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a b s t r a c t

The quality of control actions depends strongly on the availability and the quality of signals to construct
the controller. While most control design tools assume all states, hence signals, are measurable, this is
often unrealistic. An observer is often necessary to provide signals to use in controller realization. This
paper proposes the construction of a reduced order observer and an output feedback controller to solve
a set point tracking problem of a combustion engine test bench modeled as an extended Hammerstein
system. The asymptotic convergence of the observer is shown and separation principle is also proved.
Because in real practice the measured signals are often affected by periodic disturbance due to the
combustion oscillations, the controller is extended with an internal model based filter, to remove the
effect of the periodic disturbance. Some simulation results are presented, comparing the performance of
the proposed output feedback with the state feedback controller.

© 2015 Published by Elsevier Ltd.

1. Introduction1

Most feedback stabilization problems for nonlinear systems2

are theoretically solved using state feedback approach, assuming3

that all states are available from measurement. However this4

is often unrealistic in practice as very often only some of the5

states are measured. Thus the use of state observer and output6

feedback controller is inevitable for the controller realization7

(Abur & Exposito, 2004; Dunn, Heydinger, Rizzoni, & Guenther,8

2004). While there are various observer design techniques for9

linear systems, such as Kalman filter, Luenberger observer or10

Newton observer, the design of observer aswell as output feedback11

controller for various classes of nonlinear systems is still a12

challenge. The separation principle as it works for linear systems13

does not always hold for nonlinear systems, which makes the14

design process more complicated (see e.g. Isidori & Astolfi, 199215

where two Hamilton Jacobi equations have to be solved or Krstić,16

Kanellakopoulos, & Kokotović, 1995 where observer backstepping17

✩ The material in this paper was partially presented at the 47th IEEE Conference
on Decision and Control, December 9–11, 2008, Cancun, Mexico. This paper was
recommended for publication in revised formbyAssociate Editor Hendrik Nijmeijer
under the direction of Editor Andrew R. Teel.

E-mail addresses: d.laila@soton.ac.uk (D.S. Laila),
engelbert.gruenbacher@br-automation.com (E. Gruenbacher).

is applied). Moreover, while there are ample tools to design a 18

state feedback controller (see Khalil, 1996) and a state observer 19

separately, proving the convergence of the combination, thus 20

proving the nonlinear equivalence of the separation principle, is 21

still an open challenge. 22

In this paper, a speed tracking problem for a combustion 23

engine test bench is studied. To model the test bench dynamics, 24

we exploit a structured class of nonlinear systems, namely the 25

extendedHammerstein systems (Gruenbacher, 2005;Gruenbacher, 26

Colaneri, & del Re, 2008). This model is rather different from the 27

commonly used models that mainly rely on employing engine 28

maps to represent nonlinearities (Guzzella & Amstutz, 1998; 29

Kiencke & Nielsen, 2005; Ohyama, 2001). A model built based on 30

engine maps is in general not suitable for a nonlinear analytical 31

feedback control design, whereas the extended Hammerstein 32

model eases up this obstacle. 33

A standard Hammerstein system consists of a static nonlinear- 34

ity followed by a dynamic linear system. In the extended Ham- 35

merstein structure, the linear part is replaced by a higher order 36

polynomial function. This class of systems allow to describe the 37

dynamical behavior of a combustion engine test bench, which has 38

taken an increasingly important role in engine development (see 39

Carlucci, Donati, & Peisino, 1984; Guzzella & Amstutz, 1998; Out- 40

bib, Dovifaaz, Rachid, & Ouladsine, 2006 and references therein). 41

Such a test bench is mainly used for tracking given load patterns 42

http://dx.doi.org/10.1016/j.automatica.2015.10.054
0005-1098/© 2015 Published by Elsevier Ltd.
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where the reference trajectory is often defined by a sequence of1

