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ABSTRACT
The goal of this paper is to transfer convolution, correlation
and Fourier transform to second order tensor fields. Convo-
lution of two tensor fields is defined using matrix multipli-
cation. Convolution of a tensor field with a scalar mask can
thus be described by multiplying the scalars with the real
unit matrix. The Fourier transform of tensor fields defined
in this paper corresponds to Fourier transform of each of
the tensor components in the field. It is shown that for this
convolution and Fourier transform, the well known con-
volution theorem holds and optimization in speed can be
achieved by using Fast Fourier transform algorithms. Fur-
thermore, pattern matching on tensor fields based on this
convolution is described.
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1 Introduction

There are two main sources for tensor data sets. One is
biomedical imaging. With MRI data from biomedical ap-
plications, diffusion tensors can be calculated. These diffu-
sion tensors can then be analyzed to e.g. trace white fibers
in the brain or fibers of the muscle of the heart [1, 2, 3].
Another application comes from finite element analysis, for
example, in mechanical engineering, civil engineering [4]
and material sciences [5]. There, stress and strain tensors
are examined to determine behavior and stability under cer-
tain conditions like e.g. earthquakes.

It is not easy to give an intuitive visualization of a ten-
sor field as the data to be visualized at one point has a high
dimension. For an arbitrary non-symmetric second order
tensor in 3D, one has 9 data values at every data point. If
the tensor is symmetric, this reduces to 6 values which is
still a lot. There are two possibilities of visualizing such
data. One can opt for visualization of the whole data. The
other possibility is to preselect parts of the data. The selec-
tion can include omitting whole tensors which are of no fur-
ther interest. Thus, the number of tensors to be visualized
is reduced. The other possibility is to reduce the dimension
of the data. Then, only derived values of the tensors like
anisotropy or trace are visualized.

One possibility of visualizing the tensors is to draw

Figure 1. A simple push-pull data set. Tensor convolution com-
bined with the normalized tensor scalar product as similarity mea-
sure. The pattern matching was done with a 3× 3× 3 push mask
(figure 2). The similarity values are visualized using marching
cubes with isovalue -0.4 (left) and 0.4 (right). The negative sim-
ilarity values indicate the pull. Normalized tensor hedgehog and
grid boundary are drawn additionally. The pictures were taken
from above (top) and from a side (bottom) of the data set. The
data set is described in detail in section 5.

every component separately as an array of gray scale or
color mapped images arranged corresponding to the coor-
dinate being visualized. Symmetric tensors have the ad-
vantage of having only real valued eigenvalues. These can
be visualized using glyphs [6, 7] like tensor hedgehogs and
ellipsoids. Another approach is to analyze the eigenvector
fields separately. An eigenvector field is the field of those



Figure 2. A 3D mask describing a push, strain tensors. Left: Mask
viewed from top. The push is applied at the center grid point at
the top. Right: Mask viewed from one side.

lines that correspond to the major, minor or, in 3D, medium
eigenvalues. It can be visualized using glyphs, tensor field
lines [8], tensorlines [9] and tensor field topology [10, 11].

Other visualization methods which work directly on
the tensor field are hyper-streamlines [12], color coding of
the direction of the principal eigenvector [13, 3], deform-
ing grids [14] and volume rendering of derived values like
anisotropy. The anisotropy of 2D tensor fields can also be
visualized using adaptive filtering of noise fields [6] or Hy-
perLIC [15].

With the large amount of data in tensor fields, it is de-
sirable to have an algorithm that automatically preselects
data points or areas with a certain behavior that is of inter-
est. Otherwise, features are easily missed by an inspection
of the data by the user. Therefore we show how to extend
convolution and Fourier transform directly to second or-
der tensor fields. We prove that the resulting theorems are
similar to the original ones on scalar fields from image pro-
cessing and can be calculated using fast Fourier transform
algorithms. Then we give an algorithm for pattern match-
ing that is based on convolution of tensor fields.

2 Convolution

Every linear and shift invariant filter (LSI filter) on a scalar
field can be described as a convolution with a filter mask.
A lot of filters for smoothing images (e.g. Gaussian fil-
ters) and for edge detection (e.g. Laplacian operator) are
LSI filter. Thus, the convolution is an important operation
in image processing [16, 17]. Convolution and correlation
are closely related as every correlation can be computed
as a convolution with a suitably permutated filter mask.
The convolution theorem states that a convolution in im-
age space is equal to a multiplication in frequency domain.

