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Abstract: This paper proposes a health-aware control approach for drinking water transport networks.
This approach is based on an economic model predictive control (MPC) that considers an additional
goal with the aim of extending the components and system reliability. The components and system
reliability are incorporated into the MPC model using a Linear Parameter Varying (LPV) modeling
approach. The MPC controller uses additionally an economic objective function that determines
the optimal filling/emptying sequence of the tanks considering that electricity price varies between
day and night and that the demand also follows a 24-h repetitive pattern. The proposed LPV-MPC
control approach allows considering the model nonlinearities by embedding them in the parameters.
The values of these varying parameters are updated at each iteration taking into account the new
values of the scheduling variables. In this way, the optimization problem associated with the
MPC problem is solved by means of Quadratic Programming (QP) to avoid the use of nonlinear
programming. This iterative approach reduces the computational load compared to the solution of
a nonlinear optimization problem. A case study based on the Barcelona water transport network is
used for assessing the proposed approach performance.

Keywords: drinking water networks; reliability; economic cost; model predictive control;
linear parameter varying

1. Introduction

The management of the urban water cycle (UWC) is a subject of increasing interest taking into
account its social, economic, and environmental impacts [1]. Drinking Water Networks (DWNs) are
critical infrastructures in urban environments. DWNs are also of vital importance for supporting all
kinds of social activities. For the individuals inhabiting a modern city, the water supply service is
one of the basic requirements. As the progress of society and the evolution of human civilizations,
a growing number of people migrate into cities. Hence, the increasing complexity of the DWNs
would generate some complications for the management under multiple objectives, such as economic
operations, as well as safety, reliability and sustainability. Moreover, maintaining the quality of the
water supplied is another important objective that has already been addressed (e.g., [2]).

DWNs are large-scale systems that have to be flexible and reliable to deal with continuously
varying situations, such as unanticipated changes in the demands or faults in some of the elements [3].
According to the literature [4,5], the main goal of the operational control of a DWN is to satisfy the
consumer demand, and the operational management of water networks seeks to continuously supply
water to the consumer with appropriate quality levels while minimizing production and transport
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cost, as well as guaranteeing safety levels in tanks and a sustainable source management strategy.
Therefore, the optimal operational management of these systems is a multi-criteria management
problem and poses a complicated challenge to the water stakeholder in charge of the operation.
In the last decades, MPC has started to attract the attention of both academia and industry due to
the possibility of dealing with type of problem including energy optimization and physical load
reduction [6]. In general, the MPC approach (using the receding horizon strategy) determines the
optimal control action from a sequence of open-loop control actions ahead in a prediction horizon
minimizing a set of control objectives and satisfying a set of constraints considering the system dynamic
model and physical/operational limits. Furthermore, MPC enables accounting for the multivariable
input and output nature, the demand forecasting requirement, and complex multi-objective operational
goals of water networks (see, e.g., [7,8]). Generally, standard MPC is formulated as an optimization
problem that penalizes the tracking error [9]. Although this method guarantees that the set-point
is achieved in a reasonable time, it does not ensure that the evolution among set-points is achieved
in an effective manner. However, the common operational goal of many process industries, such as
DWNs, is the minimization of economic costs related to energy consumption and water production.
To this aim, Economic MPC (EMPC) contributes a systematic approach for optimizing economic
performance [10]. The optimization problem behind the EMPC strategy is responsible for finding
a family of the optimal set-points taking into account economic profits instead of steering the controlled
system to a given set-point [11].

The application of health-aware control strategies based on the system and components reliability
allows ensuring the quality of service. To preserve the system reliability, the controller should
not only to reduce the operational costs but preserve the actuator health. In this paper, actuator
health monitoring is achieved by estimating the reliability of each actuator according to the actuator
operational information available.

Recently, system reliability has been considered in the control system design in the context
of a Prognosis and Health Management (PHM) framework. Reliability is the ability of a system
(or component) to perform its expected function [12]. In this context, reliability allows forecasting the
remaining useful life and to anticipate future system faults given the state of its components [13,14].

In recent years, the problem of assessing the lifetime and reliability of the system and its
components has received increasing attention. In [15], the actuator lifetime is considered as a controlled
parameter to reduce maintenance cost by including an additional objective in the optimal controller.
The reliability of a bearing according to its defect growth is estimated by comparing the fatigue
crack propagation with the estimation from the diagnostic model in [16]. On the other side, the MPC
approach has been proven to be an adequate strategy for implementing health-aware controllers (HAC).
In the HAC approach, the online prognostic information of the system is used to adjust the control
actions or to develop the mission objective in order to maintain a high level of system health [17].
In [18], an MPC approach is proposed that involves the actuator usage as constraints with the objective
to keep the accumulated utilization under a safety level at the end of the mission.

