An object o with view Vo,i is unreachable according to the graph algorithm when
the complete flags in all records are set to true (step 11 of the reachable method). This
is shown in the following equation:

∀o ∈ Dom(Vo,i) : Co,i(o) = T (4.4)

For an arbitrary view V , we can define a function P ∗

V : OID → 2OID which returns
the ancestors of an object o ∈ Dom(V ) according to view V as follows:

P 0
V (o) = {o} (4.5)

P i
V (o) = {p1 ∈ OID | ∃p2 ∈ P i−1

V (o) : p1 ∈ R(p2, V (p2))} (i > 0) (4.6)

P ∗

V (o) =
⋃

i∈N0

P i
V (o) (4.7)

This model assumes that version numbers associated with sets of reverse refer-
ences form a strictly monotonic sequence starting with zero. This can be verified by
looking at the algorithm. The version number is incremented each time the set of re-
verse references is changed. This is done in the add-rev-ref method (see page 168) and
in step 6 of the reachable method (see page 170).

In this model, an object identifier and a version number uniquely identify a set of
reverse references. In the actual algorithm, each record contains, apart from the object
identifier and the complete flag, both a version number and a set of reverse references
(see Section 4.5.3, pages 164–165). This means that in theory records may exist (in
different objects) that have the same object identifier and version number but different
sets of reverse references. However, only the complete flag in a record can be changed
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during the execution of the algorithm; the object identifier, the version number, and the
corresponding set of reverse references are always copied together. For this reason,
we can assume that the combination of an object identifier and a version number is
associated with at most one set of reverse references.

An object sets the complete flag in its record to true when it has records for all of
its ancestors. This is expressed in the following equation:

Co,i(o) = T ⇐⇒ Dom(Vo,i) = {o} ∪
⋃

a∈Dom(Vo,i)

R(a, Vo,i(a)) (4.8)

To model the propagation of complete flags, we introduce the total function Rcvd :

OID×N0×OID×N0 → {T, F}. Rcvd(a, i, b, j) = T if, and only if, the following two
conditions are met: (1) object a received a set of records from object b that correspond
to view Vb,j and the collection of complete flags Cb,j ; (2) the view that results from
processing the received records is Va,i (with complete flags Ca,i). Note that Va,i is
not necessarily a new view. It is possible Vb,j does not contain any new information
and, therefore, object a does not change its view.

An important property of the algorithm is that when an object a receives a set of
records from a parent object b, all complete flags are cleared, unless the view that is
passed from the parent is subset of the view of the child (step 8). Note that the test in
step 8 whether or not to clear the complete flags is the same as is used in the definition
of the subset relation in equation 4.2. If any complete flags other then object’s own
complete flag are true after receiving a view from a parent, then the parent’s view must
have been a subset of the child view. This is expressed in the following implication:

∀a, b ∈ OID,i, j ∈ N0, o ∈ OID 6= a :

Rcvd(a, i, b, j) = T ∧ Ca,i(o) = T =⇒ Vb,j ⊆ Va,i

(4.9)

When the set of records received by object a from an object b is a subset of object a’s
current set of records, object a sets its complete flags to true using the equivalent of
an or operator: Ca,i = Ca,i−1 ∨ Cb,j (step 9).

The algorithm clears the complete flags in all records in an object’s graph when-
ever that object modifies its set of reverse references (the add-rev-ref method and steps
4 and 6 of the reachable method) or when it receives a set of records that is not a subset
of the current set of records (step 8). This is expressed in the following implication:

∀a ∈ OID,i ∈ N0, o ∈ OID 6= a :

Ca,i(o) = T ∧ Ca,i+1(o) = T =⇒ Va,i = Va,i+1

(4.10)

An object directly sets only its own complete flag; all other complete flags are
received from parents. This means that if an object a has the complete flag for object
b (6= a) set to true in version i of its collection of complete flags (i.e. Ca,i(b) =

T), there has to be a cycle-free path that specifies the propagation of the complete
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flags from object b to object a. This path can be described by a sequence of tuples
(o1, k1), (o2, k2), . . . , (on−1, kn−1), (on, kn) with o1 = b, on = a, kn = i, and
oj 6= b (2 ≤ j ≤ n).

In this path, either an object receives the complete flag from its parent (i.e., oj+1 6=

oj) or its view is changed but the complete flags remains set to true (oj+1 = oj and
kj+1 = kj + 1). This is expressed in the following equation:

∀1 ≤ j < n : (oj+1 6= oj ∧

Rcvd(oj+1, kj+1, oj , kj) = T ∧ Coj+1,kj+1
(b) = T)

∨

(oj+1 = oj ∧ kj+1 = kj + 1 ∧

Coj ,kj
(b) = T ∧ Coj+1,kj+1

(b) = T)

(4.11)

Finally, object b has its own complete flag set to true (i.e, Co1,k1
(o1) = Cb,k1

(b) = T).

Proof

For the proof of the safety of the garbage collector we have to assume that the views
of all ancestors of Ω are contained in V̄ . We will prove two lemmas that support this
assumption. The first lemma generalizes implication 4.9 for all ancestors of Ω. The
second lemma shows that the ancestors of an ancestor of Ω can be computed using V̄ .

Lemma 1

∀a ∈ P ∗

V̄
(Ω) : C̄(a) = T =⇒ ∃i ∈ N0 : Va,i ⊆ V̄ ∧ Ca,i(a) = T (4.12)

Proof The proof is trivial for a = Ω: i = M gives the desired result. For a 6= Ω,
there exists a path (o1, k1), (o2, k2), . . . , (on−1, kn−1), (on, kn) with o1 = a, on = Ω,
kn = M , and i = k1. A property of the path is Co1,k1

(o1) = Ca,i(a) = T.
Using implication 4.9, implication 4.10, and equation 4.11 we can show that

Voj ,kj
⊆ Voj+1,kj+1

(1 ≤ j < n), as follows. According to equation 4.11, either

oj+1 6= oj ∧ Rcvd(oj+1, kj+1, oj , kj) = T ∧ Coj+1,kj+1
(b) = T (4.13)

or

oj+1 = oj ∧ kj+1 = kj + 1 ∧ Coj ,kj
(b) = T ∧ Coj+1,kj+1

(b) = T (4.14)

From implication 4.9 with a = oj+1 b = oj , i = kj+1, and j = kj we obtain

Rcvd(oj+1, kj+1, oj , kj) = T ∧ Coj+1,kj+1
(b) = T =⇒ Voj ,kj

⊆ Voj+1,kj+1
(4.15)
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Combining implication 4.15 with equation 4.13 leads to

oj+1 6= oj =⇒ Voj ,kj
⊆ Voj+1,kj+1

(4.16)

Similarly, from implication 4.10 with a = oj , i = kj , and o = b we obtain

Coj ,kj
(b) = T ∧ Coj ,kj+1(b) = T =⇒ Voj ,kj

= Voj ,kj+1 (4.17)

Combining implication 4.17 with equation 4.14 and with oj+1 = oj and kj+1 = kj+1

from equation 4.14 leads to

oj+1 = oj =⇒ Voj ,kj
= Voj+1,kj+1

and therefore to

oj+1 = oj =⇒ Voj ,kj
⊆ Voj+1,kj+1

(4.18)

Combining equating 4.16 and equation 4.18 results in

Voj ,kj
⊆ Voj+1,kj+1

Using the transitivity of ⊆, it follows that Vo1,k1
⊆ Von,kn

and, therefore, Va,i ⊆

VΩ,M = V̄ . �

Lemma 2

∀a ∈ Dom(V̄ ) : ∃i ∈ N0 : P ∗

V̄
(a) ⊆ Dom(Va,i) ∧ Va,i ⊆ V̄ (4.19)

Proof From equation 4.4 we know that C̄(a) = T (because a ∈ Dom(V̄ )). Com-
bined with lemma 1 this ensures the existence of Va,i ⊆ V̄ and Ca,i(a) = T. Us-
ing equation 4.8, we find that Dom(Va,i) contains the ancestors of every object in
Dom(Va,i). Furthermore, Va,i ⊆ V̄ means ∀o ∈ Dom(Va,i) : Va,i(o) = V̄ (o) (defi-
nition 4.2). This means that the same sets of reverse references are used to compute
P ∗

Va,i
(a) as are used to compute P ∗

V̄
(a). The set P ∗

V̄
(a) = P ∗

Va,i
(a) contains the an-

cestors of just one object (a) in Dom(Va,i) and, therefore, P ∗

V̄
(a) ⊆ Dom(Va,i). �

We show that the existence of view V̄ implies that the object is unreachable by
looking at changes to the sets of reverse references of various objects. Each change
to a set of reverse references (either an invocation of the add-ref-ref method to add a
new reverse reference or step 5 of the reachable method) is called an event. Each time
the set of reverse references of an object is changed, the object increments its version
number. Events are therefore identified by a tuple that consists of an object identifier
and the version number of the object’s set of reverse references that reflects the event.
The set of all events is {(o, n) | (o, n) ∈ Dom(R)}.
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We define Ē ⊆ OID × N0 as the set of all events that ever occurred to objects in
Dom(V̄ ):

Ē = {(o, n) | o ∈ Dom(V̄ ) ∧ (o, n) ∈ Dom(R)} (4.20)

E ⊆ Ē is defined as the set of all events (o, n) ∈ Ē for which the object o was
reachable when the event occured. We can split E into three subsets depending on
whether an event occured logically before view V̄ (E−), after V̄ (E+), or is part of V̄

(E0):

E− = {(o, n) ∈ E | n < V̄ (o)} (4.21)

E+ = {(o, n) ∈ E | n > V̄ (o)} (4.22)

E0 = {(o, n) ∈ E | n = V̄ (o)} (4.23)

The assumption that the algorithm is incorrect and that object Ω is reachable from
the root implies that at least one of its ancestors has to be an object not in Dom(V̄ ).
The reason is that an object in the root set does not participate in the graph algorithm
and, therefore, cannot be a member of Dom(V̄ ). Either Ω has a reverse reference to
an object not in Dom(V̄ ) or one of Ω’s ancestors in Dom(V̄ ) has a reverse reference
to an object not in Dom(V̄ ) (or both). Since Ω ∈ Dom(V̄ ), we can say that, under
the assumption that Ω is reachable from the root, at least one object in Dom(V̄ ) must
have a reverse reference to an object not in Dom(V̄ ). In other words, the existence of
a path from the root to object Ω implies at least one event (o, n) ∈ E with R(o, n) *
Dom(V̄ ).

We can define subsets A, A−, A+, and A0 of E that contain those events:

A = {(o, n) ∈ E | R(o, n) * Dom(V̄ )} (4.24)

A− = A ∩ E− (4.25)

A+ = A ∩ E+ (4.26)

A0 = A ∩ E0 (4.27)

Note that A0 = ∅ due to equation 4.8 and the fact that C̄(Ω) = T.
To show that the algorithm is incorrect, we have to assume that E+ 6= ∅. However,

we show that any E+ 6= ∅ leads to a contradiction. This implies that E+ is empty and
that the object is unreachable.

Since events in E are related to physical events in a distributed computer system,
we can assume that all events can be ordered according to some global time. Note that
this global time is a hypothetical clock and is not actually maintained by the distributed
system.

If E+ 6= ∅ then there must be an (a, n) ∈ E+ which happens before all other
events in E+. (a, n) ∈ E+ implies that event (a, n) happened after event (a, V̄ (a)) ∈

E0. According to the definition of reachability, object a is reachable at the moment
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that event (a, n) occurs only if it has been continuously reachable before that time.
Object a is reachable only if there is at least one path to the root. This implies that there
is at least one object b and an event (b, k) such that b ∈ Dom(V̄ ), R(b, k) * Dom(V̄ ),
event (b, k) occurs (in real time) before event (a, n), and the next event (b, k + 1)

occurs after (a, n). In other words, (b, k) is the last event of b that occurs before (a, n)

and therefore R(b, k) is the most recent set of reverse references of b when (a, n)

occurs. The fact that b ∈ Dom(V̄ ) ∧ R(b, k) * Dom(V̄ ) implies that (b, k) ∈ A. We
know that (b, k) 6∈ A+ because A+ ⊆ E+ and (b, k) has to precede (a, n) which is
the earliest event in E+. Therefore, (b, k) ∈ A−.

We can distinguish two cases depending on whether b ∈ P ∗

V̄
(a) or not. In both

cases we will show that no suitable event (b, k) exists.
We will first look at the case b ∈ P ∗

V̄
(a). We know that the event (b, V̄ (b)) ∈ E0

happens after (b, k) because (b, k) ∈ A− ⊆ E−. From lemma 2 we know that (for
some i)

P ∗

V̄
(a) ⊆ Dom(Va,i) ∧ Va,i ⊆ V̄

With both a and b ∈ P ∗

V̄
(a) we know that view Va,i contains both (a, V̄ (a)) and

(b, V̄ (b)) (all events in view V̄ have the form (o, V̄ (o))). The existence of a view
Va,i that contains both (a, V̄ (a)) and (b, V̄ (b)) implies that (b, V̄ (b)) happened (in
real time) before event (a, n) (because n > V̄ (a)). This contradicts the assumption
that event (b, k) was the last event of object b before event (a, n) because (b, V̄ (b))

intervenes. In other words, it is impossible to select an object b ∈ P ∗

V̄
(a) and an event

(b, k) such that R(b, k) is both the current set of reverse references of b at the time
event (a, n) occurs and R(b, k) * Dom(V̄ ).

If object b is an ancestor of a but b 6∈ P ∗

V̄
(a) then there must exist a (p, l) ∈ E

such that p ∈ P ∗

V̄
(a) and R(p, l) * P ∗

V̄
(a) (i.e, p is an object in P ∗

V̄
(a) with at least

one parent not in P ∗

V̄
(a)).9 (p, l) 6∈ E+ because (p, l) happens before (a, n) and (a, n)

is the earliest element in E+. We argue that no suitable (p, l) exists in a way similar
to the reasoning that no suitable (b, k) for b ∈ P ∗

V̄
(a) exits. We require (p, l) to be

the last event of object p that precedes event (a, n) in real time. (p, l) 6∈ E0 because
R(p, V̄ (p)) ⊆ P ∗

V̄
(a). However, if (p, l) ∈ E− then (p, l) happens before (p, V̄ (p)).

From lemma 2 and p ∈ P ∗

V̄
(a) we know that some view of a contains both (a, V̄ (a))

and (p, V̄ (p)). This means that (p, V̄ (p)) happened before (a, n). This means that
event (p, l) was not the last event of object p before event (a, n) and, therefore, no
suitable event (p, l) exists.

We can conclude that no suitable object b with associated event (b, k) exists to
provide a with a path to the root at the time event (a, n) occurs. This means that
(a, n) 6∈ E+ and therefore E+ = ∅. This completes the proof of the safety of the
garbage-collection algorithm.

9This argument is similar to the one used to argue the existence of (b, k). Object p is a member of a
smaller set (in this case P ∗

V̄
(a)) that has at least one ancestor in a proper super set.
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4.5.8 Completeness

A garbage collection algorithm is complete if all unreachable objects will be reclaimed
eventually. We can analyze completeness by looking at a collection of objects that is
unreachable from the root set.

In the absence of cycles, which means that the references between the objects
in the collection form a directed acyclic graph, there has to be at least one object
that has no parent objects. This object will be deleted, which results in a smaller
directed acyclic graph. After a number of iterations, the complete collection of objects
is destroyed. The speed at which single object is garbage collected depends on how
often its ancestors perform a garbage collection cycle, and on transient failures that
prevent the object from communication with its parents.

A collection of objects that does contain a cycle requires that all objects in the col-
lection that are part of the cycle build a complete view of the graph that connects them
and their ancestors. Transient failures may delay the creation of that view. However,
a more serious problem is that the graph has to be stable to be propagated, that is,
insertion and deletion of object references causes the garbage collection algorithm to
restart. To solve this problem, an object should stop accepting new reverse references
(delay calls to add-rev-ref) when it has been unable to find a path to the root for some
period of time. Further research is needed to determine how long this period should
be.

4.5.9 Replication

The description and analysis of the garbage collection algorithm ignored distributed
shared objects with replication state. To handle replication, we have to look at three
different issues. The first issue is the consistency requirements of the garbage collec-
tion algorithm. The second issue is running multiple copies of the algorithm at the
same time in different replicas of a single distributed shared object. The third issue is
dealing with replicas with different sets of reverse references.

The consistency requirements can be described in two different ways. One ap-
proach is to look at a suitable memory coherence model. Alternatively, it is possible
to look at models that take the semantics of the garbage collector into account. The
consistency requirements are best illustrated with an example. Consider a distributed
shared object with one parent. A user adds a reference from a second parent, invokes
the add-rev-ref method on the distributed shared object, and deletes the reference from
the first parent. The next time the object runs the garbage collection algorithm, it
discovers that the reference from the original parent has been deleted and deletes the
parent from the set of reverse references. It is important that the object’s set of re-
verse references contains the second parent otherwise the object will be deleted. The
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garbage collection algorithm invokes the check-forw-ref method on the second parent.
It is important the second parent reports that it has a reference to the object.

This example shows that the method add-rev-ref should be implemented such that
the next time the garbage collection algorithm runs, it should know about the addi-
tional parent. Similarly, a reference to an object that has been added to one replica
should cause the check-forw-ref method to return that the distributed shared object as a
whole contains a reference to the object.

Memory coherence models that are linearizable provide the desired consistency. A
concurrent computation is called linearizable if it is “equivalent” to a legal sequential
computation [Herlihy and Wing, 1990]. This means that all lookup operations that are
started after an insert operation has completed, have to take the inserted reference into
account. A straightforward way of implementing a linearizable coherence model is to
update all copies of the state during a write operation or to invalidate all other copies.
More advanced algorithms are described in [Herlihy and Wing, 1990].

An alternative approach is to use the so called union rule: for the purpose of
garbage collection, an object should use (report) the union of all object references in its
replicas. This means that the garbage collection algorithm should assume the union of
all copies of the set of reverse references to determine whether the object is reachable
or not. Similarly, the method check-forw-ref has to scan all forward references in all
replicas before returning false.

In distributed shared objects with multiple replicas and especially if those replicas
belong to different resource owners, it is desirable to be able to execute the garbage
collection algorithm concurrently in different replicas. The path algorithm is easy to
parallelize. Different replicas can execute the path algorithm independently, even if
they have different sets of reverse references. With different sets of reverse references
it is possible that one replica’s set is empty whereas other replicas have nonempty
sets. This is not a problem. The replica with the empty set can be deleted and the
other replicas can continue to exist.

Unfortunately, it is much harder to parallelize the graph algorithm. The graph
algorithm depends on the fact the a single distributed shared object has a single version
number, a single set of reverse references, and a single complete flag. More research
is needed to determine whether parallel versions of the graph algorithm are possible.
It is however possible to execute the complete garbage collection algorithm in one
replica and execute the path algorithm in other replicas. The replica that executes
the complete algorithm has to be careful with its conclusions if it detects that it is
unreachable. If the graph algorithm has determined that it is unreachable, it should
inform all other replicas that the entire object is unreachable. On the other hand, if
its set of reverse references is empty, if should tell the other replicas to select a new
replica that executes the complete algorithm.

Replicas that belong to different resource owners may have different sets of re-
verse references. A parallel version of the path algorithm can easily handle different
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sets of reverse references. Unfortunately, it is necessary to choose which sets of re-
verse references are used in the graph algorithm. One approach is to use all reverse
references (the union rule). Another approach is to use only the reverse references of
the replica that executes the graph algorithm.

For example, distributed shared objects that consist of a core with one replica and
a ring of cache replicas around the core ignore the reverse references of the cache
replicas. The reverse references that are stored in cache replicas can be used to assist
the resource owners of those replicas but are not to be used to determine the lifetime
of the distributed shared object as a whole. Another example is a distributed shared
object that provides a collection of users with a shared whiteboard. In this case, the
distributed shared object should continue to exists as long as at least one of the users
is interested in the object. This type of object is expected to use all reverse references
to determine whether it is reachable or not.

4.5.10 Exceptional Conditions

Occasionally, a method invocation on a parent object may fail. These failures fall
into two categories: transient failures and permanent failures. A transient failure
is a temporary failure. For example, a method invocation cannot be executed due to
a communication failure, a power failure, a crashed server, etc. In general, we can
expect that at a later time the operation will succeed.

On the other hand, if the method fails permanently, we know that retrying the
method is pointless. A permanent failure is an authoritative statement that an op-
eration cannot succeed. The garbage collection algorithm has to consider only one
situation that causes an operation to fail permanently: an attempt to invoke an opera-
tion on an object that has been destroyed. A child object that tries to invoke a method
on a parent object can never succeed if the parent object has been destroyed.

Unfortunately, it is quite hard to determine whether a method invocation failed
because the object has been destroyed or whether there is a communication failure
or a transient failure in the location service that makes it impossible to bind to the
object. One way to resolve the issue is to try to communicate with the object for some
time. The object can be declared dead if communication fails long enough. This is not
an acceptable solution: if the time-out is set too large, it will take a long time before
garbage is removed. A short time-out means that a network problem that lasts a couple
of days may lead to the loss of a large number of objects.

The alternative is to introduce a service, indexed on the object handle, which states
whether an object exists or not. A suitable candidate for providing this service is the
location service: this service is already indexed on the object handle, and internal
garbage collection of the location service requires that entries for dead objects are
deleted.
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The location service needs to be extended in the following way:

1. The location service should report an object as destroyed if the location service
does not contain an entry for the object.

2. The location service deletes entries for objects without any contact addresses.

3. For each contact address, the location service needs to be able to verify whether
the address is still valid or not. Invalid contact addresses are deleted.

We can define a service that reports whether a contact address is valid using a
bottom-up approach. Contact addresses of persistent objects are already managed by
an object manager. The location service can use the object manager to verify whether a
particular contact address is still valid or not. This can be implemented in the location
service by storing the object handle of the object manager for the contact address
along with the contact address itself. For nonpersistent objects, it is possible to create
a distributed shared object in each address space that provides a similar service.

The next problem is that the object manager itself may fail. The solution is to
use a higher-level manager that can verify whether a particular object manager still
exists. The object manager is a distributed object with contact addresses which means
that the object handle of the higher-level manager can be associated with the contact
addresses of the object manager.

This approach creates a complete hierarchy of managers that verify the existence
of other managers or, at the lowest level, contact addresses. The root of that hierarchy
has to be handled manually by system administrators.

4.5.11 Scalability

The three main scalability problems for this garbage collection algorithm are: (1) the
number of references to an object, (2) the loss of efficiency due to garbage collection
cycles, and (3) the resources (memory, bandwidth) needed to run the disconnected
graph algorithm.

The first problem has been described already: an object can store only a small
number of reverse references. This is a problem in pure reference listing systems.
However, this is not a problem in Globe for two reasons: only the owner (sponsor) of
an object is allowed to store reverse references in the object and, for highly replicated
objects, the reverse references are spread out over the replicas. Future work is needed
to verify that garbage collection of highly replicated objects is feasible.

The second problem is the cost of garbage collection cycles in an otherwise idle
system. The question is how often an object should run a garbage collection cycle.
For example, suppose that a server allocates on average 1% of its resources per hour.
This means that all resources are allocated after 100 hours. The server needs to free
1% of its resources each hour to reach equilibrium.
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A simple-minded server simply starts a garbage collection cycle for all of its ob-
jects at regular intervals. A better solution is to start a new garbage cycle when a
certain amount of resources have been allocated since the last cycle. Another tech-
nique is the use of generational garbage collection. With generational garbage col-
lection, objects that are relatively old are checked less frequently than younger objects
[Lieberman and Hewitt, 1983]. In most systems, many objects live only a short time
and objects that already exist for a longer period are likely to stay alive for a while. A
typical exception is a news spool directory, where most news articles are deleted when
they reach a certain age.

An improvement that avoids superfluous garbage collection cycles is the check-rev-

ref method. This method triggers a garbage collection cycle when an object reference
is deleted instead of at random moments. It is possible that enough objects are re-
claimed due to check-rev-ref method invocations so that the server does not have to
start a garbage collection cycle.

The techniques that avoid garbage collection until the server runs out of storage
are not suitable for objects that contain references to other objects. Those objects
should be destroyed promptly, otherwise they may prevent other objects from being
reclaimed. Fortunately, objects can give a hint to their parent objects through the time-
out parameter of the reachable method, that is, an object can invoke reachable on its
(primary) parent to trigger a garbage collection cycle.

The last scalability problem is the size of the reverse-reference graphs in a (dis-
connected) collection of objects. Graphs are computed in three different situations:
(1) the object is in fact reachable but the path to the root did not yet reach the object,
(2) the object is unreachable and part of a cycle, and (3) the object is unreachable but
not part of cycle. In the second case, computation of the graph is necessary to decide
that the object is unreachable. In the two other cases, computing the graph is a waste
of time and resources.

In the case of a cycle, the objects probably belong to a single user or organization.
The reason they probably belong to a single user is that each of the objects in the cycle
can keep the other objects reachable from the root (and thus prevent them from being
collected). For this reason, collecting cycles is likely to be a local issue, where the
users can limit size of the cycles to the garbage collection resources available.

In the other two cases the computation of the graph is not critical. Either the object
learns a new path to the root, or when the object is unreachable but not part of a cycle,
the object can simply wait for its ancestors will be destroyed. For this reason, the
garbage collection can start out by limiting the size of the graph, and compute only
the full graph if no progress has been made for some time.
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4.5.12 Name Service

At the end of this section about garbage collection we look at the interaction between
the garbage collector and the naming system. The garbage collection algorithm re-
quires that references to distributed shared objects be stored in other distributed shared
objects (with the exception of references to objects in the root set). With relatively lit-
tle effort we can turn those objects into directory objects for the naming system. The
object just has to associate an ASCII name (directory entry) with each object refer-
ence. The result is that if a particular object is reachable from an object in the root set,
then that particular object is also reachable from the root object via a pathname.

The requirement that an object associates directory entries with its object refer-
ences is a modest requirement. Distributed shared objects that store references to
other objects can easily implement the required methods to be considered a directory
object. The advantage of directory objects is that the users of the system have easy
access to object references stored in different address spaces.

A pathname for an object can be created by concatenating a pathname for the
object’s primary parent with a directory entry that refers to the object. A pathname
for a nonroot parent object can be created by applying the same procedure recursively.
For a root object it is necessary to configure its pathname explicitly. An object that
does not have a primary parent, or that has an ancestor without a primary parent cannot
compute a pathname. Note that a nonroot object does not have to store its pathname
persistently. Upon request, the object can ask its parent for the necessary information
(the parent’s pathname and a directory entry). If the parent also does not know its
pathname, it has to ask its parent, and so on. Absence of cycles in every ancestor’s
path to the root guarantees that this recursive procedure terminates.

The availability of pathnames provides an opportunity for an interesting optimiza-
tion. Instead of caching a list of object identifiers (the path) to verify that an object is
still reachable through the same path to the root, it is also possible to use a pathname
for the same purpose. An object is reachable through the same path as long as its
parent has the same name. Storing a pathname instead of a list of object identifiers
is more efficient for two reasons. The first reason is that the size of a pathname is
usually shorter than the size of a list of object identifiers, which use 32 bytes per entry.
The second reason is that storing a pathname persistently allows an object to return
a pathname immediately without going to its parent. A disadvantage of persistently
storing a pathname instead of a path, is that the garbage collection algorithm requires
the use of paths to avoid cycles. The path to the root has to computed whenever it is
needed by the garbage collection algorithm. A newly created (grand)child has to ask
its parent for a path before it can compute a pathname.

When the name service and the garbage collector share a single table to store
(forward) references to other objects, it becomes necessary to distinguish ordinary
name service references from references that are maintained by sponsors of an object.
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The problem is that ordinary name service references should be ignored by the garbage
collector. Name service references are ignored automatically if they are stored in a
directory that is not a parent of the object. Normally, a user who does not sponsor a
particular object, can insert a reference to the object in a directory object but cannot
insert a new reference in object’s set of reverse references.

A problem may arise if a single directory contains two references to an object,
one reference from a sponsor and one reference from a user. The sponsor can add the
directory object’s object handle to the object’s set of reverse references. The problem
is that the garbage collection algorithm considers the object reachable through the
user’s directory after the sponsor deletes its reference to object. Further research is
needed to determine whether this problem should be addressed or not.
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Chapter 5

Prototype implementation

5.1 Introduction

This chapter describes a prototype implementation of the Globe architecture. The
prototype demonstrates that the architecture described in the previous chapters can be
implemented. The goal of the implementation is to verify that the use of interfaces and
late binding provides the flexibility to use multiple implementations of an interface
or object type in a single system. This prototype is too small to demonstrate the
scalability of our architecture. Furthermore, the prototype lacks supports for security
and fault tolerance. Still, it demonstrates that the underlying ideas work.

The description of the prototype will use a simple WWW server1 as a running
example. The WWW server described in this chapter consists of two major com-
ponents: a collection of objects that contain WWW documents, images, etc. and a
program that implements a WWW service and serves standard HTTP requests sent
by WWW browsers. This approach provides existing WWW browsers with access to
Globe objects.

To demonstrate the flexibility of the system, the prototype allows the user to
choose between different object implementations. For example, the name space con-
sists of directory objects. The user may select dedicated directory objects or use
WWW document objects that also the provide directory functionality. Similarly, the
user may choose between a client/server replication object, a replication object that
uses active replication, or one that uses master/slave replication. Finally, small WWW
documents (such as inline images) can be clustered with the main document, or stored
as independent distributed shared objects.

1Actually, the “server” is a WWW proxy. It is designed to examine all HTTP requests from a browser
and to implement the Globe related ones locally.
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Figure 5.1. Existing clients/servers and distributed objects

This WWW server is an example of interoperability between Globe and existing
(Internet) protocols. Most of the existing protocols are client/server-oriented, there-
fore we have to deal with two situations per protocol: an existing client using a dis-
tributed shared object, and a Globe program using an existing server. Figure 5.1 shows
a standard way to solve this problem using “proxies.” The Figure 5.1(a) shows an ex-
isting client connected to a proxy server that is bound to a distributed shared object.
The Figure 5.1(b) shows a client using a distributed shared object implemented in such
a way that operations on the object are forwarded by the proxy to an existing server.

A proxy has to implement two functions. Firstly, it has to convert requests mes-
sages of the existing protocol into method invocations on a distributed shared object
and vice versa. A proxy also provides a mapping between the different naming sys-
tems. Note that in the second configuration (a Globe client using an existing server)
it is possible to move the proxy replica into the client process and have the client
process (without the application being aware of this) communicate with the server di-
rectly. This is possible because object implementations are loaded dynamically, and
because objects completely encapsulate all aspects of communication.
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An interesting example of a proxy is an e-mail proxy. A proxy server for e-mail has
to implement the Simple Mail Transfer Protocol (SMTP [Postel, 1982]) to accept new
mail and the Post Office Protocol (POP [Myers and Rose, 1996]) to allow reading of
mail. The proxy server creates a mail message object from an incoming mail message
and stores the object in a mailbox object. The fields in the header of a mail message
are stored as metadata in the mail object. Furthermore, the proxy returns listings of
the messages in a mailbox object and the contents of mail objects in response to POP
requests.

For the reverse situation (a distributed shared object that provides access to an
existing mailbox) the proxy has to fake one mailbox object and multiple mail objects
per mailbox. Requests to add new documents to the mailbox are forwarded over SMTP
to the real server. Lookup requests for the contents of the mailbox and the contents of
mail objects are implemented using POP.

A proxy has to implement two functions. The first function is to convert request
messages of the existing protocols into method invocations on distributed shared ob-
jects. The second function is to provide a mapping between the naming system used
by the existing protocol and the name space for distributed shared objects. This map-
ping between name spaces is the most interesting aspect of the e-mail proxies.

The proxy server has to create old-style (user@domain) e-mail addresses that map
to object names. The domain part is typically fixed for a particular proxy. There
are, however, several alternatives for the user part. One approach is to use the ob-
ject name. For example mailbox /org/foo/bar/mailbox might be mapped to /org/foo/bar/

mailbox@proxy.com. An other alternative is to export all mailboxes that are listed in
one directory. In this case /org/foo/mailboxes/bar might be mapped to bar@proxy.com.
Yet another alternative is to store an explicit mapping in the proxy server.

Providing object names for existing mailboxes can be done automatically. All that
is needed are some proxy directory objects that fake other directory objects based on
DNS domains and on information returned by SMTP servers. For example, an e-mail
address such as philip@cs.vu.nl might get the object name /dns/nl/vu/cs/mx/philip. The
proxy directory object would create nl/vu/cs based on information stored in DNS, a
directory mx for the mail service, and the proxy container object philip by querying the
appropriate SMTP server for cs.vu.nl.

5.2 WWW server

A disadvantage of the e-mail proxy described above, is that when an existing client
connects to a mailbox object, the connection to the proxy will be over a wide-area
network. The connection used by the distributed object to supply the e-mail proxy
with the necessary information will be local. This means that the distributed shared
object cannot hide the latency of the wide-area network.
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This is different with WWW browsers. Most WWW browsers support proxy
HTTP daemons. Although they were originally developed to provide support for fire-
walls, currently, these daemons are often used to provide site-wide caching. A HTTP
proxy can be used as a local service, which provides existing browsers with access
to all distributed shared objects. In contrast, the e-mail proxy provides access only to
e-mail objects in a single domain.

Architecture of the WWW server Figure 5.2 shows the various parts of the WWW
server. In this figure, rectangles represent processes. Labels in the corners are the
names of the programs that are running. For example, proxy for the actual proxy,
locServ for the location service, and ps1 for an object repository.
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Figure 5.2. Globe WWW-proxy

Circles represent representatives and ovals represent local objects. The bound-
aries of distributed shared objects are left out, only representatives and communication
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channels are present. Thin lines between objects are local object references (pointers
to interfaces). Thick lines between objects are communication channels, and thick
lines that end in a heavy dot are communication endpoints that are ready to accept
new connections.2 The various parts of Figure 5.2 are discussed in the following sec-
tions. The following components will be discussed:

• Local objects in general in Section 5.3 and distributed shared objects in Sec-
tion 5.4.

• Control, replication, and semantics objects in Section 5.5, followed by persis-
tence and garbage collection.

• The location service, name service, address managers, and object repositories
are described in Section 5.8.

• WWW documents are described in Section 5.9.

• System objects (such as communication objects), libraries, and binding are de-
scribed in Section 5.10.

A summary of all the interfaces that are used in this prototype can be found in Ap-
pendix B.

5.3 Interfaces, Classes, and Compositions

As described in Section 2.2.1, an interface is a data structure that contains a list of
pointer pairs. The first pointer points to the method implementation and the second
pointer points to the state. This list is preceded by a pointer to a standard object
interface and an unused field which is reserved for future use.

All objects provide the standard object interface stdObj. The methods of this inter-
face are init, cleanup, getinf and relinf. Class objects implement the class interface. The
class interface contains two methods: create and destroy.

The interfaces class and stdObj are used to create and destroy objects. Additionally,
the standard object interface provides access to other interfaces, and serves as a generic
object reference.

The create method in the class interface creates a new object. A pointer to the
new object’s standard object interface is returned. The first method that has to be
invoked on a new object is the init method in the stdObj interface. This allows the
object to initialize its state, and informs the object about its name-space context (see
Section 5.10.1).