2.1 Convolution of Scalar Fields

In image processing, a filter is a map from one image to
another. For a continuous signal f :

� n → � , the convo-

Figure 3. Hedgehogs on a 2D mask describing a push (left). The
push is applied at the center grid point. To be independent of the
relative size of eigenvalues, the mask can be split up in two masks,
each describing one of the eigenvectors (middle and right).

lution with the filter h :
� n → � is defined by

(h ∗ f)(x) =

∫
�
n

h(x′)f(x− x′)dx′.

The spatial correlation is defined by

(h ? f)(x) =

∫
�
n

h(x′)f(x+ x′)dx′.

Thus, a convolution is just a correlation with a filter that
has been reflected at its center. Let ḣ denote the reflected
version of h, that is ḣ(x) = h(−x). Then

(h ? f)(x) = (ḣ ∗ f)(x). (1)

2.2 Convolution on Tensor Fields

A description of tensor algebra can e.g. be found in [18].
Let f :

� n → � n×n be a second order tensor field and
h :

� n → � n×n a second order tensor valued filter. The
convolution is defined as

(h ∗ f)(x) =

∫
�
n

h(x′)f(x− x′)dx′

where the integral is computed in each component and the
tensors are multiplied using matrix multiplication. The cor-
relation is defined analogous:

(h ? f)(x) =

∫
�
n

h(x′)f(x+ x′)dx′.

For discrete fields, convolution and correlation have to be
discretized. For 3D uniform grids, the discretization is:

(h ∗ f)j,k,l =
r∑

s=−r

r∑

t=−r

r∑

u=−r
hs,t,ufj−s,k−t,l−u

(h ? f)j,k,l =

r∑

s=−r

r∑

t=−r

r∑

u=−r
hs,t,ufj+s,k+t,l+u

with j, k, l, s, t, u ∈ � . r3 is the dimension of the grid of
the filter mask and the (j, k, l) are grid nodes.



3 Fourier Transform on Tensor Fields

The Fourier transform is a basis transform from image
space to frequency space. Thus, images can be analyzed
in frequency space where it is easier to describe features
like orientation, phase, frequency and curvature. Filter re-
sponses are often analyzed or defined in the frequency do-
main. Transferring the Fourier transform to tensor fields in
combination with convolution opens up a whole new ap-
proach for analyzing tensor fields. Dealing with simula-
tions of e.g. shock waves (figures 4 and 5), it is only natu-
ral to have a look at the representation of fields in frequency
domain. The shock wave data set is described in detail in
section 5.

3.1 Fourier Transform on Scalar Fields

For continuous signals f, h :
� n → � , the Fourier trans-

form of f is defined as

F{f}(u) =

∫
�
n

f(x)e(−2πi〈x,u〉)dx

with i2 = −1 provided the integral does exist. The inverse
transform is

F−1{f}(x) =

∫
�
n

f(u)e(2πi〈x,u〉)du.

A discussion of the existence ofF , can be found in [19]. F
exists if ∫

�
n

|f(x)|e(−2πi〈x,u〉)dx <∞.

This is not always fulfilled though the integral of F might
exist nonetheless. The convolution theorem is

F{h ∗ f}(u) = F{h}(u)F{f}(u)

and the derivation theorem is

F
{
∂f

∂xk

}
(x) = 2πiukF{f}(u) , k = 1, .., n.

3.2 Fourier Transform on Tensor Fields

We define the Fourier transform for a n × n tensor valued
function f :

� n → � n×n and vectors x, x′, u ∈ � n as

F{f}(u) =

∫
�
n

f(x)e(−2πiI〈x,u〉)dx. (2)

The inverse transform is

F−1{f}(x) =

∫
�
n

f(u)e(2πiI〈x,u〉)du. (3)

I is the n×n unit matrix and i the usual complex imaginary
unit. The integral is computed componentwise. Most of
the well-known theorems hold. Note that the tensors are
complex valued.

Figure 4. Fourier transform of a shock wave tensor field multi-
plied with a gaussion to get rid of high frequencies generated at
the border. The bounding bos of the data set, the geometry of the
pile itself and an isovalue of the amplitude of the Fourier trans-
form of this dataset are shown. The main direction of the shock
waves can easily be seen in frequency domain.

Theorem 3.1 (Shift theorem) Let f :
� n → � n×n be

tensor valued and let F{f} exist. Then

F{f(x− x′)}(u) = F{f}(u)e(−2πiI〈x′,u〉)

Theorem 3.2 (Convolution theorem) Let f, h :
� n →

� n×n be tensor valued and letF{f} andF{h} exist. Then

F{h ∗ f}(u) = F{h}(u)F{f}(u)

Theorem 3.3 (Correlation theorem) Let the precondi-
tions be as in 3.2. Then

F{h ? f}(u) = F{ḣ}(u)F{f}(u)

Theorem 3.4 (Derivation theorem) Let the preconditions
be as in 3.1. Let ∂f

∂xk
exist for all k. Then

F
{
∂f

∂xk

}
(u) = 2πiIukF{f}(u)

The proofs of the theorems are straightforward from
the proofs of scalar Fourier transform [17, 19] and the prop-
erties of the tensor Fourier kernel, which is

e(−2πiI〈x,u〉) = Ie(−2πi〈x,u〉).