operating points. In this study, a diesel engine test bench is con-2

sidered, taking the torque of the dynamometer and the accelera-3

tor pedal as the inputs, to control the speed of the engine and the4

torque of the shaft. We assume a very stiff shaft connection and5

trying to construct the torque at the engine flywheel.6

The test bench model consists of four state variables; the7

angular velocity of the engine, the angular velocity of the8

dynamometer, the torsion angle and the engine torque. To solve9

the speed tracking problem, a Lyapunov based state feedback10

controller is first constructed to stabilize all the operating points11

in a given range. While the information of each state is necessary12

for the state feedback controller construction, of the four state13

variables, only the two angular velocities are measured directly by14

sensors. Therefore, to substitute the unmeasured states, a reduced15

order observer is constructed. We prove the convergence of the16

observer by showing the convergence of the observation error17

and also show that separation principle holds, to make sure that18

the state estimates produced by the observer can be employed to19

replace the state feedback controller with an output feedback.20

Another problem in combustion engine control is the measure-21

ment noise. In practice, the batch behavior of the combustion that22

depends on the crankshaft angle (see Schmidt & Kessel, 1999)23

causes a combustion oscillation which is considered as a periodic24

noise to the engine speed. To suppress the combustion oscillation25

in order to eliminate its effects to the feedback loop, we apply a fil-26

ter that involves an internal model of the combustion oscillations,27

which can be modeled as an exosystem (Gruenbacher & Marconi,28

2009).29

The contributions of this paper are two folds. First, we propose30

an observer design to be used in constructing an output feedback31

controller for the setpoint tracking. Second, we introduce a32

technique to attenuate the periodic disturbance due to combustion33

oscillation that affects the available measured signals. Simulations34

are carried out to test the performance of the observer and the35

filter in solving the setpoint tracking problem of the speed and the36

torque of the engine test bench.37

2. Preliminaries38

2.1. Notation and definitions39

The set of real numbers is denoted by R. A function α : R≥0 →40

R≥0 is of class K if it is continuous, strictly increasing and zero at41

zero. It is of class K∞ if it is of class K and unbounded. We often42

drop the arguments of a functionwhenever they are clear from the43

context.44

Consider a general input affine nonlinear system45

ẋ = f (x) + g(x)u, y = h(x), (1)46

where x ∈ Rn is the state, u ∈ Rm is the control input and y ∈ Rp
47

is the output. The functions f , g and h are smooth and f (0) = 0. If48

the input u is a state feedback controller, we write the closed-loop49

system of (1) as50

ẋ = f̃ (x), y = h(x). (2)51

We use the following definitions throughout the paper.52

Definition 2.1 (Asymptotic Stability). A continuous and differen-
tiable function V : Rn

→ R is called an asymptotic stability (AS)
Lyapunov function for the system (2) if there exist class K∞ func-
tions α1(·), α2(·) and α3(·) such that the following holds

α1(|x|) ≤ V (x) ≤ α2(|x|), (3)
∂V
∂x

f̃ (x) ≤ −α3(|x|), (4)

for all x ∈ Rn. �53

Fig. 1. The combustion engine test bench system.

Definition 2.2 (Asymptotic Stabilizability). A nonlinear system (1) 54

is asymptotically stabilizable by means of a state feedback if there 55

exists a state feedback controller u = u(x), such that the closed- 56

loop system (2) with control u is asymptotically stable. � 57

Consider another dynamical system 58

ż = Γ (z, y, u), x̂ = γ (z, y, u), z ∈ Rl. (5) 59

Definition 2.3 (Asymptotic Observer). The system (5) is an asymp- 60

totic observer for (1) if for any x ∈ Rn, u ∈ Rm and z ∈ Rl the 61

estimation state x̂ asymptotically converges to the estimated state 62

x. If x̂ = z, the system (5) is called an identity observer. Moreover, 63

the system (1) is called asymptotically observable if it possesses an 64

asymptotic observer. � 65

Definition 2.4 (Uniform Observability). A nonlinear system (1) is 66

called uniformly observable if the observability of the system is 67

independent of the input. � 68

2.2. Engine test bench model 69

A schematic diagram of the combustion engine test bench is 70

illustrated in Fig. 1. The test bench consists of two main power 71

units, which are connected via a shaft. The main parts of such a 72

dynamical engine test bench are the dynamometer, the connection 73

shaft and the combustion engine itself. One of the design objectives 74

for a dynamical engine test bench control is to stabilize the engine 75

torque and the engine speed. 76

Considering the torque of the combustion engine, TE , and the
air gap torque of the dynamometer, TDSet , as the inputs to the
mechanical part of the engine test bench, the model description
can be reduced to a lumped engine connected to the dynamometer
inertia by a damped torsional flexibility (see Kiencke & Nielsen,
2005). This mechanical part can then be modeled as a two mass
oscillator

