431 research outputs found

    Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    Get PDF
    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions

    Coupling Disturbance Compensated MIMO Control of Parallel Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Get PDF
    To solve the poor compliance and safety problems in current rehabilitation robots, a novel two-degrees-offreedom (2-DOF) soft ankle rehabilitation robot driven by pneumatic muscles (PMs) is presented, taking advantages of the PM’s inherent compliance and the parallel structure’s high stiffness and payload capacity. However, the PM’s nonlinear, time-varying and hysteresis characteristics, and the coupling interference from parallel structure, as well as the unpredicted disturbance caused by arbitrary human behavior all raise difficulties in achieving high-precision control of the robot. In this paper, a multi-input-multi-output disturbance compensated sliding mode controller (MIMO-DCSMC) is proposed to tackle these problems. The proposed control method can tackle the un-modeled uncertainties and the coupling interference existed in multiple PMs’ synchronous movement, even with the subject’s participation. Experiment results on a healthy subject confirmed that the PMs-actuated ankle rehabilitation robot controlled by the proposed MIMO-DCSMC is able to assist patients to perform high-accuracy rehabilitation tasks by tracking the desired trajectory in a compliant manner

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Towards Human-Robot Collaboration with Parallel Robots by Kinetostatic Analysis, Impedance Control and Contact Detection

    Get PDF
    Parallel robots provide the potential to be lever-aged for human-robot collaboration (HRC) due to low collision energies even at high speeds resulting from their reduced moving masses. However, the risk of unintended contact with the leg chains increases compared to the structure of serial robots. As a first step towards HRC, contact cases on the whole parallel robot structure are investigated and a disturbance observer based on generalized momenta and measurements of motor current is applied. In addition, a Kalman filter and a second-order sliding-mode observer based on generalized momenta are compared in terms of error and detection time. Gearless direct drives with low friction improve external force estimation and enable low impedance. The experimental validation is performed with two force-torque sensors and a kinetostatic model. This allows a new identification method of the motor torque constant of an assembled parallel robot to estimate external forces from the motor current and via a dynamics model. A Cartesian impedance control scheme for compliant robot-environmental dynamics with stiffness from 0.1-2N/mm and the force observation for low forces over the entire structure are validated. The observers are used for collisions and clamping at velocities of 0.4-0.9 m/s for detection within 9–58 ms and a reaction in the form of a zero-g mode.© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    A Novel Adaptive Sliding Mode Controller for a 2-DOF Elastic Robotic Arm

    Get PDF
    Collaborative robots (or cobots) are robots that are capable of safely operating in a shared environment or interacting with humans. In recent years, cobots have become increasingly common. Compliant actuators are critical in the design of cobots. In real applications, this type of actuation system may be able to reduce the amount of damage caused by an unanticipated collision. As a result, elastic joints are expected to outperform stiff joints in complex situations. In this work, the control of a 2-DOF robot arm with elastic actuators is addressed by proposing a two-loop adaptive controller. For the outer control loop, an adaptive sliding mode controller (ASMC) is adopted to deal with uncertainties and disturbance on the load side of the robot arm. For the inner loops, model reference adaptive controllers (MRAC) are utilised to handle the uncertainties on the motor side of the robot arm. To show the effectiveness of the proposed controller, extensive simulation experiments and a comparison with the conventional sliding mode controller (SMC) are carried out. As a result, the ASMC has a 50.35% lower average RMS error than the SMC controller, and a shorter settling time (5% criterion) (0.44 s compared to 2.11 s).publishedVersio

    Development of an End-Effector Type Therapeutic Robot with Sliding Mode Control for Upper-Limb Rehabilitation

    Get PDF
    Geriatric disorders, strokes, spinal cord injuries, trauma, and workplace injuries are all prominent causes of upper limb disability. A two-degrees-of-freedom (DoFs) end-effector type robot, iTbot (intelligent therapeutic robot) was designed to provide upper limb rehabilitation therapy. The non-linear control of iTbot utilizing modified sliding mode control (SMC) is presented in this paper. The chattering produced by a conventional SMC is undesirable for this type of robotic application because it damages the mechanical structure and causes discomfort to the robot user. In contrast to conventional SMC, our proposed method reduces chattering and provides excellent dynamic tracking performance, allowing rapid convergence of the system trajectory to its equilibrium point. The performance of the developed robot and controller was evaluated by tracking trajectories corresponding to conventional passive arm movement exercises, including several joints. According to the results of experiment, the iTbot demonstrated the ability to follow the desired trajectories effectively

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    An Application of Modified T2FHC Algorithm in Two-Link Robot Controller

    Get PDF
    Parallel robotic systems have shown their advantages over the traditional serial robots such as high payload capacity, high speed, and high precision. Their applications are widespread from transportation to manufacturing fields. Therefore, most of the recent studies in parallel robots focus on finding the best method to improve the system accuracy. Enhancing this metric, however, is still the biggest challenge in controlling a parallel robot owing to the complex mathematical model of the system. In this paper, we present a novel solution to this problem with a Type 2 Fuzzy Coherent Controller Network (T2FHC), which is composed of a Type 2 Cerebellar Model Coupling Controller (CMAC) with its fast convergence ability and a Brain Emotional Learning Controller (BELC) using the Lyaponov-based weight updating rule. In addition, the T2FHC is combined with a surface generator to increase the system flexibility. To evaluate its applicability in real life, the proposed controller was tested on a Quanser 2-DOF robot system in three case studies: no load, 180 g load and 360 g load, respectively. The results showed that the proposed structure achieved superior performance compared to those of available algorithms such as CMAC and Novel Self-Organizing Fuzzy CMAC (NSOF CMAC). The Root Mean Square Error (RMSE) index of the system that was 2.20E-06 for angle A and 2.26E-06 for angle B and the tracking error that was -6.42E-04 for angle A and 2.27E-04 for angle B demonstrate the good stability and high accuracy of the proposed T2FHC. With this outstanding achievement, the proposed method is promising to be applied to many applications using nonlinear systems
    • …
    corecore