Thus, a tensor field f can be regarded as n×n complex sig-
nals which are transformed separately with the usual com-
plex Fourier transform. This implies that the basis func-
tions of this tensor Fourier transform, separated in each of
the coordinates of the tensor, are the same as those of the
classical Fourier transform.

3.3 Discrete Tensor Fourier Transform

Just like the classical Fourier transform, the Fourier trans-
form of tensor fields can be discretized for use on discrete



datasets.
Let x = x1e1 + x2e2 + x3e3, u = u1e1 + u2e2 + u3e3,
N = N1N2N3 and f : {0, .., N1 − 1} × {0, .., N2 − 1} ×
{0, .., N3−1} → � n×n. The discrete tensor Fourier trans-
form of tensor fields in 3D is defined as

DTFT{f}(u) =

N1−1∑

x1=0

N2−1∑

x2=0

N3−1∑

x3=0

f(x)e(−2πiI〈x,u〉/N).

(4)
The inverse discrete tensor Fourier transform in 3D is

DTFT−1{f}(x) =
1

N

N1−1∑

u1=0

N2−1∑

u2=0

N3−1∑

u3=0

f(u)e(2πiI〈x,u〉/N).

(5)
The definitions for 2D are analogous.

Theorem 3.5 (Shift theorem) We extend f to fc : � ×
� × � → � n×n by fc(x+ zNjej) = f(x) for j=1,2,3 and
z ∈ � . Then

F{fc(x− x′)}(u) = F{fc}(u)e(−2πiI〈x′,u〉/N)

Theorem 3.6 (Circular convolution theorem) We extend
f, h to fc, hc : � × � × � → � n×n by

fc(x+ zNjej) = f(x)

hc(x+ zNjej) = h(x)

for j=1,2,3 and z ∈ � . Then

DTFT{hc ∗ fc}(u) = DTFT{hc}(u)DTFT{fc}(u)

Theorem 3.7 (Circular correlation theorem) Let the
preconditions be as in (3.6). Then

DTFT{hc ? fc}(u) = DTFT{ḣc}(u)DTFT{fc}(u)

3.4 Fast Transform

One of the reasons the Fourier transform is so successful in
image processing is the existence of fast Fourier transforms
(FFTs). Algorithms for the fast computation of the Fourier
transform take a divide and conquer approach based on re-
cursively dividing even and odd elements. The basic ap-
proach assumes that the dimensions of the images are of
the form 2k. There exist algorithms based on the decom-
position into prime factors of the dimensions of the im-
ages, too. As the tensor Fourier transform of a tensor field
corresponds to an independent scalar Fourier transforms of
each of the complex components of the tensor field, algo-
rithms for computation of the fast Fourier transform can
be directly used to speed up the transform. The tensor
Fourier transform of figure 4 has been computed using a
fast tensor Fourier transform. The auto-correlation of fig-
ure 5 has been computed in frequency space using a fast
tensor Fourier transform, too.

Figure 5. Auto correlation of the shock wave data set. Light gray:
positive values. Dark gray: negative values. The data set is rotated
bottom up in comparison to figure 4.

4 Pattern Matching

4.1 Tensor Similarity Measure

For pattern matching, it has to be determined what a match
of tensors is and when tensors are similar. This is not quite
trivial as one scalar value has to give the similarity of the
whole tensors. Thus, the similarity can only be a derived
value and does not give all nuances of the difference of
tensors.

A common similarity measure of two tensors T1 and
T2 is the tensor scalar product 〈T1, T2〉 or TSP (T1, T2)
[20], which is a measure of the overlap between two ten-
sors:

〈T1, T2〉 = trace(T1T2) = |T1T2|1
As the scalar product is sensitive to the overall size of the
tensors, it is often normalized:

|T |n := trace(T n)

NTSP (T1, T2) =
〈T1, T2〉
|T1|n|T2|n

This similarity can be applied directly in connection with
convolution. First, the convolution of the full tensors is
computed and then the trace of the result can be calculated.

4.2 Matching

The big advantage of pattern matching using convolution
is that it is robust in terms of noise. This is the case as
convolution is a kind of averaging. The averaging effect
grows with the size of the mask as convolution and corre-
lation are statistical approaches. This property is especially
important when dealing with measured tensor data where
measurement errors easily create noise.



