150 research outputs found

    Nonlinear output feedback and periodic disturbance attenuation for a speed tracking of a combustion engine test bench

    Get PDF
    The quality of control actions depends strongly on the availability and the quality of signals to construct the controller. While most control design tools assume all states, hence signals, are measurable, this is often unrealistic. An observer is often necessary to use in controller implementation. This paper proposes a reduced order observer design and output feedback control for a class of nonlinear systems, namely extended Hammerstein systems. We apply the proposed design to a combustion engine testbench, to solve a set point tracking problem. As in real practice the measured signals are often affected by periodic disturbance from combustion oscillations, the controller is extended with an internal model based filter, to remove the effect of the disturbance. Some simulation results are presented, comparing the performance of the proposed output feedback with the state feedback controller

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin

    Adaptive Observer for Nonlinearly Parameterised Hammerstein System with Sensor Delay – Applied to Ship Emissions Reduction

    Get PDF
    Taking offspring in a problem of ship emission reduction by exhaust gas recirculation control for large diesel engines, an underlying generic estimation challenge is formulated as a problem of joint state and parameter estimation for a class of multiple-input single-output Hammerstein systems with first order dynamics, sensor delay and a bounded time-varying parameter in the nonlinear part. The paper suggests a novel scheme for this estimation problem that guarantees exponential convergence to an interval that depends on the sensitivity of the system. The system is allowed to be nonlinear parameterized and time dependent, which are characteristics of the industrial problem we study. The approach requires the input nonlinearity to be a sector nonlinearity in the time-varying parameter. Salient features of the approach include simplicity of design and implementation. The efficacy of the adaptive observer is shown on simulated cases, on tests with a large diesel engine on test bed and on tests with a container vessel

    Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    Get PDF

    Constraint-Aware and Efficiency-Aware Control of Air-Path in Fuel Cell Vehicles

    Get PDF
    Fuel cell technology offers the potential for clean, efficient, robust energy productionfor both stationary and mobile applications. But without fast and robust control systems, fuel cells cannot hope to maintain real-life efficiencies near enough to their theoretical potential. This work studies control and constraint management techniques to regulate a nonlinear multivariable air-path system for a proton exchange membrane fuel cell (PEMFC). The control objectives are to avoid oxygen starvation, run at the maximum net efficiency, achieve fast tracking of air flow and pressure set-points, and be easy to calibrate. To operate at maximum efficiency, a set-point map is generated for air pressure at the cathode inlet. Considering that the conventional PEMFC system cannot independently control the inlet pressure using only the compressor motor, a new multivariable analysis and control scheme is formulated by considering an electronic throttle body (ETB) valve downstream of the cathode as a new degree of freedom in the control problem. Based on this new configuration of the fuel cell model, an internal model control (IMC) controller is designed with intuitive tuning parameters to simultaneously control airflow and pressure, and achieves a fast and smooth response despite strongly coupled plant dynamics. Further, a reference governor (RG) using a computationally tractable linear prediction model is included with IMC-based Multi-Input Multi-Output (MIMO) controller to satisfy the constraint on oxygen level. Compared with a Single-Input Single-Output (SISO) air-flow control approach, the proposed MIMO control approach demonstrated up to 7.36 percent lower hydrogen fuel consumption

    Activity Report: Automatic Control 2011

    Get PDF
    • …
    corecore