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Abstract: The aim of this article is to present the Iterative Model Predictive
Controller, inmpc, as a good candidate to control chemical batch reactors. The
proposed control approach is derived from a model-based predictive control
formulation which takes advantage of the repetitive nature of batch processes.
The proposed controller combines the good qualities of Model Predictive Control
(mpc) with the possibility of learning from past batches, that is the base of
Iterative Control. It uses a nonlinear model and a quadratic objective function
that is optimized in order to obtain the control law. The controller is tested on a
batch pilot reactor, and a comparison with an Iterative Learning Controller (ilc)
is made. Under input constraints and for this nonlinear plant, a fast convergence
rate is obtained with the proposed controller, showing good operational results.
Although the controller is designed for discrete-time systems, it is a necessary
condition that the continuous-time model does not present blow-up characteristics.
The batch pilot reactor emulates an exothermal chemical reaction by means of
electrical heating. Copyright c©2005 IFAC.
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1. INTRODUCTION

Batch processes are never in steady-state regime
since the whole operation is carried out in tran-
sient mode. These processes experience contin-
uous transitions and are usually highly nonlin-
ear, involving complex reaction mechanisms and
model-plant mismatch. Batch operation is done
under unsteady state and reference trajectories
are frequently time-varying, making process vari-
ables to change over wide ranges exhibiting there-
fore significant nonlinear behavior. This leads to

1 This work was partially supported by Spanish Ministry
of Science and Technology under grant DPI2001-2380-C02-
01. The authors acknowledge the Predictive Control Group
of the University of Seville for their commentaries.

time-invariant models be unsuitable for describing
the process and consequently control strategies
based upon linear models can drive to significant
errors. Nonlinear controllers will be essential for
improved performance or stable operation. Non-
linear Model Predictive Control (nmpc) seems to
be a good way to tackle the problem. Although
there are some preliminary studies about the ap-
plication of mpc to batch processes (Morari and
Lee, 1997), there is still a lot of work to be done
in aspects such as modelling, state estimation,
stability and computational problems related to
dynamic optimization.

Iterative controllers (Moore, 1998) have been used
originally in robotics (Arimoto et al., 1984) be-
cause of its simplicity and effectiveness. Later

Copyright (c) 2005 IFAC. All rights reserved
16th Triennial World Congress, Prague, Czech Republic

 63

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286565153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


they have been extended to industrial processes
(Mezghani et al., 2002). On the other hand, mpc
controllers are widely used in process industry
(Camacho and Bordons, 2004). Nevertheless, the
linear model based controllers are not suitable
in this case because of the nonlinearity of the
process. Even using a batch controller (based on
a linear model), like the one described in Lee et
al. (2000), the closed loop behavior is not satisfac-
tory. This is due to the nonlinear characteristics
of the process.

In this work, two controllers are tested on an
exothermal reactor plant: Iterative Learning Con-
trol (ilc) and Iterative Nonlinear Model Predic-
tive Control (inmpc). The reaction heat is com-
puted in simulation and produced in a resistance
inside the tank, therefore its value is limited.
Ilc has been widely studied in literature since
Arimoto et al. (1984). It has good convergence
properties and it is simple to implement. The only
elements needed for the basic implementation are
a gain and a memory. The control law is given by
the following equation

u(t) = uk−1(t) + Kilce
k−1(t + d) (1)

where k is the batch index, t the time and d is the
delay. It is very important to choose correctly the
plant delay d, because an incorrect value (specially
lower values than the real plant delay) may lead
to instability.

The proposed controller, inmpc, is a combination
of iterative and nonlinear model predictive con-
trollers and it is devised to control nonlinear batch
processes. The use of deviation variables in its for-
mulation simplifies identification task, while iter-
ative nature makes perfect tracking possible, even
with plant-model mismatch. The proposed control
approach to the problem is based on a model-
based predictive control formulation which takes
advantage of the repetitive nature of the process.
Like in most of the mpc controllers, inmpc uses
a receding horizon strategy; in other case, the
matrices appearing in the optimization problem
can be quite large. As it is a batch controller, it
uses the information available from past batches,
using the system trajectory during the last batch
to compute the current batch control variable. It
also allows the use of input/output constraints, as
it is done in mpc.

The paper is organized as follows. In section 2
a description of the pilot reactor batch process
is presented. Section 3 describes the proposed
algorithm, showing the development of the control
strategy for the reactor model. This strategy is
applied to the laboratory plant and the results are
shown in section 4. Finally the major conclusions
are drawn in section 5.

Fig. 1. Pilot reactor system

2. PROCESS DESCRIPTION

The process (figure 1) is a pilot plant, where the
chemical reaction is experimentally emulated by
generating heat inside the tank with a resistance,
in a quantity that is computed on-line integrating
the nonlinear dynamical equations. Also, it has a
cooling recirculation loop equipped with a heat
exchanger, a pump and a valve for controlling the
recirculation flow. There are temperature sensors
along the plant as well as valves controlling the
inlet and outlet water flows.