We have different possibilities of normalizing. First,
the tensors of mask and field can be normalized. This
would resemble matching of hyperstreamlines. The sim-
ilarity values will be between −1 and 1, that is, they are
normalized, too. This method corresponds also to compu-
tation of the normalized scalar product after computation
of the convolution. Sometimes, it is better not to normal-
ize the field, as regions with tensors of small magnitude are
accentuated too much otherwise. For acceleration, the con-
volution can also be computed in frequency domain using
fast Fourier transforms. In frequency domain, instead of a
convolution at every data point, only one multiplication has
to be computed as the convolution theorem (eq. 3.2) states.
This also solves the problem of the huge computational cost
of applying large masks.

5 Results

The first data set where we applied pattern matching is a
push-pull or load couple. It consists of a rectilinear grid
of dimensions 16 × 8 × 16. The coordinates of the grid
are [−7.5, 7.5] × [−7, 0] × [−7.5, 7.5]. On the surface, a
push was applied at (0, 0, 4), a pull at (0, 0,−4), and the
resulting strain tensors were computed. The formulas can
be found in [5]. Push and pull can be seen clearly in figure
1. A pull mask can be generated from a push mask by
multiplying all tensors of the mask with−1. Therefore, the
push mask also recognized the pull. Note that the actual
point of load is not on a data point but in the middle of the
surface of a cell.

After this academic test we applied some image pro-
cessing tools to two data sets from numerical simulations.
First, we computed the auto-correlation of a shock wave
data set. The field consists of stress tensors of a concrete
pile standing on solid earth. It is one timestep of a dynamic
seismic loading [4]. We resampled the data set to a rectilin-
ear grid with dimensions 32×32×32 which fits exactly into
the cylinder of the original grid. The predominant direction
of loading can be seen pretty well in the Fourier transform
of the resampled data set (figure 4). We also computed the
auto-correlation of this data (figure 5). There, the waves
of the loading are reflected in waves of positive and nega-
tive self-similarity. All Fourier transforms were computed
using FFT algorithms.

The last data set comes from a CFD simulation. It is
the symmetric part of a rate of strain tensor field of a vortex
breakdown simulation. Vortex breakdown can be found in
flows ranging from tornados, wing tip vortices, pipe flows
to swirling jets. In combustion applications, swirling jets
are important as they can create recirculation zones where
the fuel elements have enough time for a complete reac-
tion. This raises the efficiency of the combustion. Here,
the turbulent swirling jet enters a fluid at rest. The simu-
lation considers a cylinder, so that a planar cut along the
axis of the cylinder can be used as a domain. The domain
is discretized by a 124 × 101 rectilinear grid with smaller
rectangles towards the axis of the cylinder. We applied the

Figure 6. Symmetric part of rate of strain tensors of a swirling
jet entering a fluid at rest. Top: Magnitude of the tensors. Values
from 0 (black) to 4 (white). Middle: Anisotropy and topology
graph. Values from -1 (black, same absolute eigenvalues but dif-
ferent sign), 0 (gray, anisotrop) to 1 (white, isotrop). Bottom:
Data set filtered with the 3× 3 push mask of figure 3, bottom left.
The normalized tensor scalar product results in similarity values
from -0.7 (black, pull) to 0.7 (white, push).

2D push masks which can be found in figure 3. The results
of the matching (figure 6) are similar to the computation
of isotropy, though the matching distinguishes the regions
further.



6 Conclusion

We extended convolution and Fourier transform to second
order tensor fields. The tensor Fourier transform corre-
sponds to the computation of a scalar Fourier transform in
each of the (complex) components of the tensor field. Thus,
algorithms for a fast computation of the Fourier transform
can be applied. We proved that tensor convolution in spa-
tial domain is equal to multiplication of tensors in the fre-
quency domain defined by our tensor Fourier transform.
Therefore, this convolution theorem is analogous to the
scalar case. This also implies that fast Fourier transforms
can be applied to speed up the computation of convolutions.
In addition we showed how a basic tensor similarity mea-
sure, the tensor scalar product, can be combined with ten-
sor convolution. This led directly to an algorithm for pat-
tern matching of tensor fields. This approach is superior to
other approaches like matching of eigenvector fields, as it
conserves more information of the tensor fields. Finally, as
the approach is based on convolution, it is robust in terms
of noise.

Future work will include the investigation of methods
to make the pattern matching invariant of the direction of
structures in field and mask. The opened possibilities of
analyzing tensor fields in frequency domain will be exam-
ined further. One path could be the application of Gabor
filter, which can be understood as a localized Fourier trans-
form, to tensor fields. Gabor filter are known to be optimal
localized in both spatial and frequency domain. Thus, they
are well suited for the description of features.
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