DWN reliability depends on several factors such as the pumps and valves failures rates and
quantity/quality of the water, among others [17]. The actuator reliability is usually modeled using
an exponential function of the control input [14,19]. On the other hand, the system reliability can be
determined by combining each actuator reliability and the interconnection topology. The reliability
of water distribution network has already been address in the literature [20]. In [21], the reliability
analysis methodologies of water distribution systems are described based on tailor-made “lumped
supply–lumped demand” approach and a Monte Carlo framework. In [22], a structure for devising
such a proactive risk-based integrity-monitoring approach for the control of urban water distribution
networks is proposed.

In previous works, the reliability of actuators in the DWN control has been considered by
including a wear index [3,17] or by adding additional constraints to preserve actuator reliability [5].
In those previous methods, the reliability is considered at the actuator level but not at the system level
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considering the interconnection topology. The main reason is because in this case a set of nonlinear
constraints should be considered leading to a nonlinear MPC. Moreover, Economic Nonlinear MPC
(ENMPC) is usually computationally expensive and, in general, there is no guarantee that the solution
of the optimization problem is the global optimum. Another way of solving the optimization problem
in the case of a nonlinear system is translating the nonlinear problem to a quadratic problem by means
of linearization approach. In this manner, the system has to be linearized at each iteration, considering
the system modeled by an incremental model [23,24]. This approach has been recently improved
considering Linear Parameter Varying (LPV) models [25]. LPV models are a class of models with
linear structure but including a set of varying parameters that are scheduled online. These models
allow representing a nonlinear system into a linear-like system with varying parameters by using the
nonlinear embedding approach [26].

This paper proposes a health-aware LPV-MPC controller that uses PHM information provided
by the online system reliability evaluation. The reliability model is included into the MPC model.
The augmented model including both the reliability and DWN models is transformed into an LPV
model. Hence, the control actions obtained satisfy the control objectives/constraints and at the same
time preserve the system reliability and lifetime. Finally, the case study considered in this paper to
show the effectiveness of the proposed approach is based on a part of a real drinking water transport
network of Barcelona. The dynamic model of transport network considered is based on previous
works [8,27] where only the flow model is used.

The remainder of the paper is organized as follows. In Section 2, the control-oriented model
of DWN from Barcelona is presented. In Section 3, the system reliability modeling is exhibited.
In Section 4, the reliability model is integrated into the control algorithm and the economic health-aware
controller is presented based on an LPV-MPC approach. In Section 5, results of implementing the
proposed control strategy to the DWN network as a case study are compiled. Finally, the conclusion of
this work is illustrated and some research lines for future work are introduced in Section 6.

2. EMPC of Drinking Water Transport Network

2.1. Control-Oriented Modeling

Several control-oriented modeling approaches for DWNs have been proposed in the literature
(see, e.g., [28,29]) depending on the layer (transport or distribution) considered. The water transport
network is in charge of transporting the water from the sources (typically rivers) to the tanks that
supply water to the water distribution network. On the other hand, the water distribution network
distributes water to the consumers from the tanks. A suitable description of the dynamic model for
the control of the water transport network is based on considering a flow model [8]. The pressure
relations are typically relevant for the control of the water distribution network since water should be
distributed to the consumers at some pre-established pressure levels [29]. Since this paper is focused
on water transport networks, a modeling approach that is based on a flow model is considered that
follows the principles introduced by the authors of [8].

Considering the set of compositional elements (as e.g., tanks, valves, pumps, and pipes) and the
modeling methodology of each component in the DWN proposed in [8], the control-oriented model
of DWN can be described by a linear discrete-time difference-algebraic equations for all time instant
k ∈ Z+:

x(k + 1) = Ax(k) + Bu(k) + Bddm(k), (1a)

0 = Euu(k) + Eddm(k), (1b)

y(k) = Cx(k), (1c)

The difference equations (Equation (1a)) model the storage tanks volume dynamics, and the
algebraic equations in (Equation (1b)) characterize the network static flow relations (i.e., mass balance
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at junction nodes). x(k) ∈ Rnx is the storage tanks volumes, u(k) ∈ Rnu is the actuator (pumps and
valves) manipulated flows, y ∈ Rny denotes measured outputs and dm(k) ∈ Rnm is the demanded
flow that can be considered as measured (or forecasted) disturbances. A ∈ Rnx×nx , B ∈ Rnx×nu ,
Bd ∈ Rnx×nd , Eu ∈ Rnd×nu , Ed ∈ Rnd×nd and C ∈ Rny×nx are time-invariant matrices of suitable
dimensions dictated by the network topology.

2.2. EMPC Formulation of DWN

The application of MPC methods to DWNs allows computing, ahead of time, the optimal
actuator set-points to enhance the network performance [1]. This leads to the minimization of
a multi-objective convex cost function that includes the following operational goals typically considered
in the DWN management:

• Economic: Provide the required amount of water minimizing water production and transport costs.
• Safety: Guarantee the safety levels in each storage tanks that guarantee the water supply under

unexpected changes in the demand up to some level.
• Smoothness: Operate actuators in the DWN under smooth control actions to avoid overpressure

in pipes and damage in actuators.

