5,849 research outputs found

    State-space approach to nonlinear predictive generalized minimum variance control

    Get PDF
    A Nonlinear Predictive Generalized Minimum Variance (NPGMV) control algorithm is introduced for the control of nonlinear discrete-time multivariable systems. The plant model is represented by the combination of a very general nonlinear operator and also a linear subsystem which can be open-loop unstable and is represented in state-space model form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The solution for the control law is derived in the time-domain using a general operator representation of the process. The controller includes an internal model of the nonlinear process but because of the assumed structure of the system the state observer is only required to be linear. In the asymptotic case, where the plant is linear, the controller reduces to a state-space version of the well known GPC controller

    Global tracking for an underactuated ships with bounded feedback controllers

    Get PDF
    In this paper, we present a global state feedback tracking controller for underactuated surface marine vessels. This controller is based on saturated control inputs and, under an assumption on the reference trajectory, the closed-loop system is globally asymptotically stable (GAS). It has been designed using a 3 Degree of Freedom benchmark vessel model used in marine engineering. The main feature of our controller is the boundedness of the control inputs, which is an essential consideration in real life. In absence of velocity measurements, the controller works and remains stable with observers and can be used as an output feedback controller. Simulation results demonstrate the effectiveness of this method

    Stabilisation of state-and-input constrained nonlinear systems via diffeomorphisms: A Sontag's formula approach with an actual application

    Get PDF
    In this work, we provide a new and constructive outlook for the control of state-and-input constrained nonlinear systems. Previously, explicit solutions have been mainly focused on the finding of a barrier-like Lyapunov function, whereas we propose the construction of a diffeomorphism to map all the trajectories of the constrained dynamics into an unconstrained one. Careful analysis has revealed that only some foundations of differential geometry and a technical assumption are necessary to construct the proposed methodology based on the well-established theories of control Lyapunov functions and Sontag's universal formulae. Altogether, it allows us to obtain an explicit solution that even includes bounded constraints in the control action, giving the designer a way to decide (to some extent) the trade-off between control saturations and robustness. Moreover, this approach does not rely on the own structure of the system dynamics, therefore covering a broad class of nonlinear systems. The main advantage of this approach is that the use of a diffeomorphism allows the splitting of the mathematical treatment of the constraint and the Lyapunov controller design. The result has been successfully applied to solve the dynamic positioning of an actual ship, where the nonlinear state constraints describe a strait. This approach enabled us to design a control Lyapunov function and thereby use Sontag's formula to solve the stabilisation problem. Realistic simulations have been executed in a real scenario on the simulator owned by an international shipbuilding company.Postprint (author's final draft

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Non-Linear Robust Observers For Systems With Non-Collocated Sensors And Actuators

    Get PDF
    Challenges in controlling highly nonlinear systems are not limited to the development of sophisticated control algorithms that are tolerant to significant modeling imprecision and external disturbances. Additional challenges stem from the implementation of the control algorithm such as the availability of the state variables needed for the computation of the control signals, and the adverse effects induced by non-collocated sensors and actuators. The present work investigates the adverse effects of non-collocated sensors and actuators on the phase characteristics of flexible structures and the ensuing implications on the performance of structural controllers. Two closed-loop systems are considered and their phase angle contours have been generated as functions of the normalized sensor location and the excitation frequency. These contours were instrumental in the development of remedial actions for rendering structural controllers immune to the detrimental effects of non-collocated sensors and actuators. Moreover, the current work has focused on providing experimental validation for the robust performances of a self-tuning observer and a sliding mode observer. The observers are designed based on the variable structure systems theory and the self-tuning fuzzy logic scheme. Their robustness and self-tuning characteristics allow one to use an imprecise model of the system and eliminate the need for the extensive tuning associated with a fixed rule-based expert fuzzy inference system. The first phase of the experimental work was conducted in a controlled environment on a flexible spherical robotic manipulator whose natural frequencies are configuration-dependent. Both controllers have yielded accurate estimates of the required state variables in spite of significant modeling imprecision. The observers were also tested under a completely uncontrolled environment, which involves a 16-ft boat operating in open-water under different sea states. Such an experimental work necessitates the development of a supervisory control algorithm to perform PTP tasks, prescribed throttle arm and steering tasks, surge speed and heading tracking tasks, or recovery maneuvers. This system has been implemented herein to perform prescribed throttle arm and steering control tasks based on estimated rather than measured state variables. These experiments served to validate the observers in a completely uncontrolled environment and proved their viability as reliable techniques for providing accurate estimates for the required state variables

    Operation Planning of Standalone Maritime Power Systems Using Particle Swarm Optimization

    Get PDF

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    corecore