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Chapter 1

Introduction

A journey of a thousand miles must begin with a

single step

— Lao-Tzu

1.1 Chest Computed Tomography

Figure 1.1: Picture of the
first medical X-Ray image of
a hand. Reprint from [1].

Modern computed tomography originated
back in November 1895 in the experiments of
Wilhelm Conrad Röntgen with an X-ray tube
and a fluorescent screen. He discovered, that un-
known invisible rays, X-rays, passed through pa-
per and wood and cast a shadow on a fluorescent
screen, while it could not travel through metal
pieces. When he put his hand into the beam he
was surprised to see bones in the casted shadow.
Shortly after he photographed his wife, Anna
Berthe Röntgen’s, hand with the X-Ray beam
Figure 1.1 and published a paper on his discov-
ery [1]. The paper made a sensation and spread
around the world within few weeks. Already in
1901 he received the Nobel Prize in Physics for
his breakthrough discovery.

The impact of the discovery on medical sci-
ence was colossal, it was the first time, when one could see inside the human

1



2 CHAPTER 1. INTRODUCTION

Figure 1.3: An example of a modern chest CT scan. The axial, coronal and
sagittal slices are extracted from a three dimensional lung CT scan.

(a) An axial slice (b) A coronal slice (c) A sagittal slice

body without direct intervention. Shortly after in 1896, Francis Williams started
X-Ray examinations of patients with tuberculosis [2]. Owing to the fact that
he had access to the state-of-the-art equipment in the Massachusetts Institute of
Technology, he was able to carry out thorough research of tuberculosis using the
fluoroscopic examination.

Figure 1.2: Hounsfield scale of a CT
scan

For a long period, projection radiogra-
phy was one of the most popular techniques
for medical imaging. The idea of imaging
just a section of an object was pioneered
by Allesandro Vallebona back in 1931 [3].
The term tomogram refers to the obtained
image of a single section or a slice of an
object and the method is called tomogra-
phy. Almost half a century later in 1972
the revolution in medical imaging begun.
Godfrey Hounsfield invented computed ax-
ial tomography (CAT or simply CT) [4]
where a volumetric image of an object was
reconstructed from a series of axial tomo-
grams. Since then, computed tomography
progressed rapidly from the first CT scan-
ner developed by Godfrey Hounsfield and

applicable only for imaging of small objects to the full body scan in 1976 and
the first spiral CT scanner in 1989. Modern CT scanners acquire chest CT scans
with high spatial resolution up to 0.5 mm just within several seconds and with
the radiation of dozens times smaller than the original CT scanner. An example
of a modern chest CT scan is shown in Figure 1.3.

Attenuation coefficient characterizes the decrease of energy of an X-Ray beam
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passing through matter. Chest CT scan is a volumetric image where intensity
values corresponds to the attenuation coefficient of the matter. A unit of intensity
is the Hounsfield Unit (HU). The Hounsfield unit scale is a linear scale of the
original attenuation coefficients or the radiodensity. The attenuation coefficient
of distilled water under a standard pressure and temperature (0◦C, 1 atm) is set
to µH2O = 0 HU, and the attenuation coefficient of air is set to µair = −1000 HU.
A general value µ HU corresponds to a material with the attenuation coefficient

µ−µH2O

µH2O−µair
×1000. The range of Hounsfield Units for human tissues, such as bones,

fat, water, blood and muscles is given in Figure 1.2. Typical range of HU for the
anatomical structures observed in a lung CT scan is from −1000 HU (corresponds
to the attenuation of air) to the 50 HU (corresponds to the attenuation of blood).
Air in the lung CT appears dark and blood vessels appear bright as one can see
in Figure 1.3.

A modern volumetric lung CT scan is a three dimensional image with typ-
ically a sub-millimeter in-plane resolution and slice thickness of about 1 mm.
However for several clinical applications such as radiation therapy planning a
time series of lung CT scans is acquired during a breathing cycle. The obtained
four dimensional image is called 4D-CT or dynamic CT lung scans, and along
with the regular lung CT scans, images extracted at different phases of 4D-CT
lung scans are used in this thesis.

1.2 Anatomy of Lungs

When an experienced radiologist looks at a lung CT scan in Figure 1.4, he
or she immediately recognizes the anatomical structures presented in the image.
As a computer scientist, it took me a while before the sagittal, coronal and
axial slices formed into a meaningful three dimensional picture of human lungs.
The following anatomical lung structures can be identified in chest CT scans:

Figure 1.4: An example of ax-
ial, sagittal and coronal views
of a 3D chest CT scan.

• Alveolar lung tissue or parenchyma (typ-
ically appears as grey homogeneous mat-
ter),

• Pulmonary vasculature (appears as bright
stripes or spots),

• Trachea and bronchial tree (appears as
pipes with dark inside and bright borders),

• Fissures between the lung lobes (appears
as hardly visible thin plate-like structures
in light grey color).
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Figure 1.5: A sketch of lung
anatomy presenting main
anatomical structures within
human lungs: lobes, bronchial
tree and vessels. Reprint
from http://creationwiki.org/
Respiratory system.

Figure 1.6: Lung anatomy in
CT scan. Clearly visible ves-
sels in red color, bronchial tree
in blue color. Fissures between
the three lobes in right lung are
indicated by arrows. A magni-
fied example of a sample within
lung tissue is displayed in the
bottom right corner.

Figure 1.5 shows a drawing of human lung anatomy. The right lung consist of
three lobes and the left lung consist only of two lobes. Air enters the lungs
first through the trachea and then spreads into the bronchial tree. Blood travels
through the vessels and spreads in the lungs. Figure 1.6 shows how the cor-
responding anatomical lung structures appear in a CT scan, for visualization
purposes only a coronal CT slice is shown.

1.3 Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease (COPD) encompasses both small air-
way disease and emphysema. The main topic of the thesis is emphysema, it is
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characterized by irrevirsible destruction of lung parenchyma [5]. Due to the fact
that both diseases usually coexist, the common term COPD is used for diag-
nostics. The most important risk factors of COPD are tobacco smoking and air
pollution. COPD cause a shortness of breath, cronical cough, sputum production
and may progressively lead to death.

COPD is presently estimated to be the fourth leading cause of death in the
world [5]. Accordingly to the World Health Statistics report in 2008, COPD is
predicted to be the third leading cause of death worldwide after ischaemic heart
disease and cerebrovascular disease in 2030 [6].

Pulmonary function tests (PFT) or lung function tests (LFT) are the primary
tools for diagnosis of COPD. Spirometry is the most common test in clinical prac-
tice, it measures vital lung characteristics, such as the maximum amount of air
exhaled in the first second (FEV1, first expiratory volume in 1 second) and forced
total amount of exhaled air (FVC, forced vital capacity). These methods are ac-
cepted worldwide for diagnosis of COPD, however there are several drawbacks to
the lung function tests. The lung function tests are confirmed to lack sensitivity
on the early stages of COPD; can not distinguish type of the abnormality (e.g.
emphysema or airway disease) and spatial distribution of disease; and have poor
reproducibility [7, 8, 9, 10].

Based on the LFTs, COPD is characterized into four stages; mild, moderate,
severe and very severe COPD [5]. Based on the conventional diagnostic tools,
disease progression could be determined only in the subjects, who change the
COPD stage. A continuous measure of disease progression can be obtained from
the lung function tests, but due to lack of sensitivity and reproducibility, the
accurate monitoring of COPD is a difficult task in longitudinal studies. Com-
puted Tomography offers a powerful alternative for examination of COPD. CT
analysis allows both detailed visual assessment and the whole-lung quantification
of emphysema extent via lung densitometry.

Emphysematous regions appear as areas with low-attenuation in CT scans of
lungs, suggesting that CT image intensities can be used to quantify the severity
of emphysema. Averaged lung density, n-th percentile density, and relative area
with attenuation below, e.g. -910HU (emphysema index, RA-910HU) have all
been successfully applied as emphysema measures. For detailed description of
the computed tomography methods for lung disease quantification I refer reader
to the book written by Webb R.W. et al. [11].

1.4 Monitoring Regional Disease Progression using Lung

CT scans

In a longitudinal study, the lung densitometry from CT scans provides a con-
tinuous measurement of disease progression [12, 13, 14, 15, 16, 17, 18]. In a recent
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study on monitoring emphysema progression in Alpha-1 Antitrypsin deficiency
subjects [16], the CT densitometry is reported to be significantly more sensitive
than the conventional lung function test, the FEV1.

Although computed tomography offers a more promising alternative to spirom-
etry, the CT scores of emphysema are global measures quantifying the disease in
the complete lung. Lung partitioning is an approximate solution that allows quan-
tification of emphysema and further monitoring of the disease progression in dif-
ferent regions of the lungs [12]. Another option of monitoring regional emphysema
progression is enabled via segmentation methods. The state-of-the art segmen-
tation methods provide anatomical partitioning of lungs into lobes [19, 20, 21],
thereby allowing to monitor emphysema progression on a scale of a single lobe.
Further segmentation of the lungs into pulmonary segments is extremely challeng-
ing task. There is no gold-standard method for segmentation of lung segments,
since there are no clear boundaries between the segments, and even manual an-
notation of pulmonary segments is difficult. Several methods has been proposed
for segmenting lung segments [22, 21], but it is still remains a difficult problem
without a gold-standard. With use of segmentation methods alone, quantitative
analysis of the emphysema will be always limited to the scale of reliably seg-
mented structures. A CT lung scan provides detailed information of the lungs on
a scale of 1 mm, thus potentially allowing to perform analysis of lung structures
on a much smaller scale than the limiting scale of currently available segmentation
methods.

For the detailed analysis of longitudinal changes in lungs, one needs an ac-
curate spatial correspondence between the CT scans. Human observers possess
a natural ability of determining corresponding structures in the two dimensional
images. However, the task of determining corresponding structures in three di-
mensions is extremely difficult and time consuming for humans. Furthermore,
the human vision system could easily recognize the same object but lacks the
sensitivity to the spatial location, e.g., a small translation or distortion to the
image may be left unnoticed. Therefore, for an accurate and efficient local analy-
sis of longitudinal CT scans we need an automatic procedure, that will establish
a point-to-point correspondence between the CT scans, the image registra-
tion procedure. Recent studies reported that an image registration procedure
could provide comparable accuracy of the spatial correspondence with the human
inter-observer variability [23, 24].

The following example in Figures 1.7-1.8 illustrates how an image registration
facilitates monitoring of disease progression on an example of two CT lung scans
of the same subject taken with a time interval of approximately two years. The
axial, sagittal and coronal slices from the baseline CT scan are showed in the
Figure 1.7a and the approximately the same slices from the follow up scan are
displayed in Figure 1.7b. In both the baseline and the follow up images a bulla
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Figure 1.7: An example of a subject with clearly visible pathology (bulla in the
right lung indicated by red box) from the DLCST.

(a) Axial, sagittal and coronal slices from a baseline lung CT scan.

(b) Approximately the same axial, saggital and coronal slices from the follow up scan.

is presented in the right lung. Bulla, or air bubble, is a complication of the
emphysema and may be treated by surgical removal or bullectomy.

Consider that subject location was identical in the baseline and the follow
up scans, a simple subtraction of the two CT scans should reveal longitudinal
changes of the bulla. However direct subtraction of the two images, Figure 1.8a,
shows ambiguous and misleading information because of the two main reasons:
subject location is not the same in the two CT images; breathing level at the
two examinations vary significantly thus resulting in non homogeneous local de-
formations. After obtaining point-to-point correspondence between the images,
the follow up image was deformed to the system of the coordinates of the base-
line image and then subtracted from the baseline image. Figure 1.8b shows the
final subtraction image and now, once the two images are properly aligned, the
subtraction image reveal substantial increase of the bulla size.