2.2.1. Minimization of Water Production and Transport Costs

The main control objective of the DWN is to minimize the costs that are related to water production
costs and electrical costs associated to pumping. Transferring drinking water from the sources to the
tanks through the network includes important electricity costs because of the need of pumping. Hence,
the cost function associated to this objective can be formulated as

`e(k) , α(k)>Weu(k), (2)

where α(k) , (α1 + α2(k)) ∈ Rnu , α1 ∈ Rnu is a fixed water-production cost which is constant and
a time-varying water pumping electrical cost is presented by α2 ∈ Rnu that changes at each time
instant k according to the dynamic electricity tariff. We denotes the weighting term that indicates the
prioritization of the economic control objective.

2.2.2. Guarantee Safety Management of Water Storage

With the aim of the preserving water supply despite the variation of water demands between two
consecutive MPC iterations, a suitable safety volume for each storage tank is needed to be maintained.
A possible mathematical expression for this objective can be expressed as follows

`s(k) ,

{
‖x(k)− xs‖p, i f x(k) ≤ xs

0, otherwise
(3)

where xs denotes the vector of the safety volumes for all the tanks. To avoid the piecewise linear form
of this formulation, this cost function can also be formulated by means of a soft constraint by adding
a slack variable ξ that can be expressed as

`s(k) , ξ>(k)Wsξ(k), (4)

where Ws is diagonal positive definite matrix and the following soft constraint is included

x(k) ≥ xs − ξ(k). (5)
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2.2.3. Smoothing of Control Actions

The actuators in the DWN include valves and pumps. Thus, the flow-based control actions
determined by the MPC controller should be smooth in order to extend the component lifespan.
To ensure the smoothing effect, the slew rate of the control actions between two consecutive time
instants is penalized according to

`∆u(k) , ∆u(k)>W∆u∆u(k), (6)

where `∆u(k) corresponds to the penalization of control signal variations ∆u(k) , u(k)− u(k− 1),
and W∆u is a diagonal positive definite matrix.

The controller should also operate actuators and tanks inside their bounds and extend the
reliability of the system, as presented below. Thus, the MPC optimization problem should be solved
considering as constraints the mathematical model of the DWN (Equation (1)) and the operational
constraints defined by

x(k) ∈ X M
={x(k) ∈ Rnx | x ≤ x(k) ≤ x}, ∀k (7a)

u(k) ∈ U M
={u(k) ∈ Rnu | u ≤ u(k) ≤ u}, ∀k (7b)

where vectors x ∈ Rnx and x ∈ Rnx characterize the minimum and maximum physical state values
(tank volumes) of the DWN network, respectively. Similarly, u ∈ Rnu and u ∈ Rnu determine the
minimum and maximum possible value of manipulated variables, respectively. The EMPC controller
design is based on minimizing the following finite horizon cost function

J =
Np

∑
l=0

(`e(l|k) + `s(l|k) + `∆u(l|k)), (8)

where Np is the prediction horizon. At each time instant, the optimization problem

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)), (9a)

subject to:

x(l + 1|k) = Ax(l|k) + Bu(l|k) + Bddm(l|k), l = 0, · · · , Np − 1 (9b)

0 = Euu(l|k) + Eddm(k), l = 0, · · · , Np − 1 (9c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (9d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (9e)

x(l|k),∈ X, l = 1, · · · , Np (9f)

ξ(l|k) > 0, l = 0, · · · , Np (9g)

x(0|k) = x(k), (9h)

is solved online, obtaining the optimal sequences u∗(k) = {u(l|k)}l∈Z[0,Np−1]
, x∗(k) = {x(l|k)}l∈Z[1,Np ]

and ξ∗(k) = {xi(l|k)}l∈Z[1,Np ]
. According to receding horizon philosophy [30], this technique consists

of solving the optimization problem in Equation (9a) from the current time instant k to k + Np using
x(0|k) as the initial condition obtained from measurements (or state estimation) at time k. According
to the philosophy behind the MPC technique [30], only the first value u∗(0|k) from the optimal input
sequence u∗(k) is applied to the system. In this way, the feedback control is included in the controller
to make sense a closed loop controller for controlling the system. At time k + 1, to compute u∗(0|k + 1),
the optimization problem in Equation (9a) is solved again from k + 1 to k + 1 + Np, updating initial
states x(0|1+ k) from measurements (or state estimation) at time k + 1. The same procedure is repeated
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for the following time instants. Moreover, the constraint in Equation (9g) is included to force that the
slack variable is a positive value.

3. Reliability Assessment

3.1. Failure Rate and Reliability Concept

As mentioned above, the reliability is the ability of a system (or component) to perform its
expected functions and it is defined as follows.

Definition 1. Reliability is characterized as the probability that units, components, types of tools and systems
will operate their predesignated role for a specified period of time according to some operating conditions [31].

More specifically, it is the probability of success in performing a task or reaching a desired
property in the process, based on the right component operation. Mathematically, reliability R(t) is the
probability that a system will be successful in the interval from time 0 to time t:

R(t) = P(T > t), t ≥ 0 (10)

where T is a nonnegative random variable, which signifies time-to-failure. Moreover, the definition of
unreliability of a system is presented in the following.

Definition 2. The unreliability of an element (or system) F(t) is determined as the probability that it experiences
the first failure or has failed one or more times throughout the time interval 0 to time t.

Considering the component is regularly in one of the two probable states (failed or operational),
the following relation is satisfied

F(t) + R(t) = 1. (11)

Many different functions have been proposed to describe the reliability as a function of time.
Some of the more general reliability functions include the log-normal, exponential and Weibull
distributions [32]. In this paper, the exponential distribution is used for modeling the component
failure rate. In particular, engineering systems are organized to support varying amounts of loads
where they can be expressed in terms of usage rate or occupied period. Reviewing the literature, it has
been established that the function load strongly affects the component failure rate [12]. Therefore,
it is necessary to consider the load versus failure rate relation when considering system reliability
evaluation. In this work, failure rates are determined from actuators under different levels of load
according to the applied control input. One of the commonly used relations is based on assuming that
actuator fault rates vary with the load by the following exponential law

λi = λ0
i exp

(
βiui(k)

)
, i = 1, 2, . . . , m. (12)

where λ0
i indicates the baseline failure rate (nominal failure rate) and ui(k) is the control action a time

k for the ith actuator. βi is a constant parameter that depends on the actuator characteristics.
In the useful period of life, the element can be characterized at a given time t by a baseline

reliability measure R0(t). Then, R0,i(t) denotes the reliability of the ith actuator obtained under
nominal operating conditions

R0,i(k) = exp
(
− λ0

i t
)
, i = 1, 2, . . . , m. (13)
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Hence, the reliability of the ith system component can be computed by applying the exponential
function and the baseline reliability level R0,j as follows

Ri(k) = R0,i exp
(
−
∫ k

0
λi(s) ds

)
, i = 1, 2, . . . , m (14)

In discrete-time, it can be rewritten as

Ri(k + 1) = R0,i(k) exp
(
− Ts

k+1

∑
s=0

λi(s)
)

, i = 1, 2, . . . , m (15)

where λi(s) is the failure rate obtained from the ith component under different levels of load and Ts is
the sampling time.

3.2. Overall Reliability

The lifetime of a system can be quantified by means of the overall system reliability, denoted as
RG(k). The overall system reliability is computed based on the reliabilities of elementary components
(or subsystems). Therefore, RG(k) depends on the actuators’ configuration, which can generally be
obtained from series and/or parallel combinations of subsystems (or components) [33]. However,
some systems do not follow series, parallel or combination of series and parallel structures. To deal
with the more general situation, a graph network model can be used in which it is possible to determine
whether the system is working correctly by determining existence of a successful path in the system.
A path in a graph network is a set of components that, if operating as expected, the system operation
will be successful. A minimal path Ps is a set of components, from which if one were removed would
mean the resulting set is no longer a path [33]. Then, the overall system reliability RG(k) can be
computed as

RG(k) = 1−
s

∏
j=1

(
1− ∏

i∈Ps,j

Ri(k)
)

, (16)

where j = 1, 2, . . . , s is number of minimal paths.

3.3. System Reliability Modeling

For the purpose of integrating the reliability function in the MPC model as a new state
variable, a conversion is needed that allows computing reliability in a linear-like form. The proposed
transformation is based on applying the logarithm in Equation (16). As stated in Equation (11),
Equation (16) can be rewritten as

log(QG(k)) = log
( s

∏
j=1

(
1− ∏

i∈ps,j

Ri(k)
))

, (17)

and by introducing a change of variable

zj(k) = 1− ∏
i∈ps,j

Ri(k), (18)

Equation (17) leads to

log(QG(k)) =
s

∑
i∈ps,j

log(zj(k)). (19)
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According to Equation (18), the log(zj(k)) can be obtained as

log(zj(k)) =
log(zj(k))

log(1− zj(k))
∑

i∈ps,j

log Ri(k). (20)

Then, by renaming β j(k) =
log(zj(k))

log(1−zj(k))
in Equation (20), Equation (17) can be rewritten as

log(QG(k)) =
s

∑
i∈ps,j

β j(k) ∑
i∈ps,j

log Ri(k). (21)

Finally, the system unreliability of system can be estimated from the baseline system unreliability
as follows:

log(QG(k + 1)) = log(QG(k + 1)) +
s

∑
i∈ps,j

β j(k) ∑
i∈ps,j

log Ri(k). (22)

4. Economic Health-Aware LPV-MPC

This section presents the incorporation of reliability information in the predictive control law
as a new state of the model. As mentioned in Section 2, the reliability of the DWN can be estimated
using the control input (actuator commands) information. To include a new objective in the MPC that
proposes to extend the system reliability, the reliability model is represented by means of the model in
Equation (22). In fact, the new control model of DWN that includes the reliability and dynamic model
of DWN is obtained based on the structure shown in Figure 1. Actually, there is a direct relationship
between the dynamic model of DWN and its system reliability.