2Passive communication endpoints (i.e., communication endpoints that wait for incoming connections)
exist when connection oriented communication protocols are used. For connectionless communication,
they typically do not exist as separate entities.
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interface stdObj p create(c, ctx)
{

o = c−>create();
ctx register(ctx, o);
o−>init(ctx);
return o;

}

Figure 5.3. Implementation of p create

These two method invocations are combined in the p create library function
(shown in Figure 5.3). In this chapter, implementation details are presented in a mod-
ified version of the C programming languages. The two main extensions are interface
types and syntax for method invocations. In Figure 5.3, the return type of the function
p_create is interface stdObj. This type represents a pointer to an interface table for the
standard object interface.

Figure 5.3 contains two examples of method invocations: c->create() and o->

init(ctx). The variables c and o are interface pointers. In the actual implementation,
macros are used for method invocations. For example, the method invocation o-

>init(ctx) is rewritten as STDOBJ_init(o, ctx). Some examples invoke a method from
a specific interface. For example, self->stdObj.cleanup(1) invokes the cleanup method
in the stdObj interface. In the actual implementation, the getinterface method is used
to obtain a pointer to the standard object interface. The variable self is often used in
method implementations to denote the current object. Finally, many examples omit
variable declarations and types of formal parameters.

The function p_create gets two parameters: a pointer to a class interface (c) and
a name-space context. This name-space context is passed to the function ctx_register

to register the new instance in the local name space, which will be described in Sec-
tion 5.10.1.

The new instance is created by invoking the create method on a class object. The
create method returns a pointer to the standard object interface of the new object. The
init method is invoked to allow the new object to initialize itself and a pointer to the
standard object interface is returned to the caller.

Deleting an object is more complicated. Basically, the procedure to delete an
object is the reverse of the procedure to create an object: first the cleanup method is
invoked on the object, followed by an invocation of the destroy method on the class
object. This simple procedure is complicated by the use of reference counting to keep
track of interface references.

Each time an object returns an interface pointer (usually as the result of an invo-
cation of the getinf method), it increments an internal counter that keeps track of the
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number of references to its interfaces. These interfaces are released through an in-
vocation of the relinf method. Note that every interface has a pointer to the standard
object interface, therefore it is possible to call relinf (and getinf) from all interfaces.

The relinf method decrements the reference count and returns to the caller whether
the reference count dropped to zero or not. To destroy an object, the caller needs a
pointer to the object’s class object. This pointer is returned by the relinf method when
the reference count is zero. Otherwise, the method returns a NULL pointer.

#define INF FREE(i) ((i) ? p inffree((i)−>soi, (i)) : (void)0)

void p inffree(o, i)
{

c= o−>relinf(i);
if (c)
{

o−>cleanup(0);
c−>destroy(o);
INF FREE(c);

}
}

Figure 5.4. Release of an interface reference

Figure 5.4 shows how releasing an interface is implemented. The macro
INF FREE is used to release interfaces in C because only macros can provide the nec-
essary polymorphism needed to extract the standard object interface pointer from an
arbitrary interface in a type-safe way. The INF_FREE macro expands to a call to the
p inffree library function which does the actual method invocations. Note that the
pointer to the class interface has to be released after the object is destroyed. This
causes a recursive call to p_inffree.

The function p_inffree invokes the cleanup method with the parameter zero. The
value zero indicates a full cleanup. Below, the method cleanup will also be invoked
with the parameter one, which specifies a partial cleanup. A partial cleanup of an
object’s state is needed to release callback references.

A further complication of freeing interfaces is the use of callback interfaces. Not
only the references to interfaces handed out to the user of the object are counted, ref-
erences to callback interfaces are counted too. An object has to maintain separate
counters for normal references and for references to callback interfaces. Without sep-
arate reference counters, many objects will not be deleted due to cyclic data structures.
For example, object A holds a normal reference to object B, and object B hold a call-
back reference to object A. Object A releases its reference to object B after the last
normal reference is released. With a separate counter for references to callback inter-
faces, the reference from object B does not count as a real reference and both objects
are deleted after all normal references to object A have been released.
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An object with a callback interface is destroyed in two steps. After the reference
count for the normal interface drops to zero, the object performs a partial cleanup
which releases all normal references to other objects. However, the object should
continue to accept method invocations that are invoked on callback interfaces.

Objects recursively release references to normal interfaces but keep references to
callback interfaces. After a while, there is a collection of objects with only references
to callback interfaces. By construction, this collection of object references forms a
directed acyclic graph. In this graph, there is at least one object with a reference count
of zero. This object is destroyed, and releases its references to callback interfaces dur-
ing the cleanup. After this object is destroyed, there is another that can be destroyed,
and so on.

interface class relinf(infp)
{

if (self−>ref count > 1)
{

self−>ref count−−;
return NULL; /∗ Object is still in use ∗/

}
if (self−>cb ref count != 0)
{

self−>stdObj.cleanup(1); /∗ Partial cleanup ∗/
if (self−>ref count > 1 || self−>cb ref count != 0)
{

self−>ref count−−;
return NULL;

}
}

/∗ Reference count is 1, return class interface ∗/
return &classObj.class;

}

Figure 5.5. Implementation of relinf

When an object detects that all callback references are released, it performs the
final cleanup. The kind of cleanup is a parameter to the cleanup method: a value of
zero requests a full cleanup; other values request a partial cleanup. The implementa-
tion of the relinf method for an object with a callback interface is shown in Figure 5.5.
The method relinf gets the original interface pointer as parameter. This parameter is
currently not used but can be used for debugging purposes (to implement a separate
reference count for each interface, instead of one reference count for all interfaces).

The pointer to the class interface that is returned by the relinf method is created on
the fly. In this prototype, references to class objects are not counted (class objects are
never destroyed). To create a pointer to the class object of an object, it is sufficient
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to return a pointer to the structure that contains the interface table of the class inter-
face. Note that method implementations have direct access to the internals of the class
object that they belong to.

Callback interfaces use a different relinf implementation that decrements the
cb_ref_count variable instead of ref_count. Most of the code for the init, cleanup, getinf,
relinf, create and destroy methods is generated by the interface generator ifgen, which
will be described in Section 5.11.1.

The interface generator optionally provides the objMgt interface, which has one
method: getInfList. This method returns a list of interface names and identifiers sup-
ported by the object. This interface can be used (for example) to determine the list of
interfaces implemented by a distributed shared object.

Some class objects are linked with applications, others are loaded at runtime.
Classes that are loaded at runtime are instances of a meta-class object. This proto-
type contains the meta-class object /builtin/classes/class.elf, which uses the dlopen and
dlsym library functions of the underlying operating system to access an ELF shared
library. When a class object is loaded, a pointer to the bind library function is passed
to the initialization function of the class object. This allows the class object to bind to
object objects, including objects in the run-time system. In fact, this is the only way a
dynamically-loaded class object can access the run-time system. This way, the design
of the run-time loader is simplified and portability across platforms is enhanced.

A composition is a collection of objects grouped together by a compositor. The
compositor creates the various subobjects, registers them in its name space, installs
overrides, and initializes the subobjects. The compositor also creates the interface
tables it exports based on its own methods (for object management) and based on
methods or interfaces provided by subobjects. Class objects for compositors can be
generated completely from a simple composite object specification.

5.4 Distributed Shared Objects

Distributed shared objects consist of representatives in different address spaces. Bind-
ing to a distributed shared object involves a local object that connects to the represen-
tatives of the distributed shared object that exist in other address spaces. This local
object has to implement the distrObj interface to be compatible with the binding mech-
anism (see Section 5.10.1). This interface provides two methods: init and gethandle.
A local object that is bound to a distributed shared object is called a representative.

The init method directs a local object to connect to a distributed shared object.
The name that was used to look up the distributed shared object in the name service,
the object handle, and a set of contact addresses are passed as parameters. The local
object may setup a connection immediately, or it may defer this until the first method
invocation. Note that when the local object connects to the distributed shared object,
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it should verify whether the object handle passed as a parameter matches the object
handle stored in the distributed shared object. This is an end-to-end check to ensure
the validity of the contact addresses returned by the location service. If an attempt to
use one contact address fails, the local object should try the next address. This kind
of error recovery is not implemented in the prototype. The second method, gethandle,
returns the object handle that belongs to the distributed shared object.

The distrObj interface is usually implemented by both the replication object and
the control object. The replication object contains the real implementation of the
distrObj interface, which uses a communication object to connect to the distributed
shared object. The control object implements the init method in the distrObj to verify
the semantics parts of the protocol identifiers in the contact addresses. If the contact
addresses contain the correct protocol identifiers, the control object invokes the init

method on the replication object. The verification of protocol identifiers is described
in Section 5.5.1.

Most distributed shared objects also provide the distrCtrl interface. This interface
contains four methods to create new instances of a particular class of distributed shared
objects (by a factory, see Section 5.8.4) and to create new persistent representatives.

The create method directs a local object which is not already connected to a dis-
tributed shared object to become a new distributed shared object and to create a contact
point that will allow other local objects to connect. This method returns a set of con-
tact addresses for the newly created contact point. This method is typically invoked by
a factory. The factory will allocate an object identifier for the new distributed shared
object and register the object identifier and the contact address with the location ser-
vice. The location service returns an object handle based on the object identifier. The
factory tells the object about its object handle by invoking the setHandle method.

The last method3 in the distrCtrl interface is replicate. This method asks the dis-
tributed shared object to create a persistent representative in the address space in which
the method is invoked. The representative on which the method is invoked allocates
a contact point, registers the corresponding contact address with the location service,
and, depending on the distributed shared object’s replication strategy, obtains a copy
of the object’s state. The method is usually invoked by an object manager.

5.5 Control, Replication and Semantics Objects

In Section 3.2.4, we described replication of the state of a distributed shared object.
Replication is implemented in two objects, the control object and the replication ob-
ject, and uses two interfaces, the control interface and the replication interface. The

3For historical reasons, the distrCtrl method also contains the newLink method, which is equivalent to
the addRef method in the garbage collection interface gc (see Section 5.7).
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actual replication protocol is implemented in the replication object. The control object
provides the necessary glue between the replication object and the semantics object.

The replication4 interface provides four methods: init, start, invoked and send.
The control interface is a callback interface for the replication object. The control
object passes a reference to this interface as an argument to the init method. The
control interface provides three methods: handle request, getState and setState. The
handle_request method is used by the replication object to invoke a method on the
semantics object. The replication object passes a packet with the marshaled request
and arguments. The control object unmarshals the packet and performs the method
invocation. The results of the method invocation are marshaled into a reply packet
and returned to the replication object. The methods getState and setState, marshal and
unmarshal the state of the semantics object, respectively.

A method invocation on a semantics object that may block requires an extra bool-
ean output parameter (called blocked) which informs the control object whether the op-
eration blocked or not. The semantics object reports that a method invocation blocked
by setting the parameter blocked to true and has to return to the control object with
its state unmodified. The control object forwards the fact that the semantics object
blocked to the replication object. This is done in two different ways depending on
what kind of method was invoked on the control object. When the control object was
invoked by the user of the distributed shared object, it invokes the invoked method
on the replication object. The control object passes a flag as argument to the invoked

method to indicate whether the semantics object blocked or not. If the replication ob-
ject invoked the handle_request method on the control object to process a request that
arrives over the network, then the control object returns a NULL pointer instead of a
reply packet as the result of the handle_request method to indicate that the operation
blocked.

An operation that blocks may have been multicast to multiple representatives. In
that case, we have two alternatives for continuing. One approach is to enqueue the
operation at each replication object that received the multicast request and have them
retry the operation individually. The second alternative is to abort the operation and
let the initiator retry. The trade-off is that the first alternative is more efficient, but is
also more complex to implement.

Enqueuing an operation at multiple replication objects requires that every new
representative has to get a copy of the current list of blocked operations along with a
copy of the state of the object. Furthermore, when a process unbinds, pending blocked
operations that were initiated by that process have to be removed from the queue. The
other alternative requires the initiating thread to retry the operation regularly (each
time the state is modified). A problem with this last approach is limited fairness and

4Actually, the replication interface is called replication0. An older interface is called replication. Like-
wise, the control interface is actually called control0 instead of control.
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loss of efficiency if many processes try the same operations and only one of them can
succeed at a time.

5.5.1 Control Object Implementation

The implementation of a control object consists of three parts:

• General initialization and cleanup routines

• Methods that implement the object-specific interfaces

• Callback methods that are called by the replication object to handle incoming
requests, and to transfer the state of the semantics object

We will focus on the methods that are part of object-specific interfaces and the callback
method that executes incoming requests.

The methods that handle incoming requests are relatively simple RPC server stubs.
The pseudo-C code for a distributed lock object is shown in Figure 5.6. This object
provides the mutex interface, which contains four methods: lock, unlock, read, and
await.

First, the marshaled request is extracted from the marshaled data. A method iden-
tifier (cmd) is used to select what method should be invoked on the semantics object.
For each method, the control object contains code to decode arguments, to invoke the
method, and to encode the results. Most of the methods (lock, unlock, and read) do not
have any arguments and, therefore, do not need code to decode them. Before a method
is invoke on the semantics object, a local mutex is locked to serialize accesses to the
semantics object.

The code for the unlock method simply locks the local mutex, invokes the unlock

method on the semantics object, unlocks the mutex, and sets the result to OK. The
code for the read method is a bit different because the read method returns a value.
The result (the variable v) is encoded in the reply packet, which is stored in the variable
reply_pkt.

The methods lock and await may block. For this reason these methods have an extra
parameter, a pointer to the variable blocked. The semantics object writes a nonzero
value in the variable when it cannot complete the operation without blocking. The
control object returns a NULL pointer to tell the replication object that the operation
blocked. The replication object is responsible for retrying the operation at a later time.

At the end of the handle_request function, a result code is added to the reply packet
that specifies whether the stubs encountered any errors (an illegal request, arguments
that could not be decoded, or results that could not be encoded) or not. The reply
packet is returned to the replication object.
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pkt t handle request(pkt t pkt)
{

reply pkt= NULL;
cmd= decode cmd(pkt); /∗ extract method from request packet ∗/
switch(cmd)
{
case UNLOCK:

/∗ no arguments to decode ∗/
lock enter(self−>lockCommon); /∗ lock semantics object ∗/
self−>sem−>m mutex.unlock(); /∗ invoke unlock method ∗/
lock leave(self−>lockCommon); /∗ unlock semantics object ∗/
res= OK;
break;

case READ:
/∗ no arguments to decode ∗/
lock enter(self−>lockCommon); /∗ lock semantics object ∗/
v= self−>sem−>m mutex.read(); /∗ invoke read method ∗/
lock leave(self−>lockCommon); /∗ unlock semantics object ∗/
res=encode read(&reply pkt, v); /∗ encode value ∗/
break;

case LOCK:
/∗ no arguments to decode ∗/
lock enter(self−>lockCommon);
blocked= 0; /∗ success is default ∗/
self−>sem−>m mutex.lock2(&blocked);
lock leave(self−>lockCommon);
if (blocked) /∗ tell the replication object ∗/

return NULL; /∗ that the request blocked ∗/
res= OK;
break;

case AWAIT:
res= decode await(pkt, &v); /∗ extra argument ∗/
if (res != OK)

break;
lock enter(self−>lockCommon);
blocked= 0;
self−>sem−>m mutex.await(v, &blocked);
lock leave(self−>lockCommon);
if (blocked)

return NULL;
res= OK;
break;

default:
res= UNKNOWN CMD;
break;

}
encode res(&reply pkt, res); /∗ encode result ∗/
return reply pkt;

}

Figure 5.6. Implementation of handle request
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The implementation of the object-specific methods is more complicated. Each
method contains an implementation of the state machine that was described in Sec-
tion 3.2.4. The algorithm shown in Figure 5.7 starts in the start state of the state
machine. The main body of the method implementation is a for loop which executes
until the return state is reached. The result of the method invocation is either provided
by a method invocation on the semantics object, or it is stored in the reply_pkt variable.

int read()
{

op= RO READ;
s = RS START;
for(;;)
{

if (s == RS START)
{

s= self−>repl−>replication.start(op);
continue;

}
if (s == RS INVOKE)
{

reply pkt= NULL;
lock enter(self−>lockCommon);
result= self−>sem−>m mutex.read();
lock leave(self−>lockCommon);
s= self−>repl−>replication.invoked(op, 0);
continue;

}
if (s == RS SEND)
{

/∗ Create a packet with the command (no arguments). ∗/
pkt= encode read(READ);
reply pkt= self−>repl−>replication.send(op, pkt, &s);
continue;

}
if (s == RS RETURN)

break;
}

if (reply pkt)
result= decode read(replt pkt); /∗ Decode reply packet ∗/

return result;
}

Figure 5.7. Implementation of an object-specific method in the control object

The control object invokes three methods on the replication object: start, send, and
invoked. The start method allows the replication object to acquire any locks that are
required, get a consistent copy of the state, etc. Similarly, the invoked method allows
the replication object to release locks, distribute the new state, etc., after a method
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invocation on the semantics object. In this example, the read method cannot block. A
value of zero is always passed to the replication object.

The send method provides the replication object with a packet that contains the
marshaled arguments of the operation. The replication object distributes this packet
to other replication objects. The return value of this method is either the result of the
method invocation or no result (a NULL pointer).

Some replication protocols differentiate between read operations, which leave the
state of the semantics object unchanged, and write operations that (potentially) modify
the state of the object. For this reason, the control object passes the type of operation in
method invocations on to the replication object. Currently, two types are recognized:
RO_READ for read only operations and RO_MODIFY for other operations.

Semantics objects use interfaces to marshal and unmarshal state that are different
from the interfaces used by replication objects. The interfaces used by semantics ob-
jects are stream interfaces. The state of a semantics object is marshaled by writing
marshaled versions of the state of instance variables to an output stream. To unmar-
shal state, a semantics object reads marshaled state from an input stream. In contrast,
a replication object expects the control object to return the marshaled state of a se-
mantics object in a network packet.

The control object bridges the gap between the semantics object and the replication
object. To marshal the state of the semantics object, the control object implements the
outputStream interface. The semantics object uses the write method in the outputStream

stream interface to marshal its state. The control object collects the output of the
semantics object into a network packet and returns it to the replication object. A
similar procedure that uses the inputStream interface is used to unmarshal state.

The control object partly implements two methods of the distrObj and distrCtrl in-
terfaces. These are, respectively, the init and the create method. The reason for im-
plementing those methods by the control object is that the control object participates
in the creation and verification of protocol identifiers. In this prototype, a contact ad-
dress (which includes a protocol identifier) is simply an ASCII string. When a contact
address is created, each layer prepends its own identifier to the address. When the con-
tact address is used, each layer verifies that its identifier is present and subsequently
strips it off.

For example, a TCP communication object may generate the string TCP(192.31.

231.174/33745). The protocol identifier is TCP, and the Internet address and TCP
port number are, respectively, 192.31.231.174 and 33745. All replication objects use
a small message passing layer on top of TCP which adds the string MSG:. In a dis-
tributed lock object that uses active replication, the replication object adds the string
ACT0.0: and the control object adds MUTEX0.0:. The result is MUTEX0.0:ACT0.0:MSG:

TCP(192.31.231.174/33745).
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5.5.2 Replication Object Implementation

The prototype provides several replication objects: csRep uses a simple client/server
protocol, actRep provides active replication, and msRep uses master/slave replication.

In addition to the implementation of a replication protocol, the replication object
also implements persistence and garbage collection. In this section, only the imple-
mentation of the replication protocol will be described. The example that will be
used is the master/slave replication object. Instead of an update protocol, the mas-
ter/slave replication object described below uses an invalidate mechanism to inform
slaves about a new state. The slaves fetch a new copy of the state whenever they have
to execute a read operation. The use of invalidate messages instead of update messages
reduces the fault tolerance of the original master/slave replication algorithm. The main
benefit, however, is increased performance of read operations in a distributed shared
object with a high read/write ratio.

The master/slave replication object operates in one of two modes: it is either the
master or it is a slave. The replication object determines the correct mode when it is
initialized. Persistent representatives store the mode in their persistent state. A repli-
cation object that connects to another replication object (for example during binding),
is a slave. The replication object that “creates” a new distributed shared object is the
master.

Operations in the master’s address space can be invoked directly on the local se-
mantics object. After a modify operation, the replication object sends invalidate mes-
sages to slaves that hold a copy of the state. Modify operations that are invoked on a
slave have to be forwarded to the master. Read operations can be executed locally by
a slave after a copy of the state has been fetched.

state t start(operation)
{

if (self−>mode == MASTER)
return INVOKE;

if (operation == MODIFY)
return SEND;

if (!self−>semValid)
{

/∗ Send a request to the master for the state ∗/
pkt= request state();
self−>ctrl−>control.setState(pkt);
self−>semValid= TRUE;

}
return INVOKE;

}

Figure 5.8. Implementation of the start method
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Figure 5.8 shows the implementation of the start method. On the master, the
method is always executed locally. A state transition to the INVOKE state is returned
to the control object. On a slave, a transition to the SEND is returned to signal that a
modify operation should be forwarded (to the master). A read operation can be exe-
cuted locally on the slave, but the replication object has to ensure that an up-to-date
copy of the state is present in the semantics object. If necessary, a request for a copy
of the state is sent to the master. The implementation of the function request_state is
not shown here. This function sends a request for the state to the master and returns a
packet with the marshaled state of the master’s semantics object. This packet is passed
to the control object which downloads the state in the local semantics object.

pkt t send(operation, req pkt, state ptr)
{

req pkt= prepend op(operation, req pkt);
reply pkt= self−>comm−>comm.sendrec(req pkt);
∗state ptr= RETURN;
return reply pkt;

}

Figure 5.9. Implementation of the send method

The send method (shown in Figure 5.9) is straightforward. The replication ob-
ject prepends the kind of operation (read or modify) to the packet with the marshaled
method name and arguments, which are provided by the control object. The sendrec

method of the communication object is used to send the packet to the master. The
replication object directs the control object to the RETURN state and returns the mar-
shaled results.

state t invoked(operation, blocked)
{

if (!blocked)
{

if (operation == MODIFY)
{

retry reqs();
broadcast(self−>cv);
invalidate slaves();

}
return RETURN;

}

wait(self−>cv);
if (self−>state == MASTER)

return INVOKE;
return SEND;

}

Figure 5.10. Implementation of the invoked method
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Figure 5.10 shows the implementation of the invoked method. The replication
object has to test for two conditions: whether the operation is a modify operation or
not and whether the semantics object blocked or not. A method invocation that did not
block and potentially changed the state of the semantics object requires an invalidate
message to be sent to those slave replication objects that have a copy of the state.
Furthermore, all threads that are blocked on guard failures are woken up.

To handle a blocking operation, the replication object first blocks the current thread
until another thread modifies the state of the semantics object. The replication object
simply retries the operation if it is the master. On a slave, the replication object can
simply retry the read operation (modify operations are already forwarded to the mas-
ter). Instead of retrying the read operation locally, the operation is forwarded to the
master to avoid fetching new copies of the state (polling) until the guard no longer
fails.

The replication object has to implement two methods in the callback communica-
tion interface commRdCB. This interface will be described further in Section 5.10.5.
The first method, msg arrived, is invoked by the communication object when a point-
to-point message arrives. The replication object uses point-to-point messages to in-
validate the state in slave replication objects. The method req arrived is used for re-
quest/reply style communication (i.e., the method req_arrived has to return a reply
message for each request message it gets as a parameter). Request/reply style com-
munication is used by the replication object to forward method invocations (the reply
message contains the results of the method invocation) and to request a copy of the
state (the marshaled state of the semantics object is sent in the reply message).

void msg arrived(pkt)
{

if (is invalidate(pkt))
{

self−>semValid= FALSE;

/∗ State has changed, retry read operations ∗/
broadcast(self−>cv);

}
}

Figure 5.11. Implementation of the msg arrived method

The msg_arrived method (shown in Figure 5.11) checks if the message is actually
an invalidate message. If so, the current state is marked invalid and a wakeup signal is
sent to any blocked threads. The wakeup signal is sent using the broadcast function,
which is part of the collection of local thread synchronization primitives discussed in
Section 5.10.6.

The req_arrived method (shown in Figure 5.12) recognizes three different classes
of requests: a request for the state of the semantics object, a read operation, and a
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pkt p req arrived(ref, pkt)
{

pkt= del header(pkt, &hdr); /∗ delete and decode repl. header ∗/
if (is getstate(hdr)) /∗ request to send copy of state ∗/
{

remember slave(ref); /∗ remember to send invalidate ∗/
return self−>ctrl−>control.getState();

}
if (is read req(hdr) /∗ read−only operation ∗/
{

reply pkt= self−>ctrl−>control.handle req(pkt, ref);
if (reply pkt == NULL)
{ /∗ op. blocked ∗/

enqueue pkt(ref, hdr, pkt); /∗ retry later ∗/
return NULL;

}
return reply pkt; /∗ send results ∗/

}
if (is modify req(hdr) /∗ modify operation ∗/
{

reply pkt= self−>ctrl−>control.handle req(pkt, ref);
if (reply pkt == NULL)
{

enqueue pkt(ref, hdr, pkt);
return NULL;

}
retry reqs(); /∗ retry queued requests ∗/
broadcast(self−>cv); /∗ wake−up local blocked threads ∗/
invalidate slaves(); /∗ invalidate copies at slaves ∗/
return reply pkt; /∗ send results ∗/

}
}

Figure 5.12. Implementation of the req arrived method

modify operation. First, the implementation strips off the header and examines the
header to determine the kind of request that was received.

A request for a copy of the state simply returns the packet that is returned by the
control object. In addition, the slave (actually, an identifier for the connection to the
slave) is added to a list of slaves that should get an invalidate message when the state
is changed.

A read request is passed to the control object. The control object returns the mar-
shaled results after a successful method invocation on the semantics object. These
results are returned to the communication object. The control object returns a NULL
pointer when the method invocation on the semantics object blocks. A blocking re-
quest is added to a queue with blocked requests. A NULL pointer is returned to the
communication object to indicate that the reply message will be sent at a later time.

A modify request is similar to a read request except that this request also has to
retry other blocked requests, send invalidate messages, and wakeup blocked threads.
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void retry reqs()
{

list= self−>req queue;
self−>req queue= NULL;
tail= &self−>req queue;
while (list)
{

e= list;
list= list−>next;
reply pkt= self−>ctrl−>control.handle req(e.pkt, e.ref);
if (reply pkt != NULL)

self−>comm−>comm.reply(ref, reply pkt);
else
{

e−>next= NULL;
∗tail= e;
tail= &e−>next;

}

}
}

Figure 5.13. Implementation of the retry reqs function

Figure 5.13 shows the implementation of the retry_reqs. This function is called
from the methods invoked and req_arrived to retry blocked requests. Each request in
the queue is handed in turn to the control object. The reply method is invoked to
send a reply packet if the method is executed successfully. Otherwise, the request is
re-enqueued.

5.5.3 Semantics Object Implementation

An interesting example is the semantics object of a simple binary semaphore dl (dis-
tributed lock). This lock object implements the mutex (MUTual EXclusion) interface.
The mutex interface contains four methods: lock, unlock, read, and await. The lock

and unlock methods, respectively, decrement and increment the value of the binary
semaphore. The read method returns the current value of the object: 0 if the object is
locked and 1 if the object is unlocked. The await method blocks until the value of the
object is equal to the parameter passed in the method invocation.

The mutex interface contains two methods that may block: lock and await. In the
interface between the control object and the semantics object, these two methods get
an extra parameter. A new interface is needed to accommodate those parameters. This
interface is called m mutex and is shared only between the semantics object and the
control object.

Figure 5.14 shows the implementation of the methods in the m_mutex interface in
pseudo-C. The state of the object is stored in the instance variable v. The lock method
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void lock(int ∗retryp)
{

if (!self−>v)
{

∗retryp= 1;
return;

}
self−>v= 0;

}

void unlock()
{

self−>v= 1;
}

int read()
{

return self−>v;
}

void await(int value, int ∗retryp)
{

if (value != self−>v)
∗retryp= 1;

}

Figure 5.14. Implementation of mutex methods

indicates a guard failure when the object is locked. The unlock and read methods re-
spectively write and read the state of the object. The await method consists of nothing
more than a guard.

marshal(outputStreamInf out)
{

if (self−>v)
str= "1";

else
str= "0";

out−>write(str, strlen(str));
}

unmarshal(inputStreamInf in)
{

buf= in−>readbuf(&size);
vc= buf[0];
self−>v= (vc != ’0’);

}

Figure 5.15. Implementation of marshaling methods

Figure 5.15 shows the implementation of the marshal and unmarshal methods. The
state is marshaled as an ASCII “0” or “1.” This byte is written to the output stream
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provided by the control object (which converts the byte to a packet and returns the
packet to the replication object). The unmarshal method reads a single byte from an
input stream and sets the instance variable v.

Optimizations The interaction between the control object and replication object can
be optimized. The invoked method of the replication object is necessary only when the
method invocation actually blocks and the start method is in many cases an empty
operation that returns only the next state (SEND or INVOKE).

The optimizations mainly reduce the overhead for operations which can be ex-
ecuted locally (i.e., without communicating). A simple, local method invocation in-
volves four method invocations: (1) the initial method invocation on the control object
by the user of the distributed shared object, (2) a start method invocation on the repli-
cation object, (3) the method invocation on the semantics object, and (4) the invoked

method on the replication object. The number of method invocations can be reduced
to two if the two method invocations on the replication object can be avoided.

The invoked method is easy to avoid: the only reason for the invoked method is
to return the next state to the control object. For example, without optimizations,
the start method returns a transition to the INVOKE state, and the invoked method re-
turns a transition to the RETURN state. The start method can return a transition to an
“INVOKE-followed-by-RETURN” state.

For many replication objects, the start method just returns the first real state. Call-
ing the start method can be avoided if the real initial state is stored in the control
object. Note that the initial state depends on a number of conditions: (1) the kind of
operation (read or modify), (2) the replication algorithm implemented by the replica-
tion object, and (3) the role of this address space (client or server for a client/server
replication object). For this reason, the control object has to ask the replication object
during initialization for the initial states for the different categories of operations.

A problem caused by these optimizations is that the replication object does not
always know when the state of the semantics object is modified: the control object
invokes the method directly on the semantics object without informing the replication
object whether the state of the semantics object was changed or not. This is problem
because the replication object is responsible for retrying blocked operations. A so-
lution to this problem is to store information about blocked operations in the control
object. However, this solution complicates the interface between the replication object
and the control object.

The prototype contains an additional set of replication and control interfaces that
implement these optimizations, but the gains are probably not worth the increased
complexity.



5.6. PERSISTENCE 219

5.6 Persistence

As discussed in Section 3.3.1, persistence can be implemented external to a represen-
tative (shown in Figure 3.21 on page 79) or it can be integrated with the replication
object (shown in Figure 3.25 on page 84). The prototype provides both mechanisms
to implement a persistent distributed shared object. Both mechanisms allow a repre-
sentative of the distributed shared object to become persistent. This is one of the two
types of persistence mechanisms described in Section 3.3. The other approach is to
store the state of the entire distributed shared object in a persistent distributed state
object.

The two mechanisms that are implemented differ in the placement of the per-
sistence support with respect to the replication object. In one approach, associated
with the persist interface, persistence is placed outside the representative. The repre-
sentative receives persistent state from the object repository and provides the object
repository with new persistent state when the state of the representative is modified.
The approach taken with the other interface is that the representative is provided with
a persistent state object, which implements the state interface. The replication object
invokes methods on the state object to read old persistent state or to update the persis-
tent state. As a result, the persistence interface is used only to activate and passivate
the representative and does not explicitly deal with the persistent state. This approach
is supported by the persist2 interface.

At least one of the two persistence interfaces has to be provided by a persistent
distributed shared object (it is possible to provide both). Methods in these interfaces
are invoked by the object repository that contains the persistent representative. As-
sociated with these two interfaces are two callback interfaces persistCB and persist2a.
These callback interfaces are implemented by the object repository.

Both interfaces provide a create and a restart method. The create method is in-
voked by the object repository when the persistent representative is created. The ob-
ject handle of the persistence manager is passed as an argument and a contact address
is returned.

Binding to a distributed shared object using a contact address provided by a per-
sistent representative is different from binding to a nonpersistent distributed shared
object. The reason is that the contact address for a persistent representative does not
contain an actual network address, transport protocol identifier, etc. Instead the con-
tact address contains the persistence manager’s object handle. A local object that tries
to use this contact address (during binding) has to bind to the object manager first.
This is illustrated in Figure 5.16.

1. The application calls the bind function to bind to the distributed shared object.

2. The bind function calls the name service, location service, etc. to create a new
local object. This is not shown. Finally, the bind function invokes the init method
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Figure 5.16. Binding to a persistent distributed shared object

in the distrObj interface. This method is implemented by the control object to
verify its part of the protocol identifiers in the contact addresses that are passed
as parameters.

3. The control object strips off its part of the protocol identifiers in the contact
addresses and invokes the init method on the replication object.

4. Instead of using the communication object to set up a connection to a remote
representative, as is the case for nonpersistent objects, the replication object
binds to the factory object. As described in Section 5.3, a pointer to the bind

function is passed to the initialization routine of a dynamically-loaded class
object. This means that every object calls the same bind function (the one in the
run-time system that is linked with the application).

5. It then invokes the startObj method in the factory interface to activate the per-
sistent representative (on the repository). The distributed shared object’s object
handle is passed as a parameter.

6. The factory client sends a message to the factory server.
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7. In this example, we assume that the representative is not already active. The
factory server creates a new local object.

8. The server invokes the restart method. The restart method directs the local ob-
ject to load its persistent state from the state object and become an active per-
sistent representative.

9. The replication object uses the communication object to create a new contact
point. The communication object returns a contact address for this contact
point. The replication object prepends its protocol identifier to the contact ad-
dress and returns the contact address to the server object. Depending on the
replication protocol, the replication object may activate representatives at other
object repositories.

10. The contact address is sent back to the factory client and the client returns the
contact address to the replication object in the user process.

11. The replication object uses the communication object to connect to the persis-
tent representative.

Specific to the persist interface are the methods setCB and unmarshal. The
unmarshal method provides the object with previously saved state. An invocation of
the setCB method passes a reference to the persistCB interface. The persistCB interface
contains only one method: newstate. This method returns an outputStream interface
which can be used by the representative to save its state. Each time the representative
needs to save its state it obtains a new output stream, writes the state, and closes the
stream. This means that the representative can save only its entire state.

In addition to the create and restart methods, the persist2 interface contains an
explicit shutdown method. This method is used by the object repository to ask a rep-
resentative to shut down.

5.7 Garbage Collection

The garbage collection interface gc is provided by directory objects and by (persis-
tent) distributed shared objects that are allocated dynamically and need to be garbage
collected at some time in the future. The gc interface provides eight methods: addRef,
checkRef, reachable, getName, dirEntry, getPath, delRef, and listRefs.

The addRef method adds an object handle of a directory object to the list of di-
rectory objects that hold references to this object. Note that for historical reasons, the
addRef method is duplicated in the distrCtrl interface. The checkRef method informs
the object that a reference to the object has been deleted from a directory object. The
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addRef and checkRef methods are invoked on the object by processes that, respec-
tively, add and delete references to the object. This is an opportunity to run a garbage
collection cycle. The object handle of the directory object is passed as an argument.