ϕ̇∆ = ωE − ωD (6)
θEω̇E = TE − cϕ∆ − d(ωE − ωD) (7)
θDω̇D = cϕ∆ + d(ωE − ωD) − TDSet , (8)

with ϕ∆ the torsion angle, ωE the engine angular velocity, ωD 77

the dynamometer angular velocity, θE and θD are the inertias of 78

the engine and the dynamometer, respectively. The constant c 79

characterizes the stiffness of the connection shaft and d represents 80

the damping. 81

The dynamics of the combustion engine part is more compli- 82

cated. The input to the combustion engine comes from the acceler- 83

ator pedal α and the output that is important for the control pur- 84

poses is the engine torque TE . This engine torque can be divided 85

into two parts: the cycle average value of the engine torque and 86

the oscillating torque caused by the combustion oscillations. In the 87
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model we consider only the cycle average value, because the fre-1

quency of the oscillating torque is within the range that is suffi-2

ciently damped by the test bench system.3

We consider a simplified model of the engine torque consisting4

of a static nonlinear map along with a nonlinear first order5

dynamical system represented as6

ṪE = −ρ(TEStat , ωE)TE + ρ(TEStat , ωE)TEStat , (9)7

where TEStat is the output of the static engine map (TEStat =8

SEM(α, ωE)) and ρ(TEStat , ωE) is a nonlinear map that depends on9

the operating point. A polynomial approximation of ρ gives10

ρ(TEStat , ωE) ≈ (c0 + c1ωE + c2ω2
E) + ρ∆(TEStat , ωE),11

with ρ∆ containing all the terms of the polynomial that contain12

TEStat . Defining a nonlinear static mapm as13

m(ωE, TE, α) := −ρ∆(TEStat , ωE)TE + ρ(TEStat , ωE)TEStat ,14

we can rewrite (9) as a class of extended Hammerstein model (see15

Gruenbacher, 2005 for the detail modeling)16

ṪE = −(c0 + c1ωE + c2ω2
E)TE + m(ωE, TE, α). (10)17

To shorten the notation, we define ρ̃(ω2
E) := (c0 + c1ωE + c2ω2

E)18

in the rest of the paper. From the continuity of m in time and in19

its all arguments, without lose of generality, we assume that it20

is locally Lipschitz with respect to TE . This assumption is valid as21

continuity is a necessary condition for Lipschitzity. The continuity22

of m is as a consequence of the continuity of ρ(TE, ω) as shown in23

Gruenbacher (2005, Figure 8.12).24

3. Observer design for the engine test bench25

Consider the dynamical model of the test bench (6)–(10). Of the26

four states appearing in the model, only the two angular velocities27

ωE and ωD are measured. Therefore the output equations of the28

system are29

y1 = ωE, y2 = ωD. (11)30

The control problem of an engine test bench usually involves31

torque control. Therefore it is very useful to include the torque32

signal TE in the feedback loop. Because this quantity is not available33

from direct measurement, an observer is required to estimate the34

states TE . It is the same case for the torsion angle ϕ∆. The following35

theorem proposes a reduced order observer construction, with the36

detail of the construction given in the proof.37

Theorem 3.1. Given the dynamical model of an engine test bench38

system (6)–(10) with the measured outputs (11). The following39

reduced order observer40

˙̂T E = −ρ̃(ω2
E)T̂E + m(ωE, T̂E, α) + L1e1

˙̂ϕ∆ = ωE − ωD + L2e2,
(12)41

where L2 > 0, L1 > Lm − ρ̃(ω2
E), with Lm > 0 the Lipschitz constant

of m and

e1 = θEω̇E + θDω̇D + TDSet − T̂E (13)

e2 =
1
c
(θDω̇D − d(ωE − ωD) + TDSet − cϕ̂∆), (14)