System Model

Signal-Flow Graphs

Obtaining Minimal Path

Reliability Model

Augmented Model

for Control

Figure 1. Digram of the new proposed control model approach.

Thus, the new MPC model has the following structure

xr(k + 1) = Arxr(k) + Bru(k) + Br,ddm(k),

yr(k) = Crx(k),
(23)

where the state and output vector are given by xr = [x, log(QG), log(R1), . . . , log(Ri)]
T and

yr = [y, log(QG)]
T , respectively. The new matrices are defined as
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Ar =



A 0nx×ni+1

01×nx 1 ∑s
i∈ps,j

β j(k)

0ni×nx Ini×ni


, Br =



Bnu×nu

0

−λi × Ini×ni


,

Br,d =



Bd,nu×nu

0ni+1×nBd


, Cr =

[
C 0 0 · · · 0
0 1 0 · · · 0

]
.

(24)

Therefore, the new MPC model in Equation (23) can be viewed as an LPV model that has as
scheduling variable the control action ui(k) related to each state and actuator. The new MPC model in
Equation (23) cannot be estimated before solving the optimization problem in Equation (9) since the
future state sequence is not identified. In fact, x(l|k) depends on the future control inputs u(k) and
scheduling parameters, which, for general LPV models, are not expected to be known prior but only to
be measurable online at current time k. The idea is to obtain a solution to the problem in Equation (9)
by solving an online optimization problem as a QP problem. The solution for this problem is to modify
the exact LPV-MPC to a linear approximation of the LPV-MPC. This approximation uses an estimation
of scheduling variables, θ̂, instead of applying θ. Indeed, the scheduling variables in the prediction
horizon are determined and used to update the matrices of the model adopted by the MPC controller.
In fact, to solve this problem, the sequence of the control input is used to adjust the system matrices of
the model applied in the prediction horizon. Hence, based on the optimal control sequence u(k), the
following sequence of states and predicted parameters can be achieved:

x̃(k) =


x(l + 1|k)
x(l + 2|k)

...
x(Np|k)

 ∈ RNp ,nx , Θ(k) =


θ̂(l|k)

θ̂(l + 1|k)
...

θ̂(Np − 1|k)

 ∈ RNp ,nθ . (25)

Therefore, with slight abuse of notation, f can be defined as: Θ(k) = f ([xT(k) x̃T(k)], u(k)).
The vector Θ(k) includes parameters from time k to k + Np − 1 whilst the state prediction is
accomplished for time k + 1 to k + Np.

Hence, by using the definitions in Equation (25), the predicted states can be simply formulated
as follows

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (26)

where A ∈ Rnx×nx and B ∈ Rnx×nu are given by Equations (27) and (28).

A(Θ(k)) =


I

A(θ̂(k))
A(θ̂(k + 1))A(θ̂(k))

...
A(θ̂(k + Np − 1))A(θ̂(k + Np − 2)) . . . A(θ̂(k))

 , (27)
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and

B(Θ(k)) =



0 0 0 . . . 0
B(θ̂(k)) 0 0 . . . 0

A(θ̂(k + 1))B(θ̂(k)) B(θ̂(k + 1)) 0 . . . 0
...

...
. . .

. . .
...

A(θ̂k+Np−1) . . . A(θ̂(k + 1))B(θ̂(k)) A(θ̂k+Np−1) . . . A(θ̂(k + 2))B(θ̂(k + 1)) . . . B(θ̂k+Np−1)) 0

 . (28)

By using Equation (26) and augmented block diagonal weighting matrices w̃1 = diagNp(w1)

and w̃2 = diagNp(w2), the cost function in Equation (8) with new additional objective that aims to
maximize the system reliability can be rewritten in vector form as

min
u(k),ξ(k),log QG(k)

Np

∑
l=0

[`e(l|k) + `s(l|k) + `∆u(l|k)− `Rg(l|k)], (29a)

subject to:

x̃(k) = A(Θ(k))x(k) + Br,ddm(k),B(Θ(k))u(k), (29b)

0 = Euu(l|k) + Eddm(k), (29c)

x(l + 1|k) ≥ xs − ξ(l|k) (29d)

log QG(l + 1|k) = x̃nx+1(l|k) (29e)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (29f)

x(l|k),∈ X, l = 1, · · · , Np (29g)

ξ(l|k) ≥ 0, l = 0, · · · , Np (29h)

x(0|k) = x(k), (29i)

where `Rg(k) , log Q>G w3 log QG is additional objective with the corresponding weight w3 into
the EMPC-LPV cost function to maximize the system reliability. Since the predicted states Θ(k)
in Equation (26) are linear in control inputs u(k), the optimization problem can be solved as a QP
problem, which is significantly easier than solving a nonlinear optimization problem.

Using this idea, the following iterative approach at each time instant k is applied:

• In the first iteration, the problem in Equation (9) is solved considering that the quasi-LPV model
in Equation (23) is instantiated by the LTI model considering that θ(0|l) ' θ(1|l) ' θ(2|l) '. . .'
θ(Np − 1|l) along the prediction horizon Np.

