3,605 research outputs found

    A quasi-Newton procedure for identifying pilot-related parameters of the optimal control model

    Get PDF
    The development and application of a quasi-Newton gradient search procedure for identifying independent pilot related parameters of the optimal control model for pilot/vehicle systems is reported. A sensitivity analysis procedure which determines whether a given model parameter is required to match a specific experimental result, and which experimentally induced parameter changes are required to account for behavioral and performance differences, is described. Application of the identification scheme to training effects in a manual control task is described

    Diagnosis of Fault Modes Masked by Control Loops with an Application to Autonomous Hovercraft Systems

    Get PDF
    This paper introduces a methodology for the design, testing and assessment of incipient failure detection techniques for failing components/systems of an autonomous vehicle masked or hidden by feedback control loops. It is recognized that the optimum operation of critical assets (aircraft, autonomous systems, etc.) may be compromised by feedback control loops by masking severe fault modes while compensating for typical disturbances. Detrimental consequences of such occurrences include the inability to detect expeditiously and accurately incipient failures, loss of control and inefficient operation of assets in the form of fuel overconsumption and adverse environmental impact. We pursue a systems engineering process to design, construct and test an autonomous hovercraft instrumented appropriately for improved autonomy. Hidden fault modes are detected with performance guarantees by invoking a Bayesian estimation approach called particle filtering. Simulation and experimental studies are employed to demonstrate the efficacy of the proposed methods

    The Reliability of Autonomous Vehicles Under Collisions

    Get PDF
    Unmanned autonomous vehicles (UAV) subject is one of the most conspicuous topics of the last decade ensures a better handling ability for more precision way of control of the system or the drive compared to the human. Focusing this issue causes the more computerized vehicles the less unacceptable mistakes. Notwithstanding the efficient drive parameters are increased, the collisions are still the worst scenarios for the vehicles that should be taken care of. The most reliable way to define the collision response of the vehicles and the occupants is crash tests, although it is time consuming. Except crash test is the most convenient procedure to define the details of the impact process; it is also the most expensive way even for the major companies and research centers. Considering the compelling pricey amount of the first investment of the crashworthiness facilities and the crash test costs, recently, computer-aided simulations with the finite element method (FEM) using an explicit dynamics approach is very convenient, especially for the transient dynamic analysis. This chapter characterizes some perspectives of the autonomous vehicles in a short glance of an enormous science of the collisions with the help of experimental and numerical approaches

    Behavioral control of unmanned aerial vehicle manipulator systems

    Get PDF
    In this paper a behavioral control framework is developed to control an unmanned aerial vehicle-manipulator (UAVM) system, composed by a multirotor aerial vehicle equipped with a robotic arm. The goal is to ensure vehicle-arm coordination and manage complex multi-task missions, where different behaviors must be encompassed in a clear and meaningful way. In detail, a control scheme, based on the null space-based behavioral paradigm, is proposed to handle the coordination between the arm and vehicle motion. To this aim, a set of basic functionalities (elementary behaviors) are designed and combined in a given priority order, in order to attain more complex tasks (compound behaviors). A supervisor is in charge of switching between the compound behaviors according to the mission needs and the sensory feedback. The method is validated on a real testbed, consisting of a multirotor aircraft with an attached 6 Degree of Freedoms manipulator, developed within the EU-funded project ARCAS (Aerial Robotics Cooperative Assembly System). At the the best of authors’ knowledge, this is the first time that an UAVM system is experimentally tested in the execution of complex multi-task missions. The results show that, by properly designing a set of compound behaviors and a supervisor, vehicle-arm coordination in complex missions can be effectively managed

    Bio-Inspired Information Extraction In 3-D Environments Using Wide-Field Integration Of Optic Flow

    Get PDF
    A control theoretic framework is introduced to analyze an information extraction approach from patterns of optic flow based on analogues to wide-field motion-sensitive interneurons in the insect visuomotor system. An algebraic model of optic flow is developed, based on a parameterization of simple 3-D environments. It is shown that estimates of proximity and speed, relative to these environments, can be extracted using weighted summations of the instantaneous patterns of optic flow. Small perturbation techniques are utilized to link weighting patterns to outputs, which are applied as feedback to facilitate stability augmentation and perform local obstacle avoidance and terrain following. Weighting patterns that provide direct linear mappings between the sensor array and actuator commands can be derived by casting the problem as a combined static state estimation and linear feedback control problem. Additive noise and environment uncertainties are incorporated into an offline procedure for determination of optimal weighting patterns. Several applications of the method are provided, with differing spatial measurement domains. Non-linear stability analysis and experimental demonstration is presented for a wheeled robot measuring optic flow in a planar ring. Local stability analysis and simulation is used to show robustness over a range of urban-like environments for a fixed-wing UAV measuring in orthogonal rings and a micro helicopter measuring over the full spherical viewing arena. Finally, the framework is used to analyze insect tangential cells with respect to the information they encode and to demonstrate how cell outputs can be appropriately amplified and combined to generate motor commands to achieve reflexive navigation behavior
    corecore