Image registration of chest CT scans was successfully used for monitoring nod-
ule growth [25, 26, 27]. Recently image registration has been used to estimate the
progression of interstitial lung disease [28]. The benefits of image registration for
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Figure 1.8: An example of how an image registration procedure is used for mon-
itoring disease progression in a sequence of longitudinal CT scans.

(a) Direct subtraction of the follow up lung CT
scan from the baseline CT scan.

(b) Subtraction of the deformed follow up CT
scan from the baseline CT scan after the image
registration procedure is applied.

monitoring emphysema progression was investigated in this thesis in Chapters 6-7
[29, 30] as well as by other research groups [31].

1.5 Overview of Image Registration Methods

This section presents a brief overview of existing image registration methods,
for the details I refer the reader to the concise but mathematical book by J.
Modersitzki [32] or to the handbook on medical image analysis by M. Sonka and
J.M. Fitzpatrick [33].

Image Registration Formalism

The starting point of any registration algorithm is a pair of images If (fixed
image) and Im (moving image). Other definitions of the If and Im exist in the
literature: image registration methods for lung CT scans define the fixed image
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Figure 1.9: Discrete image as a continuous function of space coordinates.

(a) An axial slice of a lung CT scan with the zoom
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(b) The intensity function plotted
as surface of the spacial coordinates

as reference image [32, 34, 35, 36, 37, 38]; or target image [39, 40, 37, 41, 42].
The moving image also appears as template image [32, 40]; source image [39, 42];
floating image [38]; or test image [36]. In this thesis I will use the terms fixed and
moving images, because these names reflect the essential functions of the images:
while the fixed image remains fixed during the registration procedure the moving
image is being deformed.

The task of image registration is to establish point-to-point correspondence
between the two images. In case of lung CT scans, images are three dimensional
and have discrete nature, the intensities are defined in a finite set of voxels If (x) =
If (xi

1, x
j
2, x

k
3). Figure 1.9a shows an example of an axial slice of a CT lung scan

and a magnified area within lungs region. The zoomed image illustrates discrete
nature of the lung CT scan. By means of the interpolation function, images may
be defined in a continuous space of the spatial coordinates If (x). Figure 1.9b
displays a surface - the continuous linear approximation of the image intensities.
This is the first fundamental part of the registration the interpolation function.

The registration procedure establishes point-to-point correspondence between
the fixed image region Ωf ⊂ R3 and the moving image region Ωm ⊂ R3. The re-
quired point-to-point correspondence is defined in natural sense, e.g., an anatom-
ical structure presented in the fixed image in a point x ∈ Ωf corresponds to
the same anatomical structure presented in the moving image in a corresponding
point y ∈ Ωm. The formal definition of the correspondence is given via the associ-
ated transform function T : Ωf → Ωm, which takes a point x ∈ Ωf and provides a
corresponding point y ∈ Ωm, T (x) = y. This is the second important part of the
registration - the transform function. For the obtained transform function we
can compute the resulting deformation vectors of every voxel in the fixed image
grid ~d(x) = y − x. The two terms deformation field and transform function are
equally common and usually interchangeable in the image registration literature.

Given a transform function T , one can evaluate the quality of the obtained
point-to-point correspondence by first deforming the moving image Im ◦ T =
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Figure 1.10: Diagram displaying the image registration procedure and illustrat-
ing the interactions between the image registration components.

Im(T (x)) and comparing the deformed image with the fixed image If using a
(dis)simmilarity function C(If (x), Im(T (x))). This is the third component of the
registration - the (dis)similarity function. The (dis)similarity function could
be applied directly to the images or to features extracted from the original images.
For particular medical applications, an additional constraint on the transform
function is needed, the regularizer. The (dis)similarity and the regularizer are
both combined into a cost function, which balances between the (dis)similarity
of the images and the regularity of the transform.

Finally, in the task of finding the best possible transform that defines point-
to-point correspondence between the two images the minimum of the cost func-
tion should be obtained, therefore the following optimization problem should be
solved:

argmin
T

(C(If , Im ◦ T )). (1.1)

The final part of the registration procedure is the optimization method used
to solve problem (1.1). The complete diagram displaying the workflow of image
registration is given in Figure 1.10.

Evaluation of an Image Registration Method

It is always helpful to first check image registration results visually by com-
paring the fixed image with the deformed moving image. The deformed moving
image could be assessed by displaying it side-by-side with the fixed image, or by
displaying a checkerboard between the two images, or displaying the difference
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between the two images. The disadvantage of the first two methods is that with
the side-by-side comparison the human eye could leave a small translation unno-
ticed and the checkerboard image limits the comparison to the size of the blocks,
while in the difference image the mis-registrations are immediately visible.

Generally two classes of quantitative evaluation methods for assessing the
quality of registration methods exist: explicit methods that assess the spatial
accuracy of alignment in physical units usually millimeters; and implicit meth-
ods. The latter methods measure quality of the registration by first deforming
the moving image and then comparing it with the fixed image using various
(dis)similarity functions, e.g., cross-correlation coefficient, mutual information or
sum of squared differences of the two images.

The explicit methods assess the spatial accuracy of the registration by means
of, e.g., manually annotated corresponding points, landmarks, in the fixed and
the moving images. The Euclidean distance between the landmarks of the moving
image and deformed landmarks of the fixed image, the target registration error
(TRE), is the quantitative measure of registration accuracy.

Manual annotation of landmarks is both time consuming and difficult for a
pair of three dimensional images, therefore automatic or semi-atomatic alter-
natives were developed for detecting corresponding points in the image pairs.
The semi-automatic methods ease the procedures of manually landmarking by
suggesting possible corresponding points [39, 23]. Betke et al. [25] proposed a
fully-automatic system for detecting corresponding landmarks such as trachea,
sternum and spine in chest CT scans.

Another fully-automatic alternative to landmarking is assessment of spatial
accuracy via presegmented anatomical lung structures. The distance between
the correponding anatomical structures in the fixed and moving images, e.g.,
lung surfaces, lobe fissures, airway trees or vessel trees, estimates the spatial
accuracy of the registration. The Euclidean distance could be computed by first
deforming the anatomical structure segmented from the fixed image and then
computing the distance to the same structure in the moving image. However,
manually annotated landmarks remain the gold standard for the evaluation of
image registration accuracy.

Examples of Image Registration Methods for Lung CT scans

The aim of this section is to give a brief overview of modern image registration
methods used for lung CT images including the work presented in this thesis as
well as work by other authors. Complete overview of general image registration
methods could be found in [43].

Depend on the type of information that is being used in the registration algo-
rithm, two classes of image registration methods could be defined: feature-based
and intensity-based registration methods. The first class refers to the registration
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algorithms, where features are first extracted from the original intensity images
and then the point correspondence is established using the obtained features. An
examples of a feature-based method is landmark-based registration where the
manually annotated landmarks used to align the images [44]. Another example
is registration of segmented anatomical lung structures such as vessel trees and
lung surfaces [37, 45], Chapter 3[46].

The intensity-based methods directly use the original intensities of the images.
These methods are generally more widely used for lung CT images [47, 48, 38,
49, 50, 23, 51, 52, 53, 54, 55, 45, 56], Chapter 2[29]. Also joint registration
algorithms where intensity is combined with the features were developed for lung
CT scans [57, 58, 59], Chapter 4[60].

Depend on the type of the underlying deformation model, registration meth-
ods can be further classified into parametric and non-parametric registration. In
parametric methods the transform is parameterized by a number of control pa-
rameters. The example of the parametric transform is a B-Spline transform,
where the deformation is parameterized by a deformation vectors defined in
grid points. Image registration with B-Spline transform was pioneered by D.
Rueckert [61] and was first applied to the lung CT scans by D. Mattes [36].
The following registration methods of lung CT scans use the B-Spline trans-
form [47, 48, 38, 49, 50, 23, 29, 51]. In contrast to the parametric methods, in
non-parametric methods the deformations are assumed to fulfill a certain physical
model, e.g., deformations of fluid [52, 53], proposed by Christensen G. et al. [62]
and further developed by M. Bro-Nielsen [63]; elastic material [55, 45], first pro-
posed by Briot C. et al. [64] and further developed by Bajcsy R. et al. [65]; or the
optical flow methods [56], first proposed by Horn B.K.P. and Schunk B.G. [66].
While in the first group of methods, the deformation field is free-form and in
any point it is interpolated from the deformations defined at the grid positions,
in the latter methods the deformation field is obtained from the solution of the
associated system of partial differential equations. Overview and implementation
details of the latter methods could be found in PhD Thesis by M. Bro-Nielsen [63].

1.6 Outline of the Thesis

This thesis contains 8 chapters, including the general introduction in Chapter 1
and general discussion and conclusion in the final Chapter 8. The results of the
novel scientific investigations are described in the Chapters 2, 3-7. A brief outline
for each of the chapters is given below.

Chapter 2 describes a novel intensity-based image registration method de-
veloped specifically for registering intra-subject lung CT scans. The registration
method is based on the widely used free form image registration via B-Splines [61].
The novelty of the developed method is in the proposed model of lung tissue ap-
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pearance in CT scans during inspiratory cycle. The lung appearance in CT
depends significantly on the amount of air inhaled. First because the lungs are
larger in size at the inspiration level and second because the lung tissue saturates
additional air and appear darker in CT scans which should not be confused with
the emphysema progression and lung tissue destruction. We investigated the
validity of the assumption that mass of lungs is preserved during the breathing
cycle. The mass preserving assumption was incorporated into the image registra-
tion procedure and verified on a large set of lung CT scans with varying quality,
ranging from small to large differences in inspiratory level.

Chapter 3 presents a new feature-based image registration where lung anatom-
ical structures are used to establish a point-to-point correspondence. Three types
of registration methods are evaluated: a curve-based registration method where
the lung vessel centerlines are used to establish correspondence between the scans,
the surface-based registration method where the lung surfaces are used for reg-
istration, and the combined method where both curves and surfaces are incor-
porated into a feature-based registration. The potential advantage of a feature-
based registration method over intensity-based method is for diseased subjects,
where intensity may change significantly because of the development of the dis-
ease. The proposed feature-based registration method does not require any point
correspondence, thus it may be applied even using an incomplete and inconsistent
segmentations.

Chapter 4 presents a combination of the intensity- and feature-based regis-
tration methods of Chapters 2 and 3. The deformations in the intensity-based
method are constrained locally with the deformations obtained from the feature-
based method. The weak point of intensity-based registration method is its
dependence on the image gradient, thus favoring the good registration of the
structures with high gradients, while disregarding misalignment of small unclear
structures like the peripheral vessels. On the other hand the feature-based reg-
istration assigns the centerlines of small vessels and of large vessels the same
value, therefore leading to equally accurate alignment of small and large vessels.
The potential benefit of the combined approach is that final alignment is more
accurate and realistic.

Chapter 5 presents results of the challenge ”Evaluation of Methods for Pul-
monary Image Registration 2010” (EMPIRE10) conducted in conjunction with
the Grand Challenges in Medical Image Analysis Workshop in 2010. The mass
preserving registration method from Chapter 2 was registered for the competition
and final results are included into the thesis.

Chapter 6 presents an application of the intensity-based image registration
method, described in the Chapter 2, for monitoring regional disease progression
in longitudinal image studies. Areas with lower intensity in the follow up scan
compared with intensities in the deformed baseline image indicate local loss of
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lung tissue that is associated with progression of emphysema. To account for
differences in lung intensity owing to differences in the inspiration level in the
two scans rather than disease progression, we propose to adjust the density of
lung tissue with respect to local expansion or compression such that the total
weight of the lungs is preserved during deformation. Our method provides a
good intensity-based estimation of regional destruction of lung tissue for subjects
with a significant difference in inspiration level between CT scans and may result
in a more sensitive measure of disease progression than standard quantitative CT
measures.