is an asymptotically stable observer for the system. �42

Proof of Theorem 3.1. Given the system (6)–(10) with outputs43

(11) and the reduced order observer (12).We define the estimation44

errors as45

e1 := TE − T̂E and e2 := ϕ∆ − ϕ̂∆. (15)46

First, wewill show that the error terms satisfy (13), (14). By adding 47

(7) and (8), we obtain TE as: 48

TE = θEω̇E + θDω̇D + TDSet . (16) 49

Moreover, ϕ∆ can directly be obtained from (8), as: 50

ϕ∆ =
1
c


θDω̇D − d(ωE − ωD) + TDSet


. (17) 51

Substituting (16) and (17) into (15), we obtain (13) and (14), 52

respectively. We can now write the error dynamics 53

ė1 = ṪE −
˙̂T E

= −ρ̃(ω2
E)e1 + m(ωE, TE, α) − m(ωE, T̂E, α) − L1e1, 54

ė2 = ϕ̇∆ − ˙̂ϕ∆ = −L2e2. 55

To show the asymptotic stability of the error system, we use the 56

Lyapunov function V =
1
2 e

⊤e, with e = [e1 e2]⊤. Obviously, 57

V̇ = e1ė1 + e2ė2. (18) 58

From the local Lipschitzity of m with respect to TE , there is a 59

constant Lm > 0 such that 60m(ωE, TE, α) − m(ωE, T̂E, α)

 ≤ Lm
TE − T̂E

 = Lm |e1| . 61

Hence, we have 62

V̇ < −ρ̃(ω2
E)e

2
1 + Lme1 |e1| − L1e21 − L2e22 63

< −ρ̃(ω2
E)e

2
1 + Lme21 − L1e21 − L2e22 64

= −


ρ̃(ω2

E) + L1 − Lm

e21 − L2e22 ≤ −Le21 − L2e22. 65

The existence of L > 0 is guaranteed by choosing L1 such that 66

ρ̃(ω2
E)+L1 > Lm for allωE . Therefore V̇ is negative definite, thus it is 67

proved that the observer (12) is an asymptotically stable observer 68

for the system (6)–(10) with outputs (11). � 69

Remark 3.1. Note that the involvement of the derivative of the 70

measured signals in the error equations (13), (14) is a standard 71

feature of a reduced order observer, even in linear case (Franklin, 72

Powell, & Emami-Naeni, 2010; Ogata, 2008). In practice, a high pass 73

filter is commonly used to get this derivative while avoiding high 74

frequency noises. Moreover, onemay think that (16), (17) could be 75

used directly instead of using the observer. While this is possible, 76

as discussed in Laila and Grünbacher (2008), the performance of 77

this so called ‘‘static observer’’ is quite poor. � 78

3.1. Separation principle 79

Given a state feedback control u for the system (6)–(10), with 80

u(0) = 0. To guarantee that the estimates T̂E and ϕ̂∆ can replace 81

the unmeasured states TE and ϕ∆ in the output feedback control 82

construction, a separation principlemust hold. For this, asymptotic 83

stabilizability and uniformobservability of the systemwith respect 84

to the observer are required. Proposition 1 states the conditions for 85

which the separation principle holds. The proof follows closely the 86

proof of Laila and Grünbacher (2008, Proposition 3.2). 87

Proposition 1 (Separation Principle). Consider the system (6)–(10). 88

A continuous state feedback controller u(t) = u(TE, ϕ∆, ωE, 89

ωD) is an asymptotically stabilizing controller for the system. The 90

asymptotic stabilization for the system using an output feedback u = 91

û(T̂E, ϕ̂∆, ωE, ωD)with the observer (12) is solvable if the closed-loop 92

system is uniformly observable. � 93
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4. Set point tracking using output feedback1

4.1. Output feedback controller design2

We have now established that separation principle is valid for3

the state feedback controller and the observer. Hence, we can4

use the state estimates to construct an output feedback controller5

for the engine test bench. In Laila and Grünbacher (2007) we6

have designed a controller that guarantees asymptotic stability7

for a setpoint tracking problem of the test bench within a closed8

operating range. The construction follows the robust controller9

design proposed in Gruenbacher et al. (2008) that satisfies10

some robust optimal design criteria, via a model transformation11

approach, as briefly described next.12

We define the state normalization as follows:13

x1 =
TE − TE0

1TE
, x2 =

ϕ∆ − ϕ∆0

max(ϕ∆)
,

x3 =
ωE − ωE0

1ωE
, x4 =

ωD − ωD0

1ωD
,

(19)14

with TE0, ϕ∆0, ωE0 and ωD0 define the operating point and 1TE ,15

max(ϕ∆),1ωE and1ωD themaximum expected distance from the16

equilibrium point. With this scaling and taking c max(ϕ∆) = 1TE17

and 1ωE = 1ωD, the system (6)–(10) can now be represented in18

its normalized form as follows:19

ẋ1 = −(c̃0 + c̃1x3 + c̃2x23)x1 + u1

ẋ2 = b(x3 − x4)

