226 research outputs found

    Comparison of Image Registration Based Measures of Regional Lung Ventilation from Dynamic Spiral CT with Xe-CT

    Full text link
    Purpose: Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this article, we propose a new regional measure of lung mechanics --- the specific air volume change by corrected Jacobian. Methods: 4DCT and Xe-CT data sets from four adult sheep are used in this study. Nonlinear, 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration. Approximately 200 annotated anatomical points are used as landmarks to evaluate registration accuracy. Three different registration-based measures of regional lung mechanics are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume change by intensity change (SAI). Results: After registration, the mean registration error is on the order of 1 mm. For cubical ROIs in cubes with size 20 mm Ă—\times 20 mm Ă—\times 20 mm, the SAJ and SACJ measures show significantly higher correlation (linear regression, average r2=0.75r^2=0.75 and r2=0.82r^2=0.82) with the Xe-CT based measure of specific ventilation (sV) than the SAI measure. For ROIs in slabs along the ventral-dorsal vertical direction with size of 150 mm Ă—\times 8 mm Ă—\times 40 mm, the SAJ, SACJ, and SAI all show high correlation (linear regression, average r2=0.88r^2=0.88, r2=0.92r^2=0.92 and r2=0.87r^2=0.87) with the Xe-CT based sV without significant differences when comparing between the three methods. Conclusion: Given a deformation field by an image registration algorithm, significant differences between the SAJ, SACJ, and SAI measures were found at a regional level compared to the Xe-CT sV in four sheep that were studied

    Image Registration of Lung CT Scans for Monitoring Disease Progression

    Get PDF

    Motion Calculations on Stent Grafts in AAA

    Get PDF
    Endovascular aortic repair (EVAR) is a technique which uses stent grafts to treat aortic aneurysms in patients at risk of aneurysm rupture. Although this technique has been shown to be very successful on the short term, the long term results are less optimistic due to failure of the stent graft. The pulsating blood flow applies stresses and forces to the stent graft, which can cause problems such as breakage, leakage, and migration. Therefore it is of importance to gain more insight into the in vivo motion behavior of these devices. If we know more about the motion patterns in well-behaved stent graft as well as ill-behaving devices, we shall be better able to distinguish between these type of behaviors These insights will enable us to detect stent-related problems and might even be used to predict problems beforehand. Further, these insights will help in designing the next generation stent grafts. Firstly, this work discusses the applicability of ECG-gated CT for measuring the motions of stent grafts in AAA. Secondly, multiple methods to segment the stent graft from these data are discussed. Thirdly, this work proposes a method that uses image registration to apply motion to the segmented stent mode

    Numerical Methods for Pulmonary Image Registration

    Full text link
    Due to complexity and invisibility of human organs, diagnosticians need to analyze medical images to determine where the lesion region is, and which kind of disease is, in order to make precise diagnoses. For satisfying clinical purposes through analyzing medical images, registration plays an essential role. For instance, in Image-Guided Interventions (IGI) and computer-aided surgeries, patient anatomy is registered to preoperative images to guide surgeons complete procedures. Medical image registration is also very useful in surgical planning, monitoring disease progression and for atlas construction. Due to the significance, the theories, methods, and implementation method of image registration constitute fundamental knowledge in educational training for medical specialists. In this chapter, we focus on image registration of a specific human organ, i.e. the lung, which is prone to be lesioned. For pulmonary image registration, the improvement of the accuracy and how to obtain it in order to achieve clinical purposes represents an important problem which should seriously be addressed. In this chapter, we provide a survey which focuses on the role of image registration in educational training together with the state-of-the-art of pulmonary image registration. In the first part, we describe clinical applications of image registration introducing artificial organs in Simulation-based Education. In the second part, we summarize the common methods used in pulmonary image registration and analyze popular papers to obtain a survey of pulmonary image registration

    Motion tracking of left ventricle and coronaries in 4D CTA

    Full text link

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control

    SCEM+: Real-Time Robust Simultaneous Catheter and Environment Modeling for Endovascular Navigation

    Full text link
    © 2016 IEEE. Endovascular procedures are characterised by significant challenges mainly due to the complexity in catheter control and navigation. Real-time recovery of the 3-D structure of the vasculature is necessary to visualise the interaction between the catheter and its surrounding environment to facilitate catheter manipulations. State-of-the-art intraoperative vessel reconstruction approaches are increasingly relying on nonionising imaging techniques such as optical coherence tomography (OCT) and intravascular ultrasound (IVUS). To enable accurate recovery of vessel structures and to deal with sensing errors and abrupt catheter motions, this letter presents a robust and real-time vessel reconstruction scheme for endovascular navigation based on IVUS and electromagnetic (EM) tracking. It is formulated as a nonlinear optimisation problem, which considers the uncertainty in both the IVUS contour and the EM pose, as well as vessel morphology provided by preoperative data. Detailed phantom validation is performed and the results demonstrate the potential clinical value of the technique

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention
    • …
    corecore