The reachable method implements the actual garbage collection algorithm. This
method directs the object to verify that it is still reachable. A time value (interval)
is passed as a parameter to specify the level of consistency desired. For example, if
the object verified 30 seconds ago that is was reachable and the reachable method is
called with a parameter of 60 seconds, then the object can immediately return that it
is reachable.

The getName method returns a name in the name space that leads to the object.
Names are assumed to be in the worldwide name space. The object computes the
name by asking one of its parent directories for the name of the directory object and
the directory entry that refers to the object. The object returns the concatenation of the
two names.

The getPath method is used by the garbage collection algorithm to obtain reacha-
bility information from an object’s parents. The result of a getPath method is either a
list of object identifiers on a path to a root object or a collection of records that describe
(part of) the graph that connects the ancestors of the object. The garbage collection
algorithm iterates until the object knows a path to the root or until the object and its
ancestors know (by analyzing the graph) that they are disconnected from the root.

Only directory objects actually implement the dirEntry method. This method re-
turns the directory entry that refers to a particular object handle passed as an argu-
ment. The delRef method deletes a stored object handle of a parent directory object.
The listRefs method returns a list of all references to parent objects.

Most of the gc interface is implemented by the replication object. However there
is one exception: the method dirEntry is provided by the semantics object. As de-
scribed in Section 4.5.9, most methods in the gc interface (addRef, reachable, getName,
dirEntry, getPath) have to be linearizable5 even when the replication object implements
a weaker consistency protocol. With a weaker consistency protocol, it is possible that
the garbage collection protocol deletes objects that are in fact reachable. In the proto-
type, the garbage collection implementation always uses client/server remote proce-
dure calls, independent of the replication protocol used by the replication object. The
implementation of the garbage collection interface is a straightforward translation of
the algorithm described in Section 4.5.4.

5Alternatively, it is possible to implement the union rule.
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5.8 Services

5.8.1 Location Service

The location service provides two interfaces to look up and register contact addresses.
Two additional interfaces, related to the garbage collection of contact addresses, are
described in the next section. The first location service interface, locRes, provides a
single method, called lookup. This method takes an object handle as parameter and
returns a list of contact addresses. In the prototype, nondistributed implementation of
the location service, this method returns all contact addresses that belong to an object.
Section 4.4.3 describes how a small subset of contact addresses can be constructed that
contains both contact addresses for all protocols used by a distributed shared object
and contact addresses at different distances from the invoker.

The second interface, locServ, provides five methods: register new distributed
shared objects (regObj), register new contact addresses for a distributed shared ob-
ject (regAddr), replace a contact address with another contact address (update), and
unregister both addresses and objects (respectively, delAddr and delObj).

The method regObj has three input parameters. The first parameter is the object
identifier of the distributed shared object that is to be registered. The second parameter
is a set of contact addresses for the object. The third parameter is the object handle of
a location service address manager. These address managers will be described in the
next section. The method returns an object handle for the distributed shared object and
address identifier. The address identifier is used to update or delete a specific contact
address for a distributed shared object.

The reason for distributing the methods of the location service over two interfaces
is that the two interfaces are used in completely different situations. The lookup func-
tionality is needed for binding to a distributed shared object. Special bootstrapping
mechanisms are needed to get access to the location service. It is not possible to sim-
ply bind to the location service. The bind function always does a name lookup first,
followed by a lookup in the location service, etc. Without access to the location ser-
vice it is not possible to call the bind function. In fact, what is needed is a set of contact
addresses for the location service. This way, the last part of binding (destination selec-
tion, implementation selection, loading a suitable class object, etc.) can be executed.
It is possible that operating system specific mechanisms, such as local RPCs, are used
during the bootstrap to obtain a set of contact addresses for the location service.

In contrast, for the registration services we can treat the location service as a dis-
tributed shared object. Furthermore, the flexibility to actually bind to the location
service for registration services provides the opportunity to use standard Globe facil-
ities such as name spaces, security mechanisms, etc. to control access. For example,
different organizations may provide registration services, for different fees, with dif-
ferent performance guarantees, etc.
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Figure 5.17. The location server

The location service in this prototype is implemented as a simple, centralized lo-
cation server. This explains why all contact addresses for an object are returned by
the lookup operation. This server can be viewed as a single leaf node in a worldwide
distributed location service. The implementation consists of three local objects and
one program. This is shown in Figure 5.17.

The location service is accessed as a distributed shared object. The implementa-
tion of the distributed shared object is asymmetric and does not follow the standard
architecture for the implementation of distributed shared objects. This means that
there are no semantics, control or replication objects. Instead, one local object called
loc implements an RPC-stub on top of the communication object tcpMsg. However,
the implementation does follow the requirements for distributed shared objects listed
in Section 2.3. In particular, the location service provides contact points with contact
addresses and is accessed through a local object.

This stub provides both interfaces to the location service. The server side is split
into two parts, using two objects. One object, called lr (location root), maintains the
location service database and implements the RPC for the lookup method. The other
object is called ls (location services). This object accepts the RPCs that correspond to
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the methods in locServ interface. The RPCs are implemented by invoking methods on
the lr object. Both the lr object and the ls object have their own tcpMsg object and both
objects provide contact points to handle incoming network connections.

The location server program provides an execution context for the two objects.
The program also assists the lr object in saving and restoring the persistent state of
the location service. Within the program, the two objects communicate using two
application-specific interfaces, called lr interface and the ls interface. The ls object
provides the ls interface with methods start, restart, and gethandle. The lr interface,
provided by the lr object, also contains the methods start, restart, and gethandle. Ad-
ditionally, the lr interface contains methods to access the location service database:
register, regAddr, update, lookup, regMan, and gc.

The start methods are invoked by the program when the location server is started
for the very first time. The methods allocate object identifiers, create contact ad-
dresses, etc. The restart methods are invoked when the location service is restarted
after a crash or a reboot. The gethandle methods return the object handles of the two
distributed shared objects provided by the lr and the ls objects.

The methods regMan and gc will be discussed in the next section. The set of
methods that provide access to the database is incomplete. Two more methods are
needed to delete a contact address (delAddr) and to delete an object (delObj). These
two methods are not strictly necessary because obsolete addresses and unreachable
objects will be deleted by the garbage collector.

5.8.2 Location Service Address Managers

Section 4.5 described how the location service is used by the garbage collector to dis-
tinguish transient failures from permanent failures. The technique that is described
associates an address manager with each contact address stored in the location ser-
vice. An address manager is a distributed shared object that returns an authoritative
statement about the validity of a contact address. Address managers implement the
locMgr interface. A persistent distributed shared object relies on its object managers to
act as address managers for the object’s contact addresses.

Unfortunately, the problem is not solved with a single level of indirection. An
address manager is an independent distributed shared object, which can be destroyed
without informing the location service. The solution is to build a hierarchy of meta-
address managers. If the location service can not bind to an address manager it will
ask the address manager’s meta-manager whether the manager still exists. If binding
to the meta-manager fails, the meta-manager’s meta-manager is asked about the meta-
manager. A meta-address manager reports whether an object handle still refers to
a valid address manager or not. At the top, there are meta-address managers that
are simply assumed to exist. The assumption is that the system administrators who
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are responsible for the location service are also responsible for these root address
managers.

The locMgr interface contains two methods: validAddress and validManager. The
first method is implemented by regular address managers. The method gets three argu-
ments: an object handle, an address identifier and the actual set of contact addresses.
The method returns whether the contact addresses are still valid or not. The second
method, validManager, is implemented by meta-address managers. The arguments for
this method are an object handle for the address manager that should be verified, the
number of consecutive unsuccessful attempts to contact the address manager and the
amount of time (in seconds) that the address manager is unreachable. The idea is that
a meta-address manager generates log entries for address managers that are down for
too long.

Before an address manager can be used, it has to be registered with the location
service. The location service provides the locAdm interface for this purpose. The
interface contains three methods: regMan, delMan, and gc. The method regMan gets
two arguments: the object handle of the address manager to register and the object
handle of its meta-address manager. A root address manager can be registered by
invoking regMan with a NULL value for the meta-address manager argument. The
delMan deletes an address manager. Finally, the gc method directs the location service
to perform a garbage collection cycle.

Figure 5.18 shows the meta-address manager, which is implemented as a dis-
tributed shared object that uses the client/server approach directly (i.e., without using
separate replication, control and semantics objects). One local object (lm client) is an
RPC client stub, and a second object (lm server) contains the RPC server-stub and the
implementation of the meta-address manager.

Note that the locMan interface that was described above provides only a lookup
service. The interface provides no methods to register or unregister address managers.
The meta-address manager provides these functions through the directory interface
(naming). With this interface, the meta-address manager looks like a normal directory
object where objects (address managers) can be entered, deleted, etc. As an additional
service, the meta-address manager registers new address managers with the location
service (i.e., it invokes the regMan method on the location server).

The lm_server object uses a generic persistence program (ps1). The persistence
programs provide the server part of a distributed shared object with support for per-
sistence, registration with the name service and the location service. The ps1 program
will be described in Section 5.8.4.

5.8.3 Directory Objects

The prototype provides a single, worldwide name space for all distributed shared ob-
jects. In contrast, the name space for local objects is a per-process name space. The
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Figure 5.18. Meta address manager

worldwide name space is implemented with directory objects that contain references
to other distributed shared objects. This creates a hierarchical name space based on a
directed graph with a designated root object.

Directory objects provide the naming interface. This interface provides four meth-
ods: list, lookup, add, and delete. The list method returns a list of directory entries. The
add method gets two arguments, a name and an object handle, and creates a directory
entry. The delete method deletes a directory entry.

The lookup method is special: instead passing of a single component of a path
name as a parameter, the lookup method gets the remainder of the path name. This
allows the directory object to look up multiple entries in a single method invocation.
The result is an object handle and the remaining part of the path name. The object
handle of desired object is found when the remaining path name is the empty string.



228 CHAPTER 5. PROTOTYPE IMPLEMENTATION

A similar idea can be found in DNS, except that DNS always passes the entire path,
instead of the remainder of the path. DNS, which has been designed for a wide-area
network, provides two kinds of optimizations. Firstly, in DNS, the unit of distribu-
tion is a zone instead of a directory. A single zone can resolve multiple path name
components (as opposed to only one for UNIX directories). A single lookup request
on a DNS server matches all components in a single zone. The second optimization
is the “recursion desired” bit. This bit, which is set by a client in a query, directs
the server to recursively resolve the query instead of returning an incomplete answer
when a further lookup operation on an other server is needed. A side effect of this
recursive lookup operation is that the server’s cache will be filled with information
from other servers, which may speed up future queries. The server may choose to
ignore the recursion desired bit and return a partial answer to a query (usually a set of
NS delegation records). In general, DNS root servers ignore this bit because it may
overload them and the cache is unlikely to be large enough to be useful.

Name service root Factory / object repository

nsCtl

nameserv

ls loc
nr

nc

nsCtl

nsSemactRep

tcpMsg

ps1

actRep

tcpMsg

nsSem

Figure 5.19. Name service
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Figure 5.19 shows two implementations of directory objects. One implementation
is a special root directory object and the other one is based on a semantics object that
implements the naming interface.

The implementation technique used for the root directory is similar to the one
used to implement the location server. The implementation consists of three parts:
a local object that implements an RPC client-stub, a local object that contains the
RPC server-stub and the directory implementation, and a name server program. The
Globe run-time system associates this root directory object with the name /globe in the
per-process local name space.

The client stub object, called nc, provides both the naming interface and the gc

interface. The server object, called nr, maintains the state of the directory in a simple
table. The nr object provides a special interface, called nr, for bootstrapping, which is
used by the nameserv program. Persistence is implemented using the persist interface.

The second implementation of directory objects consists of three kinds of objects.
There is the semantics object nsSem, the control object nsCtl, and two compositions
that combine the semantics and control object with a replication and a communication
object. The first composite object, nsP, uses client/server replication (csRepP) and
the TCP message communication object tcpMsg. The second one, ns-act, uses active
replication (actRep) and also the TCP message communication object.

The semantics object uses a simple table to implement the directory. The control
object is written manually due to the lack of a control object generator.

Directory objects and garbage collection The garbage collection algorithm used
for distributed shared objects requires that a distributed shared object maintains a list
of directory objects that refer to the object. This means that adding an object handle
to a directory also requires a method invocation on the object itself:

1. d->naming.add("name", o->distrObj.gethandle())

2. o->gc.addRef(d->distrObj.gethandle())

The first statement adds the object handle of object o to directory object d. The second
statement provides object o with the object handle of the directory object. Note that
the addRef operation will succeed only if the calling program sponsors the object. At
the moment the prototype provides no mechanism to identify different sponsors for an
object.

To rename an object o, from old-name in directory d1 to new-name in directory d2,
we have to add a new link to the object and delete the old one.

1. d2->naming.add("new-name", o->distrObj.gethandle())

2. o->gc.addRef(d2->distrObj.gethandle())

3. d1->naming.delete("old-name")
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Note that we perform an operation on three objects. If any of these objects is
unavailable, we can not complete the rename procedure. Furthermore, the operations
have to be executed in order. We do not have to inform the object about the deleted
directory entry (and remove the reverse reference to the old directory object) because
garbage collection will take care of that. Finally, support for multi-object transactions
would be useful.

An object should be deleted as follows:

1. d->naming.delete("name")

2. o->gc.checkRef(d->distrObj.gethandle())

The second statement tells the object that it may have become unreachable. This
allows the object to start a garbage collection cycle immediately. Without the second
statement, an unreachable object continues to exist until its object repository asks the
object to perform a garbage collection cycle.

Bootstrapping To bootstrap a Globe system, the location server is started first, fol-
lowed by the server for the root directory and the meta-address manager. Bootstrap-
ping Globe is similar to setting up a root DNS zone: in a real worldwide system it will
be done only once (and only by the organization that runs the root services6).

During initialization, the location server creates two distributed shared objects (lr
and ls). These two objects are registered internally to create object handles. The
location server program writes the object handles for both objects and the contact
address for the lr object to a file.

The program for the root directory server (nameserv) reads the output from the
location server. The distributed shared object that implements the root directory (nr)
is created and registered with the location service. Next, the object handle for the
location service object ls is entered in the root directory (under the name .locServ).
The last step is to create a file with the contact information for the location service
(contact addresses and object handle) and the object handle of the root directory. This
file is used by Globe programs to connect the location service and the root directory.
This approach is similar to the named.root file used by DNS.

The next step is to start the meta-address manager. The distributed shared object
is registered with the location service (using the .locServ entry created by the name
service) and is entered in the root directory. Note that until now there was no address
manager. All contact addresses that were registered so far are entered without the
object handle of an address manager.

The next step is to start the first factories for directory objects, document objects,
etc. A system that uses security services, requires additional steps to bootstrap key
servers and authentication authorities.

6However, many sites behind a firewall also run root DNS servers.
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5.8.4 Object Repositories and Factories

The prototype implements a persistent object repository that also acts as a factory.
The factory creates new distributed shared objects with one persistent representative
located in the factory’s object repository. Additionally, the object repository can also
create new persistent representatives for existing distributed shared objects.

O2

O1

O0

Object repository / factory

fc

fs_p1

tcpMsg

actRep

nsCtl

nsSem

ps1

Figure 5.20. Object repository / factory

The implementation of the object repository consists of two layers. The lower
layer is a program that provides persistence and registration services for a single dis-
tributed shared object. For an object repository, this distributed shared object is a
factory object. The upper layer is the factory, which provides persistence and registra-
tion services for many distributed shared objects. The factory object is the server side
of a distributed shared object that allows a client in a remote address space to create
new distributed shared objects, to create new representatives, and to activate existing
persistent representatives. This configuration is shown in Figure 5.20.
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The prototype contains two implementations of the lower layer, 7 called ps1, and
ps2, and two implementations of the factory object (fs p1, and fs p2). Of these two,
only ps1 is shown in the illustrations. The other implementation differs in the persis-
tence model it implements (see Section 5.6). The program ps1 and the object fs_p1

provide the persist interface. The persist2 interface is provided by ps2 and fs_p2.
The two factories, fs_p1 and fs_p2, share a single client object, called fc. The fc

object implements the factory interface. The factory interface contains six methods:
create, createRep, deleteRep, start, startObj, and gc.

The create method creates a new distributed shared object, and registers it with
both the name service and the location service. The name of the new object is passed
as a parameter. The createRep method creates a new representative of an existing dis-
tributed shared object. The deleteRep method deletes a representative of a distributed
shared object from the object repository.

Each factory creates a single class of distributed shared objects. Before a factory
can be used it needs to know what kind of objects it should create. The start method
provides the factory with the class name of the (composite) local object that should be
used. The class is specified by the name of local (relative to the factory) class object.
Note that class names are not standardized. The caller simply has to know about the
names of the classes available to a factory process.

An alternative design is to replace the start method with an extra parameter in
the create method. However, this requires a standard way of referring to classes of
distributed shared objects. In the current approach, a factory, when started, represents
a distributed class object that creates a particular kind of distributed shared objects.

The startObj method is used to bind to a persistent distributed shared object. This
method gets the object handle of the desired persistent object as an argument. The
object repository activates the persistent representative (if necessary) and returns a
(nonpersistent) contact address. Persistent contact addresses were described in Sec-
tion 3.3.3 and Section 5.5.1. Finally, the gc method directs the object repository to
perform a garbage collection cycle on its objects.

The difference between the implementation of the two persistence interfaces is that
the persist interface uses a callback interface (persistCB and two methods (unmarshal

in persist and newstate in persistCB) to marshal and unmarshal the state of a persis-
tent representative. The persist2 interface uses an independent state object, which is
inserted in the persistent representative’s local name space.

Creating a new class of distributed shared objects

A new class of distributed shared objects is created in nine steps:

1. Create the object-specific interfaces.
7Actually, there is a third one called objserv. This program and corresponding factory fs do not provide

persistence, and are mainly useful for debugging.
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In some cases, a new distributed shared object provides new implementations
of existing interfaces.

2. Implement the semantics object and generate the control object.

In this prototype, the control object is also written by the programmer.

For example, for a file object, two interfaces have to be implemented: the
marshaling interface pickle and the file interface. The implementation of most
methods in the standard object interface stdObj is generated by ifgen (See Sec-
tion 5.11.1).

In addition to the file interface, the control object provides seven other inter-
faces: the distrObj and distrCtrl interfaces to assist binding to a distributed shared
object and the creation of new distributed shared objects and representatives;
the persist and persist2 interfaces for the two persistence models; the control in-
terface to interact with the replication object; and finally, two stream interfaces
inputStream and outputStream that are used to handle the marshaled state of the
semantics object.

3. Compile the semantics and control object and add the compiled objects to the
class repository. Note that implementations should be made available to every-
body who needs to access the new distributed shared objects.

In this prototype, the class repository consists of a file (.globe/classes) which
binds an entry in the /classes name space to the name of the class in the local
file system. For example, the class objects for the file object are registered
under the names do.sfSem and do.sfCtl. The class repository maps these names
to the marshaled class objects on disk: /map/file/arch/sparc-sunos-5/sfSem and
/map/file/arch/sparc-sunos-5/sfCtl.

4. Complete the local part of the distributed shared object by selecting replication,
communication, persistence and security implementations. Create a composite
object that combines those local objects. The composition has to be registered
with the class repository.

For example, /classes/globe.actRep is a replication object that implements active
replication, and /classes/comm.tcpMsg is a message passing layer on top of TCP.
tcpMsg itself is also a composition which consists of a message passing object
/classes/comm.msg and the (built-in) TCP object /classes/comm.tcp.

The new composition is registered under the name /classes/do.sf-act and the
marshaled class object is accessed as /map/file/arch/sparc-sunos-5/sf-act.

5. Create a protocol identifier for the distributed shared object.

In this prototype, a protocol identifier consists of a string that identifies the
semantics and control objects and a string that identifies the replication object.
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In some cases, there is a third string that identifies the communication object.
The concatenation of those strings is the protocol identifier.

The protocol identifier for the composition, created in the previous step is: P-

FILE0.0:ACT0.0. This protocol identifier is entered in the protocols file and refers
to the class /classes/do.fs-act.

6. Create a factory for the new distributed shared object.

Start either a new ps1 or ps2 process (depending on the persistence model imple-
mented by the replication object) with the appropriate factory implementation
(respectively fs p1 and fs p2). Provide the factory with the class name of the
composition registered in step 4.

An example is the command ps2 –m /globe/mm/sf-4 –c /classes/globe.fs p2

/globe/sf-f4. The program ps2 and the object fs_p2 have already been described.
The –c option requests the creation of a new factory (instead of restarting an
existing one after a crash or reboot). The arguments after the –c option are the
full name of the fs_p2 object and the name under which the factory should be
registered in the name space (/globe/sf-f4). The option “–m /globe/mm/sf-4” reg-
isters the factory with the location service as a location service address manager
(as described in Section 5.8.2).

The command f_start /globe/sf-f4 /classes/do.sf-act directs factory to produce
distributed shared objects whose representatives have class /classes/do.sf-act.

7. Test the distributed shared object.

8. Advertise an object-specific interfaces, a description of the protocol, and the
protocol identifier.

9. Optionally, advertise the factory.

New distributed shared objects can be created by invoking g_create /globe/sf-f4 /globe/

object-name.

Creating a new persistent distributed shared object

The creation of a new persistent distributed shared object is a complex process. Fig-
ure 5.21 shows the components that are involved in the creation of the new object and
the interactions (method invocations and communication) between them. The whole
process consists of 16 steps:

1. fo = p_bind("/globe/factories/www");

Bind to the desired (distributed) factory object, in this case the factory is called
/globe/factories/www and creates WWW document objects.
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Figure 5.21. Creating a new persistent distributed shared object

2. r = fo->factory.create("/globe/cs.vu.nl/philip/www");

Invoke the create method in the factory interface on the factory object. This is
the only method that the application has to invoke to create a new distributed
shared object.

The create method is executed partly in the client’s address space and is partly for-
warded to the address space of the factory. The execution starts in the client’s address
space:

3. do = p_bind("/globe/cs.vu.nl/philip");

Bind to the directory object where the new distributed shared object should be
registered.

4. h = do->distrObj.gethandle();

Ask the directory object for its object handle.

5. oid = p_getuniq();

Generate a new 256-bit unique object identifier.
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6. Send the create request with the new object identifier oid, and the directory
object’s object handle h to the address space of the factory.

The execution of the create method continues in the factory’s address space:

7. do = createbyname("/classes/do.www-ms", "/main/o25");

Create a new local object. The name /classes/do.www-ms refers to the compo-
sition of a WWW semantics object with a master/slave replication object. The
new instance is registered in the local name space under the name /main/o25

8. so = createbyname("/builtin/classes/statefile", "/main/o25/state");

Create a state object in the object’s composition. This step is necessary only
for the second persistence model (the persist2 interface). The name of the class
(/builtin/classes/statefile) refers to a class object that is linked with the program,
in this case ps2. Note that the state object is directly inserted in the composite
object’s name space.

9. pa = do->persist2.create(self->handle);

Ask the new local object to create a contact address. The contact address is
based on (encapsulates) the factory’s object handle, which is passed as a param-
eter. The call to persist2.create also tells the local object that it should become a
new distributed shared object, instead of binding to an existing one. Addition-
ally, the create method verifies the presence of a state object in its name space,
and initializes the state object.

10. lo = p_bind("/globe/locServ);

Bind to the location service to register the new distributed shared object.

11. manager = self->handle;

handle, addr-id = lo->locserv.regObj(oid, pa, manager);

Register the distributed shared object with the location service. The method
regObj gets three parameters: the new object’s object identifier oid, its first con-
tact address pa, and the address manager for the contact address. The address
manager is the same distributed shared object as the factory.

The location service returns two values: the object handle for the new dis-
tributed shared object, and the address identifier that should be used to delete or
update this contact address.

12. do->distrCtrl.sethandle(handle);

Pass the object handle to the local object.
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13. do->distrCtrl.newLink(dir_handle);

Install the object handle of the directory object, that was passed in the create
message, as the first reverse reference in the new distributed shared object.

14. Add the object handle and other information to the list of persistent representa-
tives served by the object repository.

15. Send a reply message that contains the new object handle.

Back in the client’s address space, the create method continues:

16. do->naming.add("www", handle);

Finally, the new distributed shared object is registered with the name service.

The create method returns an exit status to the caller. If the caller wants to use
the new distributed shared object, it should bind to the object name (in this example
/globe/cs.vu.nl/philip/www).

The new distributed shared object is created in step 7 and is registered with the
location service in step 11. What happens if the client process fails to execute step
16 (registration with the name service)? This leaves an unreachable distributed shared
object. Fortunately, the garbage collector takes care of the object. The first time the
object runs a garbage collection cycle, it will discover that it is not registered and it
will be deleted.

This garbage collection cycle creates a new problem: what happens if the client
process is relatively slow, or when the reply message takes a long time to reach the
client, or when the client cannot communicate with the directory object? It is possible
that the object is already deleted by the garbage collector before the client gets a
change to register the object.

The prototype implementation does not contain a solution to this problem. Several
solutions are possible: (1) the server can perform the registration with the directory
object. This complicates the security architecture because the object repository has to
be able to act on behalf of the client. (2) The client can create a tentative registration
with the directory object based on the generated object identifier. (3) The server can
tell the new object not to perform a garbage collection cycle and the server verifies
that the client is still alive.

Creating a new persistent representative

In addition to the creation of completely new distributed shared objects, the factory

interface also provides a createRep method to create a new persistent representative
for an existing distributed shared object. The execution starts in the address space of
the process that wants to create a new representative:
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1. fo = p_bind("/globe/factories/www-elsewhere");

Bind to the desired object repository (distributed factory object).

2. r = fo->factory.createRep("/globe/cs.vu.nl/philip/www");

Create a new representative for the object created in the previous example on a
different object repository.

3. The createRep method simply sends the name of the distributed shared object
to the object repository.

Execution continues in the object repository’s address space:

4. handle = name_lookup(name);

addrs = location_lookup(handle);

The calls to name lookup and to location lookup are normally performed by the
p_bind library routine. However, in this case it is necessary to insert the state
object in the local object’s name space, which means that p_bind cannot be used.

5. do = createbyname("/classes/do.www-ms", "/main/o43");

so = createbyname("/builtin/classes/statefile", "/main/o43/state");

Create a new local object, and a new state object.

6. do->distrObj.init(addrs);

Tell the new local object to bind to the existing distributed shared object.

7. do->distrCtrl.replicate();

Ask the distributed shared object if the representative can become a representa-
tive that accepts bind requests from other address spaces. It is possible that the
distributed shared object refuses. For example, a client/server replication object
does not support contact points in more than one address space.

8. pa = do->persist2.create(self->handle);

Create a new contact address based on the object handle of the object repository.

9. lo = p_bind("/globe/locServ-elsewhere");

manager = self->handle;

addr-id = lo->locserv.regAddr(handle, pa, manager);

Bind to the location service and register the new contact address. Note that
different object repositories may use different parts of the location service to
register addresses.

10. Add information about the new representative to the list of objects served by
this object repository.
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11. Send a reply message to the client’s address space.

12. The createRep method returns an exit status to the caller.

5.9 WWW Document Objects

The prototype provides three interfaces that are used by the semantics object of a
WWW document object. These three interfaces are file, wwwAttr and wwwSO.

The file interface is a simple interface for storing raw data in an object. The two
methods are read and write. The read method reads a block of data at a given offset in
the file and the write method (over)writes part of a file. The file interface can be used
for WWW objects by storing raw HTML, images, etc. directly in the object.

The simple file object sf implements this interface. It is possible to use these
objects together with the ns directory objects described in Section 5.8.3 to create a
simple WWW service. The directory objects provide the name space and the file
objects store the contents. The suffix of the name of a file object is used by the browser
to determine how to interpret the contents of the object. For example .html or .htm

suggests that the object contains HTML structured text, .gif implies a GIF image,
.jpeg or .jpg suggests a JPEG image, etc. This approach is similar to the way WWW
documents are stored in a UNIX file system.

The use of file objects has several disadvantages. The first disadvantage is the lack
of attributes. For example, it can be useful to pass caching hints to WWW proxies,
to provide additional information about the encoding of the content or character set
that is used. The wwwAttr interface stores the attributes of a WWW document. For
example the attribute Content-type with value text/html. The methods in this interface
are add to add an attribute, update to update the value of an attribute, del to delete an
attribute, lookup to look up the value of an attribute and list to list all attributes with or
without their values.

Sometimes, a WWW document inlines other documents (in most cases images).
To improve performance, the other documents should be associated with the main
document. The wwwSO interface provides storage for named subdocuments. The
methods are similar to the attribute interface (add, update, del, lookup, and list). The
main difference is that the values used are binary data in the wwwSO interface instead
of the strings used in the wwwAttr interface.

The proper way to support these kinds of inline documents is an architecture for
composite distributed shared objects. Two mechanisms are needed: support for group-
ing multiple semantics objects (one semantics object for each subdocument) and sup-
port for binding to those subobjects. Composite distributed shared objects are not
implemented in this prototype.

The www object provides four interfaces: the three interfaces just described and
the naming interface. The naming interface allows a WWW document to refer to
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other WWW documents using object handles. By storing object handles, the WWW
document contains “hard links” which are taken into account by the garbage collector.
Alternatively, a WWW document can refer to other WWW documents by storing the
names of these documents (“soft links”). These soft links are ignored by the garbage
collector. A single object that provides both a directory interface and a file interface
removes the need for a separate index.html file which is returned by the WWW server
when a WWW browser tries to access the directory. Instead, a single object can be
both document and directory at the same time.

5.10 Libraries and Local Objects

In Globe, executable code can be either linked with an application or it can be dynam-
ically loaded at runtime. Executable code can be part of a (class) object or it can be
taken from a library. Combining these two gives four possibilities:

1. Built-in objects.

These objects provide access to the underlying operating system. For exam-
ple, memory allocators, a thread system, locks, I/O, low-level communication.
These objects are also called system objects (see Section 2.2.5).

2. The runtime system for the application.

This library provides the same convenience functions as the previous library but
sometimes uses a different implementation. The library also provides primitives
for initialization.

3. Runtime loaded classes.

Most of the classes used in an application are expected to be loaded at runtime.
Examples are high-level communication primitives, replication objects, appli-
cation specific objects (semantics and control objects), and objects that provide
access to standard distributed services such as the location service.

4. The runtime system for runtime loaded (class) objects.

This library provides various convenience functions.

Additional components that are visible at compile time are interface definitions, object
skeletons and compositions.

Some objects need to access to the runtime library that is linked with the appli-
cation. For example, to allocate locks or to manipulate the local name space. Unfor-
tunately, a class object that is loaded at runtime cannot access these routines directly.
Instead, the runtime system contains a few built-in local objects that provide methods
that correspond to functions in the runtime library. The library for dynamically loaded
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Figure 5.22. Object run-time system

objects contains “wrapper” functions that bind to these objects. This is shown in Fig-
ure 5.22. Note that these “wrapper” functions define in effect the Globe operating
system interface. A pointer to the p_bind library function is passed to the initialization
function of a dynamically loaded module. This pointer allows dynamically loaded
objects to bind to other objects.

For historical reasons, the prototype consists of two parts, called the globe part and
the paramecium8 part. The paramecium part provides local objects, local name spaces,
etc. and the globe part provides distributed shared objects, distributed services, etc.

5.10.1 Local Name Space

The runtime system maintains a local name space. Part of this name space is a tree
that consists of naming contexts that refer to other contexts. At most one object can
be associated with a context and every object is associated with exactly one context.
Attached to this tree are objects that implement parts of the name space. This is called
delegation.

8Paramecium uses the same local object model as is used in Globe to structure operating-system kernels
and run-time systems [van Doorn et al., 1995]. The idea behind Paramecium is to explore the tradeoffs
between user processes and kernel boundaries. Through the use of code signing a user process may put
objects into the kernel address space. Loading modules in kernel space is efficient. On the other hand,
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Figure 5.23 shows a local name space. In this figure, squares represent name-space
contexts and circles represent objects. Each context has a context identifier, a simple
integer (1 . . . 9 in this example). Objects are numbered with Roman numerals (I . . .

IV). The edges between the contexts are labeled (main, X, etc.). The figure contains
one delegation: names starting with /globe are passed to the object /main/X. Context 5
contains a name-space override. In this case the override acts like a symbolic link: the
name /main/C/Y/A refers to the object repository /globe/factories/www.

This name space is used to bind to objects, and, through delegation, also to classes
in a class repository and to distributed shared objects. The resolution of a name in
the name space starts in a context. For an object, this is the context associated with
the object, for example, object I uses context 3, object II uses context 4, etc. The
application and libraries use the context with the name /main, in this case context 2.

loading modules in user process provides better fault isolation. The object model is used to hide these
details from application programs.
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Function Description
ctx_context Create (or look up) a context
ctx_lookup Look up a context without creating one
ctx_register Register an object under a certain name in a context
ctx_unregister Unregister an object
ctx_remove Delete a context (mark a context deleted)
ctx_override Install an override
ctx_delegate Install a name-space delegation
ctx_lock Lock a context (only prevents other calls to ctx_lock)
ctx_unlock Unlock a context

Table 5.1. Name-space context functions

Two kinds of names are used: relative names and absolute names. Relative names
are always interpreted relative to the starting context. By default, absolute names are
relative to the root, but this can be changed through overrides. An example of such
an override can be found in context 8. Context 6 contains a reference to context 8
with the name /file/X. This means that a name lookup for /file/X/... in context 6 is redi-
rected to /main/X/.... To be practically useful, the lookup algorithm looks for overrides
in all parent contexts. For example, memory is allocated using the system object
/builtin/memory. Using overrides it is possible to provide an object with a different
memory allocator for debugging purposes. By inserting the override /builtin/memory ->

/main/X in context 6, object IV uses object II as its memory allocator. And by inserting
the override in context 3, not only object I but also objects III and IV use this override.

An object that accepts a delegation has to implement the bind interface. This inter-
face contains one method: bind. The remainder of the name is passed as an argument
to the bind method and the method should return a pointer to the standard object inter-
face of an object.

Nine library functions provide access to the local name space. These functions are
listed in Table 5.1. All functions, with the exception of ctx_unregister, get a starting
context identifier as the first parameter. New contexts are created by the ctx context

function. This function returns the context’s identifier. The ctx lookup function returns
a context identifier for an existing context.

The function ctx register associates an object with a context. This function is usu-
ally called right after the object is created. The function ctx unregister deletes the
association and is called just before the object is destroyed. Contexts are deleted with
the ctx remove function. A deleted context continues to exist until the associated object
is unregistered.

An override consists of a name and a replacement string. Note that the name of
an override can be an absolute path name. The ctx override function adds an override
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to a context. Delegations are created with ctx delegate function. A pointer to the bind

interface of the object that implements the delegation is passed as a parameter.
The functions ctx lock and ctx unlock can be used to lock a part of the name space,

for example when an object has to be registered under an absolute name, instead of
relative to the current context.

The prototype contains five delegations: /file, /map, /classes, /globe, and /cache.
The /file delegation provides read-only access to a small part of a local file system.
These files usually contain loadable class files and configuration data. For example,
binding to /file/arch/sparc-sunos-5/actRep returns a standard object interface for a file
object that contains an implementation of a replication class object for a system with
a SPARC processor running Solaris.

The /map delegation creates a new object that is initialized with marshaled state
stored in another object. The name space implemented by /map is identical to the name
space provided by the root. For example, the name /map/file/arch/sparc-sunos-5/actRep

returns a new class object that is created from the state stored in /file/arch/sparc-sunos-

5/actRep. For /map to work, it is necessary that the marshaled state of an object starts
with the class name of the object. A meta-class, called class so0, is used to load
classes dynamically. An instance of this metaclass implements the unmarshal method
in the pickle interface. The instance of the meta-class becomes a new (class) object
after a successful invocation of this method. Note that the meta-class can be used to
load any kind of executable code, not just class objects.

The /classes delegation provides a uniform naming scheme for class objects. For
example, /classes/comm.tcp maps to /builtin/classes/tcp and /classes/comm.tcpMsg

maps to /map/file/arch/sparc-sunos-5/tcpMsg. The users of those two class object do
not have to know that the first class object is linked with the application, and that the
second one is loaded a runtime. Note that /classes uses the /map and /file delegations
to load a class object from the local file system. In the current implementation, the
/classes delegation simply uses a file that contains the mapping between class names
and their locations. This file is read when an application is started.

The name space that starts with /globe is delegated to an object that binds to dis-
tributed shared objects. Figure 5.24 shows the various functions, modules, objects,
and files that are used to bind to a distributed shared object. The implementation of
the bind algorithm is distributed over three functions: globe bind, globe bind handle,
and globe bind addr. All three functions get a context identifier as a parameter. This is
the context where a newly created local object should be registered.

The function globe bind uses the local name resolver to look up an object handle
for the name that was passed as an argument. The name is relative to the root of the
worldwide name space. The resolver invokes methods on various directory objects.

The function globe_bind_handle is called by globe_bind with an object name and
the object handle as parameters. The location service resolver is called to look up a
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set of contact addresses for the object handle. The location service is accessed as a
single distributed shared object.

The function globe_bind_addr is called with the name, object handle, and con-
tact addresses of an object (the name is provided for debugging purposes). First, the
protocol is extracted from the first contact address and is looked up in a file with pro-
tocol identifiers to find the name of a class object that implements the protocol. Note
that destination selection is not implemented in this prototype. For example, the pro-
tocol MUTEX0.0:P-MS0.0:MSG:TCP is implemented by the (composite object) class
/classes/do.dl-ms0. The /classes delegation uses a class object file to find the actual
implementation. The class is loaded and an instance of the class is created. The last
step is to invoke the init method in the distrObj interface with the name, object handle,
and contact address. The new instance sets up a connection to the distributed shared
object to complete the binding procedure.

The reason that these functions are separately available is that sometimes the
name lookup and the location lookup can be skipped. Binding to the location ser-
vice has to be done without calling globe_bind_handle, and the name resolver calls
globe_bind_handle directly to bind to a directory object.
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Figure 5.24 omits one aspect of binding to distributed shared objects. A process
may bind multiple times to a single distributed shared object. For example, a single
directory object may be used in successive name-lookup operations. This problem can
be solved by caching local objects that are connected to distributed shared objects.
This is implemented by the delegation of /cache to an object that caches bindings to
distributed shared objects.

The function globe_bind_handle tries to bind to /cache/oid/object-identifier before
calling the location service to look up contact addresses. Later, the function
globe_bind_addr tries to use protocol-specific caches by binding to /cache/proto/

protocol-identifier/object-identifier. Currently, no protocol-specific caching is imple-
mented. Finally, the completely initialized object is registered in /cache/oid/. One
complicated problem is how to decide when a cached object should be released. This
prototype caches only a small number of objects to avoid dedicating too many re-
sources to cached objects. A simple second-chance algorithm is used to delete objects
from the cache when the cache is full.

The main bind function in the library is p_bind. This function uses contexts and
delegations to bind to existing local objects, to load class objects and to bind to dis-
tributed shared objects. The p_bind function returns a pointer to the standard object
interface of an object. This function gets two parameters: the name of the object and
the starting context for name-lookup operations. Most of these context functions (in-
cluding p_bind) are also provided by the /builtin/ctx object that exports the ctx interface.
Wrapper functions in the library use this ctx object to provide the context functions to
dynamically loaded class objects.

5.10.2 Memory Allocation

Table 5.2 lists the main memory allocation functions. These functions can be divided
into three groups: functions that operate on simple segments of memory (p_alloc,
p_free), functions that operate on collections of memory segments (used for network
packets), and functions to increment and decrement reference counts on both packets
and segments.

As described in Section 2.2.5, memory segments consist of a small header fol-
lowed by an array of bytes. This header contains the function pointer realloc, which
is used to grow, shrink, and delete memory segments, the size of the segment, and a
dummy word for alignment reasons. The link field is a reference count, which is used
to do garbage collection on dynamically allocated data. A network packet consists
of a linked list of packet data structures that point to memory segments. Figure 5.25
shows the fields of the memory segments and the network packet headers.

The p alloc function allocates a segment of memory and returns a pointer to the
first byte past the header. The size of the segment is passed as a parameter. The
p realloc function expands or shrinks a previously allocated segment. It is possible
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Function Description
p alloc Allocate a segment of memory
p realloc Resize a previously allocated segment
p free Decrement a reference count and free a segment
p strdup Duplicate a string in a segment
pkt alloc Allocate (part of) a network packet
pkt free Decrement reference count and free a packet
pkt totlen Amount of user data in packet
pkt cpout Copy data from a packet to a buffer
pkt merge Concatenate two packets
pkt delhead Delete first part of a packet
pkt trunc Truncate packet
pkt shallow dup Duplicate access data structures but not user data structures
a incref Increment a reference count
a decref Decrement a reference count without freeing

Table 5.2. Memory allocation routines
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Figure 5.25. Memory segment and network packet data structures

that a new segment has to be allocated. In that case, p_realloc copies the old data to
the new segment and frees the old segment. There are two reasons for p_realloc to
allocate a new segment. First, the usual reason is that the segment has no room to
grow at its current location. Second, a segment with a reference count larger than one
is not resized, to avoid interfering with other users of the segment. Segments with a
reference count larger than one are assumed to be immutable. Assuming that shared
memory segments are immutable simplifies concurrency control and allows references
to be handed out freely to other modules and objects.
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The p free function decrements the reference count and deallocates the segment
when the reference count becomes zero. The last function, p strdup is a convenience
function to copy a string to a segment of memory.

Note that the functions p_free and p_realloc do nothing more than invoking the
function in the realloc field in the header of a segment. This approach allows the use
of multiple memory allocators in a single system. The segment’s realloc function is
called with two parameters: a pointer to the segment, and the desired size. A size of
zero is used to free the segment (decrement the reference count in the links field). The
function returns a new pointer to the segment. The size field in the header is used by
the realloc function to determine the amount of data that has to be copied.

There are two implementations of p_alloc, one for the library that is linked with
an application and the other one for the library that is linked with a loadable class
object. The first p_alloc implementation uses the malloc function in the C library. The
second implementation is a wrapper for a memory allocation object /builtin/memory.
This memory allocation object provides the memory interface and is linked with the
application. The memory interface contains only one method: alloc. The memory
allocation object implements this method by calling p_alloc.

As described in Section 5.3, a dynamically-loaded class object can call functions
in the run-time system directly. Only a pointer to the bind function is passed during
the initialization of the class object. The advantage of accessing the malloc function
through an object is the ability to assign different memory allocators to different ob-
jects, for example, to limit the total amount of memory that can be allocated by an
object. This feature is not used in the prototype implementation.

Network packets are higher-level data structures based on dynamically allocated
memory segments. A network packet stores its data in one or more memory segments.
These segments use reference counts and can be shared between multiple network
packets. A special packet header is used to refer to those memory segments. In ad-
dition to a pointer to a memory segment, a packet header also contains a p_offset and
a p_length field and two pointers (p_next_buf and p_next_pkt) to other packet headers.
The offset and length fields specify what part of the memory segment is addressed.
Those two fields allow protocol headers to be deleted and packets to be truncated
without copying any data.

The p_next_buf pointer is used to create a linked list of packet headers. The data
in the linked list is treated as a single network packet. The p_next_pkt pointer can be
used to create a linked list of network packets. For example, to create a send or receive
queue.

The function pkt alloc calls p alloc to allocate a new packet header and sets the
header fields to zero. The pkt free function decrements the reference count of a packet
header. When the reference becomes zero, pkt_free calls p free to free the header after
freeing p_buf, p_next_buf and p_next_pkt. The function pkt totlen returns the amount
of user data in a network packet (the list of packet headers) and pkt cpout copies a
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specified amount of data, starting at a specified offset, to a buffer. Note that this may
involve copying data from multiple memory segments.

The function pkt merge concatenates two packets. This function does not modify
a packet header with a reference count larger than one. Usually, this means that a
collection of new packet headers has to be allocated for the merged packet. The pointer
to the first packet header is returned.

The functions pkt delhead and pkt trunc delete some amount of data from the head
and the tail of a packet, respectively. New packet headers are allocated when the
packet is shared. The function pkt shallow dup can be used to guarantee that all packet
headers have a reference count of one.

5.10.3 Threads

Threads are represented by objects. A thread object is an instance of the class ob-
ject /builtin/classes/thread. Thread objects provide the thread interface. This interface
contains four methods: start, join, detach and cancel.

The user of a thread object is expected to implement the callback interface
threadCB. This interface contains only one method called start which is used to start
the execution of user defined code in a thread.

The user of a thread object invokes the start method in the thread interface and
passes two parameters: a pointer to the user’s threadCB interface and callback refer-
ence (usually a small integer). The thread object creates a new thread and invokes the
start method in the threadCB interface from this new thread. The callback reference is
passed as a parameter.

The use of a callback interface to start a thread simplifies some reference counting
issues. An object which has become unreachable but is still executing in a thread will
not be destroyed until the start method in the threadCB returns. The thread object
releases the threadCB interface and this destroys the object.

A disadvantage of this approach is that only objects can create new threads. An
application that needs additional threads has to create a small object to provide the
threadCB interface.

The join method in the thread interface blocks until the thread is completed (i.e., the
start method returned). The detach method breaks the connection between the thread
object and the actual thread. The thread will continue but it is no longer possible to
join or cancel the thread. The same effect can be obtained by releasing all references
to the thread object. Finally, the cancel method kills the thread. Additional support for
safely terminating a thread is required but not currently implemented.

The implementation of thread objects in the prototype consists of a small layer
on top of the Solaris thread library. The start method in the thread interface creates
a new thread which starts executing a function of the thread object implementation.
This function invokes the start method in the threadCB interface. After the method
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invocation returns, the function releases the interface, a flag is set in the state of the
thread object to indicate that the thread is terminated and any threads executing a join
method are signaled.

5.10.4 Persistence

A collection of objects and interfaces provides access to local persistent storage. Typ-
ically, this storage is the file system of the underlying operating system. Two models
are used to access the persistent state of those objects: a stream model where data is
processed as a continuous byte stream and a file model where data can be read and
written at arbitrary positions.

The stream model uses three interfaces. The inputStream interface provides read
access to an object, the outputStream interface provides write access, and the
openStream interface directs a file object to open a file in the file system in read or
write mode. Some file objects provide the openStream, but other objects use only the
inputStream and outputStream to implement marshaling and persistence.

The inputStream interface provides two methods: readbuf and readall. The readbuf

method allocates a buffer, reads data from a stream into the buffer and returns the
buffer and the amount of data read. The caller is responsible for freeing the buffer. The
readall method tries to fill a user supplied buffer. The outputStream interface provides
a single write method which writes the contents of a buffer to the stream. openStream

opens a (local) file for input or output. The only method is open. Parameters to open

are the name of the file and a C stdio-style mode ("r", "w", etc).
The stream interface is used by several objects. The /file delegation was described

in Section 5.10.1. The implementation of this delegation uses the file class object
called /builtin/classes/file. These file objects encapsulate the fopen, fclose, fread and
fwrite in the C library. The stream interface is also used in the pickle interface to
marshal and unmarshal the state of the semantics object, to load a new class object,
and in the persist interface.

The file model uses two interfaces: a state interface to read and write data, and
an openState interface to open a particular file or to create a new one. The openState

interface provides two methods: open and create, which respectively, open existing
files and create new files. The name of the file is passed as an argument. Files are
always opened in read/write mode.

The state interface contains five methods: write, read, truncate, mark, and sync.
The write method write a block of data, the read method allocates a buffer, reads a
block of data up to a specified maximum size, and returns the buffer and the actual
size.

The truncate method truncates the file to a specified size. Two methods, mark

and sync provide support for atomic operations on the file. Invoking the mark method
indicates that the current state is a consistent state. The sync method forces all changes
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to be made persistent. The idea is that after a crash, the system rolls back to either
the state of the last invocation of the sync method, or the state of a later mark method
invocation. The mark and sync methods are not implemented in the prototype.

The instances of the class object /builtin/classes/statefile implement the state and
openState interfaces. As described above, in Section 5.6, the persist2 interface requires
the presence of a state object in the persistent object’s local name space.

5.10.5 Communication

Six interfaces are used for communication: the comm p2p interface and associated
callback interface commConnCB set up point-to-point connections, the comm inter-
face sends data that is received with the callback interface commRdCB. Support for
multicast group communication is provided by the commGroup interface.

The sixth interface is the commAddrs interface, which provides a standard way to
convert between address identifiers and ASCII strings. An address identifier is an
integer that represents an address in a communication protocol, for example, in the
TCP/IP protocol, an address consists of an IP address and a TCP port number. The
use of address identifiers abstracts from the representations of addresses in different
communication protocols. The commAddrs interface contains two methods: lookup

and install. The lookup method returns the ASCII string that corresponds to an address
identifier. For example, a lookup of address identifier 5 on a TCP communication
object may return TCP(192.31.231.174/63468). A communication object allocates ad-
dress identifiers for addresses stored in its tables. The install method is the opposite
of lookup: an ASCII string is installed in the tables of a communication object. An
address identifier for the address is returned.

The comm interface contains four methods: send to send a packet, sendrec to send
a packet and wait for a reply, setCallBack to install a receive callback interface, and
reply to reply to a previously received request. The send method gets a packet and a
destination address identifier as arguments. The packet is a pointer to the packet data
structure that was described in Section 5.10.2. The sendrec method is similar to the
send method except that the method waits until it receives a reply. The reply packet is
returned.

The setCallBack method installs a pointer a commRdCB interface. The second
parameter is a callback reference value. The commRdCB interface is implemented by
the user of a communication object. Received packets, received requests and receive
errors reported by invoking one of three methods in this interface. The msg arrived

method delivers a packet that is not a request packet. This method is invoked with
three arguments: the callback reference value, an address identifier for the source
address, and a packet.

The req arrived method delivers a request packet. The communication object ex-
pects the method to return a reply packet. It is possible that a reply packet cannot
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be returned immediately. In that case, the method should return a NULL pointer and
invoke the reply method in the comm interface at a later time. The req_arrived method
gets an additional callback reference from the communication object which should be
used in the invocation of the reply method. The error method reports a failure in the
communication object to receive more data.

The comm p2p interface contains four methods: bind to bind to a particular local
address (or port), listen to accept incoming connection requests, connect to setup a
connection, and setCallBack to register a commConnCB interface. A communication
object can setup a point-to-point connection actively connecting to a remote commu-
nication object. Alternatively, the communication can wait until a remote connection
requests arrives.
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10. msg_arrived

Figure 5.26. Communication setup

In order to setup a connection actively, the user creates a new instance of a com-
munication object class and invokes the connect method. Passively waiting until a
connection request arrives requires the registration of a callback interface. The com-
munication object creates a new communication object when the connection is estab-
lished. Figure 5.26 shows the objects and method invocations to setup a connection
and to send some data.

First, the user of the communication object in address space A creates a new com-
munication object (“comm passive”), registers the callback interface and invokes listen

(steps 1, 2, and 3). Usually, the address that is returned by listen, is converted to an
ASCII string and is advertised. This is not shown. At a later time, an object in address
space B decides to connect to the object in address space A. The object creates a new
communication object and invokes the connect method (steps 4 and 5).
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The communication object in address space A receives the connection request and
creates a new communication object, which is called a channel object (step 6). This
channel object establishes the connection. The passive communication object invokes
the newConn method on the callback interface and passes a pointer to the channel
object as a parameter (step 7). The user object registers its receive callback interface
with the channel object (step 8).

After the connect method returns, the user object in address space B invokes the
send method to send some data (step 9). The data is sent over the network to the chan-
nel object. In many implementations, the passive communication object implements
the demultiplexing of data for different channel objects. The channel object invokes
the msg_received method on the receive callback interface to deliver the data (step 10).

The commGroup contains three methods. The create method creates a new multi-
cast group. An address identifier for the group is returned. The join method allows a
communication object join an existing group, and the leave method directs the object
to leave the group. The commGroup interface is not implemented and the provided
functionality is probably incomplete. For example, there is no method to obtain a
list of group members, and no indication that a new group member joined or that an
existing group member left the group. For scalability reasons some group communi-
cation protocols do not support this kind of functionality. It is not clear whether these
methods should be added to the commGroup interface (with the option of leaving them
unimplemented by some object) or whether a separate interface should be created.

The prototype provides two communication objects, the first one is built-in (/builtin

/classes/tcp) and provides access to TCP sockets. The second one (/classes/tcpMsg) is
loaded at run-time and provides a reliable message passing layer on top of the built-in
TCP data streams.

The TCP communication object is the main source of pop-up threads. To imple-
ment the listen method, the communication object creates a new thread that repeatedly
creates a new channel object, calls the accept system call, and invokes the newConn

method. Similarly, the registration of a receive callback interface results in the cre-
ation of a new thread. This “receive” thread calls the read system call and delivers the
result by invoking error on a read error, or req arrived with actual data.

The TCP communication object provides a byte stream. However, the interface
to the communication object suggests message passing. The TCP object treats the
packet that is passed as parameter to send, sendrec, and reply as a sequence of bytes.
There are two primitives that send data (send and sendrec) and also two primitives that
deliver data (msg_arrived and req_arrived). The most straightforward approach is the
use of send to send data and msg_arrived to deliver data. Note that the TCP protocol
does not preserve packet boundaries: a sequence of byte passed to a send method may
be delivered in multiple invocations of msg_arrived and multiple send invocations may
result in a single invocation of msg_arrived.
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Often, the user of TCP object needs to send data in response to the received data.
Unfortunately, the locking model described in Section 2.2.5 does not allow the user to
invoke the send method in the same (pop-up) thread that invoked the callback method
msg_arrived. The user is forced to use another thread the invoke the send method.
This inconvenience can be avoided by using the req_arrived method instead. If the
user needs to send reply, he can simply return the reply packet as the result of the
req_arrived method. The TCP object sends the reply to its peer. A NULL pointer
should be returned if no reply is to be sent.

A similar argument can be made for the use of sendrec instead of send. However,
in this prototype the sendrec method did not prove to be necessary and is therefore not
implemented.

The tcpMsg object is a composition that contains both a TCP object and a msg

object. The msg object converts a byte stream, such as provided by the TCP object,
into a stream of messages. The msg object provides both the send method to send a
message, and the sendrec method to send a request and wait for the reply.

To implement message passing, the msg object prepends a small header to the
message that contains the length of the message and a message identifier. The message
length is used to split the reliable byte stream offered by TCP into a reliable message
stream. The message identifier is used for two purposes: to distinguish three different
types of messages and to assign sequence numbers to messages.

The three different kinds of messages are requests messages, reply messages and
normal point-to-point messages. Request messages are sent using the sendrec method,
reply messages are returned by the callback method req_arrived or sent using the reply

method, and normal point-to-point messages are sent using the send method. The
encoding of the message identifier is as follows. The identifier is an unsigned 32-
bit integer. The value zero is used for point-to-point messages. The most significant
bit (MSB) is used to distinguish request and reply messages. Request messages use
identifiers with values between zero and 231 and reply messages used to identifier
of the corresponding request message with the MSB set (in effect adding 231 to the
identifier in the request message). This way, multiple threads can invoke the sendrec

method simultaneously on a single msg object. The request will be sent with different
identifiers. Later the user of the remote msg object may send replies to the requests in
a different order than they were received.

The msg object implements the methods send and sendrec, and the callback
method req_arrived. The send method simply prepends a header with the length of
message and identifier zero, locks a mutex to avoid race conditions, and invoke the
send method on the underlying communication object (the TCP object in this proto-
type). The sendrec method is slightly more complex. A header with the length of
the message and the next request identifier is prepended to message and sent using
the underlying communication object. After sending the request, the method puts a
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Function Description
lock_alloc Allocate a lock
lock_free Deallocate a lock
lock_enter Enter a critical region
lock_leave Leave a critical region
lock_wait Wait for a condition to become true
lock_signal Wakeup at least one thread to re-evaluate its condition
lock_broadcast Wakeup at all waiting threads
lock_once Call an initialization function exactly once
globallock_enter Lock a single, global lock per address space
globallock_leave Unlock the global lock

Table 5.3. Locking functions

small data structure that contains the request identifier and a place holder for the reply
message on a list and blocks on a condition variable to wait for the reply.

Most of the work done by the msg object is part of the callback method req_arrived.
The implementation of this method collects bytes from the TCP object and assembles
complete messages. A normal point-to-point message is passed directly to the user
by invoking the msg_arrived method. For a reply message, the object locates the data
structure in the list of blocked sendrec method that contains the identifier of the corre-
sponding request message. A reference to the reply message is store in the data struc-
ture. The current implementation wakes up all threads that are blocked in a sendrec

method invocation on the current object; the thread that finds the reply message con-
tinues.

A request message is passed to req_arrived and any reply is returned to the TCP
object after prepending a header. The message identifier in the request message is
passed as a reference in the req_arrived method invocation. The user of the msg object
passes this reference to the reply method (if the reply method is invoked at all, the
alternative is to return the reply message as the result of the req_arrived method). This
allows the reply method to put the right reply identifier the message header.

5.10.6 Synchronization

Table 5.3 lists the library functions that control access to critical sections and provide
thread synchronization. The function lock alloc allocates a new lock and returns a lock
identifier. The lock is freed by the function lock free. The functions lock enter and
lock leave respectively, lock and unlock the lock specified by a lock identifier passed
as parameter.

Each lock also contains a condition variable. The condition variable can be used
in a critical section that is protected by the lock (after calling lock_enter). The function
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lock wait atomically releases the lock (equivalent to calling lock_leave) and waits for a
signal or a broadcast. The functions lock signal and lock broadcast, respectively, wake
up at least one or all threads blocked on this condition variable. A thread that gets
a wakeup signal in a lock_wait function executes the equivalent of lock_enter before
returning to the caller. The order in which threads are woken up after a lock_signal or
lock_broadcast is undefined.

The function lock once can be used to execute a function exactly once. This is
useful when multiple threads try to initialize the same module simultaneously. The
function lock_once gets a function pointer and a pointer to a (global) variable of type
once_t as parameters.

The functions globallock enter and globallock leave lock and unlock a single lock
for the whole process. The normal lock primitives require a lock identifier, which is
allocated by lock_alloc. For each critical section, only one thread is allowed to call
lock_alloc. In some cases, for example during the initialization of certain parts of the
run-time system, it is necessary to use a single, global lock to ensure that only one
thread calls lock_alloc. The functions globallock_enter and globallock_leave can also be
used when more fine-grained locking is unnecessary.

A special interface called libprts, which is implemented by an object called
/builtin/lib/prts, also provides access to these functions.9 This object allows dynami-
cally loaded (class) objects, which cannot call the functions in the run-time system
directly, to use these functions. Access to this object is provided by a set of wrapper
functions which have the same name and function prototypes as the real functions
listed in Table 5.3.

Unfortunately, the extra overhead that results from the these extra layers may be
too large for fine-grained locking. A lock_enter call from a dynamically loaded class
involves a function call, a method invocation, a function call, and another function call.
These lock functions should be augmented with atomic memory operations and spin-
locks to obtain decent performance. However, to use of atomic memory operations
and spin-locks reduces the modularity of the system: a lock is no longer an abstract
data structure identified by a lock identifier but is partly implemented in-line in the
callers function.

5.10.7 Unique identifiers

Section 2.2.1 introduced 256-bit unique identifiers to identify interfaces. These identi-
fiers are also used to uniquely identify distributed shared objects. The library function
p getuniq generates such a unique identifier.

Table 5.4 shows the general format for a unique identifier. The first four bytes
specify a particular numbering authority and the remaining 28 bytes are specific to

9As described in Section 5.10, the part of the prototype that provides local objects, local name spaces,
etc. is called paramecium. The name prts stands for paramecium run-time system.
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Bytes Value
00 . . . 03 Numbering authority
04 . . . 31 Data

Table 5.4. General format for allocating unique identifiers

Bytes Value
00 . . . 03 Numbering authority (0x39, 0x69, 0, 0 for this format)
04 . . . 07 Process ID
08 . . . 11 Seconds
12 . . . 15 Microseconds
16 . . . 31 IPv6 address, or right justified, zero-padded IPv4 address

Table 5.5. UNIX/Internet unique identifier format

that numbering authority. The prototype uses an allocation scheme based on Internet
addresses and UNIX process identifiers. This is shown in Table 5.5. The identifier for
this scheme is the magic number 0x39690000 (on a big-endian system). The next 12
bytes contain a four-byte process identifier (pid), the four-byte UNIX time (in seconds
since 1970), and a four-byte counter for microseconds. The last 16 bytes are either a
zero-padded Internet address, or a 16-byte next generation (version 6) IP address.

After the first call to p_getuniq in a process, it is no longer necessary to use the
current time. Instead, it is sufficient to simply increment the microsecond field and
increment the second field when the microsecond field overflows.

The current implementation of p_getuniq naively assumes that Internet addresses
are unique. This is not always true for machines behind a firewall or a network ad-
dress translation unit. Other numbering authorities, for example based on telephone
numbers, are needed to deal with these cases.

Privacy is another issue. The current implementation identifies the creator of an
object or an interface. A scheme that uses a hardware random number generator to
generate 200 bits of random data can solve this problem. Unfortunately, most current
computers do not have hardware random number generators. Some operating sys-
tems use unpredictable events, such as key presses on a keyboard, or hard disk seek
latencies, to generate random numbers that might be suitable for this purpose. Note
that with 200-bit random numbers, after allocating in the order of 2100 identifiers, the
chance that a single number has been used twice is about 50%.10

The functions p uniq2str, and p str2uniq convert unique identifiers to and from
strings. The libprts interface provided by the object /builtin/lib/prts contains the method
getuniq to support dynamically loaded objects.

102100 is a bit more than 1030. If 1010 processes allocate 109 identifiers per second, it takes 4000 years
to allocate 2100 identifiers.
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5.11 Programs

5.11.1 Interface and Object Generator

The interface and object generator, ifgen, generates C header files for interface defi-
nitions, templates for (class) objects implementations, and compositors for composi-
tions. The syntax for interface and object definitions is an extended version of the C
declaration syntax. A grammar can be found in Appendix A.

@#ifndef P INF STDOBJ INF
@#define P INF STDOBJ INF
@
@struct eor;

interface stdObj
{

int init(ctx t ctx, error p err);
void cleanup(int how);
REF struct noInf ∗getinf(uniqid p infid, error p err);
REF interface class relinf(REF void ∗infp);

} = 3;

@typedef struct infName
@{
@ char ∗infName;
@ uniqid p infId;
@} infName t, ∗infName p;

interface objMgt
{

infName p getInfList(void);
} = "39690000bb45006935093566000ebb46"

"000000000000000000000000c01fe7ae";

@#endif /∗ P INF STDOBJ INF ∗/

Figure 5.27. Standard object interface

Interface Definition Figure 5.27 shows the file <p/inf/stdobj.inf> and Figure 5.28
shows the generated C definitions for the objMgt interface. The lines that start with the
at symbol (“@”) are called line literals and are copied by ifgen directly (without the at
symbol) to the output file. The macro DEFINE_INTERFACE_ID is defined in the library
to generate a collection of variables that contain interface identifiers. Each interface is
a structure that consists of a pointer to the standard object interface followed by pairs
of function pointers and state pointers.

The macro GETINF objMgtInf can be used on every interface to request a pointer to
the ojbMgt interface. This macro uses the pointer to the standard object interface. For
each method, a macro is generated that invokes the method. In this example, there is
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extern uniqid t objMgtInf id;
#ifdef DEFINE INTERFACE ID
uniqid t objMgtInf id=
{ {

0x39, 0x69, 0x00, 0x00, 0xbb, 0x45, 0x00, 0x69,
0x35, 0x09, 0x35, 0x66, 0x00, 0x0e, 0xbb, 0x46,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xc0, 0x1f, 0xe7, 0xae,

} };
#endif /∗ DEFINE INTERFACE ID ∗/

typedef struct objMgtInf
{

struct stdObjInf ∗soi;

#define GETINF objMgtInf( i , err ) ((objMgtInf p) \
( i )−>soi−>getinf m(( i )−>soi−>getinf o, \

&objMgtInf id, ( err )))

infName p (∗getInfList m)(object p);
object p getInfList o;

#define OBJMNG getInfList( i ) \
(( i )−>getInfList m(( i )−>getInfList o))

} objMgtInf t, ∗objMgtInf p;

Figure 5.28. C definitions for objMgt interface

only one method (getInfList), and therefore just one macro (OBJMNG getInfList). The
name of the interface is encoded in the name of the macro to avoid duplicate macro
names in C programs that use multiple interfaces. At run-time, interface identifiers
are used to distinguish different interfaces.

Object Implementation Figure 5.29 shows an example of an object description for
a control object. An object description consists of a list of interfaces. These interfaces
can be normal interfaces (the default), or callback interfaces (specified by the callback

keyword).
The stdObj interface has to be provided by all objects. The interfaces distrObj,

distrCtrl, persist, persist2, control, inputStream, and outputStream are provided by most
control objects. The mutex interface is specific to this control object (dl stands for
distributed lock, see Section 5.5.3). The callback interface threadCB is used by control
objects that have to retry blocking requests.

It is possible to generate four different skeletons for a single object description.
Which version is generated depends on two flags. The –o flag selects whether the
skeleton should be for a class object or a single instance of a class. Normally, a class
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#include <p/inf/mutex.inf>
#include <p/inf/stdobj.inf>
#include <p/inf/stream.inf>
#include <p/inf/thread.inf>
#include <globe/inf/control.inf>
#include <globe/inf/distr.inf>
#include <globe/inf/distrCtrl.inf>
#include <globe/inf/persist.inf>
#include <globe/inf/persist2.inf>

object dlCtl
{

/∗ list of normal interfaces provided by this class ∗/
interface stdObj;
interface distrObj;
interface distrCtrl;
interface persist;
interface persist2;
interface mutex;

/∗ list of callback interfaces ∗/
callback interface control;
callback interface inputStream;
callback interface outputStream;
callback interface threadCB;

};

Figure 5.29. Control object description for a distributed lock

object is generated that creates instances of the type specified in the object description.
With the –o flag, code is generated for just a single instance.

The second flag (–r) selects whether the code is intended to be loaded dynamically,
or is part of the run-time system and has to be linked with the application. The default
is dynamic linking, and the –r flag selects statically linked implementation.

Composite Object Implementation Figure 5.30 shows the definition of a com-
posite object. The specification of a composite object consists of four parts. The
first part lists the interfaces that are provided by the composite object. For example,
“interface mutex;” specifies that the composite object provides the mutex interface.

The second part contains a list of subobjects, and for each subobject the way to
obtain a pointer to its standard object interface. Currently only the creation of new
instances is supported. The line “object tcpMsg = new "/classes/comm.tcpMsg";” defines
a subobject called tcpMsg which is created by the class object /classes/comm.tcpMsg.

The third section specifies the initialization of the interfaces that are provided by
the composite object. The line “interface distrObj = csRepl.distrObj;” specifies that all
methods in the distrObj interface are copied from the corresponding methods provided
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by the csRepl subobject. It is also possible to initialize individual methods, for ex-
ample “interface distrObj.init = dlCtl.distrObj.init;” specifies that the init method in the
distrObj should be initialized with the corresponding init method of the control object.

The last part of a composite object definition specifies additions to the compos-
ite object’s name space. The statement “addlink dlCtl/"semMutex" = dlSem;” inserts a
reference (symbolic link) to the subobject dlSem in the name space of subobject dlCtl

with the label semMutex. This allows dlCtl to bind to the string "semMutex" to get a
reference to the standard object interface of dlSem.

#include <p/inf/stdobj.inf>
#include <p/inf/mutex.inf>
#include <globe/inf/distr.inf>
#include <globe/inf/distrCtrl.inf>
#include <globe/inf/gc.inf>
#include <globe/inf/persist.inf>

composition dl
{

/∗ list of interfaces exported by the composition ∗/
interface stdObj;
interface distrCtrl;
interface distrObj;
interface gc;
interface persist;
interface mutex;

/∗ list of subobjects, each subobject is instantiated ∗/
object dlCtl = new "/classes/do.dlCtl";
object dlSem = new "/classes/do.dlSem";
object csRepl = new "/classes/globe.csRepP";
object tcpMsg = new "/classes/comm.tcpMsg";

/∗ initialization of exported interfaces ∗/
interface distrCtrl = csRepl.distrCtrl;
interface distrObj = csRepl.distrObj;
interface distrObj.init = dlCtl.distrObj.init;
interface distrCtrl.create = dlCtl.distrCtrl.create;
interface gc = csRepl.gc;
interface persist = csRepl.persist;
interface persist.create = dlCtl.persist.create ;
interface persist.restart = dlCtl.persist.restart ;
interface mutex = dlCtl.mutex;

/∗ additions to the local name space ∗/
addlink dlCtl/"semMutex" = dlSem;
addlink dlCtl/"replObj" = csRepl;
addlink csRepl/"msgComm-passive" = tcpMsg;
addlink csRepl/"msgComm-active" = tcpMsg;

};

Figure 5.30. Composite local object for a distributed lock
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5.11.2 WWW-proxy

The WWW proxy is the main application program in this prototype. The implemen-
tation of the proxy uses the traditional UNIX networking system calls (socket, select,
listen, accept, connect, read and write) to accept connections from WWW browsers,
to setup connections to a real WWW proxy and to copy request data from the browser
to the real proxy and WWW documents from the proxy to the browser.

Before the Globe proxy forwards a request to the real proxy, it reads and examines
the requested URL. The proxy recognizes three different kinds of URLs that refer to
a distributed shared object:

1. GLOBE://path name

This URL specifies the use of Globe as a transport mechanism for accessing a
WWW document. Unfortunately, many WWW browsers cannot be extended
easily to accept these URLs and forward them to the Globe proxy.

2. HTTP://globe/path name

This URL can be forwarded by almost any browser to a WWW proxy. The use
of globe as a host name avoids confusion with normal URLs.

3. HTTP://globe.domain-name/globe/path name

The second approach works only when the WWW browser is configured to use
the Globe WWW proxy. A URL that is encoded using the third approach can
be used in any situation. For example, the URL HTTP://globe.cs.vu.nl/globe/dns/

cs.vu.nl/philip/ would be forwarded to a special WWW server that can access
distributed shared objects.

The Globe proxy creates a new thread for every request for a distributed shared object.
The total number of connections for browsers is limited to avoid an excessive number
of connections and threads. Once the limit is reached, the proxy stops accepting new
connections.

The method that is invoked on a distributed shared object depends on which inter-
faces are provided by the object. The proxy checks for the presence of the following
interfaces in order:

1. file interface

The contents of the file is copied to the browser. The contents of optional at-
tributes, provided by the wwwAttr interface, are inserted before the contents of
the file.