The objective is to control the tank temperature,
tracking a desired reference trajectory, which is
known. This trajectory can be computed in ad-
vance optimizing some cost function.

The batch process experiments are performed in
the following way. Firstly, the tank is filled with
water to a prescribed level. Later, valves are closed
in order to keep constant level. Initial conditions
(temperatures and tank level) must be the same
for every batch. Then, the exothermal reaction
starts and a temperature profile must be tracked,
using the heat exchanger to compensate the heat
produced in the reaction, which is given by Lee et
al. (2000):{

dCA/dt = −k0e
− E

RT C2
A

Q(t) = (−∆H)V k0e
− E

RT C2
A

(2)

where T is the absolute temperature inside the
reactor. The initial concentration of reactive is
constant and equal to Ca0 .

Q(t) is computed (integrating equation (2)) and
the equivalent heat is generated into the tank by
using the resistance. This experimental emulation
of a process in a physical plant is done also in the
work of Santos et al. (2000). The kinetics para-
meters are given in table 1, taken from Lee et al.
(2000). It also presents physical plant parameters.

First principles are applied to get the plant model
for control purposes. Model equation is given by:

mCṪ = FC (Te − T ) + Q (t) (3)

where Q(t) is computed using equation (2) and
generated at the tank resistance, C is the specific
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Table 1. Chemical reaction kinetics and
tank parameters

Parameter Value Units

−∆HV/MCp 20 l ·K/mol
k0 1.16 · 1017 l/mol · s
E
R

13550 K

Ca0 0.9 mol/l
T0 303 K
M 30 · 103 g
Cp 4.18 J/g ·K
h 0.92 m

Fmax 10 l/s
Qmax 15 · 103 W

heat of reactive, m is the tank mass, F the water
flow, Te the inlet temperature and T the inner
temperature (controlled variable). The initial con-
ditions are given by T (0) = T0.

Therefore, the complete model is obtained joining
together the previous equations. The temperature
is the controlled variable and the recirculating
water flow is the manipulated variable.

If the term Q(t) keeps an approximately constant
value at time t for every batch, modelling task
is highly simplified. In fact, it is not necessary
to know the generated heat for the purpose of
constructing an approximated model for the it-
erative controller. In a batch process, this term
will practically disappear when batch deviation
variables are used, letting a small residual term
that is included in the plant noise model. Note
that, although generated heat can be measured in
the laboratory experiments, in general it will be
not possible to have a sensor for this variable in
the real chemical reactor.

The specific heat of reactive and tank mass are
known. Hence, only the expression for the water
temperature after the heat exchanger and valve
characteristics have to be known. The static valve
characteristic, linear in this case and the static
heat exchanger model can be used because their
dynamics are fast in relation to the tank tempera-
ture dynamics (singular perturbation hypothesis).
The heat exchanger model is given by

Te ' βTew + (1− β) T (4)

where β is the exchanger efficiency

β = f (F, Tew
− T ) (5)

and can be computed on-line with the available
data (parameters in table 2), being Tew

the tem-
perature of the inlet cold water in the exchanger.
The following simple equation is used for calcula-
tion:

β ' aeF + be (Tew
− T ) + ce (6)

Note that the identification phase is substantially
reduced, since part of the model parameters are
not needed for an iterative model-based controller
in batch processes. The resulting model is approx-
imated, and its quality depends on how much does

Table 2. Identified parameters

Parameter Value Unit

ae −8.78 · 10−4 (l/s)−1

be −2.43 · 10−4 1/K
ce 0.964

the quantity of heat change from one run to an-
other. In section 4 it is verified, a posteriori, that
this quantity is small enough. There are instants
at the beginning where the approximation error
is bigger, but it is still acceptable for the purpose
of controlling the plant. This error tends to zero
when the batch number increases.

Therefore, from the point of view of the iterative
predictive controller, the plant model is obtained
substituting (4)-(6) into (3). The heat generated
is supposed to be compensated by the controller.
The following discrete time model is obtained:

Tt+1 = Tt + Ts
Ft∆Tet [aeFt + be∆Tet + ce]

m
(7)

where ∆Tet = Tew − Tt and Ts is the sampling
time.

3. CONTROLLER SYNTHESIS

Controller formulation combines the learning ca-
pabilities of iterative controllers with the opti-
mized trajectories of mpc controllers. It is sum-
marized in the following subsections.

In order to fix notation, ut is the variable u at
time t referred to the batch k. The batch index is
omitted if the variable is referred to the running
batch.