ẋ3 =
1
θE

 c
b
x1 −

c
b
x2 − d(x3 − x4)


ẋ4 =

1
θD

 c
b
x2 + d(x3 − x4)


+ u2,

(20)20

with c̃0 := c0, c̃1 := 1ωE(c1 + 2c2ωE0), c̃2 := c21ω2
E , b := 1ωE .

The inputs u1 and u2 are

u1 =
m(ωE, TE, α) − m(ωE0, TE0, α0)

1TE
,

u2 = −
TDSet − TD0

θD1ωD
.

The common control Lyapunov function used for designing the21

controller is22

W (x1, x2, x3, x4) = k1x21 + k2x22 + k3x23 + k4x24 + k5x2x4,23

with ki ∈ R+, i = 1 . . . 4 and k5 ∈ R − {0}. The positive24

definiteness ofW (·) is guaranteedwithin the considered operating25

range for some k5 with |k5| sufficiently small. The controller takes26

the form27

u = −[Rg(x)]⊤


∂W (x)
∂x

⊤

, (21)28

where g is the input function matrix from (1) and R is a positive29

definite matrix. In Gruenbacher et al. (2008), this controller has30

been proved to asymptotically stabilize the system.31

Note that the controller (21) is designed to asymptotically32

stabilize the normalized model (20) of the test bench, whereas our33

main objective is to apply the controller to the original system (6)–34

(10). For this, we need to transformback the normalizedmodel and35

test the stability of the tracking for the original system. From the36

transformation (19), we have the following relations37

m(ωE, TE, α) = u11TE + TE0(c0 + c1ωE0 + c2ω2
E0),38

TDSet = −u2θD1ωD + TD0,39

where we have chosen ϕ∆0 =
TE0
c , TD0 = TE0 and ωE0 = ωD0. 40

The setpoint tracking aims to follow the changing of the operating 41

point (TE0, ωE0) of the engine. 42

Replacing the unmeasured states with their estimates, and 43

applying the transformation (19), the output feedback controller 44

takes the form 45

m(ωE, T̂E, α) = −2r1k1(T̂E − TE0)

+ TE0(c0 + c1ωE0 + c2ω2
E0)

TDSet = k5r2θD1ωD
cϕ̂∆ − TE0

1TE
+ 2k4r2θD(ωD − ωD0) + TD0.

(22) 46

4.2. Simulation results I 47

In this subsection, we first show by simulation the convergence 48

of the observer in estimating TE and ϕ∆. Further, we will apply the 49

output feedback controller (22) to control the test bench (6)–(10). 50

The performance of the controller (22) is compared to the state 51

feedback controller (21) for a setpoint tracking assignment. 52

In the simulation we have used the engine parameters θE = 53

0.32 kg m2, θD = 0.28 kg m2, d = 3.5505 N ms/rad and c = 54

1.7441 × 103 N m/rad, which are based on a dynamic test bench 55

with a production BMWM47Ddiesel engine. The coefficients of the 56

dynamic model of the combustion engine after the normalization 57

are c̃0 = 6.3466, c̃1 = 3.2096, c̃2 = 2.7744. For the controller 58

we have chosen the parameters k1 = 1.5686, k2 = 0.00174, 59

k3 = 0.88, k4 = 1.05, k5 = −0.0145 and 60

R =

r1 0 0 0
0 ∗ 0 r4
r3 0 ∗ 0
0 0 0 r2

 61

with ri > 0, i = 1, . . . , 4 and ∗ can be chosen freely such that R 62

is positive definite (note that in this case because ∗ corresponds to 63

the zero rows of g , it may be chosen zero, although this makes R 64

only positive semidefinite). Hence the controller takes the form 65

u(t) = −


2r1k1x1 + 2r3k3x3

r2(2k4x4 + k5x2) + r4(2k2x2 + k5x4)