2. naming interface

The proxy generates a list of directory entries formated in HTML. Attributes ac-
cessible through the wwwAttr interface are returned before the directory entries.
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Program Description
f gc Garbage collect a factory
f start Start a factory (tell it what class of objects to produce
g create Tell a factory to create a new distributed shared object, or a new

representative for an existing object
g del Delete a directory entry
g link Create a hard link to a distributed object
g list List the contents of a directory object
g lock Lock or unlock an object (invoke the lock or unlock methods of the

mutex interface on a distributed object)
g read Read some data from a file object
g write Write data to a file object
g locman Register a (meta) location service address manager with either the

location service or with a meta address manager
l gc Garbage collect the location service
g wwwattr Manipulate attributes and subobjects of WWW objects

Table 5.6. Globe utilities

3. objMgt interface

The list of interfaces supported by the object is returned for objects that imple-
ment neither the file interface nor the naming interface.

An error message is generated for objects that do not support at least one of the three
interfaces. Subobjects are a special case. The name of subobject consist of a the name
of a actual distributed shared object combined with the name of the subobject. The two
parts are separated by a dollar character (“$”) The proxy first tries to bind to a name.
When binding fails, the proxy strips off the part starting with the dollar character and
tries to bind to the prefix. After the second bind succeeds, the proxy uses the wwwSO

interface to return the contents of the subobject.

5.11.3 Utilities

Table 5.6 lists a collection of simple utilities for manipulating distributed shared ob-
jects. Most of these utilities do nothing more than parse arguments, bind to the relevant
disitributed objects, and invoke a few methods on those objects. For example, the f gc

program invokes the gc method from the factory interface, the g create program in-
vokes either the createRep method or the create method. The g link program is slightly
more complex: the add method of the naming interface is invoked on the destination
directory object, and the addRef method of the gc interface is invoked on the actual
object.
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Chapter 6

Related Work

The related work that is described in the chapter is split into two parts. The first part
describes other systems or approaches to worldwide communication. The second part
describes other work that relates to the specific techniques that are described in this
thesis.

6.1 Worldwide Systems

6.1.1 The Internet

Today, the Internet protocols form the most popular network technology for world-
wide communication. The Internet protocols use a simple, layered approach. At the
lowest level, standards define the transmission of Internet packets over various types
of networks, such as Ethernet [Hornig, 1984], ATM [Laubach, 1994], or serial links
[Simpson, 1994]. The Internet Protocol itself forms the network layer [Postel, 1981a].
The two most common transport protocols are TCP [Postel, 1981b] and UDP [Postel,
1980]. Most applications run directly over TCP (mail [Postel, 1982], news [Kantor
and Lapsley, 1986], WWW [Fielding et al., 1999]) or UDP (time synchronization
[Mills, 1991] and the Domain Name System [Mockapetris, 1987]).

An advantage of most Internet protocols is that the structure of these protocols is
relatively simple. Usually, there are only a few states and protocol encodings are sim-
ple. The application-level protocols often use ASCII to encode requests and replies.
Unfortunately, these protocols are also inflexible. For example, the news protocol
NNTP is designed to push news articles from one news server to another. This means
that this protocol is hard to use to pull a selection of news articles over a dial-up line.

265
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The Point-to-Point protocol (PPP) is designed to be flexible; many parameters can
be negotiated at run-time. However, this makes the implementation of this proto-
col harder because each implementor has to figure out how, for example, the data-
compression feature [Rand, 1996] should be combined with the multi-link option
[Sklower et al., 1996].

The flexibility of the Internet protocols is also limited by lack of standard models
for implementation. For example, the original HTTP specification sets up a new TCP
connection for each document that is transfered to the browser [Berners-Lee et al.,
1996]. Using a TCP connection for only one document wastes network bandwidth
(extra packets to set up and tear down connections) and increases latency. The ob-
vious solution was to add persistent connections to the next version of the protocol
[Fielding et al., 1997]. However, by that time, most WWW browsers were using mul-
tiple parallel connections to a single server to download images and frames that are
embedded in WWW documents. The use of multiple persistent connections from each
client is likely to overload servers. A common implementation technique for UNIX

WWW servers is to fork a new child process for each HTTP request. Unfortunately,
forking new child processes complicates the resource management which is needed to
avoid overloading the server. Even though support for persistent connections has been
added to many WWW browsers and WWW servers, a small scale survey shows that
86% of the analyzed requests use a connection of their own [Pierre, 2000]. It is not
clear why the use of persistent connections is still not common.

A limitation of the current Internet name service (DNS) is that the name service
names hosts, not services or objects. This means that usually, only one instance of
service (mail, news, etc.) can run on a machine, and that every protocol has to provide
an additional name space to select the right object within a service. Some extensions
to DNS are proposed to name services (but not objects) [Gulbrandsen et al., 2000].
Another alternative is to assign more than one IP address to a single machine. Effec-
tively, this machine becomes multiple hosts and can therefore run multiple instances
of a single service.

6.1.2 Legion

The goals of the Legion project [Grimshaw and Wulf, 1997] are similar to the goals
of Globe: extensibility, scalability, security, language independence, and support for
heterogeneity. Legion is implemented using an object model [Lewis and Grimshaw,
1996]. Classes play a central role in the naming and binding of objects in Legion. Ev-
ery legion object is named by a Legion Object Identifier (LOID). These object iden-
tifiers consist of four parts: a format identifier, a class identifier, an instance number,
and a public key.

Each class is responsible for providing bindings (a mapping from a LOID to a
contact address) for its instances. In contrast, Globe uses a location service, which
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operates independently of the classes that implement distributed shared objects. The
binding algorithm described in [Lewis and Grimshaw, 1996] is not very scalable: the
algorithm relies on the effectiveness of “binding agents” that cache bindings, and the
ability to “clone” (split) overloaded classes. At first glance, this use of classes seems
to be similar to a home-based approach: the place where an object is registered is
independent of where the object is located. Better implementations are possible (it is
possible that each class uses a distributed search tree to locate objects), but are not
described. The use of binding agents that cache the location of objects can speed-up
binding and reduces the load on classes. However, the effectiveness of these binding
agents is unclear. Other problems with a home-based approach, such as dealing with
objects that have a large number of replicas are not addressed either.

The implementation of objects is described in terms of a message-passing system
between independent address spaces. An object accepts a set of methods. A method
has a signature which describes the parameters and return values of the method. A
complete set of method signatures for an object describes the object’s interface. An
interface is specified in one of two interface description languages: either CORBA
IDL or the Mentat programming language [Grimshaw, 1993].

The persistence mechanism described in [Grimshaw et al., 1998] is similar to the
persistence model shown in Figure 3.19 on page 76. This model is hard to use for
highly-replicated objects. Furthermore, the objects that store persistent state, called
vault objects, only operate on complete copies of the objects state (i.e., it is not pos-
sible to make small changes to the persistent state).

Replication is discussed in the context of a general purpose reflection mechanism
called RGE (Reflective Graph & Event model) [Nguyen-Tuong and Grimshaw, 1997].
This mechanism can be used to cause a client to sent a message to multiple servers
instead of to just one server. Compared to Globe’s replication object, this approach is
less flexible because it operates on messages that are sent and received. A mechanism
for invoking a method in the same address space as the invoker is not described.

The security of Legion is based on MayI methods that are provided by objects
[Wulf et al., 1996]. The MayI method is invoked with three parameters: the calling
agent (CA), the responsible agent (RA) and the security agent (SA). The calling agent
is the object that initiated the method invocation, the responsible agent is a generaliza-
tion of the user who is responsible for the method invocation, and the security agent
allows security policies to be forced external to the object that is invoked. The MayI

method is invoked prior to the actual method. If the MayI method allows access, it
returns a special license. This license specifies the set of methods that can be invoked,
the time that the license is valid, the number of method invocations that are allowed,
and which if the three credentials (CA, RA, and SA) should be checked upon future
invocations. The system supports delegation of rights to another object through the
Delegate method. Mandatory access control can be implemented by inserting a secu-
rity agent in an object environment. The security agent’s pass method will be invoked
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before a method of the target object is invoked. This provides the security agent with
full control over the methods that are invoked on the object. The pass method may
refuse the invocation of the real method on the target object.

Object placement is described in [Karpovich, 1996]. Special mappers decide
where an object should be placed (this happens also when a persistent object is ac-
tivated). An object’s default mapper is stored in the object’s class object.

6.1.3 Globus

The goal of the Globus project is to enable the construction of “computational grids”,
which provide access to high-performance computational resources, despite geograph-
ical distribution of both resources and users [Foster and Kesselman, 1998]. Globus
provides a toolkit with components that implement basic services for security, re-
source location, resource management, communication, etc. An important design
principle of Globus is that interfaces are used to manage heterogeneity, rather than
hiding it. In contrast, Globe use high-level interfaces to separate applications from
objects. The Globus approach is that high-performance applications adapt to the un-
derlying facilities, or request more efficient implementations with weaker guarantees
(for example unreliable communication). Globe uses different object implementations
to solve this problem.

The Globus security architecture assumes that a local (site) security policy cannot
be replaced [Foster et al., 1998]. Furthermore, Globus is not allowed to override lo-
cal policy decisions. The central component of the Globus security architecture is a
resource proxy which maps worldwide security operations to local security mecha-
nisms and vice versa. In this approach, the Globus security mechanisms are built on
top of local security mechanisms. The resource proxy maps the global user identi-
fier to a local identifier. The local identifier is used in normal, local access control
checks. Inter-domain access control is needed when resources (processors, network
bandwidth, storage) are allocated.

In contrast, the Globe security mechanisms replace the existing local mechanisms.
This is done for two reasons. The first reason is that, at the moment, few sites have in-
stalled proper distributed security systems (such as Kerberos). Many protocols that are
used on the Internet use host-based authentication and/or username/password combi-
nations. Both approaches are not suitable for use over a wide-area network (spoofing
and eavesdropping are too easy). The second reason is that in Globe, the ratio be-
tween local, intra-domain operations and global, inter-domain operations is expected
to be small. Global security mechanisms have to be used when either a process uses
an object in a remote domain or when the object itself is replicated across multiple
domains.
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Globus introduces a user proxy,1 which handles the allocation of resources on
behalf of a user. Whenever a remote process (which is typically part of a large compu-
tation) wants to allocate more (remote) resources, it sends a request to the user proxy
to allocate those resources. The user proxy interacts with one of more resource prox-
ies to actually allocate the requested resource. The advantage of that approach is that
allocation of resources for a single computation is centralized.

The communication layer in Globus is called Nexus. This layer provides one
basic operation, the Remote Service Request (RSR) [Foster et al., 1996]. A Remote
Service Request is an asynchronous request for a remote process to invoke a particular
handler. The recipient of an RSR is identified by a Global Pointer (GP). A Global
Pointer can be thought of as a capability and identifies a memory location in an address
space. How different address spaces are addressed is left unspecified.

In contrast, Globe does not require a specific communication mechanism. Only
the interfaces to communication objects are specified. The main requirement for a
Globe communication object is that the object can marshal and unmarshal addresses
as ASCII strings.

Both Globus and Legion are designed with high-performance computing in mind.
As such they provide access to remote computing power. However, there is no, or
only limited support for replication, migration and persistence of data. The design of
Globe is more oriented to accessing and distributing data over a wide-area network.

6.1.4 CORBA

The Object Management Group (OMG) was founded to promote the use of object-
oriented technology in software development. Primary goals are the re-usability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. The OMG defines an object system as a collection of objects that
isolates the requesters of services (clients) from the providers of services by a well-
defined encapsulating interface. In particular, clients are isolated from the implemen-
tations of services as data representations and executable code [Object Management
Group, 1999].

This section evaluates CORBA for use in a worldwide distributed system. It should
be noted that CORBA was not designed for use in a wide-area environment (in contrast
to, for example, Globus, Legion, and Globe). However, it is often suggested that the
Internet inter-ORB protocol can be used to connect different CORBA systems over
the Internet.

An Object Request Broker (ORB) is responsible for all of the mechanisms required
to find the object implementation for the request, to prepare the object implementation
to receive the request, and to communicate the data making up the request. The inter-
face that the client sees is completely independent of where the object is located, what

1The user proxy is called GRAM (Globus Resource Allocation Manager) in [Foster et al., 1999].
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programming language it is implemented in, or any other aspect which is not reflected
in the object’s interface. The Common Object Request Broker Architecture (CORBA)
specifies the interface to the ORB.

Note that in Globe an object encapsulates some data. An object exports an inter-
face table with methods that can be invoked directly by users (clients) of the object.
The user of an object is in the same address space as the object, that is, a method
invocation does not require actually sending any messages. Furthermore, method in-
vocations are direct without any intermediary. Distributed objects also expand into
the client’s address space; when invoking a method on a Globe object, the object is
always local.

Object references in CORBA are defined to specify an object within an ORB. Both
clients and object implementations have an opaque notion of object references accord-
ing to the language mapping and thus are insulated from the actual representation of
them. Two ORB implementations may differ in their choice of object reference rep-
resentations. The representation of an object reference handed to a client is valid only
for the lifetime of that client. Equivalence of object references is defined poorly. The
ORB interface provides a function to compare two object references. If this function
returns true, the two object references refer to the same object. Otherwise, the object
references may or may not refer to the same object.

In contrast, in Globe a local object reference (which is discussed here) is simply
a pointer to an interface table for the object. Other object references are first turned
into a pointer to an interface table by binding to the object. Every object handle for a
distributed shared object contains the object’s unique identifier, which can be used to
check whether two object handles refer to the same object.

CORBA includes an Interface Repository, which is a service that provides run-
time access (using persistent objects) to interface definitions. Using the information
in the Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it. The Inter-
face Repository is a common place to store additional information associated with
interfaces to ORB objects, for example, debugging information, libraries of stubs or
skeletons, routines that can format or browse particular kinds of objects, and so on.

Note that a CORBA Interface Repository is more like a class repository: it stores
information about classes of objects. In Globe, the equivalent would be a repository
with protocol descriptions. Interfaces are local in Globe and an object provides a
collection of interfaces. Parsing a new interface description at run-time is complicated
without a formal description of the semantics.

In addition to static typing, CORBA also provides dynamic typing in the form
of the Dynamic Invocation Interface (DII). This interface allows a client to create a
request message with a run-time selected method name and parameter types. Globe
cannot directly provide an equivalent to DII because method invocations on Globe
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objects are local function calls using binary interface tables. In theory, Globe objects
can provide a special interface to allow function names and parameter types to be
specified at run-time. As an alternative it might be possible to extend Globe objects
with support for a scripting language such as Tcl [Ousterhout, 1989].

The Dynamic Skeleton Interface (DSI) is the complement of the Dynamic Invo-
cation Interface. This interface allows an object to accept method invocations that are
not part of its interface. In Globe, the interface between the client and the distributed
shared object is provided by the local object in the client’s address space. Therefore,
this kind of functionality would be an implementation detail private to a Globe dis-
tributed shared object. It is possible that certain object-implementation architectures
provide a way to dynamically extend the network messages they support through a
DSI-like interface. Again, a scripting language might be more appropriate.

The interface repository associates “unique” identifiers with language constructs
such as modules, interfaces, methods, types, etc. These identifiers are supported by
the IDL through pragma constructions. Four categories of unique identifiers exist:
IDL, RMI, DCE and LOCAL. The IDL space uses an informal, hierarchical name
space. The RMI space is based on Java Remote Method Invocation specification. The
DCE space is based on DCE’s UUIDs, and the LOCAL space is unstructured and for
local use only. Only the DCE UUIDs space looks like our unique identifiers. It is not
clear what happens if two interface repositories use the same identifiers for different
interfaces.

To actually implement an object, CORBA provides a Portable Object Adapter
(POA). This object adapter provides a portable environment for implementing objects.
The two main functions of the POA are to pass requests from clients to an object
implementation and to activate and passivate objects. The second function is similar
to the manager object that is described in Section 3.3.2.

CORBA does not specify which network protocols should be used by an ORB. An
ORB may, for example, use a standard RPC protocol to forward a request from a client
to an object server. Alternatively, for lightweight objects, the object implementation
may be linked with the client. This is called a library-based ORB. In theory, an ORB
provides each object with a choice between a collection of replication protocols.

In the context of a large-scale distributed system, it is relevant to look at the proto-
cols that are used between different ORBs. In such a system, it is possible that clients
of an object use different ORB implementations. CORBA defines a collection of inter-
ORB protocols to allow different ORBs to cooperate. The General Inter-ORB Proto-
col (GIOP) defines generic, CORBA-specific parts of an inter-ORB protocol such as
a standard low-level data representation, and a set of message formats. The Inter-
net Inter-ORB Protocol (IIOP) specifies how GIOP messages are exchanged over the
Internet, using TCP/IP connections.
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One issue is that object references have to be converted from the form used within
the ORB that sends the reference to the form that is used in the receiving ORB. Var-
ious techniques are described (reference translation, reference encapsulation, domain
reference translation, and reference canonicalization). Reference canonicalization is
similar to the use of global object references in Globe. The other approaches either
require extra state or lead to unbounded growth of object references. Without the re-
quirement that object references are global, it is hard to verify whether two object
references refer to the same object or not.

A serious limitation of the general inter-ORB protocol is that it does not support
replication. The protocol supports requests sent by clients and replies sent by servers.
This allows an object to be replicated in the server ORB, but does not support objects
that contain replicas in different ORBs. For objects with few replicas, it is possible that
all replicas are located in a single ORB. CORBA does not prevent an organization from
creating a single ORB that contains machines in different countries. In practice, lack
of locality may impact the performance of this approach because clients are unable to
select addresses that refer to a nearby replica of an object.

GIOP contains a primitive interface to a location service. When a ORB receives a
request for an object, it can return a redirect reply which contains the new location of
the object.

The core CORBA object model has been extended with a collection of services
[Object Management Group, 1998]. The services have been defined for, among oth-
ers, naming, events, persistence, transactions, concurrency control, queries, licensing,
time, and security. Most of these services provide interfaces, some of which are used
by clients and others by objects. For example, a client can use the concurrency control
service to synchronize access to shared resources with other clients. Objects can use
the persistent object service to implement persistence. The difference with the ap-
proach taken in Globe is that the services are external to an object. In Globe, an object
would use a standard local object which provides the service internal to the object.

The CORBA name service is a standard hierarchical name service. The naming
system is based on naming contexts: objects that store references to other objects.
These objects can be used to create a naming graph. The name service does not include
a global naming root; name resolution is relative to a naming context. A name in a
naming context is called an identifier attribute. Associated with this name is a kind
attribute. A kind attribute is a string that describes the kind of object, for example
“c source,” or “executable.” The name service always returns local object references.
In contrast, the Globe name service returns object handles.

The CORBA security service is based on an extensive security model, which
includes, among others, many forms a delegation, multiple security policies, non-
repudiation, and client-side access control. As with most CORBA services, security
is implemented outside the object. In general, security mechanisms are implemented
by the security services in the ORB.



6.1. WORLDWIDE SYSTEMS 273

The CORBA persistent object service separates persistent state from objects. For
example, this means that one piece of persistent state can be loaded into two different
objects. The CORBA object model does not include explicit support for replication.
As a result, each persistent object uses only one persistent data object to store its state.
In contrast, the approach taken in Section 3.3.2 uses one piece of persistent state for
each replica of the state of a distributed shared object that is made persistent.

The life cycle service supports creating, copying, and deleting objects. Object are
created by factories. Each factory creates one particular kind of object. A collection
of factories can be registered with a factory finder, which allows clients to locate an
appropriate factory to create a specific kind of object.

The concurrency control service provides a standard interface to lock objects.
Clients can use those objects to coordinate access to shared resources. Locks can also
be used by object implementations for internal concurrency control. The interface to
the locks provides various locking modes (read, write, upgrade, intention read, and
intention write), but provides no support for condition synchronization (semaphores,
or condition variables).

CORBA provides an event service, which allows events to be sent over a chan-
nel. Two kinds of clients are attached to a channel: suppliers, which provide new
events, and consumers, which accept events. Two different distribution strategies are
recognized: using the push style, a supplier pushes an event to consumers. The pull
style works the other way around: a consumer pulls data from suppliers. A separate
event service is needed because implementing an event channel as a CORBA object
is complicated due to the lack of standard replication strategies and the lack of condi-
tion synchronization. In Globe, blocking operations can be executed either locally, to
wait for new events to be pushed, or they can block remotely to pull new events. An
appropriate replication object can be chosen to push or pull data.

6.1.5 COM and DCOM

Microsoft’s Component Object Model (COM) and Distributed COM (DCOM) are de-
scribed in [Microsoft Corporation, 1995; Brown, 1998] and [Eddon and Eddon, 1998].
Like CORBA, DCOM is not explicitly designed for use in a wide-area environment.
However, it is suggested that DCOM can be used to connect applications over the
Internet [Microsoft Corporation, 1997].

The object model of COM is similar to the local object model in Globe. A COM
object provides one or more interfaces, an interface is a list of methods, and interfaces
are run-time, binary data structures (as opposed to language constructs). Furthermore,
interfaces have worldwide unique interface identifiers. These interface identifiers are
16-byte, worldwide unique bit strings.
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COM interfaces are reference counted, just like Globe interfaces. In contrast to
Globe, a COM object destroys itself (the class object is not involved) when its refer-
ence count drops to zero. Furthermore, COM does not solve the problem of cyclic
references due to callback interfaces.

Each COM interface inherits from the IUnknown interface which provides three
methods QueryInterface, AddRef and Release. In general, COM library functions and
COM methods do not return a pointer to the “standard object interface” (IUnknown),
instead, the caller always asks for a particular interface. Unfortunately, the implemen-
tation is such that no type checking is done.

Method invocation involves an extra level of indirection. The pointer to an inter-
face table is actually a pointer to a pointer to an interface table. The reason is (prob-
ably) the C++ origin in which interfaces can be implemented as virtual base classes.
For historical reasons, the Pascal calling convention2 is used to invoke methods on
COM objects.

The object model in COM also deals with class objects, which are called “class
factory objects.” The class objects are somewhat special because they are explicitly
part of a shared library, a local process or a remote process. Classes have class iden-
tifiers which are used to locate a suitable implementation. The COM implementation
heavily depends on the Windows Registry to map class identifiers to implementations.

COM supports a composite object mechanism called aggregation. A problem is
that COM’s interface tables do not contain state pointers, which makes mixing meth-
ods from different subjects impossible. Unfortunately, mixing is required for aggre-
gate objects because every interface inherits from IUnknown. This problem is “solved”
by passing a pointer to the IUnkown interface of the outer object to a subobject. The
subobject is expected to delegate its QueryInterface, AddRef and Release methods to
the outer object’s IUnkown interface. Disadvantages of this approach are that the sub-
object is aware that it is part of a composition and that this trick only works for the
IUnknown interface. COM does not recognize the concept of a compositor, instead one
object delegates some of its interfaces to subobjects.

The way callback interfaces are set up is quite different from Globe. In Globe, a
pointer to a specific callback interface is usually passed as an argument to a method
invocation on a subobject. In COM, a connection is established between two objects.
The subobject that wishes to invoke methods on a callback interface provides so-
called “connection points.” The parent object that implements the callback interface
registers its interface at the subobject’s connection point. Using the registered callback
interface, a subobject can ask for an arbitrary interface from the “parent” object. It
is not clear how an object with multiple “parents” can distinguish between different
callback interfaces from those parents.

2The Pascal calling convention pushes arguments on the stack in the opposite order from the one used
by C and C++. Furthermore, the callee is responsible for popping the arguments from the stack, instead of
the caller as is common in C and C++ implementations.
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Persistence is for most part external to an object (explicit load/store). Two inter-
faces are used for persistence. The first interface is a file interface and the second a
stream interface. The file interface simulates a hierarchical file system within a single
file. This allows the subobjects of an object to store their states in different parts of
the file. Limited support for transactions is available to avoid partial updates. The
stream interface has more in common with a UNIX file than with a pipe or a network
connection. In addition to read and write methods, the stream interface also contains
seek, “copyto,” and commit methods. Some stream objects implement only the read
and write methods. The file interface uses the stream interface for the actual data
transfers, and implements all methods in the stream interface.

DCOM The distributed object model in DCOM is a simple remote object model
with some extensions. By default, the DCOM run-time system provides an RPC
transport layer and each interface provides proxy objects that marshal and unmar-
shal method arguments and return values. These objects are typically generated by an
IDL compiler.

DCOM provides two extensions to the standard proxy mechanism. The first exten-
sion, called handler marshaling, allows the client stub to be encapsulated by another
object that provides, for example, caching. Note that this is an extension to the mar-
shaling of a specific interface. Method invocations are still handled by the generated
stub, and COM library. The second extension is the use of custom marshaling. In this
case, the programmer writes the client and server stubs manually, but still uses the
COM library for communication.

With custom marshaling, the programmer can also decide to handle all aspects of
the distributed object himself. However, there are no standard communication objects,
there are no replication protocols, and dealing with addresses and communication
protocols is not part of the model. DCOM does not provide anything equivalent to
object handles and contact addresses in Globe. Instead, marshaled interface pointers
are passed from one address space to another. Using custom marshaling, it would be
possible to marshal an interface pointer as a Globe contact address or object handle.

DCOM defines a standard IDL (which may be ignored by the programmer) based
on DCE IDL. Extensions are added to the original DCE IDL to deal with objects
and interfaces. Special tricks are needed to deal with methods that return pointers
to interfaces. In Globe, only the getinterface method in the standard object interface
can be used to obtain a pointer to an arbitrary interface. Other methods typically
return a pointer to the standard object interface. In DCOM, many methods return
pointers to arbitrary interfaces. Unfortunately, there is no type checking when pointers
to interfaces are returned.

The default communication protocol used by DCOM is DCE RPC. Among the
extensions to DCE RPC are Causality IDs. Causality IDs are associated with RPCs
to prevent deadlocks. An outgoing RPC during the processing of an incoming RPC
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uses the same causality identifier as the incoming request. A server should not block
requests with incoming causality identifiers equal to one of its outstanding causality
identifiers. DCOM uses reference counts between machines to implement garbage
collection. Clients ping servers to keep an object alive.

Monikers are the main naming mechanism of COM. A moniker is a persistent
immutable pointer to a COM or DCOM object. A moniker can refer to a local object,
a class object, a remote object, etc. Internally, monikers can use concepts such as
“the current month.” This means that in different months, such a moniker points to
different objects.

Multiple monikers can be combined into a composite moniker. A composite
moniker is a list (or path) of monikers that leads to a subobject of a distributed ob-
ject. (Composite) monikers are similar to name spaces, but lack the structured syntax
that is normally associated with a name space. The result is that monikers are more
efficient, binary data structures, but it requires a lot of special interfaces to operate on
monikers.

Monikers support a reduction operator. This means that the moniker is partially
evaluated and that a level of indirection is lost. For example, a moniker may refer to a
file object by its filename. A reduction results in a moniker that refers to the same file
based on its file id, or object id. A COM object may contain subobjects. A moniker
can refer to one of those subobjects. In some cases, these subobjects are created on
the fly, such as a row in a spreadsheet.

6.1.6 WebOS

The goal of the WebOS-system is to provide a common set of Operating System ser-
vices to wide-area applications, including mechanisms for naming, persistent storage,
remote process execution, resource management, authentication, and security [Vahdat
et al., 1998; Vahdat, 1998]. For persistent storage, WebOS uses a network file system
abstraction called WebFS. This file system uses the HTTP protocol for communica-
tion. The URL name space is integrated with the name space provided by the local file
system. For example, it is possible to list the directory /http/www-c.mcs.anl.gov/hpdc7/.
This approach is similar to the Alex file system, which used the FTP protocol for this
purpose [Cate, 1992]. The naming mechanism in WebOS is designed with load bal-
ancing issues in mind. To this end, some amount of executable code is downloaded
onto clients to allow them to select the best replica of a particular service. During a
session, clients receive load information from servers. Clients use this information to
make load balancing decisions. WebOS includes a mechanism for starting processes
on remote computers. Processes on remote computers are prevented from executing
arbitrary system calls by the Janus-system [Goldberg et al., 1996]. The Janus-system
uses the debugging facilities of an operating system to stop a process when it is about
the perform a system call. The process is aborted when the system call is not allowed
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according to the security policy. If the system call is allowed, the process is resumed
and can continue until the next system call.

The security architecture that is used in WebOS is called CRISIS [Belani et al.,
1998]. Two interesting aspects of CRISIS are the use of countersigning to implement
revocation lists and the use of transfer certificates to delegate rights. A problem with
public key certificates is that they are hard to revoke. It is possible to limit the life-time
of a certificate, but in many cases it is more important for the security of the system
to keep certification authorities off-line and, thus, use certificates with a relatively
long life-time. In CRISIS, a certificate is valid only if it is counter-signed by another
service. This second service consults the revocation list before counter-signing a cer-
tificate. Counter-signed certificates have a relatively short life-time. The advantage of
this approach is that the certification authority can be kept off-line, and that certificates
can be trusted without accessing revocation lists.

CRISIS explicitly models the transfer of rights from a user to a process that runs
on a remote machine. The user signs a certificate that grants a process on a remote
machine certain rights, for example, to access a specific file. This process can also sign
a certificate that grants a second process, possibly running on a different machine, a
subset of the first process’ rights. It is also possible for a process to transfer the right
to transfer rights to another process.

6.2 Local Objects

The use of objects to implement operating-system kernels or run-time systems is not
new. Choices is an example of an operating-system kernel which is constructed using
objects [Russo, 1991]. A technique called frameworks is used to structure the use of
objects in Choices [Campbell et al., 1991]. These frameworks are used during the
design of the system and are represented by abstract C++ classes at run time.

In Globe, the main structuring mechanism for local objects is the composite object.
The main difference between frameworks and composite objects is that frameworks
are design elements and composite objects are run-time constructs. The result is that
composite objects are more flexible than frameworks. However, frameworks are de-
signed to impose some constraints on the use of objects.

The use of multiple interfaces for a single object combines static type checking
with the possibility to add more interfaces as objects and applications evolves while
ensuring backward compatibility. In programming languages designed for scripting,
this kind of flexibility is built-in [Ousterhout, 1998]. The disadvantage of almost no
type checking at compile time is that many kinds of type errors show up at run time.
The language Emerald provides stronger type checking while maintaining most of the
flexibility of languages without type checking. In Emerald, the programmer declares
the abstract type of the objects that an identifier may name [Black et al., 1987; Raj
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et al., 1991]. The legality of an assignment is based on the conformity of the assigned
object and the abstract type declared for the identifier. The advantage of this approach
is that (in C++ terminology) object classes can be subclasses of virtual base classes
without being declared as such. This means that a new abstract type can be added to a
program without changing any class declarations.

The disadvantage of both scripting languages and the approach used in Emerald
is that extensive compiler and run-time support is needed to implement the neces-
sary type checking. The approach used in Globe requires only one simple check (in
the getinterface method), and is therefore also suitable for use in nonobject-oriented
languages such as C, Modula-2, or even assembly language.

The language Java provides an interface concept that is at first glance similar to
interfaces in Globe [Gosling et al., 2000]. The most important difference is that a
Globe object can provide two interfaces that contain two different methods with the
same name and signature but with different semantics. In Java, this is not possible.
This means that in Java, interface designers should avoid using method names that are
also used in other interfaces.

Paramecium uses the same local object model as is used in Globe to structure
operating-system kernels and run-time systems [van Doorn et al., 1995]. The idea
behind Paramecium is to extend the operating system by loading modules either in
user space or in kernel space. Loading modules in kernel space is efficient. On the
other hand, loading modules in user process provides better fault isolation. The object
model is used to hide these details from application programs.

The design of the communication objects is for a large part influenced by the x-
Kernel [Hutchinson and Peterson, 1991]. Features that the communication object have
in common with the x-Kernel are:

• The creation of a separate object for each communication channel (session).

• The ability to connect a collection of communication objects to implement a
protocol stack.

• The use of pop-up threads to propagate incoming network packets through the
protocol stack.

• The use of a mapping service that maps network addresses and port numbers to
fixed sized identifiers for internal use.

• A message data structure that allows message buffers to be manipulated without
copying the data in those buffers.

The main difference between the Globe communication objects and the x-Kernel
is the ability to load Globe objects dynamically. In contrast, the x-Kernel contains not
only a fixed set of protocol objects, the graph that connects the those protocols is also



6.3. DISTRIBUTED-OBJECT ARCHITECTURE 279

fixed. In Globe, a protocol stack is created by connecting communication objects in a
composite object.

The Horus system extends the x-Kernel approach to group communication (the x-
Kernel focuses on point-to-point communication such as remote procedure calls and
streams) [van Renesse et al., 1996]. Even though Globe includes an interface for
multicast communication objects, no multicast communication objects have been im-
plemented yet. For this reason, it is not possible to compare multicast communication
objects in Globe with the approach taken in Horus.

6.3 Distributed-Object Architecture

6.3.1 Object Models

Some object-based distributed systems rely heavily on compiler support. For example,
in the language Emerald the compiler is used to solve a problem that exists in older
object-based languages for distributed systems such as Argus [Liskov, 1988]. The
problem is that in Argus, the programmer has to decide whether an object can be
accessed by multiple processes, or whether the object is just local. In Emerald, the
compiler generates more efficient code if it finds that an object is accessed only locally
[Jul et al., 1988].

In Orca, the compiler is used to distinguish read-only methods from methods that
(may) change the state of the object. For replicated objects, read-only accesses can
be implemented more efficiently than accesses that modify the state of the object [Bal
et al., 1992a].

Most object-based distributed systems try to avoid the use of special compilers.
Instead, support for objects is implemented in a run-time system, which is called from
applications written in standard programming languages. For example, the Amber
system implements the distributed model and mobility primitives from Emerald, but
is implemented using C++ and a run-time system [Chase et al., 1989].

Other systems that implement support for distributed objects in a run-time system
include CORBA [Object Management Group, 1999], Fragmented Objects [Makpan-
gou et al., 1994], Spring [Hamilton et al., 1993], and Network Objects[Birrell et al.,
1993b]. The main difference between these systems and our model is the way ac-
cess to a distributed object is provided. Network Objects supports “remote objects”: a
method invocation in one address space is transparently transferred by the local run-
time system to the address space where the object resides. This system lacks support
for replication, other than layered on top of the remote objects. In Network Objects,
an object always stays in the same address space. CORBA and Spring are more com-
plicated but basically have the same model. CORBA supports “request brokers” to get
some flexibility. Spring supports “subcontracts” that can be used to implement caches,
support for replication, etc.
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In the three systems mentioned above, the client stub is provided by the run-time
system and is not part of the distributed object. In contrast, in our model the local
object that provides the interface to the distributed object is logically part of the dis-
tributed object. This local object is (again logically) self-contained and provides its
own communication mechanisms. This means that completely new ways of structur-
ing distributed objects can be deployed without changes to the model.

The use of object-oriented techniques to provide a better World-Wide Web has
been proposed in [Ingham et al., 1995]. Advantages of the use of objects are ex-
tensibility (different interfaces), support for replication, and better naming systems,
including referential integrity.

Fragmented Objects

Fragmented objects are an implementation technique for distributed objects. A Frag-
mented Object consists of a collection object called fragments, connected through
connective objects [Makpangou et al., 1994]. A fragment corresponds roughly to a
representative of a Globe distributed shared object. A fragmented object uses two in-
terfaces: a client interface and a group interface. The client interface is provided to the
users of the fragmented object to invoke a method on the object. The group interface
is used by the fragments to communication with each other. Connective objects are
fragmented objects at a lower level of abstraction.