Chapter 7 presents new methodology and experimental results on monitor-
ing local emphysema progression. We extended the framework from the Chap-
ter 6. Follow up images were first registered to the baseline image and then
local image dissimilarities were computed in the corresponding anatomical loca-
tions indicating the amount of local changes between the images. Experiments
were conducted on patients from the longitudinal study of Alpha-1 Antitrypsin
deficiency subjects scanned five times during a period of three years.

The final Chapter 8 presents general discussion and gives a brief overview
of future perspectives.

In this thesis, I used four different lung CT datasets: the pairs of CT scans
taken at full inspiration breathhold from the Danish Lung Cancer Screening
Study [67] in Chapters 2 and 6; pairs of lung CT scans taken at maximum
and minimum breathhold from the study of children with cystic fibrosis (CF)
at Sophia Children’s Hospital [68] in Chapter 2; the pairs of end inspiratory and
end expiratory phases of 4D-CT lung scans from the publicly available dataset [39]
in Chapters 3 and 4; the pairs of CT scans taken at full inspiration breathhold
from the EXAcerbations and Computed Tomography scan as Lung End-points
(EXACTLE) Trial Study [16] in Chapter 7.

The following open source software packages were used to develop the de-
scribed methods: ITK [69], CImg [70], elastix [71, 72], iso2mesh [73], exoShape∗.

∗To be released at http://www-sop.inria.fr/asclepios/software.php



Chapter 2

Mass Preserving Image

Registration for Lung CT

In theory there is no difference between practice and

theory, in practice there is.

— Jan L. A. van de Snepscheut.

This chapter is partially based on the publications ”Weight Preserving Image
Registration For Monitoring Emphysema Progression”, Gorbunova V., Lo P.,
Ashraf H., Dirksen A., Nielsen M., de Bruijne M., in proceedings of Medical
Image Computing and Computer Assisted Intervention Conference in 2008 and
”Mass Preserving Registration for Lung CT”, Gorbunova V., Lo P., M. Loeve,
H. Tiddens, Nielsen M., J.Sporring, de Bruijne M., in proceedings of Medical
Imaging SPIE Conference in 2009.

2.1 Introduction

Registration of lung CT images is increasingly used in various clinical appli-
cations. Three main applications may be distinguished as follows [74] : atlas
registration based segmentation of the lungs and structures within the lungs;
registration of longitudinal CT image series to monitor disease progression; regis-
tration of successive frames in dynamic CT sequences to estimate local ventilation
and perfusion.

15
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Examples of the first application can be found in [75, 20]. Sluimer et al. [75]
proposed to segment lungs containing dense pathologies by non rigidly registering
a set of segmented example images to the image to segment and propagating their
labels, while Zhang et al. [20] used atlas registration to initialize fissure detection
for lung lobe segmentation. Registration of scans of the same patient taken at
different points in time is applied for instance in the monitoring of lung nodules,
both to robustly match nodules in sequential CT scans [26, 27] and to visualize
nodule changes over time [50]. Recently, registration was also applied to estimate
local emphysema progression from longitudinal image data [29, 31]. Registration
of successive time frames of 4D-CT lung images is used for motion estimation in
lung cancer radiotherapy planning [49, 55, 76] and for estimation of regional lung
ventilation [52, 45, 77, 42, 35]. The end expiratory lung CT scans was registered
to the end inspiratory scans to facilitate classification of pulmonary diseases [78].

A crucial factor in image registration is the choice of a similarity measure
describing the (dis)similarity between the fixed and the deformed images. Com-
monly used image similarity functions are the sum of squared differences (SSD),
mutual information (MI) and normalized cross correlation (NCC) [79].

For intra-subject registration of lung CT images, which is the case we con-
sider in this chapter, SSD is probably the most commonly used similarity measure
[48, 27, 52, 53, 80, 81]. Sum of squared differences is optimal when correspond-
ing anatomical points are represented by the same intensity in the images, with
additional Gaussian noise. This is a valid assumption because Hounsfield unit
(HU) in CT scan represents the density of tissue. Densities of the same tissue
is often expected to remain constant in different scans. Previous studies on lung
CT scans showed that density of lung tissue depends on regional ventilation and
changes during breathing [82, 81]. The basic assumption of SSD similarity func-
tion does not hold for lung tissue and as a possible solution we propose to model
appearance of lung tissue in CT scan with respect to the regional ventilation
using a simple law of mass preservation.

In the mass preserving model, density of the lung tissue is inverse proportional
to the local volume. Therefore change in local volume could be computed from
the change in the density. First, Simon et al. [83] proposed this model and
applied it to estimate regional ventilation from image intensity in 4D-CT lung
scans. Vice versa, the change in density of the lung tissue could be computed from
the change in the local volume. Under applied local deformations the density of
the lung tissue is directly proportional to the determinant of the Jacobian of the
transform function, associated with the deformations. Recently, Reinhardt et al.
[52] showed strong correlation between regional ventilation obtained from the Xe-
CT image and the ventilation computed from the image registration procedure.
In the latter case, regional ventilation was computed from the determinant of
Jacobian of the obtained transformation between the two images.
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Several recent studies have incorporated mass preserving assumption in reg-
istration process. Sarrut et al. [81] proposed to modify lung density in a 4D-CT
image prior to registration. Tannenbaum et al. [84] proposed a completely new
registration method which establishes the optimal mass transportation between
the images while the image intensities remain constant. Castillo et al. [56] pro-
posed to incorporate the mass preserving intensity modification model into the
optical-flow registration and applied it to the 4D-CT images.

We developed our registration method based on the results from [52] and
modeled the lung tissue density using the determinant of the Jacobian of the
transform function. We modified the sum of squared differences similarity func-
tion to enable mass preservation and continuously simulated the appearance of
the lung tissue under the given deformations.

Early versions of this work appeared in [29]. Since then a similar idea has
been used by Yin et al. [85, 38], where the mass preserving image registration
was applied to breath-hold lung CT images acquired at the maximum inspiration
and maximum expiration in the same scanning session. We previously applied
mass preserving algorithm to the pairs of maximum inspiration and maximum
expiration CT scans taken on the same day [86].

In this chapter, we present the registration framework in more detail, investi-
gate the assumption of mass preservation, and present a quantitative evaluation of
registration accuracy of the proposed mass preserving image registration method
compared to a standard image registration method on a large number of CT scans
of varying quality, ranging from small to large differences in inspiration level.

2.2 Mass preserving image registration

This section briefly presents a general deformable image registration framework
based on B-Splines which is used in many medical imaging tasks [61, 36], and
explains how the proposed mass preserving methodology can be incorporated in
this framework.

2.2.1 Image Registration Outline

Consider a pair of images If and Im, referred to as fixed image and moving image
respectively. The task of registration is to find for every point in the fixed image
domain Ωf the corresponding point in the moving image domain Ωm. The ob-
tained point correspondences defines a general transform function T : Ωf → Ωm.
Validity of the transform can be assessed by comparing the deformed moving
image and the fixed image using a dissimilarity function C(If , Im ◦ T ). An opti-
mal transform should minimize the dissimilarity between the deformed and fixed
image, therefore the registration process can be formulated as a minimization
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problem, as follows,
argmin

T
(C(If , Im ◦ T )).

2.2.2 Preprocessing

To improve registration performance, segmentations of the lung fields are ob-
tained using region growing and morphological smoothing [87]. Previously, sev-
eral papers showed better performance of registration if the rib cage was erased
from the images [23, 48]. To remove the influence of the rib cage, we extract the
lung area from the images and set the background to 0HU. Finally, the image in-
tensities are shifted with a value 1000HU so that the new intensities approximate
the real densities of the tissues.

2.2.3 Transformation

We follow a common approach and use a multi-resolution image registration strat-
egy. First, the images are registered affinely. To provide an accurate initialization
of the affine transform, the trachea and main bronchi are first extracted using
a modified fast marching algorithm [87]. The center of the affine transform is
then set at the carina point in the fixed image and the initial translation is set to
the difference between the carina points in moving and fixed images. Secondly,
a series of B-Spline transforms, with corresponding Gaussian smoothing at the
coarser levels, is applied to the pre-aligned images. The final transform is thus a
composition of a global affine transform TA and N levels of B-Spline transforms
T i

B-Spline with decreasing grid size:

Tfinal(x) = TN
B-Spline ◦ ... ◦ T 1

B-Spline ◦ TA(x), (2.1)

where x = (x1, x2, x3) is a point in the fixed image domain Ωf .
In this work, we have used small step size along the gradient and multi-level

B-Spline grid to ensure that the transform is invertible [88].

2.2.4 Mass Preserving Similarity Function

We use the sum of squared differences similarity function as the basis for the
mass preserving similarity measure,

C(If , Im ◦ T ) =
1
|Ωf | ||If (x)− Im(T (x))||2L2

, (2.2)

where x is a point in the region Ωf occupied by the fixed image If , y = T (x) is
the corresponding point in the region Ωm occupied by the moving image Im.

The sum of squared differences is an optimal similarity measure if image
intensities are identical or differ with Gaussian noise. This assumption does not
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hold in case of lung CT images, where both blood and air enter the lungs during
inhalation. We used a hypothesis that majority of incoming blood stays in the
larger vessels, and only air is inhaled into the alveoli. Therefore we can presume
that mass of parenchyma remains constant and the density of lung tissue is inverse
proportional to the amount of air. Under the applied local deformations, the
induced change in local volume is defined by the determinant of Jacobain of the
associated transform function.

Using the mass preserving assumption, the intensity of the moving image Im in

a point y ∈ ΩM is inverse proportional to the change in local volume
1

det(JT−1)
in

the point y. The modeled intensity can be written Îm(y) = [det(JT−1(y))]−1 Im(y).
Assuming that the transform function T is invertible, the determinant of Jaco-
bian JT−1(y) is the inverse of the determinant of Jacobian JT (x) and the modeled
intensity of the moving image can be written Îm(y) = det(JT (x)) · Im(T (x)).

Finally, the mass preserving intensity model can be naturally incorporated in
the standard sum of square differences similarity function:

C(If , Im ◦ T ) =
1
|Ωf |

∫

Ωf

[If (x)− det (JT (x)) · Im(T (x))]2dx. (2.3)

2.2.5 Optimization

In this chapter we use a stochastic gradient descent method [51] to optimize the
similarity function. The closed form expression for the gradient of the proposed
mass preserving similarity function of (2.3) is,

DaC = − 2
|Ωf |

∫

Ωf

[If (x)− det(JT (x)) · Im(T (x))] · det(JT (x)) · (2.4)

· [vec(J−T (x))T · Davec(J(x)) · Im(T (x))−DyIm(T (x)) · DaT (x)
]

dx,

where Da represents a gradient row vector operator with respect to the transform
parameters a, Dy represents a spatial gradient vector operator, and vec(·) is the
vector constructed by concatenating all columns of a matrix. The derivation of
(2.4) is given in the Section 2.7.

In case of SSD similarity function, only voxels with non-zero image gradient
contribute to the gradient thus resulting in a higher uncertainty of registration
in homogeneous regions [47]. On the contrary, for the proposed mass preserving
similarity function of (2.4), voxels where the image gradient DyIm(y) is close to
zero also contribute to gradient thus providing additional information in homo-
geneous regions.
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2.3 Evaluation Strategy for Image Registration Accuracy

This section describes how the performance of image registration with the reg-
ular sum of squared differences similarity function (2.2) is compared to image
registration with the proposed mass preserving similarity function (2.3). Evalu-
ation of the registration procedure is done based on the vessel tree centerlines.
Additionally, the registration accuracy on a subset of images is assessed using
manually annotated landmarks.