, (23) 66

and we have chosen r1 = 1, r2 = 0.5, r3 = 2 and r4 = 0.5. 67

We apply the controller for a setpoint tracking when changing 68

the operating point (TE, ωE) of the engine to follow a square wave 69

reference signal. The initial condition of the engine test bench is 70

(50, 50/c, 300, 300) and of the observer is (100, 100/c). We 71

have chosen L1 = 1.5 and L2 = 0.05. Although ω̇E and ω̇D are 72

not measured, because ωE and ωD are continuous signals, we take 73

their derivative to use in the construction of the observer. 74

Fig. 2 shows that the observer can estimate the unmeasured 75

states TE and ϕ∆ very well as the responses of observer converge 76

to the responses of the test bench very quickly, even when the 77

initial condition of the two are very different. The response of the 78

system with the output feedback is shown in Fig. 3 which appears 79

to almost overlap with the response with state feedback. 80

5. Filtering the periodic noise 81

In Section 4, the convergence of the observer and the applica- 82

bility of its outputs to replace the unmeasured states in construct- 83

ing the output feedback controller for the engine test bench have 84

been demonstrated. However, this has not fully solved the issue 85

thatmay arise in practical implementation. Because themodel (6)– 86

(10) is only an approximation of the highly nonlinear engine test 87

bench dynamics, the performance limits of the actuators have to 88
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(a) Engine torque (N m). (b) Torsion angle (rad).

(c) Estimation error—e1 . (d) Estimation error—e2 .

Fig. 2. Convergence test of the observer.

(a) Engine torque—TE (N m). (b) Engine speed—ωE (rad/s).

Fig. 3. Tracking using output feedback controller.

be considered. Furthermore, the measured signals ωE and ωD are1

affected by the batch behavior of the combustion that depends on2

the crankshaft angle (Schmidt & Kessel, 1999). Since each cylin-3

der fires every 720° crankshaft angle (720° CA), it means for a four4

stroke engine a combustion occurs in every 180° CA. This creates5

the combustion oscillation which is considered as a periodic noise6

to the engine speed. While increasing the observer gains L1 and7

L2 to some extent yields a faster convergence of the observer, this8

unfortunately also increases the effect of the noisy speed mea-9

surement to the estimated signals, particularly as the error terms10

(13)–(14) depend on the derivatives of themeasured speed signals.11

Neglecting all these sources of noise may deteriorate the quality of12

the generated output feedback, thus causes the closed-loop system13

to perform badly.14

To minimize the effect of the periodic noise, a fast filter is used.15

The frequency of the fundamental oscillation of the noise is directly16

related to the engine speed and hence it is known. From the control17

point of view we are only interested in the cycle average value of18

the signals (TE and ϕ∆), hence we need to separate the periodical19

part and the cycle average value part of each signal. A frequency20

varying internal model filter is then applied to reconstruct the21

estimated signals including the periodical parts. Using the states of22

the internal model it is then possible to calculate the cycle average23

value of the reconstructed signals. In the next subsections we will24

sketch the method and for further details we refer to Furtmüller25

and Grünbacher (2006) and Grünbacher, Furtmüller, and del Re26

(2007).27

5.1. Modeling the combustion oscillations via parameter varying28

exosystem29

A combustion oscillation can be described by linear but30

frequency dependent harmonic oscillators

ω̇i = Si(η(t))ωi, dhi = cSiωi, (24) 31

with 32

Si(η) =


0 −iη(t)

iη(t) 0


∀i = 1 . . . 6, (25) 33

where we consider up to the 6th harmonics, with η(t) defines the 34

frequency of the first harmonic of the combustion oscillations. The 35

output maps are given by 36

cSi = [αi 0] or cSi = [0 αi]. (26) 37

We assume a simple integrator 38

ω̇0 = 0, dh0 = α0ω0. (27) 39

Hence the full periodic signal with 40

ω = [ω0 ω11 ω12 · · · ω61 ω62]
⊤

41

can be represented as Q3 42

ω̇ =


0 0 · · · 0
0 S1(η(t)) · · · 0
...