This approach is similar to Globe’s distributed shared objects. The main difference
is that a fragmented object uses connective objects for internal communication. The
communication objects used in Globe are just end points of a communication chan-
nel. Distributed shared objects use replication objects to handle the replication and
placement of state. The fragmented object model leaves this to the programmer.

Spring

Spring uses a mechanism called subcontracts to implement different replication poli-
cies [Hamilton et al., 1993]. Subcontracts provide a client stub with five operations:
marshal, unmarshal, marshal copy, invoke preamble, and invoke. Client stubs imple-
mented using these operations can be used with different subcontracts. Example sub-
contracts deal with simple remote objects (singleton subcontract), replication (cluster
subcontract), caching and persistence.

Compared to Globe, a subcontract implements the functionality of a replication
and a communication object. A stub is layered directly above the subcontract and
corresponds to the control object in Globe. Methods that are invoked on the object
are actually invoked on the stub. The main difference is absence of the semantics
object. This means at a subcontract cannot be used to implement a method invocation
completely in the clients address space. For example, the caching subcontract that is
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described in [Hamilton et al., 1993] uses separate cache managers to actually store a
copy of the state of the object.

Network Objects

By design, Network Objects are a straightforward remote object extension to Modula-
3 [Birrell et al., 1993b]. The system includes support for invoking methods on remote
objects and for passing object references from one address space to another. The local
Modula-3 garbage collector is complemented with reference listing to handle remote
object references [Birrell et al., 1993a].

Java RMI

The Java Remote Method Invocation (RMI) specification is quite similar to that of
Network Objects [Sun Microsystems, Inc, 1998]. Apart from the use of Java instead
of Modula-3, the main difference is the garbage collector. In Java RMI, the client of a
remote object gets a remote object reference that is valid for some period of time. The
reference has to be renewed before it expires. The garbage collector can assume that
an object is no longer referenced from other address spaces when all remote references
are expired. When a client deletes a remote reference, it can inform the object. This
allows an object to be garbage collected before the reference is expired.

Clouds

Clouds (version 2) supports objects on top of a small micro kernel called “Ra.” A
Clouds object is persistent, and is not tied to any process [Wilkenloh et al., 1989]. The
interface to the kernel is provided through system objects. In this sense, the Clouds
local object is similar to the local object model in Globe. The main difference between
Clouds and Globe with respect to the object models used, is that in Globe an object
implementor is free to decide how an object should be replicated, or whether an object
should be persistent or not.

Infospheres

The Infospheres project focuses on providing support for collaborative applications.
The canonical example is a distributed calendar application which is used to setup
a meeting with multiple people, often from different organizations. This project is
implemented using active objects, called dapplets [Chandy et al., 1996]. Each object
has a set of inboxes and a set of outboxes. An object receives messages from its
inboxes and sends messages to its outboxes. Each outbox is connected to a set of
inboxes that belong to other objects. The advantage of explicitly modeling inboxes,
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outboxes, and the connections between inboxes and outboxes is that the correctness
of the system can be verified.

This model is quite different from Globe. Firstly, in Globe, the state of an object
is usually replicated. Secondly, Globe objects are passive; threads of control are pro-
vided by applications and by the communication system as pop-up threads. Lastly, in
Globe, objects are used by applications to communicate; objects themselves typically
do not interact.

6.3.2 Alternative Approaches

Distributed Shared Memory

A relatively recent example of a system that provides distributed shared memory
(DSM) is Khazana [Carter et al., 1998]. In addition to the normal read and write calls,
Khazana provides explicit lock and unlock calls for synchronization and operations
to get and set attributes of a region of shared memory. These attributes include the
desired consistency protocol, access control, and number of replicas. Relatively large
(128-bit) identifiers are used to address memory regions. Khazana tries to provide
many common features that are needed by distributed applications such as replication,
fault tolerance, access control, and location management.

One of the problems with the use of distributed shared memory is heterogeneity
[Zhou et al., 1992]. Processes running on different architectures may use different
byte orders, use different word sizes, etc.

The tuple space provided by Linda can be viewed as a high-level distributed shared
memory system [Carriero and Gelernter, 1989]. In contrast to most other systems,
which are addressed using names, object references, memory addresses, etc., tuples
are addressed by specifying part of their contents. A new tuple is simply inserted in
the system using the out operation. No address is passed or returned. The rd operation
searches for (and returns) a tuple that matches the template passed as a parameter. The
in operation is similar to the rd operation, except that the tuple is also removed from
the tuple space.

This kind of associative memory is unlikely to be useful as a basis for a worldwide
system. The reason is that content-based addressing is hard to scale. A tuple can
be selected on any combination of its fields. This makes it very hard to partition
a tuple space or to build a proper index structure to quickly find tuples in a large
system. A second problem is that the Linda tuple space provides strong consistency
guarantees. The in instruction atomically selects a tuple and deletes it from the tuple
space. Furthermore, a common technique to update a variable in a tuple space is to
remove the tuple that contains the old value and to insert a tuple with the new value.
The net result is that the use of replication is unlikely to improve the performance of
the system as a whole.
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Distributed File Systems

Distributed file systems and distributed shared memory systems have in common that
they both operate on bytes. The main difference is that files are by default persistent
and shared memory is usually volatile. Furthermore, files are usually read and written
using system calls, and memory is accessed by default using virtual memory.

The Andrew File System (AFS) was designed as a file system for between 5,000
and 10,000 workstations at Carnegie Mellon University [Howard et al., 1988]. Com-
pared to NFS [Nowicki, 1989], AFS provides a much better cache consistency pro-
tocol. The drawback is that the communication between an AFS client and server is
stateful instead of the stateless protocol used by NFS. Frolic improves file replication
in a large-scale system using clusters [Sandhu and Zhou, 1992].

AFS has been used to provide access to WWW documents [Spasojevic et al.,
1994]. The main advantages of AFS over the normal HTTP protocol are: (1) transpar-
ent file migration and replication, (2) better caching, and (3) improved security.

The main drawback of the distributed shared memory and distributed file system
approaches is that all applications that share a file or a memory region have to agree
on a common representation, and a common policy for synchronizing accesses. For
example, under UNIX, the layout of a mailbox is shared between the various mail
transport agents, mail user agents, and even news readers. Currently, the trend is to
use the POP3 [Myers and Rose, 1996] and IMAP [Crispin, 1996] protocols instead of
a shared file to access mailboxes over the Internet.

(Group) Communication

The Internet is currently the prime example of a worldwide system that is based on ex-
plicit communication. The Internet is mostly used for point-to-point communication.
Multicast protocols are defined but are not in widespread use.

A system that makes extensive use of (software) multicast is ISIS [Birman and
van Renesse, 1994]. The ISIS-system organizes processes in groups. Communication
between processes in a group is ordered by ISIS based on causal relationships between
messages. For example, if a process receives a multicast message A and subsequently
sends a point-to-point message B, then the process that receives message B will receive
message A before it receives message B. Causal multicast is used to implement atomic
multicast using a token holder which multicasts the order in which messages should
be delivered [Birman et al., 1991]. It is important to note that ISIS is used to order
all communication between the processes in a group. This in contrast to many other
systems (including Globe) that order data in a single communication channel or in a
single multicast group, but not between different communication channels.

The disadvantage of systems based on explicit communication is that they do not
provide replication transparency. Instead, they require the (application) programmer



284 CHAPTER 6. RELATED WORK

to build replication and consistency protocols on top of the offered message passing
primitives.

Mobile Code

Most of this thesis deals with the movement of data from one address space to another,
either explicitly using communication primitive or implicitly using shared memory,
shared objects, or distributed file systems. An alternative approach is to move com-
putations from one address space to another. We can distinguish two kinds of mobile
code [Fuggetta et al., 1998]. The first kind moves only a program from one address
space to another. The second kind moves (part of) a process (i.e., a program plus some
amount of state).

The first kind of mobile code is frequently used to download user interfaces into
clients or to upload complicated queries into servers. For example, Javascript is fre-
quently used to make WWW pages more interactive. Another example is the NeWS
system, which allowed programs to upload scripts into a windowing system [Gosling
et al., 1989]. SQL queries are an example of simple scripts that are sent by clients to
database management systems.

The second kind of mobile code is commonly referred to as mobile agents. In
these systems a more or less independent process roams the network. An example of
such a system is Agent Tcl (later renamed to D’Agents) [Gray, 1997]. Agent Tcl is,
of course, based on Tcl [Ousterhout, 1989].

6.4 Replication

Replication of data is common in (distributed) shared memory systems. At the hard-
ware level, the use of caches causes data to be replicated. Cache-consistency protocols
are needed to ensure that DMA controllers operate on current data. In multiprocessor-
systems, data can be replicated in caches that belong to different processors. At this
level, different memory coherence models are used to trade consistency for perfor-
mance [Tanenbaum, 1995].

Distributed shared memory implementations can use various techniques to imple-
ment memory-coherence models [Stumm and Zhou, 1990]. An interesting consis-
tency model for distributed systems is Local Consistency (LC) [Ahamad and Kordale,
1999]. LC combines a sequential consistency model with efficient updates to the state
of a collection of objects. Furthermore, a client gets some control over how quickly
updates performed by other clients become visible. The model focuses on the con-
sistency of various objects that are cached by clients. For updates the model assumes
that for every object there is one server that accepts update requests.

Two implementations are described. The first implementation assumes a single
server that stores the state of all objects. For each client, the server maintains a list of
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objects that are cached by the client and for which the client no longer has an up-to-
date copy of the state of the object. Whenever a client communicates with the server,
it receives an invalidation list. This approach allows objects to be updated without
explicitly updating or invalidating client caches. Clients that require up-to-date copies
can poll the server for invalidation information. Other clients can simply continue
with old, but consistent, information.

The second implementation uses timestamps. In this implementation, objects can
be distributed over multiple servers. Along with a copy of the state of an object, a
server returns two timestamps. The first timestamp is the time that the object was last
modified, and the second timestamp is the current time at the server. Whenever an
object receives a new copy of the state of an object, it invalidates old information in
its cache that it received before the current object was last modified. This approach
requires synchronized clocks on the servers. A version of the algorithm that uses
logical clocks is also described in [Ahamad and Kordale, 1999].

It is possible to integrate consistency models with synchronization primitives.
Examples of this approach are weak consistency [Dubois et al., 1986], entry con-
sistency [Bershad et al., 1993], release consistency [Gharachorloo et al., 1990], and
lazy-release consistence [Keleher et al., 1992]). The advantage of these techniques is
that memory coherence is ensured when entering or leaving a critical section and not
on every read or write operation. Weak memory-coherence models can be extended
by taking the semantics of operations into account. Epsilon serializability allows a
limited amount of inconsistency [Ramamritham and Pu, 1995; Kamath and Ramam-
ritham, 1993]

A second approach to data replication is the use of group communication. Using
this approach, high-level operations are multicast to all processes that have a replica
of the state. These processes update their state according to the messages they receive.
Logical and physical clocks can be used to provide either a partial or a total order on
message delivery [Lamport, 1978]. The ISIS-system provides message ordering for a
collection of processes [Birman et al., 1991]. There is some controversy whether this
kind of (causal) delivery should be provided at all and whether this should be done
at the application level or as part of a standard library. A positive answer to the first
question can be found in [van Renesse, 1993]. This kind of functionality should be
provided at the application level (instead of as part of the system or a standard library)
for four reasons: (1) to avoid unrecognized causality, (2) to group multiple operations,
(3) to express the desired semantic ordering, and (4) to gain efficiency [Cheriton and
Skeen, 1993]. A response that argues in favor of the ISIS approach can be found in
[Birman, 1994].

Some systems use anti-entropy protocols to propagate updates to all replicas of
an object. In anti-entropy protocols, replicas periodically send updates to other repli-
cas. Eventually, an update reaches all replicas. These replication protocols provide
eventual consistency. Two examples of systems that use this approach are REFDBMS
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[Golding, 1992b] and Bayou [Petersen et al., 1997]. Both systems provide a total or-
der for all stable updates. The two systems use different mechanisms for providing a
total order on all updates. Bayou uses a centralized approach which uses a sequencer
to assign sequence numbers to updates. On the other hand, REFDBMS uses a simple
timestamp protocol, which assumes a synchronous network.

Both systems rely on the application to deal with conflicting updates. For example,
one of the applications that runs on top of Bayou is a distributed calendar manager
[Terry et al., 1998]. In this application, conflicting updates result in appointments for
a single that overlap in time, or two meetings that are scheduled in the same room
at the same time. In other systems, a user who tries to schedule an appointment that
conflicts with another appointment gets instant feedback from the system. However,
in these systems, it takes a long time for a message propagate (ranging from several
hours to more than one day). The solution is to make the application responsible for
canceling one of the conflicting meetings.

Object-based approaches provide an abstraction on top of the two previous ap-
proaches. For example, different approaches to implement the programming language
Orca are compared in [Bal et al., 1992b]. It is also possible to use object-based ap-
proaches to extend other mechanisms. For example, VDOM (Versioned Distributed
Object Memory) provides the programmer with different versions of the state of an
object [Feeley and Levy, 1992]. Because each version is immutable, it is possible to
have concurrent read and write accesses to an object.

The replication architecture that is offered by BOAR is similar to the replication
architecture of Globe [Brun-Cottan and Makpangou, 1995]. Three objects, “access
objects,” “consistency managers,” and “replicas” correspond to respectively control
objects, replication objects and semantics objects in the Globe architecture.

The main difference between the two architectures is that Globe provides support
for condition synchronization and replicated method invocations. These two features
are not supported by the BOAR architecture. Instead, the BOAR architecture explic-
itly supports partitioned state and uses locking to support fine-grained concurrency
control. Methods that operate on different parts of the state can be executed in paral-
lel. Parallel execution of commutative methods is also supported. Finally, BOAR can
group a collection of method invocations in a single “activity.”

6.5 Persistence

Section 3.3 showed that persistence can be provided at different layers. At the oper-
ating-system level, it is possible to provide all data storage, including address spaces,
with persistence. This approach is called orthogonal persistence. Grasshopper is a
system that provides orthogonal persistence [Rosenberg et al., 1996]. Grasshopper
provides containers as a storage abstraction, and loci as an abstraction for the registers
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of a processor. Each locus is associated with a host container. A locus can ask the
kernel to make a snapshot of the current state.

Some arguments against orthogonal persistence can be found in [Cooper and Wise,
1996]. Arguments include the possibility of a spaghetti of persistent object references,
the problem of providing fine-grained access control, pointer size, and data compres-
sion. The authors advocate the use of type-orthogonal persistence. This means that all
objects can be made persistent. However, persistent objects are grouped into larger,
coarse-grained objects. Persistent objects can only refer to other persistent objects that
are stored in the same coarse-grained object.

One level higher are systems that provide persistent objects at the language level.
The programming language E extends C++ with (among others) persistent objects
[Richardson et al., 1993]. Persistent objects are declared with the storage class
persistent. In addition, E supports collections of persistent objects. E provides an
iterator mechanism that can be used to examine all objects in a collection. This frees
the programmer from the responsibility to maintain indexes that refer to all persistent
objects. The EXODUS Storage manager is used by the run-time system to actually
store persistent objects. A drawback of E, in the area of naming, is that variable names
in the program are used to name objects in the database. The programmer has to avoid
writing different modules that use the same variable names for persistent objects, be-
cause that will cause conflicts in the database. Compared to Globe, the programmer is
not given any control over the actual storage of the persistent state (data representation,
or when changes are written to disk).

Thor is an object-oriented database system designed for use in a distributed envi-
ronment [Liskov et al., 1996]. It provides type-safe sharing and heterogeneity. Type
safety is provided by implementing objects using a new programming language Theta.
Client code that is written in unsafe languages (such as C), is run in separate address
spaces. In the (second) implementation of Thor, a hybrid between page and object
caching is used in clients [Castro et al., 1997]. This approach benefits from the low
overhead of page caching (many objects at the same time, fixed granularity) for those
pages that contain many relevant objects. Isolated objects in pages with few interest-
ing objects are moved to an object store. Another interesting technique is cooperative
caching [Adya et al., 1997]. This technique fetches data from nearby clients that con-
tain a cached copy of the data instead of fetching the data from disk.

In Clouds, each object is in a virtual address space [Wilkenloh et al., 1989]. Fur-
thermore, objects are persistent and not tied to processes. The implementation of
virtual address spaces for objects is supported by the Clouds kernel.

The persistence model of the BOSS project, described in [Soulard and Makpan-
gou, 1992], is somewhat similar to the persistence model that uses persistent dis-
tributed state objects, such as shown in Figure 3.19 on page 76. In the proposed
model, to update the state of an object, the client grabs a lock, updates the state, and
releases the lock. This approach is not scalable. The problem is that replication of the
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distributed object is independent of the replication of the state object. In Globe, this
problem is avoided by integrating the persistence management with the replication of
the state.

The PerDiS project aims to provide a Persistent Distributed Store [Shapiro et al.,
1997]. This store provides the user with a shared memory abstraction, similar to
the abstraction provided by a distributed shared memory system. PerDiS uses the
Larchant garbage collection algorithm to delete unreachable data in the persistent
store. As an architecture for a large-scale distributed system, this is a step backward
compared to the BOSS project. In an object based system it is relatively easy to pro-
vide different interfaces, use different data encoding conventions, etc. within a single
object. Hiding the representation of data in a shared memory system is hard.

6.6 Security

We can divide related work in the area of security into three categories. The first
category contains low-level algorithms and protocols for encryption, key distribution,
signatures, etc. The second category consists of systems that combine a collection of
low-level algorithms into a high-level security mechanism. We put work in the area of
security policies in the third category.

The first category contains basic encryption algorithms such as DES, IDEA, triple-
DES, Blowfish, etc. The third category contains, for example, the Bell-LaPadula
model.

The systems in the second category are comparable to the Globe security archi-
tecture. Kerberos is an authentication scheme based on shared-key encryption, times-
tamps and a trusted third party [Steiner et al., 1988]. Additionally, the Kerberos im-
plementation provides primitives to communicate over an encrypted channel. Several
network programs such as rsh, rlogin, telnet, and the X Window System have been
modified to use Kerberos.

Kerberos has several limitations and weaknesses [Bellovin and Merritt, 1991].
Two examples of weaknesses are the need for secure time services and the oppor-
tunity of password guessing attacks. One of the limitations of Kerberos is that it com-
bines a particular encryption algorithm (DES) with a specific authentication protocol.
Large-scale systems need a more flexible approach that allows different encryption
algorithms and authentication protocols. For example, current computers are so fast
that an exhaustive key search has become a practical attack on DES [Wiener, 1996].

A more flexible framework is provided as an extension to the current Internet
Protocol [Atkinson, 1995]. This protocol explicitly allows different encryption al-
gorithms, etc. A generic security service application program interface (GSSAPI) is
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defined to provide a standard way to access the security extensions to the Internet Pro-
tocol [Linn, 1997]. An API that provides explicit support for delegation, roles, etc. is
described in [Wobber et al., 1994].

A disadvantage of a separate security API is that the application programmer has
to deal with another complex issue. Integrating security with a run-time system for
a distributed object system reduces the burden of the application programmer. In
the Secure Network Objects system, the programmer can select whether he needs an
insecure object, an object that is integrity protected, or an object that also provides
secrecy [van Doorn et al., 1999]. This choice is made by declaring the object to
be a subclass of the generic network object class (NetObj.T), the AuthNetObj.T class,
or the SecNetObj.T class. The application programmer remains responsible for access
control. The run-time system provides the object with the identity of the principal who
invoked the method and the method implementation is responsible for the decision
whether to return an appropriate error code or to carry out the execution of the method.

Secure network objects has two disadvantages compared to the security architec-
ture of Globe. The first disadvantage is the lack of choice in encryption algorithms
and authentication protocols. The assumption is that the choice is hard-wired in the
run-time system. The second problem is that whether an object is secure or not, is re-
flected in the type of the object. In Globe, the object writer can specify which secure
mechanisms should be used by selecting an appropriate security object. The type of
the object, that is the set of the interface that it provides, is independent of the choice
of a security object.

6.7 Naming

Yeo, Ananda and Koh provide a taxonomy of name systems which is quite different
from the classification that was presented in Section 4.1 [Yeo et al., 1993]. They
introduce 10 categories with many subcategories. These 10 categories can be grouped
into three supercategories:

1. Name services, name assignment, multiple mappings of names, context, name
resolution,

2. Name distribution, database,

3. Fault tolerance, access control (and authentication), and communication mech-
anism.

The first supercategory classifies the name space, the second supercategory describes
how the name service is distributed and how data is stored. The third supercategory
classifies some implementation aspects of a naming system. They recognize a central-
ized and a distributed model for name distribution. Only the distributed model makes
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sense in a wide-area distributed system due to independent network failures and for
scalability reasons.

Compared to Section 4.1, they ignore the issue of location transparency, whether
a name has to be human readable or not, the use of unique object identifiers, and
the level of abstraction of names. The need for unique object identifiers is argued in
[Wieringa and de Jonge, 1995].

A general discussion of naming in distributed systems can be found in [Needham,
1993]. Issues are human-sensible names, unique identifiers, pure names, binding,
consistency, and scaling.

The naming service that is described in [Cheriton and Mann, 1989] uses three lev-
els of naming: global, administrational, and managerial directory systems. These lev-
els have different performance, reliability, security, and administrative requirements.
The global level contains names for independent organizations that are assumed to be
somewhat distrustful with respect to each other. The administrational directories are
organized hierarchically with respect to security issues. Furthermore, directories at
this level should remain accessible even when the global directory fails. A directory
at the lowest level (the managerial level) provides access to objects that are stored in
a single object manager. In this system, servers for the lowest level of the naming
system are integrated with the object servers for the objects they refer to. In contrast,
in Globe the name service is separate from object storage.

Clients maintain a prefix cache for managerial directories. The prefix cache maps
a name to a combination of a specific object managers and a directory identifier. Mul-
ticasting is used to find new mappings for local managerial directories. Special liaison
servers are used for names that are outside of the local administration. Due to the use
of multicasting, it is necessary for directories at the administrational level to explic-
itly return failure indications for directories that they do not serve. For other names,
the appropriate server returns a reply. The main advantage of this approach is fault
tolerance. The use of multicasting ensures that available servers can be reached even
when higher-level servers are down. The global directory is implemented using a high
degree of replication and gradual propagation of updates.

Note that this design assumes that every object knows its name. A simple renaming
of a directory requires all objects and directories below that directory to be informed
of their new names. Another issue is lack of location independence at lower levels
which restrict the placements of an object’s replicas.

The name service just described provides objects with only one name. Neuman ar-
gues in [Neuman, 1992a] that the naming system should be used to organize resources.
To support organizing resources, Prospero provides two kinds of special directories:
directories that act as filters and directories that provide the union of two underlying
directories [Neuman, 1992b]. In addition, each user is provided with his own part
of the name space to maintain a collection of references to interesting documents or
directories.
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Note that the World Wide Web and many operating systems also provide each user
with his own part of the name space. However, a UNIX user can use only symbolic
links to refer to files on other UNIX file systems. Furthermore, operating system name
spaces are in general limited to a single machine, or sometimes, a single organization.
Both the World Wide Web and Prospero provide a worldwide name space. Unfortu-
nately, in the World Wide Web references to other documents are part of free-form
web documents, instead of structured directories. This makes the use of general pur-
pose filters and unions impossible.

Another interesting technique that allows users to structure their own name space
is the use of skeleton directories [Rao and Peterson, 1993]. A user can use skeleton
directories to change his view of the (global) name space by mounting a file system on
top of a directory that belongs to someone else. However, the effect is only visible in
the user’s view of the name space. In a UNIX system, this technique would allow users
to create a view with extra files in the /bin directory by mounting a union directory on
top of the real /bin. Plan 9 provides a similar feature, but in this case all processes in a
process group share a view [Presotto et al., 1992].

The Hobbes project advocates a binding architecture that is quite different from
the one used in Globe. The key difference is that Globe uses a few types of object
references, such as pathnames, object handles and contact addresses. These object
references are used in sequence in a standard, 4-step binding protocol. In contrast, the
binding architecture that is described in [Shapiro, 1994] supports an arbitrary number
of object reference types. During binding, a remote procedure call is made by the
run-time system to the target of the reference. The target verifies that it can supply the
interface that is desired by the client, and it returns a reference to a class object that
implements the appropriate interface and can act as a proxy.

An advantage of the Globe mechanism is that object references can always be
resolved to the level of a contact address. At the level of a contact address, it is possible
that protocol identifier is not understood by the client and that binding fails. Because
there are only three types of object references in Globe, they can be passed easily
between address spaces, for example as arguments to method invocations. When the
Hobbes approach is used, it is possible that a type of reference is passed which is not
understood by the recipient.

Closely related to the location service, are systems that try to provide a single
64-bit address space. An example of such a system is Opal, which implements a
lightweight shared object system [Chase et al., 1992]. Objects are named by 64-bit
pointers. Opal defines a single virtual address space that maps all data in a small-scale
distributed system, including persistent data.

Location services are commonly found in mobile phone systems. Systems that
are currently operational, for example GSM, use a home-based approach. A home-
based approach is also used for mobile hosts on the Internet [Perkins, 1996]. An
overview of location service approaches can be found in [Pitoura and Samatas, 1998].
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For example, a collection of forwarding pointers can be maintained in a tree such that
pointers close to the root of the tree are updated less frequently than pointers near the
leaves of the tree [Awerbuch and Peleg, 1991].

An interesting caching technique for locating mobile phones is described in [Jain,
1996]. In Globe terminology, this technique does not cache the actual contact ad-
dresses for objects, but caches where a particular contact record is stored in the loca-
tion service. The advantage of this technique is that a contact address can be updated
without invalidating the cache. The obvious disadvantage is that at least one RPC is
necessary to look up the current contact address. This technique has been discovered
independently during the design of the Globe location service [Hauck et al., 1996].
A home-based system with a hierarchical search algorithm can be found in [Wang,
1993]. In this algorithm, the root of registration is the least-common-ancestor of the
current location and the home base.

6.8 Garbage Collection

A survey of distributed garbage collection techniques can be found in [Plainfossé and
Shapiro, 1995]. A similar survey that also includes a description of local garbage
collection can be found in [Abdullahi and Ringwood, 1998]. The second survey rec-
ognizes three different classes of algorithms: those based on reference counting, based
on reference listing, and tracing garbage collectors. A disadvantage of the reference
counting and reference listing techniques is that they cannot reclaim garbage that con-
tains cycles.

Tracing garbage collectors use three different techniques: tracing with timestamps,
centralized garbage collection, and tracing within groups. Timestamps can be used
to detect collections of unused objects. Each process periodically starts a marking
phase and assigns a new timestamp to all objects that are reachable from its root set.
These timestamps propagate to other address spaces. The marking phase is complete
when the timestamp has been propagated to all reachable objects in remote address
spaces. All processes cooperate to compute the timestamp of the oldest complete
marking phase. All objects with older timestamps can be deleted. A problem with this
technique is that global agreement on the oldest complete marking phase is hard to
achieve, and is nonscalable. Furthermore, one crashed address space prevents garbage
collection in the entire system. A (nonscalable) alternative is to collect information
about all references between objects in one process to compute which objects are
unreachable from that information.

Tracing within groups is a technique to increase the scalability of tracing with
timestamps. Instead of computing the oldest complete marking phase in the whole, a
group of process cooperate to trace objects that are not referenced from other address
spaces outside the group. All unreachable cyclic garbage in the group of processes can
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be collected. Unfortunately, heuristics are needed to determine the set of processes
that should form a group. Ultimately, a group that contains all processes in the system
is needed to be sure that all garbage is collected. We can conclude that the garbage
collection techniques that are described in this survey are either incomplete (reference
counting and reference listing), or are not scalable.

The Larchant garbage collector collects replicated objects in a distributed system
[Ferreira and Shapiro, 1996]. Objects are grouped into bunches for the purposes of
caching and garbage collection. The algorithm is based on reference listing: each ob-
ject maintains a list of all objects in other bunches that refer to it. These references are
called scions. Intra-bunch garbage collection is done separately for each replica using
a single address garbage collector. Intra-bunch garbage collection is implemented by
creating and deleting scions. A bunch that has no scions is unreachable, and can be
deleted.

Disadvantages of using this algorithm in a large distributed system are twofold.
Firstly, it is in general not possible to implement reference listing in such as system.
The number of references to a single object becomes a scalability problem. The sec-
ond, more serious problem, is that the garbage collector does not collect all cycles. A
simple heuristic is used to determine what potential cycles have to be inspected.

Nonscalability of the tracing garbage collectors based on timestamps can be solved
by combining a copying garbage collector with reference listing [Hudson et al., 1997].
This garbage collector, called DMOS (Distributed Mature Object Space), can be ex-
plained using trains and cars as a metaphor. All objects are located in cars which may
contain more than one object. A car is located in a single address space. In this model,
objects are located in a single address space and can be accessed remotely. Cars from
multiple address spaces are grouped into trains. Each car belongs to exactly one train.
Trains are timestamped.

The garbage collection algorithm works as follows. In each garbage collection
cycle, all objects that are referenced by other objects are copied to new cars. The
objects that are not copied are destroyed. Objects may be copied to a new car in the
same train or to a car in a different train. Objects that are reachable from the local root
set are copied to a new train. Reference listing is used to check whether an object is
reachable from an object in a train that is created later than the current train (i.e., an
object in a younger train). Objects that are reachable from objects in younger trains
are copied to a car in one of the younger trains. What remains are unreachable objects,
objects reachable from older trains, and objects reachable from other cars in the same
train.

A distributed termination detection algorithm, in this case based on token passing,
is used to verify that the objects in a train are not referred to by objects in other trains.
If that is the case, the entire train is deleted. Eventually, the oldest train in the system
will be deleted.
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Unfortunately, this is a copying garbage collector. The algorithm depends on the
property of copying garbage collectors that garbage is left behind after all live data
is copied. In a system where many objects are referenced by directory objects, this
requires the entire name service to be copied at regular intervals to reclaim deleted
files. This is not very efficient in a system with a large number of persistent objects.

A garbage collection algorithm that is similar to the garbage collection for Globe
in that it also tries to find a path to the root is described in [Fuchs, 1995]. This al-
gorithm uses a coloring algorithm, similar to those used in mark-and-sweep garbage
collectors, to color live objects and to delete dead ones. This algorithm has two im-
portant drawbacks. First, the algorithm does not store a path to the root. This means
that an object has to run the coloring algorithm each time it needs to verify its reacha-
bility. Second, two objects that have a common parent cannot verify their reachability
in parallel.

An improvement over [Fuchs, 1995] can be found in [Maheshwari and Liskov,
1997]. For each (distributed) object, this algorithm keeps track of the distance to the
root set. A member of the root set has distance zero and an unreachable object should
get distance infinity. In practice, objects start counting to infinity when they become
unreachable. The algorithm uses a cut-off distance as a heuristic to determine which
objects are potentially unreachable. For objects that are potentially unreachable, their
ancestors are examined to see if their distances are also above the cut-off distance. An
object is unreachable if all ancestors are above the cut-off distance.

To maintain consistency, the garbage collector requires the application to report
(to the garbage collector) any new references that may compromise the safety of the
garbage collection algorithm. In other words, the activities of an application program
are closely tied to the garbage collector. The advantage of this approach is that the
storage requirements are much less than the garbage collector for Globe. However, it is
not clear whether a strong connection between applications and the garbage collector
is feasable in a world-wide distributed system with highly replicated objects.

Globe uses reference counts to collect local objects within one address space. An
overview of local garbage collection techniques can be found in [Wilson, 1992, 2000].
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Conclusions and Future Work

7.1 Conclusions

This thesis describes a novel architecture for wide-area distributed systems based on
distributed shared objects. This architecture contains a separate location service to
support location and replication transparency. The architecture for local objects in-
cludes a local, per process name space which is integrated with a wide-area naming
service. A new garbage collection algorithm provides distributed detection of un-
reachable objects.

The construction of a distributed shared object is simplified by separating the im-
plementation of the replication protocols from the implementation of the object spe-
cific semantics using communication, replication, control and semantics objects. The
interface between the control and the semantics object allows different replication
strategies. Blocking method invocations are also supported. This implementation ar-
chitecture is completed with support for persistence and security.

Chapter 1 listed a number of requirements. This section describes how they are
met by the Globe architecture.

• Scalability

The Globe architecture contains two centralized components: the worldwide
root of the name space and the (root of the) location service. The scalability of
a single worldwide root has been demonstrated in the Domain Name System.
The contents of the root of the name space changes infrequently and can be
replicated easily.

The scalability of the location service is more complicated. The location service
uses partitioning to distribute the load over multiple servers. Furthermore, the
use of the hierarchical search algorithm and caching should avoid many lookup
operations on the root of the location service. The use of home-based location
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servers in conjunction with a distributed search tree is another technique to re-
duce the load on the root of the location service. We expect that in practice the
location service has to be monitored closely to be able to take measures to avoid
overloading parts of the location service.

The scalability of the garbage collection algorithm has been argued already
in Section 4.5.11. The Globe architecture does not contain any other compo-
nents that are likely to be nonscalable. However, individual implementations
of distributed shared objects may be nonscalable. For example, the use of a
client/server replication object to achieve strong data consistency may lead to
scalability problems when the object becomes popular.

• Flexibility

A large part of the Globe architecture is designed to provide flexibility. At
the lowest levels, run-time interfaces are used to decouple separately compiled
components. The local name space provides a flexible mechanism to refer to
local objects. The use of protocol identifiers combined with dynamic loading of
class objects allows existing applications to benefit from new implementations
of distributed shared objects.

Each object encapsulates its own implementation. In particular, implementa-
tions will differ with respect to replication strategies. A distributed shared object
can be implemented in various ways: with many replicas and a voting mecha-
nism, or partitioned, or just stored in one place. Distributed shared objects that
look to the user as if they belong to the same “class” can have different imple-
mentations. The implementation of a distributed object, in terms of communi-
cating local objects, can use arbitrary communication patterns and encapsulates
data placement, replication, etc.

• Security

Globe contains a minimal security architecture. This architecture is comparable
to security architectures for other distributed systems. Future research is needed
to determine whether this architecture can protect highly replicated objects.

• Uniform model

The Globe architecture uses distributed shared objects to allow processes to
communicate. The user of a distributed shared object sees a model that includes
naming, contact addresses, and local objects. The implementation of the dis-
tributed shared object is completely hidden. The implementor of a distributed
shared object writes a semantics object and has to select an appropriate replica-
tion object to complete the distributed shared object.

For special distributed shared objects, the implementor can write local objects
that provide object handles, contact addresses, etc. directly without using a
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replication object. The local object model provides a uniform environment for
implementing distributed shared objects on different platforms.

• Location and replication transparency

The location service provides most of the support for location and replica-
tion transparency. Location transparency is provided through the resolution
of location-independent object handles. The location service supports repli-
cation transparency by associating multiple contact address with a single object
handle. Replication transparency is completed through the use of dynamically
loaded object implementations. This allows each distributed shared object to
choose an appropriate replication strategy.

• Autonomous administration

Most of the Globe architecture allows autonomous administrations (i.e., orga-
nizations can independently administer their computers, networks, etc.). The
three exceptions that require global cooperation are the name service, the loca-
tion service, and the allocation of protocol identifiers. In the garbage collection
algorithm each object independently verifies whether it is reachable from the
root set or not. The use of 256-bit interface identifiers avoids the need for cen-
tral coordination to allocate identifiers for new interfaces.