The vessels are segmented using the algorithm described in [87]. First, the
image is thresholded with fixed intensity tv = −380HU, followed by multi-scale
local analysis of the Hessian matrix to remove non-tube like structures. Large
vessels in the hylum area are discarded. Finally, centerlines are extracted from
the segmented vessel tree using a 3D thinning algorithm [89]. Figure 2.1 shows
an example of a segmented vessel tree and the centerlines extracted from it.

(a) (b)

Figure 2.1: Surface rendering of segmented lung fields and vessels (a) and corre-
sponding vessel centerlines (b).

We measure image registration accuracy using the Euclidean distance between
vessel tree centerlines. First, we extract vessels from both moving and fixed
images. Next, the moving image vessel tree is deformed according to the final
transform coefficients. The vessel centerlines are extracted from the segmented
vessel trees in fixed and deformed images. Then the Euclidean distance map is
computed for the centerlines of the fixed image. Finally, the image registration
error is computed as the Euclidean distance map value averaged over all centerline
voxels in the deformed moving vessel tree.
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2.4 Experiments and Results

Section 2.4.1 describes the parameter settings for the two registration methods
used in all the conducted experiments. We performed three different experiments
to study the proposed mass preserving assumption. First experiment, described
in Section 2.4.2, was designed to evaluate the assumption of mass preservation and
to investigate the relationship between the volume of lungs and appearance of lung
tissue. Section 2.4.3 illustrates the behaviour of the two registration methods,
the proposed registration with mass preserving similarity function (MP) and
the registration with sum of squared differences similarity function (SSD), on a
synthetic example. Finally, the third experiment in Section 2.4.4 was designed to
investigate how the difference in lung volume effects the two registration methods.

2.4.1 Parameter Settings

We applied three levels of B-Spline transforms, N = 3, with decreasing grid size.
The first two levels were applied to the deformed moving image blurred Gaussian
σ1,2 = 1 voxel and sampled by a factor of two in each direction. The third level
was applied to the full resolution image without smoothing. The number of grid
cells in each B-Spline level was 3× 3× 3, 6× 6× 6 and 12× 12× 12 respectively.
Optimal parameters were obtained by minimizing the cost function between the
fixed and corresponding moving images.

After each level of transform we computed the current deformation field as
the sum of the deformation fields from the previous transforms. The original
moving image was then deformed with the obtained deformation field and image
intensities were adjusted with respect to the mass preserving model. The Jaco-
bian of the transform was computed using a first order difference scheme with
the step equal to the image spacing.

Each of the four transforms in (2.1) was optimized separately using the
stochastic gradient descent [51]. The number of voxel samples was chosen pro-
portional to the number of parameters to optimize but not smaller than 104, and
was set to 5 · 104 for the finest B-Spline transform and to 104 for the interme-
diate B-Spline and Affine transforms. Maximum number of iterations was 1000
for all the transforms. The maximum step length along the normalized gradient
direction was set to 0.5 mm.

Vessel trees were segmented using the algorithm as in [87]. The intensity
threshold was set to -400HU for the scans in the groups A-C, and -600 for the scans
in the group D, and the ratio of Hessian eigenvalues was set to m1 = 0.5,m2 = 0.5
for the groups A-C and m1 = 0.75,m2 = 0.5, for the group D. For more details
on the parameters of the segmentation algorithm we refer reader to [87].
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2.4.2 Experiment 1: Relationship Between Mass, Volume and Density

of Lungs

We selected 797 subjects which were scanned annually during 3 year period. All
subjects did not suffer from Chronic Obstructive Pulmonary Disease (COPD) at
the baseline and at the follow up visits according to the GOLD guidelines [5]. We
generated all possible pairs of scans of the same subject and randomly selected
1430 image pairs. We computed total lung mass, total lung volume and average
lung density for each pair of CT scans. Figure 2.2a shows the scatter plot between
relative change in total lung volume and change in total lung mass for the image
pairs. Figure 2.2b shows the scatter plot between relative change in total lung
volume and change in average density. Spearman correlation between difference in
mass and difference in volume was r = 0.14 (p < 0.001), and correlation between
difference in average density and difference in volume was r = −0.91 (p < 0.001).

We investigated the relationship between total lung volume and the shape of
histogram of a CT lung scan. We applied a simplified mass preserving model,
where the lungs were assumed to expand or contract uniformly and the intensities
were globally adjusted as

Î1(x) =
V1

V2
(1000 + I1(x))− 1000, (2.5)

where the I1 is the first image in a pair, the V1 and V2 is the total lung vol-
ume of the first and the second images in the pair. The proposed adjusting
model may result in missing intensity values, e.g., if the ratio of volumes is equal
to V1/V2 = 2 the adjusted intensities will be only even numbers. In order to
eliminate this artifact, the histograms were smoothed with Gaussian σ = 5 HU.
Finally, the histograms were normalized to represent probability distribution of
the intensities. The difference between the probability distributions of intensity
values of lung parenchyma before and after adjustment was assessed using the
Kullback-Leibler divergence.

The 1430 pairs of CT scans were split into 15 groups with the relative volume
difference varying from −37.5% to 37.5% of the mean lung volume of the two
scans. For each group, the average and the standard deviation of the Kullback-
Leibler divergence is reported in the Figure 2.2c.

2.4.3 Experiment 2: Synthetic Data

The two image registration methods were evaluated on a synthetic image pair
constructed to mimic lung tissue expansion under the mass preservation law.
Both moving and fixed images represented uniform spheres placed in the center
of the images with the background density 0 [g/L] (or intensity −1000HU). The
moving sphere S1 had radius r1 = 16 mm and density ρ1 = 200 [g/L] (or intensity
value I1 = −800HU) and the fixed sphere S2 had radius r2 = 20 mm and density
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Figure 2.2: Scatter plot (a) displays the correlation between relative change in
total lung volume and change in total lung mass. Scatter plot (b) displays the
correlation between relative change in total lung volume and change in average
lung density. Average Kullback-Leibler divergence between histograms of two
CT scans of the same subject before and after the global intensity adjustment is
presented in plot (c).

ρ2 = 100 [g/L] (or intensity value I2 = −900HU). The mass of the two spheres
was approximately equal, 1.93 g and 1.89 g respectively.

The initial affine transform was excluded from the image registration frame-
work described in Section 2.2.3 and only the multi-level B-Spline transforms were
used. Optimization parameters were identical for both image registration meth-
ods.

Figure 2.3 shows the original fixed (a) and the moving (b) spheres and the
resulting difference between the registered and fixed images for the standard
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registration method (c) and the mass preserving method (d).

(a) (b) (c) (d)

Figure 2.3: The two image registration methods were applied to a synthetic
example. The moving image (a) and fixed image (b) consist of spheres with equal
mass, but different density. Results (difference image) of the standard image
registration method (c) and the proposed mass preserving image registration
method (d).

2.4.4 Experiment 3: Registration of Lung CT scans

The third experiment was conducted on a large number of lung CT scans of
variyng quality, ranging from small to large differences in inspiration level.

• Group A: 44 image pairs of the same subject with the relative difference
between total lung volumes for baseline and follow up images ∆TV < 2.5%;

• Group B: 44 image pairs of the same subject with the relative difference
between total lung volumes for baseline and follow up images ∆TV > 9%;

• Group C: 16 image pairs of inspiratory and expiratory CT scans;

• Group D: 5 image pairs extracted at the end exhale and end inhale phases
of the 4D-CT scans from publicly available database [39].

For all four groups, we measured performance of the registration algorithms using
the proposed evaluation technique Section 2.3. For the last group, 300 manually
selected landmarks for each image pair were available. In this group we addition-
ally compared the two registration methods with the target registration error.

Longitudinal Study: Groups A and B

Two groups of low dose CT image pairs were selected from the Danish Lung
Cancer Trial Study (DLCST) database [67]. Before the acquisition, subjects
were instructed to hold their breath at maximum inspiration. Image pairs have
a time interval between baseline and follow up of approximately one year. The
in-plane resolution was 0.78×0.78 mm and the slice thickness was 1 mm. In group
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A the average relative difference between the baseline and follow up lung volumes
was 1.23± 0.77% and in group B the average difference was 14.96± 5.84%.

Evaluation results for the two image registration methods are presented in the
Table 2.1. For each patient, we computed the average distance between center-
lines registered with the standard method and with the proposed mass preserving
method. The overall improvement for each data set is presented in Figure 2.4
with box plots showing median, lower and upper quartile, and skewness of the
distribution within each group. The correlation between the relative difference
in total lung volume and decrease in error of the mass preserving method in the
two selected groups was r = 0.44 (p < 0.001).

Expiratory and Inspiratory CT Images: Group C

The group C in our experiment consists of sixteen children with cystic fibrosis
(CF) monitored at Sophia Children’s Hospital [68]. All children underwent bian-
nual CT scanning during annual checkup during a clinically stable period. Each
CT study consisted of a low-dose CT scan taken at maximum inspiration and an
ultra low-dose scan taken at maximum expiration. Before the acquisition, sub-
jects were instructed to exhale or inhale completely and to hold their breath. The
in-plane resolution was on average 0.54× 0.54 mm, the slice thickness is 2.5 mm
with a slice overlap of 1.3 mm. The difference in inspiratation level between the
two images was large and many of the expiration scans show regions of trapped
air, indicating local inhomogeneity of deformation. On average, the difference
between inspiratory and expiratory volumes was 48.27±19.69%. The inspiratory
image was set as the fixed image.

Evaluation results are presented in the Table 2.1 and the overall improvement
in the group C is presented in the box-plot Figure 2.4. Correlation between the
relative difference in total lung volume and improvement of the mass preserving
method in the selected group was r = 0.77 (p < 0.001). Figure 2.5 shows an
example result of the two image registration techniques. The expiratory image
was deformed according to the final transformation and subtracted from the
inspiratory image. The two images show corresponding slices in the difference
images for the mass preserving image registration technique 2.5a-2.5d and for the
standard registration 2.5e-2.5h.

End Exhale and End Inhale CT Images: Group D

The last group D consists of 5 pairs of images from a publicly available dataset
[39], where each pair consists of images extracted at the end exhale and the end
inhale phases of 4D CT images. In-plane resolution of the images varied from
0.97×0.97 mm to 1.16×1.16 mm and slice thickness was 2.5 mm. The study [39]
also provides 300 manually placed landmarks at the end exhale and end inhale
phases of the 4D CT images. End exhale image was set as the fixed image.
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Figure 2.4: Box plots showing the improvement in registration accuracy obtained
by the mass preserving image registration method for each of the groups A-C.
Each plot shows the median (central mark), lower and upper quartile (edges of
the box), skewness of the distribution (notches) and outliers (crosses). From left
to right: group A (44 subjects with average ∆TV = 1.23%), group B (44 subjects
with average ∆TV = 14.96%), group C (16 subjects with ∆TV = 48.27%).

Table 2.1: Average registration accuracy in each group, assessed using the ves-
sel centerline distance, for the registration with the mass preserving (MP) and
the sum of squared differences similarity function (SSD). Number in brackets
indicates the number of subjects in the group.

Vessel Centerline Distance [mm]

Group ∆TV [%] ∆TV [L] SSD MP T-test

A (44) 1.23 ± 0.77 0.07 ± 0.04 1.541 ± 0.258 1.539 ± 0.251 p = 0.604

B (44) 14.96 ± 5.84 0.83 ± 0.29 2.017 ± 0.634 1.987 ± 0.619 p = 0.028

C (16) 48.27 ± 19.69 1.53 ± 0.94 3.959 ± 1.370 3.535 ± 1.046 p = 0.003

D (5) 11.15 ± 2.86 0.37 ± 0.10 2.070 ± 0.519 2.038 ± 0.522 p = 0.160

We validated accuracy of the two image registration algorithms using two
independent validation methods. First, we validated using target registration
error (TRE) between the landmarks. The mean and the standard deviation of
TRE for each case is reported in the Table 2.3. The significance of the difference
between the two registration methods is assessed using the Student t-test. Second,
we evaluated the performance of the registration using the proposed evaluation
method from Section 2.3. The mean and the standard deviation of the vessel
centerline distance for each case is reported in the Table 2.3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: An example illustrating the registration performance of mass pre-
serving image registration (a)-(d) and standard registration (e)-(h) for the same
randomly selected subject from the group C. The difference images were con-
structed by first deforming the expiratory image and then subtracting it from
the inspiratory image. Every 20th slice, selected in the range of 40 − 100 from
the corresponding volumetric difference image is displayed from left to right.

Table 2.2: The two registration methods compared based on the proposed eval-
uation measure and the target registration error. Results of the validation based
on the landmarks are reported before the registration (Initial), after the registra-
tion was applied with the mass preserving similarity function (MP), and with the
sum of squared differences similarity function (SSD). The statistical comparison
of the target registration errors is performed using Student’s test and the p-value
is reported in the last column.

Target Registration Error, [mm]

N ∆TV % Initial MP SSD p-value

1 9.2 3.99 ± 2.75 1.15 ± 0.55 1.18 ± 0.56 p = 0.05

2 8.9 4.34 ± 3.90 1.26 ± 0.70 1.27 ± 0.68 p = 0.53

3 11.5 6.93 ± 4.09 1.79 ± 1.08 1.88 ± 1.12 p < 0.001

4 15.9 9.83 ± 4.86 2.01 ± 1.41 2.16 ± 1.54 p < 0.001

5 10.2 7.51 ± 5.53 2.31 ± 1.89 2.29 ± 1.82 p = 0.32

All 11.14 6.52 ± 4.83 1.70 ± 1.30 1.76 ± 1.32 p < 0.001

2.5 Discussion

2.5.1 Mass Preservation in Lung CT Scans

The experiment in Section 2.4.2 showed that the correlation between the change
in average lung density and the change in total lung volume was much stronger
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Table 2.3: The two registration methods compared based on the proposed evalua-
tion measure and the target registration error. results of the evaluation based on
vessel-centerline distance before the registration (Initial), after the registration
was applied with the mass preserving similarity function (MP), and with the sum
of squared differences similarity function (SSD).

Vessel Centerline Distance, [mm]

N Initial MP SSD

1 3.16 ± 2.17 1.38 ± 1.61 1.43 ± 1.61

2 4.64 ± 3.67 1.82 ± 2.35 1.80 ± 2.34

3 5.15 ± 3.80 2.16 ± 2.78 2.25 ± 2.79

4 4.86 ± 3.80 2.02 ± 2.26 2.05 ± 2.25

5 6.35 ± 6.42 2.81 ± 3.68 2.82 ± 3.65

All 4.83 ± 1.14 2.04 ± 0.52 2.07 ± 0.52

(r = −0.91, p < 0.001) than the correlation between the change in lung mass and
the change in total lung volume (r = 0.14, p < 0.001). This indicates a strong
dependency of lung tissue appearance in CT image on the level of inspiration.
The correlation between the change in mass of the lungs and the change in to-
tal lung volume was weak but significant. This may be due to the incomplete
vessel extraction, since inspiration leads to increase in perfusion and therefore to
increase in partial volume effect near the vessels.

A simplified intensity correction model based on the idea of mass preservation
was investigated in the Section 2.4.2. Analysis of image histograms of healthy
subjects from Figure 2.2c confirms the fact that the probability density function
of image intensities significantly depends on the level of inspiration. Furthermore,
the simplified global mass preserving intensity correction significantly reduced the
divergence between the histograms as shown in Figure 2.2c.

2.5.2 Mass Preserving Registration of Lung CT Images

The experiment in Section 2.4.3, conducted on synthetic data, illustrated the
principle advantage of the proposed mass preserving registration, where mass
preserving image registration leads to the expected alignment of the two spheres
equal in mass and different in volume. The SSD similarity function aligns equal
intensities and in the presented synthetic data, intensities of the two spheres were
different therefore the geometrically correct solution results in a larger value of
the SSD similarity function than the initial positioning of the spheres. The mass
preserving similarity function allows to align initially different intensities since
the intensity can be changed during the registration procedure thus resulting in
the expected alignment of the spheres.

Optimization for the sum of squared differences similarity function as well as
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the proposed mass preserving similarity function is mainly driven by high gradient
structures in the moving image. In areas where the image gradient is close to
zero, the optimization of the mass preserving similarity function additionally
incorporate the original image intensities. If the difference in intensities is induced
by local difference in regional ventilation the optimization of mass preserving
similarity function will follow the mass preserving model and align intensities
correctly with respect to the measured local volume change.

The advantage of mass preserving image registration is further confirmed in
the third experiment, especially in cases where the difference in lung volume is
large, which implies differences in regional ventilation and density. The group A
of subjects in our experiments had negligible difference in lung tissue appearance
between the two CT scans, therefore the difference between the two methods
was not significant (p=0.6). In the group B, mass preserving image registration
resulted in a relatively small, but statistically significant, improvement in regis-
tration accuracy compared to the standard image registration method (0.03 mm,
p=0.03). In group C, the most challenging group, a considerable and significant
improvement was measured (0.43 mm, p=0.003). The improvement in registra-
tion accuracy in groups A-C was strongly correlated with the relative difference
in lung volume (r = 0.78, p < 0.001). In the last group D, the improvement of
mass preserving registration assessed via manually selected landmarks was 0.06
mm, and was statistically significant (p ≤ 0.001).

A mass preserving model predicts lung tissue appearance in CT scan during
respiration based on a simple assumption: preservation of blood in lungs. The
density of lung tissue is corrected locally, within the typical size of the B-Spline
kernel, according to the change in regional ventilation as measured by the Jaco-
bian of the deformation field. We previously applied this model for monitoring
local emphysema progression in patients with COPD [29]. Recently, a similar
study was done to monitor emphysema progression in patients with Alpha-1 an-
titrypsin deficiency patients [31], where a mass preserving intensity correction
was applied after normal image registration to compensate for differences in in-
spiration level between scans. Results suggested more accurate estimates of the
disease progression in both these studies.

2.5.3 Distance Between Vessel Centerlines as a Measure for Regis-

tration Accuracy

Manual extraction of landmarks is both time consuming and prone to inter-
expert variability. In this work, instead of relying on manual landmarking we used
an automated evaluation method based on vessel tree centerlines to assess the
registration accuracy, resulting in a large number of approximately correspond-
ing landmarks throughout the lungs. The drawback of the proposed evaluation
is that vessels that are segmented in only one of the scans may lead to inflation
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of errors, whereas the absence of point correspondence may lead to underesti-
mation of errors especially in regions where vessel density is high. This could
be improved for instance by determining corresponding vessel bifurcation points
and parameterizing vessel segments in a consistent manner. However, the effects
of over- and under-estimations should be similar for the two different registra-
tion methods of the same scan pair provided that both registration methods are
reasonably good, and the vessel tree distance is therefore well suited to compare
registration accuracy of different methods on the same images.

Comparison with landmark registration error (TRE) showed that the vessel
distance measure underestimated the errors before the registration (the average
vessel distance measure was 4.83 mm while the average TRE was 6.52 mm) and
resulted in overall overestimation of errors after the registration (2.40 mm versus
1.70 mm respectively).

2.5.4 Comparison to Results in Literature

In the conducted experiments, the proposed mass preserving image registration
was better than the registration with the sum of squared differences similarity
function. The results of the registration with SSD similarity function was com-
parable with those reported in the literature. Most registration methods were
evaluated on 4D-CT scans [39, 38, 48, 37, 80, 56].

Wu et al. [48] used manually extracted landmarks from four end exhale and
end inhale image pairs from dynamic CT sequences to evaluate a B-Spline image
registration algorithm and reported an average distance between landmarks of
2.78 mm. Pevsner et al. [80] analyzed 6 pairs of end-exhale and end-inhale CT
lung scans registered using a fluid registration method with 41 landmarks and
reported a discrepancy between registered and observer-determined landmarks
of 2.9 mm on average. Vik et al. [37] evaluated a B-Spline image registration
algorithm on a set of 10 pairs of end exhale and end inhale phases of 4D-CT lung
scans with user-determined landmarks. The average distance between landmarks
was 2.85 ± 3.06 mm. Castillo et al. [39] compared optical flow and landmark-
based image registration algorithms on 5 pairs of end inhale and end exhale
4D-CT images as in our experiments. The average accuracy was 6.9 ± 0.1 mm
for the optical flow image registration and 2.5 ± 0.02 mm for landmark-based
registration. Another study by Castillo et al. [56] reported the average TRE of
1.59 mm obtained on the first 3 pairs of the end exhale and end inhale phases
of 4D-CT scans. The target registration error of the proposed mass preserving
registration method applied on the same 5 pairs end inhale and end exhale phases
of 4D-CT scans was 1.70 mm on average.

In our experiments on group C, the pairs of maximum expiration and maxi-
mum inspiration CT lung scans, the average vessel distance after the mass pre-
serving registration was relatively large 3.53 mm. This group was the most chal-
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lenging because of large difference in volume and large amount of pathology such
as air-trapping and fibrotic tissue. In this group, the mass preserving registra-
tion showed clear improvement compare to the registration method with the SSD
similarity function.

Registration of pairs of inspiratory lung CT scans generally produces more
accurate results than can be obtained for expiration/inspiration scan pairs or
end-exhale/end-inhale images from 4D-CT. Our experiments on longitudinal in-
spiratory CT lung scans showed comparable accuracy of mass preserving registra-
tion 1.76 mm to the results on similar studies reported in the literature [25, 23].
Betke et al. [25] evaluated an image registration algorithm on 10 pairs of re-
peated inspiratory CT scans using RMS between corresponding surface points
and measured error of 3.7 mm. Murphy et al. [23] reported an average error of
only 0.7 mm evaluated on a set of semi-automatically extracted landmarks. In
the study, selection of landmarks was supported by a thin-plate spline landmark
registration algorithm, potentially favoring smooth deformation fields.

2.6 Conclusion

In this chapter we investigated the assumption of mass preservation during
breathing cycle on the large number of CT scans of varying quality, ranging from
small to large difference in inspiration level. We incorporated the mass preserving
model into a standard image registration method and evaluated it synthetic data
and intra-subject lung CT scans. The results showed that the mass preserving
model is a plausible model which describes the change in density in lung CT scans
during breathing cycle. Furthermore, the performance of the image registration
method with the mass preservation is superior for image pairs with a considerable
difference inspiratory level than the image registration method without mass
preservation assumption.

2.7 Appendix: Gradient of the mass preserving similarity

function

In this section we derive the analytical expression for the gradient of the proposed
mass preserving similarity function as given in (2.4). Consider the similarity
function (as in (2.3)):

C(If , Im ◦ T ) =
1
|Ωf |

∫

Ωf

[If (x)− det(JT (x)) · Im(y)]2dx, (2.6)

where
∫ ◦dx is a shortened notation of the volume integral

∫ ∫ ∫ ◦dx1dx2dx3. The
transform y = T (x) depends on the set of parameters a, T (a,x). For simplicity,
we shorten the notation of the Jacobian determinant |J | = det(JT (x)), the fixed
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image value in a point x as If = If (x), the transformed point y = T (x,a), the
moving image value in the transform point Im = Im(y) and label the observed
difference in intensities at a point x with respect to the transform parameters a
as a function G(a,x):

C(If , Im ◦ T (a)) =
∫

Ωf

G(a,x)2 dx,

G(a,x) = If (x)− det(JT (x)) · Im(y(a,x)) = If − |J |Im.