3.1 Past batches information

The controller takes advantage of the repetitive
nature of the process. It has been noted that
using information from past batches to control the
new one can improve the tracking performance of
the control algorithm. Indeed, perfect tracking is
possible in the ideal case (no noise), even with
model uncertainty (Xu et al., 2001).

The proposed controller can also control nonlinear
processes. Although the algorithm is based on a
local formulation (i.e. global minimum is not guar-
anteed), it is applied to the plant, obtaining good
results. Perfect tracking could be obtained in the
absence of noise and non-repetitive disturbances.

Past batches information is taken into account by
using batch deviation variables, i.e. the differences
between the variables defined at the same time
but at consecutive batches. It makes repetitive
disturbance rejection a simple fact because this
kind of disturbances are cancelled by using batch
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deviation variables. They are defined in the fol-
lowing way:

x̃ (t) = x (t)− xk−1 (t) (8)

Assume that the plant is given by the model
{

ẋ(t) = f (x(t), u(t)) + v (t)
y(t) = g (x(t)) + w(t) (9)

with the constant initial conditions xk(0) = x0

and where v and w are disturbance terms.

Substituting the expressions of the deviation vari-
ables (8) into the dynamic model (9), we have

{
dx̃k(t)/dt = f̃k

(
x̃k(t), ũk(t)

)
ỹk(t) = g̃k

(
x̃k(t)

) (10)

Past batches information permits better control of
the plant because repetitive disturbances are elim-
inated from the model. Therefore, identification
phase is simplified in batch processes and there
is no need to include into the model disturbance
terms that are repetitive.

It is worth to remark that a model-based iterative
controller for a batch reactor does not need to
model, in the experiment conditions indicated in
this work, the kinetic parameters of the chemical
reaction. The reason is that the generated heat,
although it depends on temperature, is approxi-
mately the same at different batches.

3.2 Basic characteristics

The proposed control approach to the problem is
based on a model-based predictive control formu-
lation, which is suitable to be applied to repetitive
or batch nonlinear processes. The characteristics
of the controller are:

• The model is obtained from plant lineariza-
tion around a given base trajectory, that is
equal to the last batch trajectory.

• Like in most of the mpc controllers, it uses a
receding horizon strategy.

• As a batch controller, it uses the information
available from past batches in two ways: us-
ing batch deviation variables and computing
linearized model around last batch.

• Reference trajectory is a combination be-
tween the set point and the trajectory
of the system in the last batch: r(t) =
(1− α) sp (t) + αyk−1 (t). In many cases, α
can be make equal to 0, and its only purpose
is to smooth the trajectories, making the de-
viation variables smaller and improving the
accuracy of the ltv model.

• The linear time-varying (ltv) prediction can
be computed (see section 3.3.1) in a similar
way that is done in mpc: ỹ = Gũ + f

• Possible addition of input or output con-
straints.

• Minimization of a functional:

J = ‖y − r‖2 + λ ‖ũ‖2 = ‖ỹ − r̃‖2 + λ ‖ũ‖2
(11)

with

r̃ (t) = r (t)− yk−1 (t) = (12)

= (1− α) sp (t) + (α− 1) yk−1 (t)

3.3 Control law

The so called variational model, which is the orig-
inal system linearized around a base trajectory, is
obtained. The discrete time version of this varia-
tional system is the plant model in which is based
the mpc controller.

If system is linearized around a trajectory close
to the one that the system will follow, the linear
time-varying (ltv) model shall be quite accurate.
This is analogous to the optimizing response equa-
tions in the formulation of the epsac controller
(Keyser, 1997), with the difference that the base
trajectory in inmpc is the one followed by the
system in the last batch. It means that the base
trajectory is taken in this way with the expec-
tation that it will be close to the trajectory in
next batch, or, at least, that the nonlinear terms
neglected in the approximation are small enough.

The simplified nonlinear state-space model of the
system (after disturbance cancellation, equation
10) is linearized around the last batch trajectory(
xk−1 (t) , uk−1 (t)

)
and sampled, obtaining the

following ltv system:
{

x̃t+1 = Atx̃t + Btũt

ỹt = Ctx̃t
(13)

Remark 1. It is implicitly assumed that the
deviation variables are small, so the linearized
system is accurate. This can be assured making
the control slow (i.e. a few more batches will be
needed to get convergence).

Remark 2. Deviation variables will tend to zero
when the system converges to the reference tra-
jectory, but in the first iterations these variables
can be large. In these cases, it may be useful to
compute an optimal open-loop solution to the op-
timization problem, which is applied to the plant
for the first iteration of the controller.

3.3.1. Predictor equations If the plant model is
given by equation (13) and ξk is an integral white
noise, the optimal 1-step ahead prediction is

{
x̃t+1|t = Atx̃t|t + Btũt

ỹt+1|t = Ct+1x̃t+1|t + et+1|t
(14)
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with et+n|t = et|t = ỹt|t − ỹt|t−1. This means that
the best prediction for the error is assumed to be
equal to the error at instant k. Note that Ck+n

can be computed because the base trajectory is
known for every instant of time.