• The parameter varying sequence Θ(k) is updated using the optimal value of the scheduling
variables Θ∗(k) = f (x̃∗(k), u∗(k)), where x̃∗(k) and u∗(k) are the optimal input and state
sequences obtained after the solution of the MPC problem, respectively.

• The parameter varying values for the next iteration Θ(k + 1) are obtained considering x̃(k) and
ũ(k), i.e., Θ0(k + 1) = f (x̃1(k), u0(k)).

5. Application to the Water Transport Network of Barcelona

In this section, two motivational examples are used to assess the implementation of the proposed
economic health-aware LPV-MPC based on system reliability assessment. For both examples,
the system under study is a portion extracted from the Barcelona DWN [34]. This network is managed
by Aguas de Barcelona (AGBAR), which supplies drinking water for Barcelona and its metropolitan
area [35]. The general task of this system is to supply water resources from sources to consumers
minimizing the operational costs. The DWN of Barcelona covers a territorial extension of 425 km2,
with a total pipe length of 4470 km. Every year, it supplies 237.7 hm3 of drinking water to a population
over 2.8 million inhabitants. Regarding the DWN reliability study, sectors, sources, pipelines and tanks
are assumed to be perfectly reliable, whereas active elements such as pumps and valves are considered
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not completely reliable [4]. The results were obtained using a 2.4 GHz and 12.00 Gb RAM Intel(R)
Core(TM)i7-5500 CPU. Matlab and Yalmip toolbox were used to perform the simulations.

5.1. Water Transport Network (3-Tanks)

In the first example, the proposed study concentrates on a small network based on the Barcelona
DWN. Two sources of water and four demand sectors, which represent the district metered area
(DMA), are considered (see Figure 2). It is expected that the demand forecast (dm) at each demand
sector is known and that every single source can provide this water demand (Figure 3). First, system
components must be identified. In this case, there are three pumps, three valves, two sources, three
tanks, two intersection nodes, and several pipes.

Figure 2. Drinking water network diagram (three-tanks).

Afterwards, according the definition of minimal path Ps in Section 3.2, the minimal path sets is
determined for the water network, while the Ps is determined based on the relation and the possible
connection between each source and demand sector. By considering all the paths from all sources to the
demand sector, the combination of all flow paths should follow the functional requirements necessary
to satisfy the consumer demands. A minimal path set is composed by those elements which allow
a flow path between sources and demand sector, such as pipes, tanks, pumps and valves. Based on
this analysis, the following list of each minimal path is presented in Table 1. There are five minimal
path sets in the system of Figure 2. The reliability of each minimal path set depends on the reliability of
its components. Tanks and pipes are supposed to be perfectly reliable. However, sources are involved
in the minimal path sets only for illustrative purposes of the proposed procedure. Table 2 provides the
simulation parameters used.

Figure 4 shows the evolution of the valves and pumps commands that were obtained using
the new approach of the health-aware LPV-MPC in the three tanks example with and without the
reliability-aware objective. As can be seen in Figure 4, the behavior of valve control actions are
different from the ones corresponding to the pumps. However, in all of them, the behaviors of control
actions in both scenarios are almost the same, thus the reliability-aware objective is not significantly
affecting the behavior of the valves and pumps. The comparison of the volume evolution of three tanks
based on the health-aware LPV-MPC with and without the reliability-aware objective is presented
in Figure 5. The safety volume of each tank is satisfied and hence able to cope with unexpected
demands. The system reliability prediction of the DWN, which was obtained when using the proposed
controller with and without the reliability-aware objective, is presented in Figure 6. According to these
results, it can be observed that, with the use of reliability-aware objective in the MPC, the network
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reliability is better preserved compared to the case that the reliability is not considered in the MPC
objectives. However, the responses of water tanks are similar in both scenarios. The trade-off between
the decreasing operating cost and increasing system reliability can be observed in Figure 6. Note that
the differences in the amount of the operational cost using the proposed approach is similar to the
EMPC controller without reliability objective. Figure 6 shows that the system reliability is increased
from 0.9071 to 0.9891 and that is about 9.06% of improvement, while the accumulated cost is increased
from 114.6 to 116.7 that is about 1.74% of increment.
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Figure 3. Drinking water demand for the three tanks example.

Table 1. Success minimal paths of the water transport network of Barcelona (three tanks).

Path Component Set

P1 {Source1, Valve1, Valve3, Demand4}
P2 {Source1, Valve1, Pump2, Demand3}
P3 {Source1, Valve1, Valve2, Demand2}
P4 {Source1, Valve1, Valve2, Pump2, Demand1}
P5 {Source2, Pump1, Demand1}

Table 2. Simulation parameters.