Using differential algebra we write the full differential of the similarity function,

dC(a) =
∫

Ωf

2GdGdx,

dG(a,x) =DxIfdx− |J |tr(J−1dJ)Im − |J |DyImdy

=DxIf dx− |J |


tr(J−1dJ)︸ ︷︷ ︸

(∗)

Im +DyImdy


 , (2.7)

where the notation dC stands for the full differential of the function C. Using
the definition of the vec operator, we can simplify the term (*):

tr (J−1dJ) = vec(J−T )T vec(dJ). (2.8)

Further the term vec(dJ) can be expanded,

vec(dJ) = d(vec(J)) = Davec(J) da +Dxvec(J) dx, (2.9)

and by substituting (2.9) into (2.8) we get

tr (J−1dJ) = vec(J−T )T · Davec(J) da + vec(J−T )T · Dxvec(J) dx, (2.10)

where Da is the gradient in the direction of the transform parameters a and Dx

is a spatial gradient. The differential dy is defined as

dy = Day da +Dxy dx = Day da + J dx. (2.11)

By substituting (2.10) and (2.11) into (2.7) we get the full differential of C(If , Im◦
T ):

dG(a,x) =DxIf dx− |J | · DyIm · J dx− |J | · Im · vec(J−T )T · Dxvec(J) dx

−|J | · vec(J−T )T · Davec(J) da · Im − |J | · DyIm · Day da.

Finally, since x is fixed, we find that the partial derivative of C(If , Im ◦ T ) w.r.t.
the transform parameters a is

DaC = − 1
Ωf

∫

Ωf

2(If − |J | · Im)|J | (vec(J−T )T · Davec(J) · Im −DyIm · Day
)

dx,



2.7. APPENDIX: GRADIENT OF THE MASS PRESERVING SIMILARITY
FUNCTION 33

where DyIm = (∂y1Im; ∂y2Im; ∂y3Im) is the spatial row-vector gradient and Da is
the row-vector gradients the transform T (x) = y = (y1; y2; y3) in the direction of
the transform parameters a,

Day =




∂a1y1 ... ∂any1

∂a1y2 ... ∂any2

∂a1y3 ... ∂any3


 . (2.12)





Chapter 3

Curve- and Surface-based

Registration of Lung CT images

via Currents

This chapter is based on the publication ”Curve- and Surface-based Registration
of Lung CT images via Currents”, Gorbunova V., Durrleman S., Pechin L., Pen-
nec X., de Bruijne M., in proceedings of The Second International Workshop on
Pulmonary Image Analysis in conjunction with the Medical Image Computing
and Computer Assisted Intervention Conference 2009.

3.1 Introduction

Registration of chest CT scans is an important topic within pulmonary image
analysis. The general task of registration is to establish a point-to-point cor-
respondence between two images. Registration of lung CT images can be used
in various clinical applications, such as lung cancer radiotherapy planning and
quantitative analysis of disease progression.

Image registration methods can be separated into two general groups: intensity-
based and feature-based methods. Intensity-based methods integrate spatial in-
formation over the entire image domain, whereas feature-based methods require
a representation of the image data in terms of distinctive geometrical structures.
Feature-based methods offer more robust registration when image intensity is
changed, for instance owning to pathology, image artifacts or differences in scan
protocol. Generally, segmentation of geometrical structures in lungs is less sensi-

35
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tive to intensity changes, since a segmentation method incorporates geometrical
regularity constraints or prior anatomical knowledge. Moreover, segmentation of
distinctive lung structures may be either corrected manually or delineated by a
professional.

The most distinctive anatomical structures in lung CT images are vessels,
airways, lobe fissures and lung surfaces. Deformation of lungs surfaces and lobe
fissures provide an insight into the global motion of the lungs, while deformations
of vessels and airway tree characterize small-scale deformations inside the lungs.

A feature-based registration relies on various geometrical structures, e.g.,
points, curves or surfaces. Thin-plate spline image registration [44, 90, 91] is
the standard method for matching points under the assumption that deforma-
tions are small. For large deformations, a diffeomorphic point matching approach
was developed by Joshi and Miller [92] and was later adapted for surface match-
ing [93]. Current-based diffeomorphic method for surface matching under the
large deformations, pioneered by Glaunès et. al. [93], was further developed and
adapted for curve matching problem [94, 95]. Within a framework of currents,
no point correspondence between structures is required.

Several surface-based registration methods were previously developed for lung
CT images [37, 76, 25]. The outer surface of the lungs together with the outer sur-
face of vessels were used in an algorithm similar to iterative closest point methods
in [37]. Lung surfaces were used to register CT lung images [25] and to constrain
intensity-based registration with a deformation field obtained from surface match-
ing procedure [76]. The two main advantages of the feature-based registration of
lung CT images via currents are: no point correspondence is required and unified
representation of curves and surfaces. The low dimensional geometrical features,
such as curves and surfaces contain much fewer points compared to dense inten-
sity images, thus feature-based registration can be more efficient. Moreover, in
the framework of currents, dimensionality of image features may be reduced even
more without decreasing registration accuracy [96].

In this chapter we apply the current-based registration method, pioneered
by Glaunès et. al. [93] and further propagated by Durrleman [95, 97], to three
feature sets: vessel centerlines, lung surface and combined set of centerlines and
surface. We evaluated the registration methods on a set of 5 pairs of end ex-
halation and end inhalation phases of 4D-CT images with manually annotated
landmarks.

3.2 Registration via Currents

This section describes how lung CT scans can be registered using the framework
of currents, developed in [93, 98]. Firstly, Section 3.2.1 explains how curves
and surfaces are represented via currents. Secondly, Section 3.2.2 describes how
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anatomical lung structures, e.g., vessel tree and lung surfaces, were adapted to
the framework of currents. Finally, Section 3.2.3 provides details of current-based
registration of curves and surfaces.

3.2.1 Representation of curves and surfaces

In the framework of currents [93, 94, 97], geometrical shapes such as curves and
surfaces are represented with a set of vectors. A current is encoded with a finite
set of vectors attached to the specified positions. A curve C(x) can be defined
with its tangent vector τ(x) at each position x. In a discrete setting, curve is
considered as a set of piece-wise linear segments, where each segment is repre-
sented by its center point, tangential direction, and segment length. Similarly, a
surface S(x), with a constructed mesh, is defined with the normal direction n(x),
face center x and area. Both surfaces and curves are thus encoded into currents
as a set of vectors. Geometrical shape in the framework of currents is defined
in a weak form, as the action of the shape on a test vector field w from a space
of possible vector fields W . The current of a curve C(ω) is defined by the path
integral along the curve through the test vector field w,

C(ω) =
∫

C
w(x)τ(x)dx. (3.1)

And the current of a surface S(ω) is defined by the flux of the vector field w

trough the surface,

S(ω) =
∫

S
w(x)n(x)dx. (3.2)

The space W of test vector fields is a space of square integrable vector fields con-
volved with a Gaussian kernel with standard deviation λW [97, 94]. The norm of
the current, µ(C), is defined in the dual space W ∗, as the maximum action of the
current among all possible test vector fields ||µ(C)||W = sup||ω||W≤1 C(w). The
scale λW controls matching accuracy, for example, curves or structures located
within the scale size are considered similar, and their shapes should be matched
with accuracy proportional to the scale size.

3.2.2 Lung structures as currents

In this chapter we used distinctive anatomical lung structures such as vessels
and lung surfaces as features for registration. Figure 3.1a shows an example
of segmented lung structures. The lung fields and vessels are segmented with
the algorithm described in [87]. A sparse triangulation of the lung surfaces was
computed via the marching cube algorithm [73]. For each face, the corresponding
normals were computed and oriented to point outwards of the surface. Figure 3.1b
shows an example of the constructed current for a lung surface.
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(a) Example of segmented lung
surface and lung vessel tree

(b) Current corresponding to a lung surface.

(c) Current corresponding to a vessel tree centerlines.

Figure 3.1: Example of segmented lungs surface and vessel tree (a); triangulation
of the lungs surface (black mesh) with the corresponding current (red vectors) (b);
current corresponding to the vessel tree centerlines (red vectors) with a zoom-in
(c).

Vessel tree was segmented as follows: a lung image was thresholded with a
fixed intensity value tv = −600HU , then a local analysis of Hessian matrix was
performed in order to remove non-tube like structures. Large vessels segmented
near the hilum area were omitted from the vessel tree segmentation. For more
details on vessels segmentation algorithm we refer the reader to [87]. Centerlines
were extracted from the segmented vessel tree using a 3D thinning algorithm [89].

The tangential direction of a centerline was computed via local principal com-
ponent analysis. For each centerline point we extracted neighboring centerline
points, applied PCA to the point cloud, and assigned the first principal compo-
nent to the tangential direction at the centerline. For centerlines sufficiently far
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from vessel bifurcation and neighboring vessel, the principal direction points to
a tangential direction of the centerline. For centerlines close to the bifurcation
the principal direction points between the two splitting vessel centerlines. This is
consistent with the framework of currents, were the action of each vessel direction
results in a joint action at the bifurcation point. The orientation for the positive
direction was set to point outwards from the center of the image. Figure 3.1c
shows an example of the constructed current for a segmented vessel tree and a
zoom-in into a bottom part of the image.

3.2.3 Current-based Image Registration

In this chapter, we combine the previous work on matching curves [94] and sur-
faces [93] via currents. The similarity measure between two curves Cf , Cm or
two surfaces Sf , Sm is defined as the squared norm of the difference in µ for
corresponding currents with respect to the test vector field w ∈ W :

E(Cf ; Cm) = ||µ(Cf )− µ(φ · Cm)||2W , (3.3)

for fixed and moving curves Cf and Cm respectively. And

E(Sf ; Sm) = ||µ(Sf )− µ(φ · Sm)||2W , (3.4)

for fixed and moving surfaces Sf and Sm respectively, where φ is a diffeomorphic
transform function. Combining two similarity terms for curves (3.3), surfaces
(3.4) and a regularisation term with trade-off coefficients γC , γS , γφ in a final cost
function gives:

E(Cf , Sf ; Cm, Sm) = γC ||µ(Cf )− µ(φ · Cm)||2W + γS ||µ(Sf )− µ(φ · Sm)||2W
+ γφReg(φ). (3.5)

Diffeomorphic transformation φ of curves and surfaces was modeled in the frame-
work of large deformation diffeomorphic matching [92, 94], where deformation of
each feature is defined by a velocity vector field vt = φ′t. The smooth velocity field
vt is described via Gaussian kernel with standard deviation λV , where λV deter-
mines the typical scale of the deformations [97, 94]. To guarantee smoothness of
the final diffeomorphism, we defined the regularisation term as in [97],

Reg(φ) =
∫ 1

0
||vt||2V dt. (3.6)

3.3 Experiments

In order to quantify the accuracy of the proposed registration method with a
ground truth, we used images from a publicly available dataset [39]. For each
image pair, 300 manually placed corresponding landmarks were provided [39].
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Five pairs of images, where each pair consists of images extracted at end exhale
and end inhale phases of 4D CT image, were used in our experiments. In-plane
resolution of the images varied from 0.97× 0.97 mm to 1.16× 1.16 mm and slice
thickness was 2.5 mm.

3.3.1 Parameter Settings

Vessel tree were segmented using the algorithm as in [87] with the intensity
threshold −600 HU, ratio of Hessian eigenvalues was set to m1 = 0.75, m2 = 0.5.
For every centerline point we extracted a neighboring centerline points from the
cube neighborhood of 7× 7× 7 voxels size and computed the principal direction
of the centerlines. All the direction vectors were normalized to 1. Figure 3.1c
shows an example of the extracted currents for vessel centerlines with a zoom-in
to a lower part of the lungs. A regular surface triangulation was constructed with
a marching cube algorithm with further simplification of the mesh [73]. Normal
directions to each of the face were normalized to 1.

