48,291 research outputs found

    Iterative Nonlinear Control of a Semibatch Reactor. Stability Analysis

    Get PDF
    This paper presents the application of Iterative Nonlinear Model Predictive Control, INMPC, to a semibatch chemical reactor. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (MPC) with the possibility of learning from past batches, that is the base of Iterative Control. It uses a nonlinear model and a quadratic objective function that is optimized in order to obtain the control law. A stability proof with unitary control horizon is given for nonlinear plants that are affine in control and have linear output map. The controller shows capabilities to learn the optimal trajectory after a few iterations, giving a better fit than a linear non-iterative MPC controller. The controller has applications in repetitive disturbance rejection, because they do not modify the model for control purposes. In this application, some experiments with a disturbance in inlet water temperature has been performed, getting good results.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-0

    Application of iterative nonlinear model predictive control to a batch pilot reactor

    Get PDF
    IFAC WORLD CONGRESS (16) (16.2005.PRAGA, REPÚBLICA CHECA)The aim of this article is to present the Iterative Model Predictive Controller, inmpc, as a good candidate to control chemical batch reactors. The proposed control approach is derived from a model-based predictive control formulation which takes advantage of the repetitive nature of batch processes. The proposed controller combines the good qualities of Model Predictive Control (mpc) with the possibility of learning from past batches, that is the base of Iterative Control. It uses a nonlinear model and a quadratic objective function that is optimized in order to obtain the control law. The controller is tested on a batch pilot reactor, and a comparison with an Iterative Learning Controller (ilc) is made. Under input constraints and for this nonlinear plant, a fast convergence rate is obtained with the proposed controller, showing good operational results. Although the controller is designed for discrete-time systems, it is a necessary condition that the continuous-time model does not present blow-up characteristics. The batch pilot reactor emulates an exothermal chemical reaction by means of electrical heating

    Optimal control of non-stationary differential linear repetitive processes

    No full text
    Differential repetitive processes are a distinct class of continuousdiscrete 2D linear systems of both systems theoretic and applications interest. The feature which makes them distinct from other classes of such systems is the fact that information propagation in one of the two independent directions only occurs over a finite interval. Applications areas include iterative learning control and iterative solution algorithms for classes of dynamic nonlinear optimal control problems based on the maximum principle, and the modelling of numerous industrial processes such as metal rolling, and long-wall cutting etc. The new results in is paper solve a general optimal problem in the presence of non-stationary dynamics

    Modeling and Control of the Automated Radiator Inspection Device

    Get PDF
    Many of the operations performed at the Kennedy Space Center (KSC) are dangerous and repetitive tasks which make them ideal candidates for robotic applications. For one specific application, KSC is currently in the process of designing and constructing a robot called the Automated Radiator Inspection Device (ARID), to inspect the radiator panels on the orbiter. The following aspects of the ARID project are discussed: modeling of the ARID; design of control algorithms; and nonlinear based simulation of the ARID. Recommendations to assist KSC personnel in the successful completion of the ARID project are given

    Economic health-aware LPV-MPC based on system reliability assessment for water transport network

    Get PDF
    This paper proposes a health-aware control approach for drinking water transport networks. This approach is based on an economic model predictive control (MPC) that considers an additional goal with the aim of extending the components and system reliability. The components and system reliability are incorporated into the MPC model using a Linear Parameter Varying (LPV) modeling approach. The MPC controller uses additionally an economic objective function that determines the optimal filling/emptying sequence of the tanks considering that electricity price varies between day and night and that the demand also follows a 24-h repetitive pattern. The proposed LPV-MPC control approach allows considering the model nonlinearities by embedding them in the parameters. The values of these varying parameters are updated at each iteration taking into account the new values of the scheduling variables. In this way, the optimization problem associated with the MPC problem is solved by means of Quadratic Programming (QP) to avoid the use of nonlinear programming. This iterative approach reduces the computational load compared to the solution of a nonlinear optimization problem. A case study based on the Barcelona water transport network is used for assessing the proposed approach performance.Peer ReviewedPostprint (published version

    LMI based stability analysis and controller design for a class of 2D continuous-discrete linear systems

    Get PDF
    Differential linear repetitive processes are a distinct class of 2D continuous-discrete linear systems of both applications and systems theoretic interest. In the latter area, they arise, for example, in the analysis of both iterative learning control schemes and iterative algorithms for computing the solutions of nonlinear dynamic optimal control algorithms based on the maximum principle. Repetitive processes cannot be analysed/controlled by direct application of existing systems theory and to date there are few results on the specification and design of control schemes for them. The paper uses an LMI setting to develop the first really significant results in this problem domain.published_or_final_versio

    Learning Model Predictive Control for Periodic Repetitive Tasks

    Full text link
    We propose a reference-free learning model predictive controller for periodic repetitive tasks. We consider a problem in which dynamics, constraints and stage cost are periodically time-varying. The controller uses the closed-loop data to construct a time-varying terminal set and a time-varying terminal cost. We show that the proposed strategy in closed-loop with linear and nonlinear systems guarantees recursive constraints satisfaction, non-increasing open-loop cost, and that the open-loop and closed-loop cost are the same at convergence. Simulations are presented for different repetitive tasks, both for linear and nonlinear systems.Comment: 2020 European Control Conference, Saint Petersburg, Russia. Extended version of the conference pape

    Sequential Quadratic Programming-based Iterative Learning Control for Nonlinear Systems

    Full text link
    Learning-based control methods for industrial processes leverage the repetitive nature of the underlying process to learn optimal inputs for the system. While many works focus on linear systems, real-world problems involve nonlinear dynamics. In this work, we propose an algorithm for the nonlinear iterative learning control problem based on sequential quadratic programming, a well-studied method for nonconvex optimization. We repeatedly solve quadratic subproblems built using approximate nonlinear models and process measurements, to find an optimal input for the original system. We demonstrate our method in a trajectory optimization problem for a precision motion system. We present simulations to illustrate the performance of the proposed method for linear and nonlinear dynamics models
    • …
    corecore