...
. . .

...
0 0 · · · S6(η(t))

 ω, dh = cSω, (28) 43

and using the second output map in (26), we have 44

cS = [α0 0 α1 0 α2 · · · 0 α6]. (29) 45

Note that we have chosen to use the second output map for the 46

same reason as in Furtmüller and Grünbacher (2006, proof of 47

Lemma 1). 48

The internal model principle will be utilized to reconstruct 49

the combustion oscillation. Usually the internal model principle 50

is applied only for constant frequencies (Johnson, 1976). Thus, in 51
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Fig. 4. Connection of the observer and the internal model filter.

this application the structure of the internal model description of1

the actual problem has to be rearranged slightly, by taking the2

exosystem to be parameter dependent and the internal model3

controller to be parameter varying. The structure of the applied4

internal model based filter is shown in Fig. 4, in which the periodic5

part of the output of the observer is regarded as the output of the6

exosystem as explained in Remark 5.1.7

Remark 5.1. Note that although the model (6)–(10) only repre-8

sents the cycle average value, thus non-periodic, in reality the esti-9

mates T̂E and ϕ̂∆ contain noises that include the periodical oscilla-10

tion components dh. Therefore, in the rest of the discussionwe only11

consider this periodic combustion oscillation dh. By slightly abus-12

ing the term, as dh is actually part of the observer output, in this ap-13

plication the observer takes the place of the exosystem. Moreover,14

because T̂E and ϕ̂∆ are treated in the sameway, to avoid repetition,15

we only present the result for filtering T̂E . �16

5.2. Design of the frequency dependent internal model17

Denote the filtered engine torque by T̃E . In the standard case18

when the oscillation frequency is constant and the exosystem is19

linear, the difference (T̂E − T̃E) tends to zero if the poles of the20

internal model are all equal to the eigenvalues of the exosystem21

and the internal model is controllable. In this application we22

extend the oscillation model (28) to get a controllable system that23

has the same eigenvalues (Internal Model Principle) as those of the24

exosystem.25

The extension to the integrator subsystem comprises of adding26

a control input ν0 so that27

ξ̇0 = ν0, d̃h0 = ξ0. (30)28

An input vector bi = [0 1]⊤ is also added to the oscillator29

subsystems so that the internal submodel takes the form30

ξ̇i = Ai(η)ξi + biνi =


0 −iη(t)

iη(t) 0


ξi +


0
1


νi

d̃hi = cIMiξi = [0 1]ξi.
(31)31

Note that in (30)–(31) the gains α0 and αi, i = 1, . . . , 6, have been32

set equal to 1, because for the modeling purpose the magnitude33

of the oscillations may be assumed constant. The magnitude of the34

oscillation can also be defined by the initial states of the exosystem.35

Thus the composite internal model is36

ξ̇ = A(η)ξ + Bν = A(η)ξ + B[ν0 · · · ν6]
⊤

d̃h = cIMξ
(32)37

with38

A(η) =


0 0 · · · 0
0 A1(η) · · · 0
...

...
. . .

...
0 0 · · · A6(η)

, B =


1 0 · · · 0
0 b1 · · · 0
...

...
. . .

...
0 0 · · · b6

,39

cIM = [1 cIM1 · · · cIM6 ].40

5.3. Stabilizing parameter varying feedback controller41

In this subsection we will design a converging, stabilizing42

controller for the internal model, aiming to get the steady state

response of the internal model equal to the measured oscillation 43

(Isidori, 1995). For a static but parameter varying feedback control 44

law ν = K(η)e, with K = [κ0(η) . . . κ6(η)]⊤ and e = d̃h − dh, the 45

closed-loop system becomes 46

ξ̇ = A(η)ξ + BK(η)e 47

= [A(η) − BK(η)cIM ] ξ + BK(η)dh. (33) 48

According to Furtmüller and Grünbacher (2006), convergence is 49

achieved if and only if the parameter varying closed-loop system 50

(33) is asymptotically stable. With cIMi = [0 1] and κi(η) a scalar 51

function for all i = 1, . . . , 6, the closed-loop of the oscillator 52

subsystems becomes 53

ξ̇i = [Ai(η) − biκi(η)cIMi ]ξi + biκi(η)cIMidhi. (34) 54

For stability analysis we set dhi = 0 and the system matrix of each 55

closed-loop subsystem is 56

Aicl(η) =


0 −iη
iη −κi(η)