In our experiments, end inhale phase of 4D-CT image was registered to end
exhale phase. The following internal parameters of image registration were se-
lected manually. The accuracy of feature alignment λW was set to 5 mm for
curves and 10 mm for surface features. The parameter λV for spatial variability
of deformation velocity field was set to 25 mm for both types of features. The
weight coefficients in the cost function (3.5) were set to γC = 1 for the curve
matching term, γS = 0.01 for the surface matching term and γφ = 10−4 for the
regularizer. The cost function was minimized with a standard gradient descent
approach.

3.3.2 Results

We evaluated four registration methods, as follows: combined curve- and surface-
based registration with cost function (3.5); curve-based registration with cost
function (3.3); surface-based registration with cost function (3.4); and a free-form
B-Spline intensity-based method as in [29]. We compared registration accuracy
of the four methods based on the alignment of 300 landmarks distributed uni-
formly in lung area, Figure 3.2b shows an example of the spatial distribution of
landmarks within the lungs.

The overall accuracy of the image registration methods was defined as the
mean Euclidean distance between landmarks, target registration error (TRE), in
millimeters. The mean and the standard deviation of TRE for the four methods
is reported in Table 3.3.2. We performed Wilcoxon rank-sum test on TRE distri-
bution to compare the combined curve- and surface-based registration with the
curve-based and surface-based methods individually. Results are reported in the
Table 3.3.2. Box-plots in Figure 3.2a show the overall accuracy of the four image
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Table 3.1: Registration error at the landmark positions in [mm] for the four reg-
istration methods. The mean (m) and the standard deviation (sd) are reported.
Statistical comparison of combined curve- and surface-based registration method
was performed against the surface-based and curve-based methods. The notations
of statistical significance level are as follows: ∗ corresponds to p ≤ 0.05 and ns to
p > 0.05. The most right column indicates percentage of landmarks, where the
combined curve- and surface-based registration outperforms the intensity-based
registration.

Image Registration Accuracy in mm [m ± sd]

N Before Combined Surface Curve Intensity %

1 3.89± 2.78 1.47± 0.72 2.45± 1.56∗ 2.24± 1.41∗ 1.23± 0.61 37.7

2 4.34± 3.90 2.19± 1.98 3.63± 2.94∗ 2.32± 2.06ns 1.26± 0.67 39.0

3 6.94± 4.05 3.30± 3.05 5.31± 3.26∗ 3.03± 2.79∗ 1.86± 1.11 25.0

4 9.83± 4.86 3.34± 2.67 5.98± 3.74∗ 5.28± 4.52∗ 2.15± 1.48 36.0

5 7.48± 5.51 3.83± 3.54 5.80± 4.37∗ 4.40± 4.42∗ 2.32± 1.82 40.0

All 5 cases
6.50± 4.83 2.83± 2.72 4.63± 3.58∗ 3.45± 3.48∗ 1.76± 1.31 35.5

Mdn 5.13 1.85 3.53 2.37 1.44

registration methods on a complete set of landmarks over all five cases.
Correlation between TRE for the intensity-based and combined curve- and

surface-based registration was ρ = 0.5, varying from 0.17−0.59 for the five cases.
Overall, for 35.5% cases of landmarks the combined curve- and surface-based
registration method performed better than intensity-based method.

3.4 Discussion

Figure 3.2a shows that the curve-based method alone provides good registration
accuracy for the majority of landmarks. However, there are many outliers present
with errors of up to 2.5 cm. Within the framework of currents, points located
further than the typical scale of deformations λV are not affected by deformations
of the features, which might cause landmarks distant to the vessel centerlines to
be misaligned. Surface-based registration result in a slight overall improvement
in TRE compare to the initial configuration. In contrast, incorporating both
surfaces and curves into feature-based registration results in more accurate reg-
istration (1.85 mm) compared to both curve-based (2.37 mm) and surface-based
(3.53 mm) methods.

The median of TRE for the combined curve- and surface-based registration
was 1.85 mm compared to 1.44 mm for the intensity-based method. Several rea-
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(a) Box-plot of target registration errors. (b) Distribution of landmarks.

Figure 3.2: Target registration errors (TRE) is shown in (a), as follows, be-
fore registration was applied (Initial), after surface-based (Suface), after curve-
based (Curve), after combined curve- and surface-based (Combined) and after
intensity-based registration (Intensity). Example (b) shows the spatial distribu-
tion of landmarks in the lungs. The landmarks, better aligned with the combined
feature-based method are shown in red and with the intensity-based method in
blue.

sons may lead to larger TRE for the combined curve- and surface-based method,
such as inconsistency in segmentations of vessels in the two images. Ambiguous
segmentation of lung surface near the hilum may leads to large missregistration
errors in this area. Figure 3.3b shows a difficult case in the data with irregular
centerlines in the back of the lungs. Registration of lung images based on such
geometrical structures as vessels centerlines and lung surfaces can be naturally
improved by including airways and lung fissures into the presented framework.

In order to understand where are the main differences between the feature-
based and intensity-based method, we visualized discrepancy between the two
deformation fields in Figure 3.3a. For illustration purpose, we sparsely selected
points, where the orientation between deformation vectors were above 60◦ and
with the magnitude of discrepancy vectors more than 3 mm and plotted inside the
lung area. Interestingly, the discrepancy between the feature- and intensity-based
methods were localized.

We further investigate image slices located at the areas, where the discrep-
ancy between the two methods was the largest (blue cut planes in Figure 3.3a).
Figure 3.4 shows the difference image with the moving image subtracted from
the fixed image for both registration methods. Overall, lung surfaces and small
vessels were aligned more accurately with the feature-based registration method.

Another important component of currents is the length or the weight of the
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direction vector. For the task of registration of repeated lung CT images, the
current for a small vessel could be given more weight than for a large vessel,
leading to more accurate registration of small vessels. This is an important
advantage of current-based registration over intensity-based method, where small
vessels with low contrast to surrounding lung tissue have negligible impact on the
overall cost function. In this chapter we used equal weights for all currents and
normalized the length to 1.

On average, 35.5% of landmarks were aligned better with the curve- and
surface-based registration. The low correlation coefficient (0.5) suggests that the
two registration methods align landmarks differently and may be combined into
a more robust registration method.

(a) Deformation vectors for the combined
curve- and surface-based (magenta) and
intensity-based (green) methods methods
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(b) Example of irregular current

Figure 3.3: (a) An example of discrepancy in deformation fields between the
feature-based and intensity-based registration methods. (b) An example of an
ambigious current for the back of the lung.

3.5 Conclusion

In this chapter, a curve- and surface-based registration method is presented,
where lung surfaces and vessel tree centerlines are built-in into the framework
of current-based registration. Incorporating both centerlines and surfaces results
in more accurate registration than curve- or surface-based registration method
alone. The proposed combined curve- and surface-based registration method
achieves slightly lower accuracy than intensity-based registration but for 35.5%
of landmarks outperformed the intensity-based method. A natural extension of
the presented work will be incorporating more anatomical lung structures, such
as airways and fissures, to improve the feature-based method.

Results show that the proposed feature-based registration method is robust
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to inconsistent segmentation and outliers in segmented features and capable of
handling imperfect segmentations. In applications where importance of different
features varies, the prior weight of a feature may be encoded into the presented
registration framework. Results suggest that a natural improvement of registra-
tion would be obtained by combining the feature- and intensity-based methods.
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Intensity−based IR Feature−based IR

(a)

Intensity−based IR Feature−based IR

(b)

Figure 3.4: Visual comparison of the combined feature-based and intensity-based
registration methods. Slice cuts (a), (b) from the difference image between fixed
and deformed image for the intensity- and combined feature-based registration
methods were extracted on the same level as the plane cuts in Figure 3.3a. In
general, the currents-based registration aligns the vessels and lung surface better,
as can be seen in the areas indicated with the red circles and arrows.





Chapter 4

Lung CT Registration Combining

Intensity, Curves and Surfaces

Take a chance and you may lose. Take not a chance

and you have lost already.

— Søren Kierkegaard.

This chapter is based on the publication ”Lung CT Registration Combining
Intensity, Curves and Surfaces”, Gorbunova V., Durrleman S., Lo P., Pennec X.,
de Bruijne M., in proceedings of IEEE International Symposium on Biomedial
Imaging 2010.

4.1 Introduction

The ultimate goal of an image registration algorithm is to establish dense point-
to-point correspondence between two images. Generally, registration of lung CT
images is a difficult problem due to the possible large variation between the scans.
Scans of the same patient taken at maximum inspiration, can have more than
a liter difference in lung volume. The registration of end exhale and end inhale
phases of 4D-CT lung images is an even more difficult problem due to the large
and non-uniform deformations during the breathing cycle [53].

Image registration methods can be divided into two groups of methods: intensity-
based and feature-based. Feature-based methods establish deformations based

47
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on low-dimensional features derived from the original images, e.g. points, curves
or surfaces, while intensity-based methods consider intensity information over
complete image. Several feature-based registration methods were developed for
lung CT scans [37, 76, 25, 99]. However intensity-based registration methods are
prevalent for the general purpose registration of lung CT scans [36, 48, 53, 52,
81, 29, 28, 39].

Intensity-based registration methods generally produce more accurate re-
sults [37, 24, 46]. Major drawback of the feature-based registration methods is
the necessity to extract reliable features, e.g., landmark-based registration meth-
ods [39, 99, 25] require manually selected landmarks, and methods similar to the
iterative closest point algorithm [37] require a good parameterization of the seg-
mented structures. Recently, a current-based registration method was proposed
for registration of surfaces [93] and curves [97, 94], where no point correspon-
dence is required. We previously adapted the current-based registration for lung
CT scans and showed that the accuracy of the current-based registration was
slightly worse than the accuracy of the intensity-based registration [46], although
in 35 % of the landmarks, the current-based registration resulted in smaller target
registration error.

While feature-based method can more accurately estimate deformation fields
of the features, the intensity-based method can benefit from its results and im-
prove the overall accuracy of alignment further away from the features. The
direct combination of two different registration methods is usually not possible,
particularly if the underlying deformation models are different. For example, in
parametric non-rigid registration, deformation fields are commonly modeled with
spline functions [36, 61, 44], while in non-parametric methods deformation fields
are usually modeled using partial differential equations [62].

We propose a combined registration method, where the deformation field of an
intensity-based registration is constrained with the results from a feature-based
method. This constrained registration method is alternated with the feature-
based registration method in an iterating scheme. A similar solution was pre-
viously proposed by Hellier et al. [100] where the deformation field between the
corresponding sulcus lines was incorporated into the optic-flow based registra-
tion of the brain MRI scans. In the work [100], sulci in the two images were
parameterized and deformations were obtained from corresponding points in the
two curves. In contrast, in our feature-based registration curves and surfaces are
represented without direct point correspondence, therefore consistent segmenta-
tion of the curves or surfaces in the two images is not required for the combined
registration.

Our previous work [60] presented a combined registration method, where the
intensity information was combined with the anatomical lung structures, e.g.,
vessel centerlines and lung surfaces. In this chapter we give a detailed description
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of the proposed combined registration algorithm and evaluate performance on a
publicly available set of 10 lung CT image pairs [39] with manually annotated
landmarks.

4.2 Background and Previous Work

Generally, simple geometrical structures, e.g., points, curves and surfaces, which
corresponds to distinct anatomical structures, are used as features in the feature-
based registration. However more advanced features such as attribute vector [101]
or filter response [102, 103] are also used in feature-based registration. Growing
number of papers propose to combined geometrical features with intensities in
registration framework [90, 104, 105, 106, 58, 100, 100, 76, 59, 103].

K. Rohr et al. [104] and H.J. Johnson et al. [90] proposed to combine land-
marks with intensity based registration via an alternating approach. Minimiza-
tion of the target registration error was alternated with the minimization of dis-
similarity measure between images, thus achieving an optimal transformation.

