4 research outputs found

    Convolution and Fourier Transform of Second Order Tensor Fields

    Get PDF
    The goal of this paper is to transfer convolution, correlation and Fourier transform to second order tensor fields. Convolution of two tensor fields is defined using matrix multiplication. Convolution of a tensor field with a scalar mask can thus be described by multiplying the scalars with the real unit matrix. The Fourier transform of tensor fields defined in this paper corresponds to Fourier transform of each of the tensor components in the field. It is shown that for this convolution and Fourier transform, the well known convolution theorem holds and optimization in speed can be achieved by using Fast Fourier transform algorithms. Furthermore, pattern matching on tensor fields based on this convolution is described

    Spatial Normalization of Diffusion Tensor MRI Using Multiple Channels

    Get PDF
    Diffusion Tensor MRI (DT-MRI) can provide important in vivo information for the detection of brain abnormalities in diseases characterized by compromised neural connectivity. To quantify diffusion tensor abnormalities based on voxel-based statistical analysis, spatial normalization is required to minimize the anatomical variability between studied brain structures. In this article, we used a multiple input channel registration algorithm based on a demons algorithm and evaluated the spatial normalization of diffusion tensor image in terms of the input information used for registration. Registration was performed on 16 DT-MRI data sets using different combinations of the channels, including a channel of T2-weighted intensity, a channel of the fractional anisotropy, a channel of the difference of the first and second eigenvalues, two channels of the fractional anisotropy and the trace of tensor, three channels of the eigenvalues of the tensor, and the six channel tensor components. To evaluate the registration of tensor data, we defined two similarity measures, i.e., the endpoint divergence and the mean square error, which we applied to the fiber bundles of target images and registered images at the same seed points in white matter segmentation. We also evaluated the tensor registration by examining the voxel-by-voxel alignment of tensors in a sample of 15 normalized DT-MRIs. In all evaluations, nonlinear warping using six independent tensor components as input channels showed the best performance in effectively normalizing the tract morphology and tensor orientation. We also present a nonlinear method for creating a group diffusion tensor atlas using the average tensor field and the average deformation field, which we believe is a better approach than a strict linear one for representing both tensor distribution and morphological distribution of the population.ope

    Visualization and Analysis of Flow Fields based on Clifford Convolution

    Get PDF
    Vector fields from flow visualization often containmillions of data values. It is obvious that a direct inspection of the data by the user is tedious. Therefore, an automated approach for the preselection of features is essential for a complete analysis of nontrivial flow fields. This thesis deals with automated detection, analysis, and visualization of flow features in vector fields based on techniques transfered from image processing. This work is build on rotation invariant template matching with Clifford convolution as developed in the diploma thesis of the author. A detailed analysis of the possibilities of this approach is done, and further techniques and algorithms up to a complete segmentation of vector fields are developed in the process. One of the major contributions thereby is the definition of a Clifford Fourier transform in 2D and 3D, and the proof of a corresponding convolution theorem for the Clifford convolution as well as other major theorems. This Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vectorvalued filters, as well as an acceleration of the convolution computation as a fast transform exists. The depth and precision of flow field analysis based on template matching and Clifford convolution is studied in detail for a specific application, which are flow fields measured in the wake of a helicopter rotor. Determining the features and their parameters in this data is an important step for a better understanding of the observed flow. Specific techniques dealing with subpixel accuracy and the parameters to be determined are developed on the way. To regard the flow as a superposition of simpler features is a necessity for this application as close vortices influence each other. Convolution is a linear system, so it is suited for this kind of analysis. The suitability of other flow analysis and visualization methods for this task is studied here as well. The knowledge and techniques developed for this work are brought together in the end to compute and visualize feature based segmentations of flow fields. The resulting visualizations display important structures of the flow and highlight the interesting features. Thus, a major step towards robust and automatic detection, analysis and visualization of flow fields is taken
    corecore