The name service requires worldwide coordination for the root. Again, the
Domain Name System can be used as an example of name-space delegations to
individual organizations. The location service requires a large amount of central
coordination. Note that home-based extensions to the location service provide
some amount of delegation, which allows a trade-off between independence and
location transparency.

In the current implementation, protocol identifiers are ASCII strings. This ap-
proach requires cooperation to avoid duplicates. An alternative is the use of
protocol identifiers that are based on object handles. Object handles are, by def-
inition, worldwide unique and can be used as protocol identifiers without global
coordination. The advantage of using object identifiers instead of just unique
identifiers, is that special protocol objects can be introduced which contain de-
scriptions of the protocol and, optionally, references to implementations of the
protocol.

• Interoperability

The Globe architecture does not provide explicit support for interoperability.
Distributing object implementations ensures interoperability but is unattractive
from a security point of view. Documenting protocols in protocol objects is one
approach to solve this problem, but has not been implemented. The Internet
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community has a lot of experience with informal protocol descriptions in the
form of RFCs (Request For Comments).

Interface definitions are another area where interoperability is required. In this
case, distributed shared objects have to provide interface that are supported by
applications (and vice versa). In general, a new implementation of a repre-
sentative for a distributed shared object has to implement the right protocols to
connect to the distributed shared object and has to implement the right interfaces
to be useful in applications.

• Backward compatibility

The general approach to backward compatibility has been described in Sec-
tion 5.1. The Globe architecture does not contain any special features for back-
ward compatibility with other systems.

The prototype implementation has provided the following insights:

• Flexibility

In Globe, it is possible to write a semantics object once and combine it with
many different replication objects. These objects can coexist in a single system.
Furthermore, applications do not have to be recompiled.

• Pop-up threads

Pop-up threads are used in Globe to deliver messages that arrive over the net-
work to passive objects. Disadvantages of pop-up threads are the need for con-
currency control and the difficulty of limiting the number of threads in the sys-
tem.

An alternative model would be to implement objects as state machines. This
would give semi-active objects that react to the reception of events (messages).
Without blocking primitives, the need for multiple threads would be reduced.
With fewer threads, the need for concurrency control can be reduced. For ex-
ample, see [van Renesse, 1998] for an approach to concurrency without threads.

• Interface design

There is a trade off between a single (large) interface or multiple, smaller in-
terfaces. For example, compare the gc interface with the distrObj, distrCtrl, and
persist interfaces. Multiple interfaces are often harder to use. In many cases,
multiple interface pointers are needed to perform a task. The advantage is that a
new interface, such as the persist2 interface, can be introduced without affecting
other interfaces.
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• Latency

An object-based system quickly leads to a situation where an application needs
to access multiple objects to perform its task. Special care should be taken that
the latency for accessing objects does not become a bottleneck.

For example, compare the Internet news protocol NNTP with an object-based
solution. Using NNTP, only one connection is established to access many news
groups and to transfer many new articles. Using separate objects for different
news groups, and possibly for different new articles requires more connections
and introduces more overhead.

7.2 Future Work

More research is needed in many areas of the Globe architecture. Some of those areas
are listed below.

Local Objects Globe shares its local object model with Paramecium [van Doorn
et al., 1995]. It would be interesting to see whether a Globe program can run directly
on top of a Paramecium kernel.

Replication More research is needed to support partitioned state and the composi-
tion of distributed shared objects [Bakker et al., 1999]. Support for partitioned state
in a distributed shared object allows different parts of the state to be replicated in dif-
ferent places. It should be possible to invoke methods that operate on one or more
partitions of the state. The main reason for partitioning is efficiency: less state has to
be sent to new replicas, and fewer replicas have to receive updates to the state. Another
reason for partitioning is security: different parts of the state may have different secu-
rity requirements. The main problem is the implementation of methods that operate
on more than one partition of the state.

Composition of distributed shared objects is the opposite of partitioning: indepen-
dent distributed shared objects are treated as one object. Efficiency is also one of the
reasons for the composition of distributed shared objects. A distributed shared ob-
ject is a rather heavy-weight construction and the composition of multiple distributed
shared objects allows multiple objects to share the cost. Object management may be
another reason. For example, it can be desirable to have a single replication strategy
for a collection of objects.

Interoperability is another area where more research is needed, both in the area of
local interfaces and the area of communication between different parts of a distributed
shared object. For example, standards may be required for marshaling the state of an
object or the encoding of method invocations.
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Techniques that hide the latency of binding and of method invocations have to be
studied. For example, currently binding to a distributed shared object and invoking
a method on the object requires operations on directory objects, the location service,
setting up a connection to the distributed shared object and sending either a request
for a method invocation or a request for the state of the object. In theory, all of this
can be reduced to sending a request to the name service to invoke a particular method
on a named object. More research is needed to determine whether this is feasible and
whether the gains are high enough to warrant the increased complexity of the system.

Persistence Standard encodings may be necessary for the persistent state of a replica
to ensure that future versions of the implementation of a distributed shared object are
capable of operating on old copies of the persistent state of the object.

Fault tolerance, which is mostly ignored in this thesis, is related to both persistence
and replication. A persistent replica that recovers from a crash has to verify that its
persistent copy of the state of the object is not obsolete compared to the state of other
replicas. Fault tolerance in replication protocols requires dealing with crashed nodes
and network partitions.

Security More research is needed in the area of security, both within a single dis-
tributed shared object and for the system as a whole. Especially the location service
has interesting security requirements. The security implications of the garbage col-
lection algorithm require more research (it may be possible to use a denial of service
attack on the location service to delete distributed shared objects that belong to another
user).

Resource Control, Allocation, and Tracking Factories and object repositories cre-
ate and manage distributed shared objects and persistent replicas. The garbage collec-
tion algorithm deletes unreachable objects. More research is needed to determine how
users and applications find the appropriate factories and object repositories (brokers
or factory finders). Another issue is how users can find out about objects they sponsor
and how much resources are used by those objects.

One approach is to introduce a domain structure. Domains encapsulate hierar-
chical collections of resources. Domains contain resource managers which allocate
resources to distributed shared objects.

We can introduce a yellow pages services to find resource managers. Queries are
sent to the yellow pages service which consist of a resource category, some constraints
and some selection criteria. Resource categories include factories for specific objects,
services like the location service, or hardware like printers, or guaranteed communica-
tion bandwidth. A constraint might be that a printer has to be able to accept PostScript
as input.
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This yellow pages service can use a similar structure as is used for the distributed
search tree in the location service: the local domain should be queried first, followed
by larger domains, etc.
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Appendix A

Interface grammar

The syntax of the interface and object definition language is an extension of the C
declaration syntax. In general, lexical elements (tokens) are the same as in C. The
main classes of lexical elements are: identifiers, numbers, strings between double
quotes ("), and the ellipsis (...). The following standard C keywords are used: char,
const, double, extern, int, long, short, struct, typedef, union, unsigned, and void. New
keywords that were added are: callback, composition, interface, new, object, override,
ref, and tmpref.

One special construction is a line literal. A line literal consists of optional white-
space, the at character (@), some text, and a terminating newline character. The text
after the at character is copied directly to the output file without further interpretation.

The grammar consists of C declaration syntax with some additions for interface,
object, and composite-object definitions.

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
declaration
compobj-def

Line-literal

declaration:
basetype declarator-listopt ’;’

declarator-list:
declarator
declarator ’,’ declarator-list
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declarator:
Identifier
ptr-decl declarator

’(’ declarator ’)’
declarator ’(’ argument-list ’)’

declarator ’[’ expression ’]’

ptr-decl:
’*’ ptr-qualifier-listopt

ptr-qualifier-list:
ptr-qualifier

ptr-qualifier ptr-qualifier-list

ptr-qualifier:
typespec

argument-list:
argument

argument ’,’ argument-list

argument:
basetype abstract-declaratoropt

basetype abstract-declaratoropt ’=’ expression

Ellipsis

abstract-declarator:
ptr-decl abstract-declaratoropt

abstract-declarator ’[’ expressionopt ’]’

abstract-declarator ’(’ argument-list ’)’

Identifier
’(’ abstract-declarator ’)’

expression:
Number

basetype:
typespec basetypeopt

storage-class basetypeopt

type basetypeopt
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typespec:
const
ref
tmpref

storage-class:
extern
typedef

type:
void
longopt double

int-type
typedef-type
struct-type
union-type
interface-type
object-type

int-type:
int-sign int-sizeopt

int-size

int-sign:
unsigned

int-size:
char
int
short intopt

long longopt intopt

struct-type:
struct Identifier struct-defopt

struct-def

struct-def:
’{’ declaration-list ’}’

union-type:
union Identifier union-defopt

union-def
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union-def:
’{’ declaration-list ’}’

typedef-type:
Identifier

interface-type:
interface Identifier interface-defopt

interface-def:
’{’ method-list ’}’ ’=’ interface-id

interface-id:
String
Number

method-list:
basetype declarator ’;’ method-listopt

object-type:
object Identifier object-defopt

object-def:
’{’ interface-list ’}’

interface-list:
callbackopt interface Identifier ’;’ interface-listopt

compobj-def:
composition Identifier ’’ comp-el-list ’’ ’;’

comp-el-list:
comp-el comp-el-listopt

com-el:
interface-impl
sub-object
override

interface-impl:
interface Identifier dot-methodopt inf-initopt ’;’
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dot-method:
’.’ Identifier

inf-init:
’=’ Identifier ’.’ Identifier dot-methodopt

sub-object:
object Identifier ’=’ new String ’;’

override:
override Identifier ’/’ String ’=’ Identifier ’;’
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Appendix B

Interface Definitions

This appendix contains the list of interfaces used in the prototype of Globe. The
interfaces are shown in an abstract form as is shown in Figure B.1. Each interface
starts with the name of the interface and its interface identifier. The interface identifier
is a 256-bit unique identifier, which is shown as a string of 64 hexadecimal digits. For
layout reasons, the string is split into two strings, implicitly assuming C-style string
concatenation. A sequence of method descriptions follows the interface identifiers.
Each method description includes the name of the method, a description of the purpose
of the method, a list of parameters, and the return value. Parameters can be input
parameters (passed by value) or output parameters (passed by reference). In the actual
interface definitions, output parameters are declared as a pointer to a location.

interface inf

id ”00000000000000000000000000000000”

”00000000000000000000000000000000”

method m1 Method 1
in p1 Parameter 1
returns v1
method m2 Method 2
in p2 Parameter 2
out p3 Parameter 3
returns v2

Figure B.1. Abstract interface description
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B.1 Local Objects

The stdObj and objMgt interfaces are defined in <p/inf/stdobj.inf>. The getInfList method
in the objMgt returns the list of all interface identifiers supported by an object, and
for each interface identifier an ASCII name for that interface. The stdObj interface is
described in Section 5.3. The implementation of the objMgt interface is generated by
the object generator (see Section 5.11.1).

interface stdObj

id 3

method init Initialize the object
in ctx Object’s name-space context
out err Reason for failure
returns Success (0) or failure (–1)
method cleanup Cleanup before destruction
in how What kind of cleanup: full (0) or partial (1)
returns Nothing
method getinf Return a pointer to an interface
in infid Identifier of the desired interface
out err Reason for failure
returns Pointer to the interface
method relinf Release an interface
in infp Pointer to interface
returns Pointer to object’s class object if the object is to be

deleted

struct infName

infName Pointer to interface name (ASCII string)
infId Interface identifier

interface objMgt

id ”39690000bb45006935093566000ebb46”

”000000000000000000000000c01fe7ae”

method getInfList Return a list of interfaces supported by the object
returns List of infName structures
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The class interface is defined in <p/inf/class.inf>. This interface is provided by all class
objects. The create method creates a new instance and returns either a pointer to the
newly created object’s standard object interface or null in case of an error. The destroy

method destroys an instance of a class. This method is only invoked by the p_inffree

function. The class interface is described in Section 5.3.

interface class

id ”3969000084e7444232a80eba000b84e8”

”000000000000000000000000c01fe7ae”

method create Create a new object
out err Reason for failure
returns Pointer to the standard object interface of the new ob-

ject
method destroy Destroy an object
in obj Pointer to standard object interface of the object to be

destroyed
returns nothing

B.2 Distributed Objects

The distrObj interface is defined in <globe/inf/distr.inf>. The init method connects a local
object to an existing distributed shared object. This method is invoked during binding.
The gethandle returns the distributed shared object’s object handle. This interface is
described in Section 5.4.

interface distrObj

id ”396900009fe3139832a4246900099fe4”

”000000000000000000000000c01fe7ae”

method init Connect to the rest of a distributed object
in name Pathname of the distributed object
in handle Object handle
in addrs Contact addresses
out err Reason for failure
returns Success (0) or failure (–1)
method gethandle Return the object’s object handle
out err Reason for failure
returns Object handle or NULL
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The distrCtrl interface is defined in <globe/inf/distrCtrl.inf>. This interface is used by
factories and object repositories to create new distributed shared objects and to create
additional replicas of an existing distributed shared object. The newLink method in-
forms the garbage collection part of a distributed shared object about a new reference
to the object. This interface is also described in Section 5.4.

interface distrCtrl

id ”396900003bd32aa73331350d00033bd4”

”000000000000000000000000c01fe7ae”

method create Initialize local object as a new distributed object
out err Reason for failure
returns Set of contact addresses
method setHandle Tell distributed object about its object handle
in handle Object handle
out err Reason for failure
returns Success (0) or failure (–1)
method newLink Tell distributed object about a new reference from a

directory object
in parentDir Object handle of parent directory object
out err Reason for failure
returns Success (0) or failure (–1)
method replicate Create a new replicate in the current address space
out err Reason for failure
returns Success (0) or failure (–1)

The factory interface is defined in <globe/inf/factory.inf>. This interface is provided by
factories and object repositories to allow the creation of new distributed shared objects
and replicas. This interface is described in Section 5.8.4.
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interface factory

id ”39690000cc0b1785330899620009cc0c”

”000000000000000000000000c01fe7ae”

method start Start the factory
in classname Class of objects to produce
out err Reason for failure
returns Success (0) or failure (–1)
method create Create an object, and register with the name service
in name Name in name service
out err Reason for failure
returns Success (0) or failure (–1)
method createRep Create a local replica of an existing object
in name Name of object
out err Reason for failure
returns Success (0) or failure (–1)
method deleteRep Delete a local replica of an object
in name Name of object
out err Reason for failure
returns Success (0) or failure (–1)
method startObj Activate a persistent replica
in handle Object handle of object to activate
out err Reason for failure
returns Volatile contact address for the object
method gc Start a garbage collection for all object in the reposi-

tory
out err Reason for failure
returns Success (0) or failure (–1)

The persist and persistCB interfaces are defined in <globe/inf/persist.inf>. The persistCB

is a callback interface for the persist interface to provide a persistent replica with an
output stream interface. These interfaces are described in Section 5.6.
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interface persist

id ”396900009c4607fd332061df00089c47”

”000000000000000000000000c01fe7ae”

method create Create a persistent contact address
in serverHandle Object handle of object repository
out err Reason for failure
returns List of contact addresses or NULL

method setCB Set persistence callback interface
in pcbi Callback interface to save state
in ref Callback reference to passed when calling callback

interface
out err Reason for failure
returns Success (0) or failure (–1)
method unmarshal Recreate a previous state from a stream of data
in state Input stream interface to marshaled state
out err Reason for failure
returns Success (0) or failure (–1)
method restart Restart the replica (after a shutdown or crash)
out err Reason for failure
returns List of (nonpersistent) contact addresses or NULL

interface persistCB

id ”39690000cf6007ff3320621d0002cf61”

”000000000000000000000000c01fe7ae”

method newstate Create an output stream to save the state
in ref Reference (the one passed in the setCB call)
out err Reason for failure
returns Output stream interface or NULL

The persist2 and persist2a interfaces are defined in <globe/inf/persist2.inf>. These inter-
faces are an alternative to the persist and persistCB interfaces. The main difference is
the persist2 interface does not deal with persistent state directly (only persistent con-
tact addresses) and assumes the presence of an object with the state interface to save
to state of the replica. These two interfaces are also described in Section 5.6.
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interface persist2

id ”3969000016f9589f33662f67000416fa”

”000000000000000000000000c01fe7ae”

method shutdown Stop accepting new connections and save state
out err Reason for failure
returns Success (0) or failure (–1)
method create Create a persistent contact address based on the ob-

ject repository’s object handle
in handle Object handle
out err Reason for failure
returns List of persistent contact addresses or NULL

method restart Restart after a shutdown
out err Reason for failure
returns List of transient contact addresses or NULL

interface persist2a

id ”39690000ed9748f83365f6a80003ed98”

”000000000000000000000000c01fe7ae”

method idle Report that the object is idle
out err Reason for failure
returns Success (0) or failure (–1)

B.3 Replication

The replication interface is defined in <globe/inf/replication.inf>. This interface defines
the following constants and four methods. A detailed description of this interface can
be found in Section 5.5.2.

States
RS START 0x101 Start state
RS SEND 0x102 Send state
RS INVOKE 0x103 Invoke state
RS RETURN 0x104 Return state
Operation types
RO READ 1 Read operation
RO MODIFY 2 Modify operation
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interface replication

id ”396900006970178935b5f9b300056971”

”000000000000000000000000c01fe7ae”

method init Provide the replication object with the control call-
back interface

in ci Pointer to control interface
returns nothing
method start Start the execution of a method invocation
in o Type of operation
returns Next state
method invoked The method has been invoked on the semantics object
in o Type of operation
in blocked True if the method invocation blocked
returns Next state
method send Send marshaled request and arguments
in o Type of operation
in req Request packet
out sp Next state
returns Reply packet or NULL

The control interface is defined in <globe/inf/control.inf>. This interface is a call-
back interface for the replication interface. The handle_request method is called by
the replication object to unmarshal a method invocation and to invoke the method on
the semantics object. The getState and setState methods, respectively, marshal and
unmarshal the state of the semantics object. The control object is described in Sec-
tion 5.5.1.

interface control

id ”3969000010f61fe935ab4bee000a10f7”

”000000000000000000000000c01fe7ae”

method handle request Execute an operation that arrive over the network
in req Packet with marshaled request and arguments
returns Packet with results or NULL

method getState Return the marshaled state of the semantics object
out err Reason for failure
returns Packet with marshaled state
method setState Download state into the semantics object
in data Packet with marshaled state
out err Reason for failure
returns Success (0) or failure (–1)
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B.4 Semantics Objects

The file interface is defined in <globe/inf/file.inf>. This is a simple interface to store
some amount of raw data in a distributed shared object. The file interface is described
in Section 5.9.

interface file

id ”3969000054ea16b43291f3b2000354eb”

”000000000000000000000000c01fe7ae”

method read Read data from a file object
in offset Offset in file data
in maxsize Maximum amount of data to read
out buf Buffer filled with data
out err Reason for failure
returns Number of bytes read or failure (–1)
method write Write data in a file object
in offset Offset in file to start writing
in buf Buffer with data to write
in size Amount of data to write
out err Reason for failure
returns Success (0) or failure (–1)

The mutex interface is defined in <p/inf/mutex.inf>. This interface can be used to im-
plement a simple lock object. The mutex interface is used in Section 5.5.3 to describe
an example semantics object.

interface mutex

id ”39690000e3ce12f33291dae0000be3cf”

”000000000000000000000000c01fe7ae”

method lock Locks the object
returns Nothing
method unlock Unlocks the object
returns Nothing

The wwwAttr and wwwSO interfaces are defined in <globe/inf/www.inf>. These inter-
faces store, respectively, the attributes of a WWW document and any small related
WWW documents such as inline images. These interfaces are described in Sec-
tion 5.9.
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interface wwwAttr

id ”396900005a0d002935126f6a00055a0e”

”000000000000000000000000c01fe7ae”

method add Add an attribute
in attr Name of the attribute
in value Attribute’s value (string)
out err Reason for failure
returns Success (0) or failure (–1)
method update Update an attribute
in attr Name of the attribute
in value Attribute’s value (string)
out err Reason for failure
returns Success (0) or failure (–1)
method del Delete an attribute
in attr Name of the attribute
out err Reason for failure
returns Success (0) or failure (–1)
method lookup Look up an attribute
in attr Name of the attribute
out err Reason for failure
returns Value of attribute or NULL

method list List attributes
in detail List just attribute names(0) or attributes and values(1)
out err Reason for failure
returns List of strings or NULL
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interface wwwSO

id ”396900001e706333351141ad00041e71”

”000000000000000000000000c01fe7ae”

method add Add a subobject to a WWW object
in name Name of the subobject
in value Subobject’s value (raw data)
in size Size of the data
out err Reason for failure
returns Success (0) or failure (–1)
method update Update a subobject
in name Name of the subobject
in value Subobject’s value (raw data)
in size Size of the data
out err Reason for failure
returns Success (0) or failure (–1)
method del Delete a subobject
in name Name of the subobject
in size Size of the data
out err Reason for failure
returns Success (0) or failure (–1)
method lookup Look up a subobject
in name Name of the subobject
out size Size of the data
out err Reason for failure
returns Buffer or NULL

method list List names of subobjects
out err Reason for failure
returns List of names or NULL

B.5 Local Name Space

The ctx interface is defined in <p/inf/ctx.inf>. This is the interface to the local name
space. However, this interface is hidden by a library. See Section 5.10.1 for a descrip-
tion of this interface.
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interface ctx

id ”39690000327a25c135167ea1000e327b”

”000000000000000000000000c01fe7ae”

method bind Bind to an object starting in a specific context
in ctx Starting context
in name Name of object to bind to
out err Reason for failure
returns Standard object interface of the object
method register Register an object
in ctx Starting context
in name Name of context (nil for starting context)
in obj Standard object interface of object to register
out err Reason for failure
returns Success (0) or failure (–1)
method unregister Unregister an object
in obj Standard object interface of object to unregister
returns Success (0) or failure (–1)
method override Install an override
in ctx Starting context
in name Name of override
in target Target of override
out err Reason for failure
returns Success (0) or failure (–1)
method remove Remove a context
in ctx Starting context
in name Name of context to remove
out err Reason for failure
returns Success (0) or failure (–1)
method context Look up (or create) a context
in ctx Starting context
in name Name of context to look up / create
out err Reason for failure
returns Context identifier
method lookup Look up a context
in ctx Starting context
in name Name of context to look up
out err Reason for failure
returns Context identifier
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The bind interface is defined in <p/inf/bind.inf>. This interface is provided by objects
that implement a name-space delegation. The p_bind library function invokes the bind

method in the bind interface with the remainder of the pathname. The method returns
either a pointer to the object’s standard object interface or null in case of an error. This
interface is also described in Section 5.10.1.

interface bind

id ”39690000518f117a3291d44600005190”

”000000000000000000000000c01fe7ae”

method bind Bind to an object
in name Object name
out err Reason for failure
returns Pointer object’s standard object interface

B.6 Naming

The naming interface is defined in <globe/inf/naming.inf>. This interface provides ac-
cess to directory objects. Directory objects are described in Section 5.8.3.

interface naming

id ”396900003d1016f13291f48a00003d11”

”000000000000000000000000c01fe7ae”

method list List a directory
out err Reason for failure
returns List of directory entries or NULL

method lookup Look up a path relative to a directory
in path Path to look up
out err Reason for failure
out rempath Unresolved part of the path
returns Object handle or NULL

method add Add an entry to a directory
in entry Directory entry
in handle Object handle
out err Reason for failure
returns Success (0) or failure (–1)
method delete Delete a directory entry
in entry Directory entry
out err Reason for failure
returns Success (0) or failure (–1)
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B.7 Location Service

The following interfaces are related to the location service. These interfaces are de-
scribed in Section 5.8.1. The locRes interface is defined in <globe/inf/locRes.inf>. This
interface provides read access to the location service. The locServ, locAdm and locMgr

interfaces are defined in <globe/inf/locServ.inf>. The locServ interface allows objects to
be registered with the location service. The locAdm interface provides some admin-
istrative functions, such as the registration of location service address managers and
a method to trigger a garbage collection cycle. The locMgr interface is provided by
address managers and is invoked by the location service to verify to validity of contact
addresses and address managers.

interface locRes

id ”39690000f0d6536334ec3dc30005f0d7”

”000000000000000000000000c01fe7ae”

method lookup Look up the set of contact addresses for an object
handle

in handle Object handle to look up
out err Reason for failure
returns List of contact addresses or NULL
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interface locServ

id ”39690000a25b643234fdaad40008a25c”

”000000000000000000000000c01fe7ae”

method regObj Register a new object
in objId Object identifier
in addrs List of contact addresses
in manager Object handle of address manager
out addrId Address identifier
out err Reason for failure
returns Object handle or NULL

method regAddr Register a new address for an object
in handle Object handle
in addrs List of contact addresses
in manager Object handle of address manager
out err Reason for failure
returns Address identifier or NULL

method update Update a set of contact addresses
in handle Object handle
in addrId Address Identifier
in addrs List of contact addresses
in manager Object handle of address manager
out err Reason for failure
returns Success (0) or failure (–1)
method delAddr Delete a list of contact addresses
in handle Object handle
in addrId Address Identifier
out err Reason for failure
returns Success (0) or failure (–1)
method delObj Delete an object
in handle Object handle
out err Reason for failure
returns Success (0) or failure (–1)
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interface locAdm

id ”396900007f966a4e34fdaddb00087f97”

”000000000000000000000000c01fe7ae”

method regMan Register an address manager
in manMan Object handle of the manager’s manager
in handle Object handle of the manager
out err Reason for failure
returns Success (0) or failure (–1)
method delMan Delete an address manager
in handle Object handle of the manager
out err Reason for failure
returns Success (0) or failure (–1)
method gc Perform a garbage collection cycle
out err Reason for failure
returns Success (0) or failure (–1)

interface locMgr

id ”396900004fb63a8934f29cca00034fb7”

”000000000000000000000000c01fe7ae”

method validAddress Verify a list of contact addresses
in handle Object handle
in addrId Address identifier
in addrs List of contact addresses
out err Reason for failure
returns Valid address list (0), invalid address list (1), or fail-

ure (–1)
method validManager Verify an address manager
in handle Manager’s object handle
in tries Number of attempts to bind to the manager
in secs Amount of time passed (in seconds) since the first

attempt
out err Reason for failure
returns Valid manager (0), invalid manager (1), or failure (–

1)
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B.8 Garbage Collection

The gc interface is defined in <globe/inf/gc.inf>. This interface is described in Sec-
tion 5.7.

interface gc

id ”39690000efe52ff035053ba60002efe6”

”000000000000000000000000c01fe7ae”

method addRef Tell the object about a new reference in the name
space

in handle Object handle of the directory object that contains the
reference

out err Reason for failure
returns Success (0) or failure (–1)
method checkRef A reference has been deleted from a directory
in handle Object handle of the directory object that contained

the reference
out err Reason for failure
returns Success (0) or failure (–1)
method reachable Ask whether the object is reachable from the root set
in interval Desired consistency interval in seconds
out err Reason for failure
returns Success (0) or failure (–1)
method getName Return one of the object’s names in the name space
out err Reason for failure
returns Pathname or NULL

method dirEntry Return the directory entry that refers to an object
in handle Object handle to look up
out err Reason for failure
returns Directory entry or NULL

method getPath Return a path to the root or a (partial) ancestor graph
out path List of object identifiers on the path to a root object
out graph List of edges that represent parent-child relationships
out err Reason for failure
returns Success (0) or failure (–1)
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interface gc (continued)
method delRef Delete a stored reference to a parent directory
in handle Object handle to delete
out err Reason for failure
returns Success (0) or failure (–1)
method listRefs Return a list of references to parent directories
out err Reason for failure
returns List of object handles or NULL

B.9 Files, Streams and Local Persistent State

The pickle interface is defined in <p/inf/pickle.inf>. This interface is a standard interface
to marshal and unmarshal the state of an object. This interface is implemented by
semantics objects (see Section 5.5.3).

interface pickle

id ”39690000f7b523b832de4b36000bf7b6”

”000000000000000000000000c01fe7ae”

method marshal Write the marshaled state of the object to an output
stream

in ostream Output stream interface
out err Reason for failure
returns Success (0) or failure (–1)
method unmarshal Read marshaled state from an input stream
in istream Input stream interface
out err Reason for failure
returns Success (0) or failure (–1)

The inputStream, outputStream, and openStream interfaces are defined in the header
file <p/inf/stream.inf>. Stream interfaces are described in Section 5.10.4.
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interface inputStream

id ”3969000075c5130e3291db29000c75c6”

”000000000000000000000000c01fe7ae”

method readbuf Return a buffer with data read from a stream
out size Amount of data read
out err Reason for failure
returns Pointer to allocated block of data or NULL

method readall Read data from a stream
in buf Pointer to user supplied buffer
in size Size of the buffer
out err Reason for failure
returns Amount of data read or failure (–1)

interface outputStream

id ”3969000009e7122c331ec5f2000f09e8”

”000000000000000000000000c01fe7ae”

method write Write data to a stream
in buf Pointer to buffer with data
in size Amount of data to write
out err Reason for failure
returns Success (0) or failure (–1)

interface openStream

id ”396900002e4213103291db3800062e43”

”000000000000000000000000c01fe7ae”

method open Open file or device
in name Name of file to open
in mode C stdio style mode string
out err Reason for failure
returns Success (0) or failure (–1)

The state and openState interfaces are defined in <p/inf/state.inf>. The state interface
is an extended version of the file interface. The mark and sync methods allow the user
of this interface to control the consistency of the persistent state. A state interface
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provides access to a persistent “file”. The openState interface is used to attach an
object that implements the state interface to one particular file (or create a new one),
after that, the state interface can be used to access the state. These interfaces are
described in Section 5.10.4.

interface state

id ”39690000cec648ed3365f5130009cec7

”000000000000000000000000c01fe7ae”

method write Write data
in offset Offset in state
in data Pointer to block of data
in size Amount of data to write
out err Reason for failure
returns Success (0) or failure (–1)
method read Read data
in offset Offset in state
in reqsize Requested amount of data
out actsize Returned amount of data
out err Reason for failure
returns Pointer to allocated buffer with data
method truncate Truncate a state object to a specified size
in length New size
out err Reason for failure
returns Success (0) or failure (–1)
method mark Mark the current state as consistent
out err Reason for failure
returns Success (0) or failure (–1)
method sync Make the current state persistent
out err Reason for failure
returns Success (0) or failure (–1)
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interface openState

id ”39690000f2f04a76336604c00008f2f1”

”000000000000000000000000c01fe7ae”

method create Create new persistent state
in name Name of persistent state
out err Reason for failure
returns Success (0) or failure (–1)
method open Open existing persistent state
in name Name of persistent state
out err Reason for failure
returns Success (0) or failure (–1)

B.10 Libraries and System Objects

The following interfaces are used internally by the Globe libraries. The libglobe inter-
face is defined in <globe/inf/libglobe.inf>. The libprts interface is defined in the header
file <p/inf/libprts.inf>. These interfaces are described in Section 5.10.

interface libglobe

id ”396900001f5d189f35222cfb00051f5e”

”000000000000000000000000c01fe7ae”

method bind handle Bind to an object using an object handle
in name Name of the object
in handle Object handle
in ctx Current context
out err Reason for failure
returns Pointer to standard object interface or NULL

method name lookup Look up a name in the global name space
in name Name to look up
out err Reason for failure
returns Object handle or NULL

method location lookup Look up contact addresses in the location service
in handle Object handle to look up
out err Reason for failure
returns List of contact addresses or NULL
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interface libprts

id ”39690000b3322f0d32949ea60002b333”

”000000000000000000000000c01fe7ae”

method getuniq Generate a unique identifier
out id Unique identifier
out err Reason for failure
returns Success (0) or failure (–1)
method globallock enter Enter critical region protected by the global lock
returns Nothing
method globallock leave Leave critical region protected by the global lock
returns Nothing
method lock alloc Allocate a lock
out lock Lock identifier
in label ASCII description of lock purpose/category
returns Success (0) or failure (–1)
method lock free Deallocate lock
inout lock Lock identifier, set to 0 when deleted
returns Nothing
method lock enter Enter critical region protected by lock
in lock Lock identifier
returns Nothing
method lock leave Leave critical region protected by lock
in lock Lock identifier
returns Nothing
method lock wait Wait for signal
in lock Lock identifier
returns Nothing
method lock signal Signal a blocked thread
in lock Lock identifier
returns Nothing
method lock broadcast Signal all blocked threads
in lock Lock identifier
returns Nothing



B.10. LIBRARIES AND SYSTEM OBJECTS 331

Six communication interfaces are defined in <p/inf/comm.inf>. The comm_p2p inter-
face is used to establish point-to-point communication channels. The commConnCB

interface is a callback interface which should be provided by the user of the comm_p2p

interface to accept incoming connection requests. The commAddrs interface converts
between ASCII strings and the 64-bit address identifiers which are used in other com-
munication interfaces. The comm interface is the main interface to send data. The
commRdCB is the callback interface associated with the comm interface to receive
data. The last interface, commGroup, is an experimental interface for joining and leav-
ing multicast groups. These interfaces are described in Section 5.10.5.

interface comm p2p

id ”396900009b1d0ebc32f6080400089b1e”

”000000000000000000000000c01fe7ae”

method bind Bind to a local address
in addr Address
out err Reason for failure
returns Success (0) or failure (–1)
method listen Start accepting connections
out err Reason for failure
returns Success (0) or failure (–1)
method connect Connect to a remote process
in dst Destination address
out err Reason for failure
returns Success (0) or failure (–1)
method setCallBack Set the listen callback interface
in ci Callback interface
in ref Reference to be passed
in ctx Name-space context for new object
out err Reason for failure
returns Success (0) or failure (–1)
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interface commConnCB

id ”396900003a4b11df3291d61b000f3a4c”

”000000000000000000000000c01fe7ae”

method newConn A new connection has been established
in ref Reference (same as in setCallBack)
in obj Pointer to standard object interface of new communi-

cation object for the connection
in addr Remote address
returns Context identifier for next communication object
method error Report an error
in ref Reference (same as in setCallBack)
out err Reason for failure
returns Nothing

interface commAddrs

id ”39690000ef0211e33291d6600003ef03”

”000000000000000000000000c01fe7ae”

method lookup Look up (marshal) an address identifier
in addr Address to look up
out err Reason for failure
returns Pointer to ASCII strings stored in an allocated buffer
method install Install an address into the address table
in str ASCII string representing address
out err Reason for failure
returns Address identifier
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interface comm

id ”39690000e5fa21aa32b004330006e5fb”

”000000000000000000000000c01fe7ae”

method send Send a message
in dst Destination address
in data Packet to be send
out err Reason for failure
returns Success (0) or failure (–1)
method reply Reply to a request
in dst Destination address
in ref Reference (passed in req arrived)
in data Packet to be replied
returns nothing
method sendrec Send a request and return the reply
in dst Destination address
in data Request packet
out err Reason for failure
returns Reply packet
method setCallBack Set receive callback interface
in rdi Callback interface
in ref Reference to be passed
out err Reason for failure
returns Success (0) or failure (–1)



334 APPENDIX B. INTERFACE DEFINITIONS

interface commRdCB

id ”396900005df211e13291d65400035df3”

”000000000000000000000000c01fe7ae”

method msg arrived A message has arrived
in ref Reference (same as in setCallBack)
in src Source address
in data Packet
returns nothing
method req arrived A request message has arrived
in ref Reference (same as in setCallBack)
in src Source address
in data Packet
in reqref Request reference
returns Reply packet or nil to indicate that reply will be called

later
method error Receive error
in ref Reference (same as in setCallBack)
out err Reason for failure
returns Nothing

interface commGroup

id ”396900009f9111dd3291d60e00049f92”

”000000000000000000000000c01fe7ae”

method create Create a multicast communication group
out err Reason for failure
returns Address of the group
method join Join a multicast group
in dst Address of the group
out err Reason for failure
returns Success (0) or failure (–1)
method leave Leave a group
out err Reason for failure
returns Success (0) or failure (–1)

The memory interface is defined in <p/inf/memory.inf>. This interface is implemented
by the default memory allocator object /builtin/memory. Memory allocation is de-
scribed in Section 5.10.2.
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interface memory

id ”396900002f8712ef3291dac700072f88”

”000000000000000000000000c01fe7ae”

method alloc Allocate a segment of memory
in size Amount of memory to allocate
out err Reason for failure
returns Pointer to the allocated block of memory

The thread and threadCB interfaces are defined in <p/inf/thread.inf>. These interfaces
are described in Section 5.10.3.

interface thread

id ”396900000e0e13233291db54000d0e0f”

”000000000000000000000000c01fe7ae”

method start Start execution
in cbi Pointer to threadCB interface
in ref Callback reference
out err Reason for failure
returns Success (0) or failure (–1)
method join Wait for a thread to finish
out err Reason for failure
returns Success (0) or failure (–1)
method detach Detach the thread from the thread object
returns nothing
method cancel Cancel the thread
returns nothing

interface threadCB

id ”39690000b34619a63308a22b000cb347”

”000000000000000000000000c01fe7ae”

method start Procedure to execute in a thread
in ref Callback reference
returns nothing

The debug interface is defined in <p/inf/debug.inf>. This interface allows objects to
bind to the debug object (/builtin/debug) to generate debug output.
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interface debug

id ”39690000a95e12e73291da8b0000a95f”

”000000000000000000000000c01fe7ae”

method dvprint Print a debug message
out err Reason for failure
in level Debug level of message
in fmt Printf style format string
in va Argument list
returns Success (0) or failure (–1)



Samenvatting

De architectuur van een wereldwijd gedistribueerd systeem

Introductie Dit proefschrift beschrijft Globe, een nieuwe software-architectuur
voor het uitwisselen van informatie tussen processen die draaien op door een wereld-
wijd netwerk verbonden computers. Globe is afgeleid van de term “GLobal Object
Based Environment”, een alomtegenwoordige, object gebaseerde omgeving. Het doel
van het onderzoek beschreven in dit proefschrift is de ontwikkeling van een architec-
tuur die flexibiliteit koppelt aan een uniform programmeermodel met een hoog niveau
van abstractie. Bijkomende eisen zijn schaalbaarheid, veiligheid, lokatie- en replica-
tietransparantie, autonoom systeembeheer en uitwisselbaarheid.