Parameter Value

Np 24
Ts [h] 1
Tm [h] 200
α1 0.123 0 0 0.054 0 0
umin [m3/s] 0 0 0 0 0 0
umax [m3/s] 1.297 0.05 0.12 0.015 0.0317 0.022
λ0 [h−1× h−4] 1.2 3.45 6.3 9.5 1 1
xmin [m3] 0 0 0 0 0 0 0 0 0 0
xmax [m3] 470 960 3100 1 1 1 1 1 1 1
x0 [m3] 0.75 0.62 0.34 0 1 1 1 1 1 1
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Figure 4. Evaluation of the control actions results for three tanks.
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Figure 5. Results of the evolutions of storage tanks for three tanks.
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Figure 6. Evaluation of system reliability and accumulated economic cost for three tanks.

5.2. Water Transport Network of Barcelona (17-Tanks)

Now, a more complex and realistic example also based on the Barcelona DWN is considered as
a case study. This case includes 17 tanks and nine sources, consisting of five underground and four
surface sources, which currently provide an inflow of about 2 m3/s. The case study also includes
61 actuators (valves and pumps), 12 nodes and 25 demands. Figure 7 presents the general topology of
the network, showing a complex system in terms of its elements and the relationships and connections
between them. Figure 8 presents the graph obtained from this network; the nodes correspond to
reservoirs or pipe merging/splitting nodes and the arcs correspond to actuators (pumps and valves).
The graph of the water network was obtained from the state space representation of the system.
This approach is explained with more detail in [36].

Figure 7. Barcelona drinking water network (17 tanks).
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As in the previous example, demand sectors, sources, pipelines and tanks are considered perfectly
reliable, whereas actuators are not [4]. Moreover, it is expected that the demand forecast (dm) at
each demand sectors is known and that every single source can supply the required water demand
(see some demand sectors in Figure 9).

The economic reliability-aware LPV-MPC formulation proposed in previous section was applied
to the simulation model of the DWN presented in Figure 9.

From the reliability analysis, it could be obtained which states are structurally controllable since
the path computation analysis provide all possible paths from a source to a target sectors. Moreover,
for each path, an approximate operational cost (according to the electricity cost of each element) and
a maximal water flow (according to the physical constraints of the actuators) can also be derived.

Figure 8. Graph of the Barcelona DWN.
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Figure 9. Drinking water demand for several sinks.

Tables 3 and 4 show that there exist several critical actuators within the network, considering the
topology and the way of network elements are connected, as most actuators (valves or pumps) are
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the only link between demands and tanks. Consequently, if an actuator fails, then the corresponding
demand will not be satisfied. Therefore, if an actuator fails, then the corresponding demand will not be
satisfied. Note that the information shown in Tables 3 and 4 is especially significant for AGBAR since
it identifies the critical elements in the network for surveillance/correction policies to be implemented
in the event of element damage [5]. According to the DWN (Figures 7), Tables 3 and 4 and the above
analysis of the success minimal path of the water network, there are 607 minimal path sets in the system
of Figure 7. Some samples of success minimal paths are presented in Table 5. The objective of the MPC
as explained above is to minimize the multi-objective cost function in Equation (29). The prediction
horizon is 24 h because the system and the electrical tariff have periodicity of one day. The sampling
time is 1 h. However, in all of them, the behaviors of control actions in both scenarios are almost
the same, considering the reliability-aware objective doe not greatly affect the behavior of the valves
and pumps.

Table 3. Structural actuators (towards tanks).

No. Name No. Name No. Name No. Name

u1 VALVA u16 VALVA309 u33 CC130 u47 VPSJ
u3 CPIV u17 bPousE u34 CC70 u48 CMO
u4 bMS u19 CGIV u35 VB u49 VMC
u5 CPII u20 CPLANTA50 u36 CF176 u50 VALVA60
u6 VALVA47 u21 PLANTA10 u37 VCO u51 VALVA56
u7 bCast u23 CRE u38 CCO u52 VALVA57
u8 VCR u24 CC100 u39 VS u53 CRO
u9 bPouCast u25 VALVA64 u40 V u54 VBMC
u10 CCA u26 VALVA50 u41 VCT u55 bPousB
u11 CB u27 CC50 u42 CA u56 VALVA53
u12 VALVA308 u28 VF u43 VP u57 VALVA54
u13 VALVA48 u29 CF200 u44 VBSLL u58 VALVA61
u14 VCA u30 VE u45 CPR u59 VALVA55
u15 CPLANTA70 u32 VZF u46 VCOA u60 VCON

Table 4. Structural actuators (towards demand nodes).

No. Name No. Name No. Name No. Name

u2 VALVA45 u18 VSJD-29 u22 CE u31 VRM
u61 VALVA312

Table 5. Some success minimal paths of the Barcelona DWN.

Path Component Set

P1 {aMS, bMS, c125PAL}
P2 {AportA, VALVA, VALVA47, CPIV, c125PAL}
P3 {AportA, VALVA, VALVA45, c70PAL}
P4 {AportA, VALVA, CPII, c110PAP}
P5 {ACast, bCast, c115CAST}
...