The n-step ahead prediction is given by




x̃t+n|t =

(
n−1∏

i=0

At+i

)
x̃t|t+

+
n−1∑

i=0




n−1∏

j=1+i

At+j


Bt+iũt+i

ỹt+n|t = Ct+nx̃t+n|t + et|t

(15)

Hence, the prediction is linear and can be put in
matrix form:

ỹ = Gũ + f (16)

where Gũ is the forced response, and f is the free
response. The elements of matrix G and vector f
are given by

gi,j = Ct+i




i−1∏

h=j

At+h


 Bt+j−1 (17)

fi = Ct+i




n−1∏

j=0

At+j


 x̃t + et+i|t (18)

and

ũ = [ũt ũt+1 · · · ũt+m−1]
t (19)

ỹ = [ỹt+1 ỹt+2 · · · ỹt+p]
t (20)

Given the prediction (equation 16), the objective
function (equation 11) can be optimized. In the
non constrained case, it gives the classical result:

ũ = −(G′G + λI)−1G′ (r̃ − f) (21)

with the difference that now G is a dynamic
matrix that represents a ltv model and changes
from one batch to another. Notice that this equa-
tion corresponds to a control with a gain that is
changing at every sampling time. If the problem
has constraints, a standard qp problem has to be
solved in order to obtain the control law.

4. RESULTS

In this section, the controller is tested on the
pilot plant and it is compared to a well-known
iterative controller. The first batch is obtained for
all iterative controllers keeping the control valve
constant at 50%. The initial conditions are the
same for every run and experiment time is 20
minutes.

The hypothesis that the generated heat profile is
approximately constant in the closed-loop system

has been considered. Experiments have shown
that this assumption is adequate.

The ilc gain (see section 1) is tuned by simulation
and it is made equal to 10. The plant delay is
equal to 30s. The sample time is Ts = 15s, so
d = 2. ilc control makes the system converge
to the reference trajectory under some general
conditions. Unfortunately, this convergence can be
quite slow. As pointed out by Longman (2000),
the error can even increase in the transitory.

Therefore inmpc is a good candidate to control
this plant in an optimal way. The controller takes
into account the process nonlinearity using a ltv
model. It permits the controller to work ade-
quately at every time during experiments.

In both cases (ilc and inmpc), it is a crucial point
to choose correctly the model delay d because
iterative controllers may lead to instability if
model delay is lower than the real one.

Figures 2 and 3 illustrate the main difference be-
tween both controllers. Although both controllers
converge to the optimal temperature profile, in-
mpc requires only four iterations to get an ac-
ceptable fit. An excessively slow convergence is
obtained with ilc, or ilc combined with linear
mpc (figure 4). It may be not allowed in an indus-
trial plant because the first batches could have to
be discarded if tracking errors are large.
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Fig. 2. ILC, fourth iteration
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Fig. 3. INMPC, fourth iteration

First iterations of both controllers can be viewed
in figures 5 and 6. These 3D figures illustrate well
the concept of two independent time variables
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Fig. 4. Comparison between linear and non-linear
iterative MPC at the second iteration

appearing in batch processes: one axis corresponds
to time and the other, to batch index. From the
experiments, it is clear that, after four iterations,
ilc is only able to follow the final descending set
point ramp, whereas inmpc performs correctly
during all the experiment. The reason is that
inmpc uses a ltv model that is also recomputed
at every batch, resulting in a time and batch
varying control gain (see equation (21), G is
variable, so the control gain too), whereas ilc
has a fixed gain. Additionally, the constraints
are only considered in the inmpc. Moreover, this
controller optimizes a cost function and is based
on a nonlinear model. It is the explication that
inmpc performs better than ilc.

5. CONCLUSIONS

A model based control strategy which is suit-
able for controlling iterative processes, such as
a batch chemical reactor, is presented. The reac-
tion is experimentally simulated by an electrical
heating, limiting the model-plant mismatch. The
controller, called inmpc, combines standard char-
acteristics of nonlinear model predictive control
with iterative learning capabilities.

The controller presents a good convergence rate
when applied to this simulated pilot plant, that
is faster than the one obtained by other itera-
tive techniques such as ilc. Moreover, trajectory
tracking is refined at every batch. After some
batches, the tracking error tends to zero, surpass-
ing non-learning nmpc controllers whose trajec-
tory is the one computed by the controller in the
first run. The modelling task is reduced when
batch controller inmpc is used. Although good
results have been obtained in this application,
a deeper study of aspects such as stability and
convergence must be addressed in the future.

Fig. 5. ILC, four iterations

Fig. 6. INMPC, four iterations
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