∀i = 1, . . . , 6. (35) 57

Choosing the constant feedback gains κi(η) = κ̃i, ∀i = 1, . . . , 6, 58

yields 59

Aicl(η) =


0 −iη
iη −κ̃i


∀i = 1, . . . , 6. (36) 60

Similarly for the integrator subsystem, choosing the feedback ν0 = 61

κ̃0e0 results in 62

ξ̇0 = −κ̃0ξ0 + κ̃0dh0. (37) 63

Hence the vector of the feedback gains of the controller that 64

stabilizes the internal model is 65

K = [κ̃0 κ̃1 · · · κ̃6]
⊤ (38) 66

where κ̃0 to κ̃6 are positive constants. 67

Remark 5.2. Note that the feedback gains κi(η) influence the 68

convergence rate of the oscillator. Not only asymptotic stability, a 69

fast convergence without overshoot is also importantly desirable. 70

For each closed-loop subsystem (35), the characteristic polynomial 71

with κi(η) is ∆i(s) = s2 + κi(η)s+ (iη)2. One possibility for fastest 72

convergence without overshoot is at κi(η) = 2iη. However, as 73

discussed in Furtmüller and Grünbacher (2006) and Grünbacher 74

et al. (2007), for a general application where the measured signal 75

is always noisy and the output of the observer (and particularly the 76

predicted output) is also noisy, if κi is too large, the convergence 77

rate may become too fast (the observer tends to learn the noise). 78

Therefore setting κi constant, e.g. κi ≤ 2iηmin, is sufficient in the 79

tracking problem considered in this paper. � 80

It is well known for linear parameter varying systems that 81

fast changing parameters can deteriorate stability. Therefore, it is 82

crucial to make sure that the internal model filter is stable in a 83

given parameters range. The proof of stability of the filter follows 84

exactly the same steps as in Grünbacher et al. (2007). 85

5.4. Simulation results II 86

In this section we will demonstrate by simulation, how the 87

filter treats the noisy engine speed measurement. To do this, a 88

sinusoidal periodic oscillation is introduced to the engine speed 89

measurement. We show the effect of the internal model filter 90

to the output feedback tracking performance. Fig. 5 shows the 91

engine torque (TE) and the engine speed (ωE), as well as the 92

output feedback control signals α and TDSet . In Fig. 6 we show 93

the comparison of the filtered signal using the internal model 94

observer and a comparable Butterworth filter. It can be observed 95
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(a) Engine torque—TE (N m). (b) Engine speed—ωE (rad/s).

(c) Control input 1—Throttle pedal (%). (d) Control input 2—TDSet (N m).

Fig. 5. Tracking using output feedback and noise filter.

Fig. 6. Comparison of the measured and the filtered estimated torque.

that with the internalmodel filter, even in a dynamic operation the1

estimation error of the cycle average value of the engine torque is2

quite small.3

It is expected that the dynamics of the filter affect the dynamics4

of the closed-loop system. However, as the filter is designed such5

that stability is preserved, the effect occurs mainly only during6

the transient. In practice, to avoid a rough transient behavior, the7

filtered signals are therefore not applied from the start of the8

operation, but allowing few seconds delay until the transient is9

over before applying the filtered signals to the control loop.10

6. Summary11

In this paper we have presented a partial state observer design12

for a combustion engine test bench system. We have shown13

that the observer is asymptotically convergent to the system.14

We have also shown that separation principle is satisfied. We15

have demonstrated by simulation the performance of an output16

feedback controller constructed using the outputs of the proposed17

observer.18

Moreover, as noise always involves in the realmeasurement,we19

have also discussed the use of an internal model filter to eliminate20

the effect of the periodic noise that is caused by the combustion21

oscillation. Some simulations results that illustrate amore realistic22

situation have also been provided.23

As this current study is based only on simulation, the next24

challenge for this research is to implement and test the observer,25

controller and the filter design in an experiment, to solve the26

setpoint tracking problem of a real engine test bench.27
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