...
P607 {AportT, VALVA312, c135SCG}

Figure 10 shows the comparative evolution of the valves and pumps commands obtained using
the new approach with the case without the reliability-aware objective. Note that the plot of control
actions 5, 7, 42, and 29 correspond to pump set-points while control actions 51 and 52 correspond to
valve set-points (see Figure 7). The behavior of pumps and valves in both scenarios are almost the
same even by including the reliability objective inside the cost function of the controller. Figure 11
presents the comparison of volume evolutions of selected storage tanks. Figure 11 shows the proper
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replenishment planning that the predictive controller dictates according to the cyclic behavior of
demands. Notice that the net demand of each tank is properly satisfied along the simulation horizon.
The system reliability evolution of the DWN that was obtained from the proposed controller with
and without the reliability-aware objective is presented in Figure 12. According to these results,
it can be observed that, with the use of reliability-aware objective in the MPC, the reliability of the
network is better preserved compared to the case that the reliability is not considered in the MPC
design. There is a trade-off between the increasing system reliability and operational cost. However,
the operational cost obtained with new proposed approach is almost the same as the EMPC controller
that not considers reliability. This figure also shows that the system reliability is improved about 14.73%
in the case of the LPV-MPC controller with the reliability objective while keeping the performance and
the cost is increased just 2.03%. To have better compare the economics of LPV-MPC with and without
the reliability-aware objective, several simulations with different tunings were implemented. Finally,
the trade-off curves between the system reliability and economic operational cost for both control
schemes are presented in Figure 13. This figure shows that independently of the tuning the economic
reliability-aware LPV-MPC control is able to improve and increase the system reliability. The results
obtained from the preliminary analysis of Figure 13 are provided in Tables 6 and 7. The results,
as shown in these tables, indicate that the system reliability is improved in different tunings while the
cost is increased. However, the increased percentage of operational cost is negligible compared to the
improvement of reliability obtained.
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Figure 10. Evaluation of the control actions results.



Energies 2019, 12, 3015 18 of 21

0 100 200 300 400 500

Time [h]

375.2

375.4

375.6

375.8

V
o

lu
m

e
s

 [
m

3
]

Evolution of Tank T2

State with reliability objective

State without reliability objective

0 100 200 300 400 500

Time [h]

197

198

199

V
o

lu
m

e
s

 [
m

3
]

Evolution of Tank T3

0 100 200 300 400 500

Time [h]

700

700.5

701

V
o

lu
m

e
s

 [
m

3
]

Evolution of Tank T9

0 100 200 300 400 500

Time [h]

3840

3860

3880

V
o

lu
m

e
s

 [
m

3
]

Evolution of Tank T10

0 100 200 300 400 500

Time [h]

499

500

501

V
o

lu
m

e
s

 [
m

3
]

Evolution of Tank T13

0 100 200 300 400 500

Time [h]

6000

6010

6020

6030

V
o

lu
m

e
s

 [
m

3
]

Evolution of Tank T14

Figure 11. Results of the evolutions of storage tanks.
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Figure 12. Evaluation of system reliability and accumulated economic cost.

Table 6. Final system reliability.

Different Weight Tuning Points 1 2 3 4 5 6 7

Economic LPV-MPC with reliability-aware objective 0.825 0.84 0.855 0.87 0.885 0.9 0.915
Economic LPV-MPC without reliability-aware objective 0.755 0.768 0.781 0.794 0.805 0.82 0.833
Difference percentage % 9.27 9.38 9.48 9.57 9.94 9.76 9.84
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Table 7. Economic cost.

Different Weight Tuning Points 1 2 3 4 5 6 7

Economic LPV-MPC with reliability-aware objective 252.05 252.1 252.23 253.82 254.08 254.63 254.78
Economic LPV-MPC without reliability-aware objective 252.00 252.06 252.14 253.66 254.28 254.58 254.69
Difference percentage % 0.02 0.02 0.04 0.08 0.16 0.02 0.04

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92
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Figure 13. Final system reliability vs. economic cost for different weight tuning.

6. Conclusions

This paper proposes an economic health-aware LPV-MPC strategy based on the system reliability
for water transport networks.

The system reliability is evaluated online considering the control action value. The system
reliability is obtained from the reliability of each component and the interconnection topology leading
to a nonlinear model. This model is transformed into a linear-like form by means of the LPV framework.

The system reliability is considered during the calculation of the MPC control action by including
an extra objective in the cost function and an by augmenting the MPC model with additional states.
Then, the by using a LPV-MPC approach, the associated optimization problem can be efficiently solved
using quadratic programming. The MPC model is updated at each time iteration instantiating the
varying parameters considering the value of the scheduling variables.

The results show that, using the proposed economic health-aware LPV-MPC, the DWN network
reliability is maximized with a slight rise in the cost, achieving a good trade-off between both system
reliability and cost. In this way, it is possible to maximize the lifetime of elements just by reducing
slightly the economic optimality.

Future research will extend the study to water distribution networks by considering the pressure
model. Moreover, the problem of re-designing the network by adding some additional paths to
overcome the limitations due to critical elements. Moreover, it would be interesting to consider the
water quality objective into the proposed approach.
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