Methods that combine curves and surfaces with intensities for registration
purposes are common in magnetic resonance imaging field for analysis of brain
MRI scans. Sulci and cortical surfaces were successfully combined with the in-
tensity information [105, 58, 100, 106]. P. Cachier et al. [105] and P. Hellier [100]
presented similar methods, where sulci were represented with a set of points
and deformations between the corresponding sulci and intensity-based similarity
measure were both incorporated into a cost function. D.L. Collins et al. [106] in-
vestigated different approach, where chamfer distance between the corresponding
sulci was introduce into the registration framework. T. Liu et al. [58] proposed
a multi-step registration algorithm where volumetric mapping was further im-
proved by sequential surface alignment.

On contrary, combined feature-based and intensity-based registration of lung
CT scans is not well investigated topic [76, 59, 103, 60, 107]. Recently, Li et
al. [76] developed an image registration algorithm for lung CT images, where the
intensity-based registration was improved with the subsequent bio-mechanical
simulation of lung inflation obtained from lung surface deformations. The study [59]
presents another hybrid method, where the registration algorithm integrates
intensity-based and feature-based methods. The cost function incorporates dif-
ference in intensities and difference in the distances to the annotated surfaces.
Similar approach was proposed in [107], where cost function incorporates dissim-
ilarity between the original images and between the vessel probability images.
A hybrid approach where features of lung CT scans were determined from an
eigenvalue analysis and further considered along with the intensities in the reg-
istration procedure [103]. In all the above studies, results showed improvement
of the combined registration methods compare to the registration methods based
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on the intensity alone.

4.3 Method

Section 4.3.1 briefly repeats the feature-based registration method from the Chap-
ter 3. The non-rigid intensity-based registration method from the Chapter 2 is
described in the Section 4.3.2. Detailed description of the proposed registration,
where the intensity is constrained with the deformations of anatomical lung struc-
tures, is given in the Section 4.3.3. Finally, the details of an iterating scheme,
where the combined registration is alternated with the feature-based registration
is described in the Section 4.3.4.

4.3.1 Current-based Registration

In our previous work, we developed a feature-based registration, where vessel cen-
terlines and lung surfaces, were used to establish spatial correspondence between
lung CT scans [46]. Both vessel centerlines and lung surfaces were represented in
a framework of currents and aligned using the metric on currents. The current
µ for a vessel centerline C is represented by tangential vectors attached to the
centerline points, and for a triangulated surface S it is represented by normal di-
rections attached to the centers of each face. Figure 4.1a show an example of the
currents for the vessel centerlines, and the lung surfaces is shown in Figure 4.1b.

Norms of a currents for curves and surfaces, µ(C) and µ(S), are defined via
a path integral along the curve or a flux integral through the surface [94]. The
cost function between anatomical lung structures in a fixed image Cf and Sf

and a moving image Cm and Sm is defined as a weighted sum of the similarity
measures between currents for the vessel centerlines Cf and Cm, the similarity
between currents for surfaces the Sf and Sm, and a regularization term:

E(Cf , Sf ;Cm, Sm) =γC ||µ(Cf )− µ(φ · Cm)||2W + γS ||µ(Sf )− µ(φ · Sm)||2W
+γφ

∫ 1

0
||vt||2V dt. (4.1)

Diffeomorphic transformation φ of curves and surfaces was modeled in the frame-
work of large deformation diffeomorphic matching [94], where deformation of each
feature point is defined by a velocity vector field vt = φ′t. The smooth velocity
field vt is described via a Gaussian kernel with standard deviation λV , where
λV determines the typical scale of the deformations [97]. The smoothness of the
currents is determined by the parameter λW [97].

4.3.2 Intensity-based Registration via B-Splines

In this chapter we used a multi-resolution B-Spline image registration frame-
work [61] for the intensity-based registration. First, lung regions were extracted
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(a) (b)

Figure 4.1: Example of currents constructed for the segmented vessel centerlines
(a) and the lung surfaces (b), both seen from the side.

from the CT images and the background value was set to 0 HU. Images were
aligned with affine transform TA. Subsequently, a series of N B-Spline trans-
forms T i=1..N

B-Spline with decreasing grid size was applied to the affinely registered
images. Thus, the final deformation is a composition of the affine transform and
N levels of the B-Spline transforms:

Tfinal(x) = TN
B-Spline ◦ ... ◦ T 1

B-Spline ◦ TA(x), (4.2)

where x is a point in the fixed image domain Ωf . We use the sum of squared
intensity differences as the similarity measure between the images,

Eint(If , Im; T ) =
1
|Ωf |

∫

Ω
[If (x)− Im(T (x))]2dx, (4.3)

where If (x) is the fixed image, defined in the fixed image domain Ωf , Im(y) is
the moving image, defined in the moving image domain Ωm. After each level of
transform the moving image Im(y), where y = T (x), is deformed with the sum
of the obtained transforms and interpolated using linear interpolation.

4.3.3 Constrained Registration

We propose to constrain the intensity-based registration of Section 4.3.2 with the
deformation field obtained from the current-based registration of Section 4.3.1.
We constrain B-Spline deformation field ~DB-Spline(x) to match the given defor-
mation field ~Dcurr(x) by minimizing the L2 distance between the deformations.
Since the current-based registration uses anatomical lung features to establish the
correspondence, the deformation field in locations close to the extracted features
is expected to be more reliable than further away from the features. Thus, we
propose to incorporate a spatially varying weight w(x) ∈ [0; 1],x ∈ Ωf into the
constraint between the deformation fields, which defines the trade off between
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matching intensity and deformations for every voxel x. The combined cost func-
tion then consists of the sum of squared intensity differences similarity function
and constraint on the deformation field:

E(If , Im; T ) = Eint + λEdef =

=
1
|Ω|

∫

Ω
(1− w(x)) [If (x)− Im(T (x))]2dx

+
λ

|Ω|
∫

Ω
w(x)|| ~DB-Spline(x)− ~Dconstr(x)||2dx, (4.4)

where the constraining deformation field is ~Dconstr(x) = ~Dcurr(x) and the coeffi-
cient λ compensates for the difference in units of the two terms. The deformation
field ~DB-Spline(x) is a vector field defined as ~DB-Spline(x) = T (x)−x. Using vector
notation, the gradient of the cost function (4.4) can be computed explicitly:

DaE(If , Im; T ) =− 2
|Ω|

∫

Ω
(1− w(x)) [If (x)− Im(T (x))] · [DxIm DaT ] dx

− 2λ

|Ω|
∫

Ω
w(x)( ~DB-Spline(x)− ~Dcurr(x))TDaTdx. (4.5)

Where the symbol Dx denotes the spatial gradient vector operator Dx(·) =
( ∂

∂x1
(·); ∂

∂x2
(·); ∂

∂x3
(·)), and the symbol Da denotes the gradient vector operator

with respect to the transform coefficients Da(·) = ( ∂
∂a1

(·); ... ∂
∂aN

(·)).
In the multi-level framework of the intensity-based image registration de-

scribed in Section 4.3.2, each level of the transform is constrained separately.
The initial affine transform is not constrained, and for the subsequent N levels
of the B-Spline transform the deformation field at a given point is constrained
with the remaining deformation field, as follows:

~Dlevel
constr(x) = ~Dcurr(x)− ~Daff(x)−

level-1∑

i=1

~Di
B-Spline(x). (4.6)

4.3.4 Iterative Scheme

The described combined registration method is naturally extended to an itera-
tive approach where registration alternates between the combined method from
the Section 4.3.3 and the current-based registration from Section 4.3.1. The in-
teraction of the two registration algorithm presented in the Figure 4.2. After
a level i of the combined registration, the vessel centerlines currents µ(Cf ) and
lung surfaces currents µ(Sf ) extracted from the fixed image are deformed with
the obtained deformation field ~Di

B-Spline and a new iteration of the current-based
registration of Equation (4.1) restarted on the deformed currents, defined as:

µi+1(Cf ) =µ(Cf · ~Di
B-Spline) (4.7)

µi+1(Sf ) =µ(Sf · ~Di
B-Spline) (4.8)
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Figure 4.2: The workflow of the iterative image registration. The combined
registration from Section 4.3.3 is applied between the original fixed image If (x)
and the original moving image Im(y) with the constrain on the deformation
field ~Dconstr(x). The subsequent current-based registration from Section 4.3.1
is applied between the deformed currents of the fixed image µ(Cf ), µ(Sf ) and
the currents of the moving image µ(Cm), µ(Sm). Detailed description of the
algorithm is given in Algorithm 4.1.

Since the current is a set of vector points, the deformed current is obtained from
the deformation of the start and the end points of each vector. Details on the
initialisation and step-by-step description of the iterative process is summarised
in Algorithm(4.1). Using the described scheme we can iterate the current-based
and the combined registration gradually improving the result.

4.4 Experiments

4.4.1 Data

We conducted experiments on ten publicly available image pairs extracted at the
end exhale and end inhale phases of 4D-CT scans [39]. The study also provides
300 manually placed landmarks for each image pair. The landmarks were uni-
formly distributed over the lungs. In-plane resolution of the images varied from
0.97×0.97 mm to 1.16×1.16 mm and slice thickness was 2.5 mm. For each pair,
the image extracted at end inhale phase of 4D CT image was registered to the
image extracted at end exhale phase.
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Algorithm 4.1: Algorithm describes the iterating scheme illustrated in Figure 4.2.

Problem Statement: For every point x ∈ Ωf find the corresponding point
y = x + ~D(x) in the moving image domain Ωm.

Initialization: Initial constraining deformation field ~D0
constr = 0, the weight

image w(x) = 0, transform parameters c0 = 0 and
the fixed image currents µ0(Cf ) = µ(Cf ), µ0(Sf ) = µ(Sf ).
for i = 0...N do

1: Run combined image registration with the constraining deformation
field ~Di

constr and initial guess on transform coefficients ci
ini,

2: Compute the deformation field ~Di+1
B-Spline and deform the fixed image

currents µi+1(Cf , Sf ) = µ(Cf · ~Di
B-Spline;Sf · ~Di

B-Spline),
3: Run current-based image registration between µ(Cm, Sm) and

µi+1(Cf , Sf )
4: Update the deformation field ~Di+1

constr = ~Di
constr + ~Di+1

B-Spline and
the transform coefficients ci+1

ini = ci
convereged.

end for

4.4.2 Setup of the Current-based Registration

Lung fields and main bronchi were segmented as described in [108]. From the
segmented lung regions, the lung surfaces triangulation were constructed using
the marching cube algorithm and further simplified in order to decrease the num-
ber of faces [73]. The normal directions were attached to the center of each facet,
the length was normalized to 1 mm and the orientation was set to point outwards
from the lung surface. Figure 4.1b shows an example of the constructed current
for the lung surfaces.

Vessel tree was segmented using the algorithm as in [87] with the intensity
threshold −600 HU. The internal parameters of the segmentation algorithm such
as ratios of the Hessian eigenvalues were set to m1 = 0.75 and m2 = 0.5. Vessel
centerlines were extracted using a 3D thinning algorithm [89]. Finally, tangential
directions of the vessel centerlines were computed via local principal component
analysis in a 7 × 7 × 7 voxel size cube. The orientation and the length of the
tangential direction is important in the current-based registration, therefore we
normalized the length of the first principal vector to 1 mm and the orientation
was set to point outwards from the image center. Figure 4.1a shows an example
of the constructed currents for the vessel tree segmented from the right lung.

We applied the current-based registration from Section 4.3.1 to register vessel
trees and lung surfaces. The internal parameters of the current-based registration
were set to λW = 5 mm for the vessel currents, λW = 10 mm for the surface


