114 research outputs found

    Vertex coloring of plane graphs with nonrepetitive boundary paths

    Full text link
    A sequence s1,s2,...,sk,s1,s2,...,sks_1,s_2,...,s_k,s_1,s_2,...,s_k is a repetition. A sequence SS is nonrepetitive, if no subsequence of consecutive terms of SS form a repetition. Let GG be a vertex colored graph. A path of GG is nonrepetitive, if the sequence of colors on its vertices is nonrepetitive. If GG is a plane graph, then a facial nonrepetitive vertex coloring of GG is a vertex coloring such that any facial path is nonrepetitive. Let πf(G)\pi_f(G) denote the minimum number of colors of a facial nonrepetitive vertex coloring of GG. Jendro\vl and Harant posed a conjecture that πf(G)\pi_f(G) can be bounded from above by a constant. We prove that πf(G)24\pi_f(G)\le 24 for any plane graph GG

    New Bounds for Facial Nonrepetitive Colouring

    Full text link
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22.Comment: 16 pages, 5 figure

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    Nonrepetitive colorings of lexicographic product of graphs

    Get PDF
    A coloring cc of the vertices of a graph GG is nonrepetitive if there exists no path v1v2v2lv_1v_2\ldots v_{2l} for which c(vi)=c(vl+i)c(v_i)=c(v_{l+i}) for all 1il1\le i\le l. Given graphs GG and HH with V(H)=k|V(H)|=k, the lexicographic product G[H]G[H] is the graph obtained by substituting every vertex of GG by a copy of HH, and every edge of GG by a copy of Kk,kK_{k,k}. %Our main results are the following. We prove that for a sufficiently long path PP, a nonrepetitive coloring of P[Kk]P[K_k] needs at least 3k+k/23k+\lfloor k/2\rfloor colors. If k>2k>2 then we need exactly 2k+12k+1 colors to nonrepetitively color P[Ek]P[E_k], where EkE_k is the empty graph on kk vertices. If we further require that every copy of EkE_k be rainbow-colored and the path PP is sufficiently long, then the smallest number of colors needed for P[Ek]P[E_k] is at least 3k+13k+1 and at most 3k+k/23k+\lceil k/2\rceil. Finally, we define fractional nonrepetitive colorings of graphs and consider the connections between this notion and the above results

    Online version of the theorem of Thue

    Full text link
    A sequence S is nonrepetitive if no two adjacent blocks of S are the same. In 1906 Thue proved that there exist arbitrarily long nonrepetitive sequences over 3 symbols. We consider the online variant of this result in which a nonrepetitive sequence is constructed during a play between two players: Bob is choosing a position in a sequence and Alice is inserting a symbol on that position taken from a fixed set A. The goal of Bob is to force Alice to create a repetition, and if he succeeds, then the game stops. The goal of Alice is naturally to avoid that and thereby to construct a nonrepetitive sequence of any given length. We prove that Alice has a strategy to play arbitrarily long provided the size of the set A is at least 12. This is the online version of the Theorem of Thue. The proof is based on nonrepetitive colorings of outerplanar graphs. On the other hand, one can prove that even over 4 symbols Alice has no chance to play for too long. The minimum size of the set of symbols needed for the online version of Thue's theorem remains unknown
    corecore