Het Internet, op dit moment het grootste wereldwijde netwerk, is gebaseerd op
het versturen van berichten tussen computers. De meeste communicatieprotocollen
op het Internet gebruiken òf UDP (een onbetrouwbaar, niet-verbindingsgeörienteerd
protocol) òf ze gebruiken TCP, dat zowel betrouwbaar is als verbindingsgeörienteerd.
Deze aanpak is min of meer uniform, niet flexibel, en biedt een betrekkelijk laag
niveau van abstractie.

Onze architectuur is, net als vele andere, gebaseerd op het gebruik van objec-
ten. Het aantrekkelijke van objecten is dat zij hun implementatie geheel omvatten,
en daarmee hun gebruikers toegang bieden op een hoog niveau van abstractie. Een
object bevat een hoeveelheid gegevens, en biedt aan zijn gebruikers de mogelijkheid
opdrachten te geven (ook wel het aanroepen van methoden genoemd) die de gegevens
in het object veranderen of er over rapporteren. Twee processen kunnen communice-
ren door een object gezamenlijk te gebruiken. Nadat het ene proces, door de aanroep
van een methode, de inhoud van het object veranderd heeft, wordt deze verandering
zichtbaar voor het andere proces. Processen zien niets anders dan objecten en aanroe-
pen van methoden; de details van het netwerk dat de computers verbindt is verborgen
in de implementatie van de objecten.

De meeste object gebaseerde systemen, inclusief CORBA, bieden een uniform,
hoog-niveau programmeermodel. De applicatieprogrammeur heeft echter slechts een
beperkte invloed op de implementatie van de gebruikte objecten. De programmeur is
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verantwoordelijk voor de implementatie van de functionele aspecten van een object
(wat het object doet, het verschil tussen een e-mail object en een documentobject)
maar heeft geen, of slechts beperkte invloed op de niet-functionele aspecten, zoals re-
plicatie en beveiliging. Met andere woorden, de meeste systemen zijn niet erg flexibel
met betrekking tot implementaties van objecten.

Distributed Shared Objects De Globe architectuur gebruikt de term distributed
shared objects (gezamenlijk gebruikte, gedistribueerde objecten) voor objecten die
gebruikt worden om informatie uit te wisselen tussen processen die draaien op ver-
schillende computers. Een ander soort objecten dat alleen binnen een proces bestaat,
wordt lokaal object genoemd. Een distributed shared object wordt zo genoemd omdat
het gezamenlijk gebruikt wordt door meerdere processen, en de implementatie fysiek
gespreid kan worden over alle deelnemende processen.

Een techniek genaamd dynamic loading (dynamisch inladen) wordt gebruikt om
de Globe architectuur flexibeler te maken dan de meeste andere architecturen. Wan-
neer een proces een gedistribueerd object probeert te gebruiken, wordt een deel van de
implementatie van het object in het proces geladen. Dit betekent dat een programma,
nadat het gecompileerd is, geen implementaties bevat van de gedistribueerde objecten
die gebruikt gaan worden. Verschillende gedistribueerde objecten kunnen verschil-
lende implementaties gebruiken, en de benodigde implementaties worden tijdens de
uitvoering van het programma (run-time) geladen.

Onderdeel van de Globe architectuur is een architectuur voor lokale objecten. Het
gedeelte van een gedistribueerd object dat in een proces geladen wordt, is de im-
plementatie van een lokaal object. Feitelijk is de complete implementatie van een
gedistribueerd object niets anders dan een verzameling lokale objecten die in verschil-
lende processen (eigenlijk address spaces) geladen zijn. Vanuit het oogpunt van een
programmeur wordt een gedistribueerd object altijd vertegenwoordigd door een lo-
kaal object. Een lokaal object dat onderdeel is van een gedistribueerd object wordt
representative (vertegenwoordiger) genoemd. Deze representatives communiceren en
werken samen om de methoden van het gedistribueerde object te implementeren en de
inhoud te distribueren. De implementatie van een lokaal object ligt opgeslagen in een
speciaal object, een class object (klasse-object).

Lokale objecten Een lokaal object biedt één of meer binary interfaces. Een in-
terface is een verzameling methoden die de door een object geboden functionaliteit
beschrijft. Het gebruik van binary interfaces maakt het mogelijk om applicaties onaf-
hankelijk van objectimplementaties te compileren.

Objecten bieden, om meerdere redenen, meer dan één interface aan. Eén reden is
dat object-specifieke methoden gescheiden kunnen worden van methoden die gebruikt
worden voor het beheer van objecten. De methoden die de replicatie van de inhoud
van een object regelen kunnen bijvoorbeeld gescheiden worden van de methoden die
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de inhoud van het object lezen en schrijven. Een tweede reden is dat het gebruik van
meer dan één interface de mogelijkheid biedt om verschillende functies te combineren
in één object. Een enkel object kan bijvoorbeeld zowel de file interface als de direc-
tory interface implementeren. Een derde reden is compatibiliteit met eerdere versies;
een object kan een nieuwe versie van een interface implementeren en de oude versie
behouden voor compatibiliteit met oudere applicaties.

Het lokale objectmodel bevat ook composite objects (samengestelde objecten) en
een lokale name space. Een samengesteld object is een lokaal object dat opgebouwd
is uit verscheidene andere lokale objecten. Compositie wordt gebruikt om complexe
lokale objecten te creëren uit primitievere objecten. Een representative is normaal
gesproken een samengesteld object.

De lokale name space is een extra techniek die gebruikt wordt om meer flexibili-
teit te creëren. In plaats van het doorgeven van pointers naar objecten, is het mogelijk
om door middel van een naam aan een object te refereren. Deze flexibiliteit wordt bij-
voorbeeld gebruikt om te verbergen dat, hoewel de meeste klasse-objecten dynamisch
geladen worden, sommige klasse-objecten mee gecompileerd zijn met de applicatie.
Voor klasse-objecten die al aanwezig zijn, levert de name space opzoekfunctie direct
een pointer naar het object; in de andere gevallen wordt het object eerst ingeladen.

Tenslotte bevat het lokale objectmodel systeemobjecten. Deze objecten bieden
een abstractie van de functionaliteit die geboden wordt door het onderliggende bestu-
ringssysteem. Voorbeelden van systeemobjecten zijn communicatie-objecten, thread-
objecten, geheugenbeheerobjecten en file-objecten. Samen bieden deze objecten een
overdraagbare interface naar het besturingssysteem.

Replicatie De implementatie van een gedistribueerd object als een verzameling lo-
kale objecten die communiceren is prettig voor de gebruiker van het gedistribueerde
object, maar vergemakkelijkt niet de taak van de programmeur die het object moet
implementeren. De implementatie van een gedistribueerd object kan vereenvoudigd
worden door gebruik te maken van een samengesteld object dat bestaat uit vier subob-
jecten. Eén subobject, semantics object (semantiekobject) genaamd, bevat de object-
specifieke functionaliteit. Het semantiekobject bepaalt bijvoorbeeld of het gedistribu-
eerde object een file-object is, of een mailboxobject, of een WWW-pagina.

Een tweede subobject, het replicatie-object, verzorgt de replicatie van de inhoud
van het gedistribueerde object, verstuurt aanroepen van methoden naar andere pro-
cessen, enz. Dit object bevat het meest complexe gedeelte van de implementatie van
een gedistribueerd object. Gelukkig kan een verzameling van replicatie-objecten die
verschillende replicatiestrategieën implementeren, opgeslagen worden in een class re-
pository. De programmeur van een gedistribueerd object hoeft slechts een geschikt
replicatie-object uit de class repository te kiezen.

Replicatie-objecten gebruiken communicatie-objecten om te communiceren met
replicatie-objecten in andere processen. Verschillende communicatie-objecten voor
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betrouwbare en onbetrouwbare message passing, voor groepcommunicatie, enz., zijn
ook aanwezig in de class repository.

Het vierde subobject, control object (besturingsobject) genaamd, koppelt het se-
mantiekobject aan het replicatie-object. De uitvoering van een methode van een gedis-
tribueerd object begint in het besturingsobject. Op verzoek van het replicatie-object
voorziet het besturingsobject het replicatie-object van de ingepakte (marshaled) pa-
rameters om doorgestuurd te worden naar andere processen. Het replicatie-object
kan ook bepalen dat het besturingsobject de methode van het semantiekobject moet
aanroepen. Het is bedoeling dat het besturingsobject door een compiler wordt gege-
nereerd.

Persistentie en beveiliging Het replicatie-object biedt ook persistentie. De aanpak
die in Globe gebruikt wordt, is dat individuele replica’s van de inhoud van het gedistri-
bueerde object persistent gemaakt worden. Het replicatie-object bewaart en herlaadt
de inhoud van het semantiekobject. Persistente replica’s worden beheerd door een
object repository. De object repository deactiveert persistente replica’s die enige tijd
ongebruikt zijn. Wanneer de replica op een later moment weer nodig is, wordt het
weer geactiveerd door de object repository. Object repositories bieden ook ondersteu-
ning voor de creatie van nieuwe gedistribueerde objecten.

Voor beveiliging wordt een extra beveiligingssubobject toegevoegd aan de compo-
sitie die een gedistribueerd object implementeert. Het beveiligingssubobject verzorgt
versleuteling, identificatie en toegangscontrole. Speciale gedistribueerde objecten, die
principal objects genoemd worden, vertegenwoordigen gebruikers tijdens identificatie
procedures.

Naming en binding Het creëren van een nieuw lokaal object en het verbinden van
dat object met een gedistribueerd object heet binding. Het binding proces begint nor-
maal gesproken met de naam van een gedistribueerd object in een wereldwijde name
space. De naming service wordt gebruikt om te bepalen waar het gedistribueerd object
zich bevindt, en wat voor implementatie nodig is om het object te benaderen.

Om binding te ondersteunen biedt ieder gedistribueerd object één of meer contact
points (contactpunten), welke gerepresenteerd worden door contact addresses (con-
tactadressen). Een contactadres bestaat uit twee delen. Het eerste deel is een protocol
identifier die specificeert welk protocol (inclusief, in termen van het OSI model, de
presentatie-, sessie-, en applicatielaag) gebruikt moet worden om het gedistribueerde
object te benaderen. De protocol identifier wordt gebruikt om een geschikt klasse-
object te vinden dat het protocol implementeert. Het tweede deel van het contactadres
bevat de eigenlijke netwerkadressen en andere informatie die nodig is om een verbin-
ding met het gedistribueerde object op te zetten.

Een gedistribueerd object kan om twee redenen meer dan één contactadres aanbie-
den. De eerste reden is dat het meerdere protocollen kan gebruiken; bijvoorbeeld voor
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compatibiliteit met eerdere versies, of omdat het meest efficiënte protocol afhangt
van de situatie. Meerdere contactadressen die hetzelfde protocol gebruiken verwij-
zen naar contactpunten op verschillende computers. Het gebruik van contactpunten
op verschillende computers is nodig om gebruik te maken van replicatie, bijvoorbeeld
om de fouttolerantie te verhogen of om de lokaliteit te verbeteren.

Het binding proces bestaat uit vier stappen: een name lookup, een location
lookup, destination selection (bestemmingsselectie) en implementatieselectie. De eer-
ste stap zoekt een naam op in de wereldwijde name service. Deze step levert een object
handle op. De object handle wordt gebruikt om contactadressen op te zoeken in de
location service. De contactadressen worden in de derde step geordend naar de ver-
wachte bruikbaarheid. Tenslotte zoekt de laatste stap een geschikt klasse-object bij de
protocol identifier in het beste contactadres.

De name service is gescheiden van de location service om het beheer van contact-
adressen te vereenvoudigen. In het algemeen wordt de beslissing om een contactadres
toe te voegen of te verwijderen door het gedistribueerde object zelf genomen. Daar-
entegen zijn de gebruikers verantwoordelijk voor de naam van het object in de name
service. Het gebruik van twee diensten, op basis van één object handle, maakt het
mogelijk dat de gebruiker en het object onafhankelijk van elkaar opereren.

De name service biedt een gedistribueerde, hiërarchische name space vergelijk-
baar met DNS. Deze name space wordt gecreëerd met behulp van directory-objecten.
Directory-objecten zijn gedistribueerde objecten die object handles van andere objec-
ten (inclusief andere directory-objecten) opslaan.

Location service De location service gebruikt een object handle om de contacta-
dressen van een gedistribueerd object op te zoeken. Een object handle bestaat uit twee
delen. Het eerste deel is een 256-bits, wereldwijd unieke object identifier. Het tweede
deel wordt door de location service gecreëerd, wanneer het object voor het eerst ge-
registreerd wordt. Dit tweede deel hangt af van de structuur van de location service.
Sommige implementaties van de location service gebruiken alleen de object identifier,
en hebben geen behoefte aan aanvullende informatie. Andere implementaties negeren
de object identifier en gebruiken alleen hun eigen informatie.

De location service kan op eenvoudige wijze geconstrueerd worden op basis van
een gedistribueerde, hiërarchische name space (vergelijkbaar met de name service),
waarbij contactadressen opgeslagen worden in plaats van object handles. In deze
aanpak worden alle contactadressen van één object op één vaste plaats opgeslagen
worden. Er zijn twee belangrijke problemen. Het eerste probleem is dat het op één
plek opslaan van alle contactadressen van een object ongunstig is voor objecten met
meerdere replica’s. Het tweede probleem is dat de contactadressen achterblijven op
de originele locatie wanneer het object verplaatst wordt. Om deze reden noemen we
deze aanpak de home-based approach.
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Een andere aanpak, die distributed search tree (gedistribueerde zoekboom) ge-
noemd wordt, deelt de location service op in stukken (partities), en slaat een object
handle met de bijbehorende contactadressen op een partitie die dicht bij het corre-
sponderende contactpunt ligt. Voor objecten met veel replica’s wordt informatie over
het object opgeslagen in vele partities verspreid over de location service. Wanneer
een object zich verplaatst, wordt de informatie die opgeslagen was in de buurt van het
oude contactpunt verwijderd, en wordt informatie op de nieuwe locatie gecreëerd.

Om informatie over een object te kunnen vinden worden forwarding pointers ge-
creëerd die in de juiste richting wijzen. Voor ieder object dat contactpunten heeft in
een bepaalde regio bevat een regionale knoop forwarding points naar de partities die
de contactadressen van het object bevatten. Super-regio’s bevatten forwarding pointers
naar regionale knopen, enzovoorts. Een speciale rootknoop bevat forwarding pointers
voor ieder gedistribueerd object in het systeem.

Om een contactadres voor een gedistribueerd object op te zoeken, stuurt een pro-
ces eerst een verzoek naar een nabij gelegen partitie. Als die partitie geen gegevens
heeft over het object wordt een regionale knoop geprobeerd. Dit proces herhaalt zich
totdat de rootknoop bereikt is. De rootknoop heeft per definitie informatie over het
object (tenzij het object verwijderd is). Dit mechanisme zoekt over een steeds uitbrei-
dend gebied. Het voordeel van deze manier van zoeken is dat contactadressen van
nabij gelegen contactpunten het eerst gevonden worden. In het algemeen is dit is een
gewenste vorm van lokaliteit.

Het grootste probleem van deze aanpak is de implementatie van de rootknoop.
Het op één plaats opslaan van informatie over ieder gedistribueerd object in het sys-
teem is niet mogelijk. Gelukkig is het partitioneren van de rootknoop genoeg voor
opzoekoperaties. Vanwege de lokaliteit van het opzoekalgoritme bereiken verzoeken
de rootknoop alleen indien het gezochte object geen contactpunten heeft in de buurt
van het proces dat met binding bezig is. Dit betekent dat deze implementatie van de lo-
cation service wat betreft communicatie, geen negatieve invloed op de schaalbaarheid
heeft.

Garbage collection Een groot systeem dat dynamische toewijzing van resources
toestaat, hoort resources waaraan niet gerefereerd wordt automatisch vrij te geven.
In kleine, niet-persistente systemen is het mogelijk het vrijgeven van ongebruikte re-
sources aan de programmeur toe te vertrouwen. In grote, persistente systemen, hopen
kleine fouten zich op en zijn ongebruikte resources moeilijk met de hand te vinden.
Het automatisch vrijgeven van resources wordt garbage collection genoemd.

Een probleem met garbage collection is dat algoritmen die goed werken binnen
één proces, tracing garbage collectors, niet goed werken in grote gedistribueerde sys-
temen. Tracing garbage collectors identificeren eerst alle objecten die bereikbaar zijn.
Daarna worden alle onbereikbare objecten verwijderd. Het probleem is dat het gebruik
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van deze aanpak in een gedistribueerd systeem, vereist dat alle processen samenwer-
ken en synchroniseren. Het vereiste dat alle processen samenwerken is ongewenst om
vele redenen, inclusief het ontstaan van problemen met de beveiliging.

Het garbage-collectionalgoritme in Globe gebruikt het feit dat gedistribueerde ob-
jecten relatief groot (heavyweight) zijn. Dit maakt het mogelijk om van ieder ge-
distribueerd object te verwachten dat het de object handles opslaat van (directory-)
objecten die naar het object terugverwijzen. Object handles die opgeslagen worden
voor garbage collection worden reverse references (terugverwijzigingen) genoemd.

Het garbage collection algoritme van Globe gaat er vanuit dat er een collectie
objecten is, die niet door de garbage collector verwijderd wordt. Deze collectie van
objecten wordt de root set genoemd. Alle objecten die (indirect) bereikbaar zijn vanuit
de root set worden niet verwijderd. Alle overige objecten (die dus onbereikbaar zijn)
moeten verwijderd worden.

In ieder gedistribueerd object voert het garbage-collectionalgoritme twee subalgo-
ritmen parallel uit. Het eerste subalgoritme gebruikt de reverse references om een pad
te vinden naar een object in de root set. Een object mag blijven bestaan als een pad
naar de root gevonden wordt. Helaas is niet zo dat het object verwijderd kan worden
als het pad naar de root niet gevonden wordt.

Het tweede subalgoritme bepaald of een object onbereikbaar is of niet. Dit algo-
ritme is een gedistribueerd graafalgoritme dat termineert als er geen pad naar de root
set bestaat. Door de twee subalgoritmen parallel uit te voeren, termineert het gecom-
bineerde algoritme wanneer òf een pad naar de root gevonden is òf het graafalgoritme
bepaald heeft dat het object onbereikbaar is.

Prototype Een prototype van de Globe architectuur is geı̈mplementeerd om te con-
troleren of all componenten op elkaar passen en of het systeem de gewenste flexi-
biliteit heeft. Schaalbaarheid was geen doel van het prototype. Het is zelfs zo dat
de location service geı̈mplementeerd is als een gecentraliseerde service. Het proto-
type biedt een object gebaseerd hypertekstsysteem, dat benaderd kan worden met een
standaard WWW browser.

Conclusies Dit proefschrift beschrijft een nieuwe architectuur voor wereldwijd ge-
distribueerde systemen, die gebaseerd is op gedistribueerde objecten. De architec-
tuur bevat een location service die locatie- en replicatietransparantie ondersteund.
Een nieuw garbage-collectionalgoritme biedt gedistribueerde detectie van onbereik-
bare objecten. De constructie van een gedistribueerd object wordt vereenvoudigd
door gebruik te maken van communicatie-, replicatie-, besturings-, en semantiekob-
jecten die de implementatie van replicatieprotocollen afsplitsen van de implementatie
van object-specifieke semantiek. De interface tussen het besturings- en het replicatie-
object biedt ruimte voor meerdere replicatie strategieën.
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Summary

Introduction This thesis describes a new software architecture, called Globe, for
information exchange between processes that are running on computers connected
by a wide-area network. Globe stands for GLobal Object Based Environment. The
goal is to create an architecture that combines flexibility with a uniform, high-level
programming model. Additional requirements are scalability, security, location and
replication transparency, autonomous administration, and interoperability.

The Internet, at this moment the largest wide-area network, is based on a message-
passing paradigm. Most protocols that are used on the Internet, are based either on an
unreliable connectionless protocol (UDP) or on a reliable connection-oriented proto-
col (TCP). This approach is somewhat uniform, but is neither flexible nor high level.

Like many other systems, our architecture is based on objects. The attraction of
objects is that they completely encapsulate their implementations, thus providing a
high-level interface to their users. An object encapsulates some amount of state (in-
formation) and provides the users of the object with operations (also called methods)
that change the state of the object or that report about the object’s state. To commu-
nicate, two processes agree to share an object. One process invokes an operation on
the object that changes the state of the object. This new state is observed by the other
process. Processes care only about their objects and the methods they invoke on those
objects. The details of the network that connects the computers are hidden by the
objects’ implementations.

Most object-based approaches (including CORBA) provide a uniform, high-level
programming model. However, the application programmer has only limited control
over the implementation of those objects. The programmer controls the implementa-
tion of the functional aspects of an object (i.e, what the object does, whether it is a
mail object or a document object), but has no or only limited control over nonfuncti-
onal aspects, such as replication and security. In other words, those systems provide
limited flexibility with respect to object implementations.
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Distributed Shared Objects In the Globe architecture, objects that are used to ex-
change information between processes running on different computers, are called dis-
tributed shared objects. Another kind of object is called a local object. Local objects
exist only within a single process. Distributed shared objects get their name from the
fact that they are shared between different processes and the fact that their implemen-
tations can be physically distributed over all participating processes.

A technique called dynamic loading is used to make the Globe architecture more
flexible than most other architectures. When a process tries to use a distributed shared
object, part of the implementation of the distributed shared object is loaded into the
process’ address space. This means that after an application has been compiled, it
does not contain implementations for any distributed shared objects it might use. Dif-
ferent distributed shared objects may use different implementations and the required
implementation is loaded at run-time.

Part of the Globe architecture is an architecture for local objects. The part of
a distributed shared object that is loaded into a process is the implementation of a
local object. In fact, the complete implementation of a distributed shared object is
nothing more than the collection of local objects that are loaded in different address
spaces. From the programmer’s point of view, a distributed shared object is always
represented by a local object. The local objects that are part of a distributed shared
object are called representatives. These representatives cooperate and communicate
to implement methods that can be invoked on the distributed shared object and to
distribute the state of the object. Implementations of local objects are stored in special
objects, called class objects.

Local Objects Local objects provide one or more binary interfaces. An interface is
a collection of methods. The use of binary interfaces allows an application to be com-
piled separately from object implementations. An interface describes the functionality
offered by the object.

Objects provide more than one interface for multiple reasons. One reason is that
object-specific operations can be separated from operations related to object manage-
ment. For example, operations that control the replication of the state of the object can
be separated from methods that read and write the object’s state. A second reason is
that the use of multiple interface allows a single object to combine different functions.
For example, a single object can implement both a file and a directory interface at the
same time. A third reason for providing multiple interface is backward compatibility.
An object can implement a new version of an interface and retain the old version for
compatibility with older applications.

The local object model also contains composite objects and a local name space.
A composite object is a local object that consists of several other local objects. Com-
position is used to create complex local objects out of more primitive objects. A
representative of a distributed shared object is usually a composite object.
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The local name space is another technique to introduce more flexibility. Instead of
passing pointers to objects, it is possible to refer to an object by name. For example,
this flexibility is used to hide the fact that, although most class objects are loaded
dynamically, some class objects are linked with the application. For class objects that
are already present, the name-space lookup function simply returns a pointer to the
object. For other class objects, the object is loaded first.

Finally, the local object model includes the concept of system objects. System
objects abstract the functionality of the underlying operating system. Examples of
system objects are communication objects, thread objects, memory allocators, and file
objects. Together these system objects provide a portable operating system interface.

Replication The implementation of a distributed shared object as a collection of lo-
cal objects that communicate is convenient for the user of a distributed shared object,
but does not help the programmer who has to implement a distributed shared object.
The implementation of a distributed shared object can be simplified by using a com-
posite object that consists of four subobjects. One subobject, called the semantics
object, contains the object-specific functionality. For example, the semantics object
determines whether a distributed shared object is a file object, a mailbox, or a WWW
page.

A second object, the replication object, handles the replication of the state of the
distributed shared object, forwards method invocations to other processes, etc. This
object is the most complex part of the implementation of a distributed shared object.
Fortunately, a collection of replication objects that implement different replication
strategies can be put into a class repository. The programmer of a distributed shared
object selects only an appropriate replication object from the class repository.

Replication objects use communication objects to communicate with replication
objects in other address spaces. Different communication objects for reliable and
unreliable message passing, for group communication, etc. are also put into the class
repository.

The fourth subobject, called the control object, provides the “glue” between the
semantics object and the replication object. A method invocation on a distributed
shared object always starts in the control object. Upon request (by the replication
object), the control either provides the replication object with the marshaled arguments
to forward the method invocation to a different process or the control object invokes
the method on the semantics object. The control object is expected to be generated by
a special compiler.

Persistence and Security The replication object also provides persistence. The ap-
proach taken in Globe is that individual replicas of the state of a distributed shared
object are made persistent. The replication object saves and reloads the state of the
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semantics object. Persistent replicas are managed by an object repository. The ob-
ject repository deactivates (passivates) persistent replicas that have been idle for some
time. When a persistent replica is needed at a later time, it is activated again by the
object repository. Object repositories also provide support for creating new distributed
shared objects.

To support security, an extra security subobject is added to the composition that
implements a distributed shared object. The security object handles security aspects
such as encryption, authentication, and access control. Special distributed shared ob-
jects, called principal objects, represent users during authentication.

Naming and Binding The process of creating a new local object and connecting
that object to the distributed shared object, is called binding. The binding process
typically starts with a name of a distributed shared object in a worldwide name space.
The name service is used to determine where the distributed shared object is located
and what kind of implementation is needed to connect to the object.

To support binding, each distributed shared object provides one or more contact
points, which are represented by contact addresses. A contact address consists of
two parts. The first part is a protocol identifier. The protocol identifier specifies the
complete protocol (including, in terms of the OSI reference model, the presentation,
session, and application layers) needed to connect to the distributed shared object. The
protocol identifier is used to locate a suitable loadable class object that implements the
protocol. The second part of the contact address contains the actual network addresses
and other demultiplexing information needed to setup a connection to the distributed
shared object.

A distributed shared object may provide more than one contact address for two
reasons. The first reason is that it may support more than one protocol, for example,
for backward compatibility or because different protocols are more efficient in diffe-
rent situations. Multiple contact addresses that use the same protocol refer to different
contact points on different computers. The use of contact points on different compu-
ters is needed to benefit from replication, for example, to increase fault tolerance or to
improve locality.

The binding process consist of four steps: a name lookup, a location lookup, des-
tination selection, and implementation selection. The first step looks up a name in a
worldwide name service. This step returns an object handle. This object handle is
used to look up a set of contact addresses in the location service. The third step orders
the addresses in the set of contact addresses based on expected performance. The last
step looks up a suitable class object based on the protocol identifier in the best contact
address.

The reason for a separate name and location service is to simplify the management
of contact addresses. In general, the decision to create or delete contact addresses is
taken by the distributed shared object itself. On the other hand, users are mainly
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responsible for the name of the object in the name service. The use of two services
that share a single object handle for each distributed shared object, allows the user and
the distributed shared object to operate independently.

The name service provides a distributed, hierarchical name space, similar to DNS.
This name space is created using directory objects. Directory objects are distributed
shared objects that store object handles of other distributed shared objects, including
other directory objects.

Location Service The location service uses an object handle to look up a set of
contact addresses for a distributed shared object. An object handle consists of two
parts. The first part is a 256-bit, worldwide unique object identifier. The second part
is created by the location service when the object is registered for the first time. This
second part depends on the structure of the location service. Some location service
implementations only use the object identifier and do not need any additional infor-
mation. Other implementations ignore the object identifier and rely only on their own
information.

An easy way to implement a location service is to start with a distributed, hierar-
chical name space (similar to the name service) and insert sets of contact addresses
instead of object handles. This approach is easy to implement and has nice scaling
properties. Unfortunately, it does not work well as a location service. One problem is
that all contact address are stored in one place. This creates a bottleneck which elimi-
nates the increased fault tolerance and improved locality due to replication. Another
problem is that when the object moves, its contact addresses continue to be stored in
the same location. For this last reason, this approach is also called the home-based
approach.

Another approach, called the distributed search tree approach, partitions the loca-
tion service and stores the object handle that is associated with a contact address in a
partition of the location service that is close to the corresponding contact point. For
highly replicated objects, information about the object will be stored in many parts of
the location service. When an object moves, the information that was stored near the
old contact point is deleted, and information at the new location is created.

To find information about an object, records with forwarding pointers are created
that point in the right direction. For each distributed shared object that has contact
points in a certain region, a regional node stores forwarding pointers to the parts of the
location service that store the contact addresses. Higher-level regions store forwarding
pointers to regional nodes, etc. A special root node stores forwarding pointers for all
distributed shared objects in the entire system.

To look up contact addresses for a distributed shared object, a process first queries
a nearby partition. If that partition does not know about the object, a regional node
is tried. This process repeats until the root node is reached. The root node has, by
definition, a record for the object (unless the object has been deleted). This mechanism
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effectively implements a search with an expanding scope. The advantage of this search
is that contact addresses for nearby contact points are found first. This kind of locality
is often desirable.

The main problem with this approach is the implementation of the root node. Sto-
ring information about every distributed shared object in the system in one place is
not possible. Fortunately, simply partitioning the root node is sufficient for lookup
operations. Due to the locality of the lookup algorithm, the only queries that reach a
partition of the root node are for objects that have no contact point close to the bin-
ding process. This means that the location service does not reduce the communication
scalability of the system.

For the registration of objects, the root node does have a negative performance
impact. Some tricks, such as using geographical information, can be used to reduce
this problem. Another way to try to solve this problem is to combine the home-based
approach with the distributed search tree approach. This combination provides a trade-
off between higher registration costs and better support for replication and mobility,
or lower registration costs for more static objects.

Garbage Collection A large system that allows dynamic allocation of resources
should automatically deallocate unreferenced resources. In small, nonpersistent sys-
tems, it is possible to rely on the programmer to release resources when they are
no longer needed. In large, persistent systems, small mistakes accumulate and un-
referenced resources are very hard to find manually. The automatic deallocation of
unreferenced resources is called garbage collection.

A problem with garbage collection is that algorithms that work well in a single
process, so called tracing garbage collectors, do not work well in large distributed
systems. Tracing garbage collectors first identify objects that are still reachable (cal-
led live). A second phase deletes all unreachable objects. The problem with this
approach in a distributed system is that all processes have to synchronize and coo-
perate. Requiring global cooperation between all processes is undesirable for many
reasons, including reasons related to security.

The garbage collection algorithm for Globe uses the fact that distributed shared
objects are relatively heavyweight. For this reason we can require each distributed
shared object to store a set of object handles that refer to (directory) objects that store
references to the object. The object handles that are stored for garbage collection, are
called reverse references.

The Globe garbage collection algorithm assumes the presence of a collection of
objects, called the root set, that are not deleted by the garbage collector. All objects
that are (indirectly) reachable from these objects are called live. All objects that are
unreachable should be deleted.

For each distributed shared object, the garbage collection algorithm runs two sub-
algorithms in parallel. The first subalgorithm uses the reverse references to find a path
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to an object in the root set. The distributed shared object is live if a path to the root
can be found. Unfortunately, the fact that a path cannot be found does not mean that
the object is unreachable from the root set.

The second subalgorithm determines whether an object is unreachable or not. This
algorithm is a distributed graph algorithm that terminates when no path to the root
set exists. By running both subalgorithms in parallel, the combined algorithm can
terminate when either a path to the root has been found, or when the graph algorithm
has determined that the object is unreachable.

Prototype A prototype of the Globe architecture has been implemented to verify
that all components fit together and that the system exhibits the desired flexibility.
Scalability was not a design goal of the prototype. In fact, the location service is
implemented as a single, centralized service. The prototype provides an object based
hypertext system, which can be accessed using a standard WWW browser.

Conclusions This thesis describes a novel architecture for wide-area distributed sys-
tems that is based on distributed shared objects. The architecture contains a separate
location service to support location and replication transparency. A new garbage col-
lection algorithm provides distributed detection of unreachable objects. The construc-
tion of a distributed shared object is simplified by separating the implementation of the
replication protocols from the implementation of the object-specific semantics using
communication, replication, control and semantics objects. The interface between the
control and the replication object allows different replication strategies.
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startObj, 220, 232
start, 48, 65, 207, 210, 213, 218,

225, 232, 249
sync, 250
truncate, 250
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