20 research outputs found

    WYZNACZANIE PRĘDKOŚCI PRZEPŁYWY KORKOWEGO W TRANSPORCIE PNEUMATYCZNYM MATERIAŁU SYPKIEGO W OPARCIU O TECHNIKI PRZETWARZANIA OBRAZÓW

    Get PDF
    The article presents the use of fast cameras and image processing and analysis methods to determine the velocity of pneumatic transport of bulk material. The presented solution is dedicated to the analysis of dense flow in the form of slugs moving in a horizontal section of the pipeline. The developed image-processing algorithm is based on the estimation of the bulk solid material level in the pipeline in particular moments of the process. The acquisition of an image containing the area of two separate sections of the pipeline allows to determine the shift-time of material between two pre-defined pipeline regions. The obtained results indicate the proper action of the developed systemW artykule przedstawiono zastosowanie szybkich kamer oraz metod przetwarzania i analizy obrazów do wyznaczenia prędkości transportu pneumatycznego materiału sypkiego. Przedstawione rozwiązanie dedykowane jest analizie zmian prędkości przepływu gęstego w formie korków przemieszczających się w poziomym odcinku rurociągu. Opracowany algorytmy przetwarzania obrazów opiera się na wyznaczeniu poziomu wypełnienia rurociągu materiałem sypkim w poszczególnych chwilach trwania procesu. Akwizycja obrazu zawierającego obszar dwóch oddzielnych sekcji rurociągu pozwoliła na określenie czasu przejścia materiału między oboma, pre-definiowanymi, obszarami rurociągu. Uzyskane wyniki wskazują na poprawne działanie opracowanego systemu

    Modeling and Fabrication of a Robot for Sowing in a Seedling Tray (Case Study: Sugar Beet)

    Get PDF
    IntroductionAdopting new technologies for crop growth has the characteristics of improving disaster resistance and stress tolerance, ensuring stable yields, and improving product quality. Currently, the cultivation of seed trays relies on huge labor power, and further mechanization is needed to increase production. However, there are some problems in this operation, such as the difficulty of improving the speed of a single machine, seedling deficiency detection, automatic planting, and controlling the quality, which need to be solved urgently. To solve these problems, there are already some meaningful attempts. Si et al. (2012) applied a photoelectric sensor to a vegetable transplanter, which can measure the distance between seedlings and the movement speed of seedlings in a seedling guide tube, to prevent omission transplantation. Yang et al. (2018) designed a seedling separation device with reciprocating movement of the seedling cup for rice transplanting. Tests show that the structure of the mechanical parts of the seedling separation device meets the requirements of seed movement. The optimization of the control system can improve the positioning accuracy according to requirements and achieve the purpose of automatic seedling division. Chen et al. (2020) designed and tested of soft-pot-tray automatic embedding system for a light-economical pot seedling nursery machine. The experimental results showed that the embedded-hard-tray automatic lowering mechanism was reliable and stable as the tray placement success rate was greater than 99%. The successful tray embedding rate was 100% and the seed exposure rate was less than 1% with a linear velocity of the conveyor belt of 0.92 m s-1. The experiment findings agreed well with the analytical results.Despite the sharp decline in Iran's water resources and growing population, the need to produce food and agricultural products is greater than ever. In the past, most seeds were planted directly into the soil, and many water resources, especially groundwater, were used for direct seed sowing and plant germination. One way to reduce the consumption of water, fertilizers, and pesticides is to plant seedlings instead of direct seed sowing. Therefore, the purpose of this study was dynamic modeling and fabrication of seed planting systems in seedling trays.Material and MethodsIn this experiment, Flores sugar beet seeds (Maribo company, Denmark) were used. The seedling trays had dimensions of 29.5*60 cm with openings and holes of 5.5 and 4 cm, respectively. To plant seeds in seedling trays, first, a planter arm was modeled and its position was obtained at any time. Then, based on dynamic modeling, the arm was constructed and a capacitive proximity sensor (CR30-15AC, China) and IR infrared proximity sensor (E18-D80NK, China) were used to find the location of seedling trays on the input conveyor and position of discharging arm, respectively. To achieve a stable and effective control system, a micro-controller-based circuit was developed to signal the planting system. The seed planting operation was performed in the seedling tray according to the coordinates which were provided through the image processing method. The planting system was evaluated at two levels of forward speed (5 and 10 cm s-1). Moreover, a smartphone program was implemented to monitor the operation of the planting system.Results and DiscussionThe planting system was assessed for sugar beet seeds using two levels of forward speed (5 and 10 cm s-1). The nominal capacity of this planter ranged from 3579 to 4613 cells per hour, with a miss and multiple implantation indices of 0.03% and 8.17%, respectively, in 3000 cells. Due to its planting accuracy, speed, and low energy consumption (25.56 watt-hours), this system has the potential to replace manual seeding in seedling trays.ConclusionIn the present study, a seed-sowing system for planting seedling trays was designed, constructed, and evaluated based on dynamic modeling. In the developed system, unlike previous research, planting location detection was conducted through image processing. Additionally, a smartphone program was established to monitor the operation of the planting system without interfering with its performance. This study demonstrates that image processing can successfully detect planting locations and can effectively improve efficiency over time for major producers

    Agricultural Structures and Mechanization

    Get PDF
    In our globalized world, the need to produce quality and safe food has increased exponentially in recent decades to meet the growing demands of the world population. This expectation is being met by acting at multiple levels, but mainly through the introduction of new technologies in the agricultural and agri-food sectors. In this context, agricultural, livestock, agro-industrial buildings, and agrarian infrastructure are being built on the basis of a sophisticated design that integrates environmental, landscape, and occupational safety, new construction materials, new facilities, and mechanization with state-of-the-art automatic systems, using calculation models and computer programs. It is necessary to promote research and dissemination of results in the field of mechanization and agricultural structures, specifically with regard to farm building and rural landscape, land and water use and environment, power and machinery, information systems and precision farming, processing and post-harvest technology and logistics, energy and non-food production technology, systems engineering and management, and fruit and vegetable cultivation systems. This Special Issue focuses on the role that mechanization and agricultural structures play in the production of high-quality food and continuously over time. For this reason, it publishes highly interdisciplinary quality studies from disparate research fields including agriculture, engineering design, calculation and modeling, landscaping, environmentalism, and even ergonomics and occupational risk prevention

    Determination of Time Dependent Stress Distribution on Potato Tubers at Mechanical Collision

    Get PDF
    This study focuses on determining internal stress progression and the realistic representation of time dependent deformation behaviour of potato tubers under a sample mechanical collision case. A reverse engineering approach, physical material tests and finite element method (FEM)-based explicit dynamics simulations were utilised to investigate the collision based deformation characteristics of the potato tubers. Useful numerical data and deformation visuals were obtained from the simulation results. The numerical results are presented in a format that can be used for the determination of bruise susceptibility magnitude on solid-like agricultural products. The modulus of elasticity was calculated from experimental data as 3.12 [MPa] and simulation results showed that the maximum equivalent stress was 1.40 [MPa] and 3.13 [MPa] on the impacting and impacted tubers respectively. These stress values indicate that bruising is likely on the tubers. This study contributes to further research on the usage of numerical-methods-based nonlinear explicit dynamics simulation techniques in complicated deformation and bruising investigations and industrial applications related to solid-like agricultural products

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore