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ABSTRACT

Progress is reported in the development and application of a

quasi-Newton gradient search procedure for identifying independent

pilot-related parameters of toe optimal controlmodel for pilot/vehicle
systems. The computational efficiency of the scheme originally implemented

by Lancraft and Kleinman has been improved. A sensitivity analysis

procedure is described that allows one to determine (I) whether or not a

given model parameter is required to match a specific experimentalresult i
and (2) which experimentally-induced parameter changes are "significant"; !
i.e., required to account for behavioral and performance differences.

_ppllcation of the identification scheme to training effects in a manual
control task is described.

INTRODUCTION

Considerable effort has beer expended over nearly four decades to

develop mathematlcal models for predicting and diagnosing human operator

response behav4, or in closed-loop control tasks. Pred_ctlvemodelsare

desired for thegeneral purpose of extrapolating knowledge, gained from

man-l,,-the-loop studies, to tasks in which experimental data have not yet

been obtained. Diagnostlc models, on the other hand, are intended to help
quantify and int.rpret the effects of stress, and other aspects of the task

environment, on operator response capabilities.
f

Although the sa..-.cmodel form may be used for both prediction and

diagnosis, thetreatmentofindependentmodel parameters isdlfferent. For

predictive appl icatlons ,,hedesires a set of independent model parameters
that are either constar or selectable o_, the basis of well-defined

adjustment rules. For diagnostic applications-- particularly when the "

influence of environmental or task parameters is not well understood --

Independent model parameters w111 often be ad lusted to provide the best
match to the experimental data, with l_.ttle constraint on parameter values.

For this type of model usage, a well-defined procedure is required to

uniquely identify (l.e., quantify) independent model parameters from the

experimental data, and to indicate the reliabllity of the identified

parameter values.
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Particular impetus for developing re] iability metrics for identified

parameters has been provided by a study of the effects of learning on the

human controller's response strategy [I]. As shown later in this paper,
parameter values undergo rather large changes during training, and a

determination as to which of these changes are statisticallymeaningful can
provide guidance for the development of models for learning behavior.

This paper describes a procedure for identifying and testing

parameters of the "optimal control model" (OCM) for the human operator in

steady-state control tasks. Typical independent -- or "pilot-related" --

parameters to be identified from labo-atory tracking data are time delay,

motor time constant, (equivalently, a"cost" penalty on rate-of-change of
control), motor noise covariance, and an observation1 noise covariance for

each perceptual input variable used by the operator. Readers unfamiliar
with this model are directed to the recent , eview article by Baron and
Levison [2] and to the references cited therein.

REVIEW OF THE QOASI-NEWTOW IDENTIFICATION PROCEDO_E

In this section we first review the processnf adjusting independent

model parameters to provide a best matcn to the experimental data. We then

offer a technique for deriving an analytic approximation tothe sensitivity

of the matching error to perturbations in these parametrrs. Finally,
certain implementation details are discussed. In the interest of

conciseness, nnlymajor results are presented here. Derivations have been
reported in more detail in [I].

The Basic Minimizatic.n Procedure

Consider' the task of adjusting model parameters tominimizea scalar

matching error J:e'We, where each element e i of the column vector eis the
difference between the ithmeasured data point and the corresponding model

prediction, and each element w i of the diagonal matrix Wis a weighting
coefficient. In a particular application, the matching _.rror J will

correspond to a particular choice of parameter values p. The objective of
the search procedure is to find a new parameter set p+AJ_ su.'h that J is
minimized.

To implement the search scheme, _,. initially assume that model

predictions (ano, therefore, prediction errnr_) v'.ry linearly with model

parameters. Thus, Ae : Q'_p,_ where

q(i,J) : Bej/BPi (I)

Solving for mirimum J as a function of _.E, we obtnin

AE: -(QWQ')-_Qw___e (2)
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Now, since model input/output relationships are seldom totally linear,

two or more iterations of the procedure are required until some convergence
criteria are satisfied. In some cases, the parameter change computed as _

shown in Eq(2) will yield a scalar matching error greater than the starting "_
value. Therefore, it is often useful to augment the minimization procedure

described above with a line-search scheme to optimize the magnitdde of p. ,k

_Sensitivity An al_sis

i
An indication of parameter estimation reliability can often be {_

obtained through sensitivity analysis relating changes in the scalar

matching error to perturbations in model parameters In general, estimates i
of parameters that have a high impact on matching error can be considered

more reliable than estimates of parameters having a smaller impact.

If model predictions are linear in the parameters, we may analytically

derive the sensitivity of the scalar modeling error to perturbations in

model parameters about the optimal (best-matching) set. Onemay compute _

the sensitivity to a given parameter with the remaining model parameters

held fixed, or with remaining parameters reoptimized. We shall compute
sensitivity according to the latter definition because, by allowing

tradeoffs among parameters in terms of minimizing matching error, it

provides a more stringent reliability measure.

The sensitivity of the matching error J to a change in a single {2

parameter Pi is

J : v'QWQ'v(APi)2 (3)

where J is the increment in J about its minimum value, Pi the change in

parameter Pi about its optimum, and v_is a column vector that has unity
value for the ith element and values for remaining elements given by the

following expression:

Vr : - [Q__rWQ' r ]-I Q_rW__i (4 )

L

where qi = c°l(qi,l,qi,2, .... ), and the subscript "r" indicates vectors and
matrices with omission of rows and columns corresponding to the ith model

param.ter. (See [I] for a derivation _f this result,) The change in
matching error, therefore, varies as the square of the change in parameter

value, given the underlying assumption of" linearity between model
parameters and model predictions.
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Implementation of Manual Control Studies

Application of the QN method for analysis of human operator

performance in continuous control tasks has been reported byLancraft and
K1einman [3]. Described below is a revised implementation that was used

to perform the model analysis described later in this paper.

Two criteria must be defined in order to apply the identification

procedure: (I) a definition of a scalar matching error to be minimized by
theQN scheme, and (2) convergence criteria to determine when the minimum

modeling error has been approached sufficiently closely to justify
termination of the minimization procedure.

Matching error is similar to that used by Lancraft and Kleinman:

1 P- i
1 i-Gi + _

where N is the number of valid measurements in the jthmeasurement group;

G,P, are the gain (dB) and phase shift (degrees) of the ith describing
function point to be matched; R is the corresponding control-stick
"remnant" measurement (dB) ; and S is the ith variance score to be matched

(units different for differenttrackingvariables), indicatesstandard

deviation of an experimental da_.a point, and the symbol "^" ("hat")
indicates a model prediction.

Inclusion of the experimental deviations in the scalar modeling error

allows each error component to be weightod inversely by the reliability of

the data. To prevent the matching criterion from giving excessive weights
to variables that have very low experiment:_l variability, the following

minimum standard deviations are imposed: 0.5 dBfor magnitude and remnant,
3 degrees for phase, and 5% for the ensemble mean for variance scores.

Weighting inversely by standard deviation also converts each error

term into adimensionless number, thereby allowing accumulation of matching

errors into a single metric. Thus, the matching error defined in Eq(5)
approximates the average number of standard deviations of mismatch A

numerical score (,f J=4 reflects an average modeling error of I standard

deviation (i.e., an average error of unity per measurement group).

Theminimization procedure is terminated when the following conditions

jointly obtain for two successive iterations: (I) reduction of the

matching error by less than 0.5%, and (2) changes in all identified

parameters by less than 2%. The first criterion is based on the fact that

the sensitivity of matching error to small perturbations of model

-318-

1982005792-318



parameters is relatively low in the vicinity of the minimum (a consequence

of the quadratic matching error). The second criterion prevents
termination resulting from acompensating"overshoot"; i.e., a situation in

which successive estimates of one or more parameters bound the optimal
values in such a way as to yield essentially the same modeling error.

, A number of modifications have been made to the original

implementation in order to improve computational efficiency. First, the

search is performed on the logarithms of the parameters. This

transformation modestly increases the degree oflinearitybetweenmodel ;

parameters and model outputs, and it prevents the assignment of
out-of-bounds (i.e., negative) values to parameters during the course of
the search. Second, in order to minimize numerical difficulties with

inversion of the expression QWQ', we omit from the search wroeedure (i.e.,

keep fixed), at a given iteration, any parameter having a negligible ,:
influence on the matohin_ error. In addition, to reduce the chance of

c_nvergenee tom local minimum appreciably removed from thegloba_ minimum,

an individual parameter is allowed to undergo no more than a ten-fold
increase or decrease from one iteration to the next.

Finally, a binary section scheme is employed to prevent divergence of

the QN scheme due to nonlinear relationships between model inputs and

outputs. If necessary, binary section is repeated until (I) matching error

is reduced from one iteration to the next, or (2) until four attempts fail

to reduce matching error, at which point the minimization scheme is

termznated. Further details regarding implementation are documented by
I.evison [I].

As is true with any numerical search procedure, the probability of

convergence to a global minimum is enhanced by the selection of an initial

set of model parameters that are close to the optimal set. The following
rules for II_itializing model parameters appears to yield good results with

theQN prooedJre: (1) cost of control rate such that motor time constant =

0.1 seconds; (2) time delay = 0.2 seconds; (3) observation noise

covarianee to achieve a noise/signal ratio of -20 dB for eaeh perceptual

variable assumed to be utilized by the operator; and (4) motor noise

eovarianoe to achieve a noise signal ratio of -50 dB, normalized with
respect to control-rate variance.

SIGNIFICANCE TESTING

In the following discussion we assume that the data base being
subjeeted to model analysis reflects a significant difference in human

operator response behavior, as determined by some standard quantitative
test for signifieanee. We then wish to test L e hypothesis that the

various data sets can be modeled by the same set of model parameters.

Failure to support this null hypothesis indicates that parameter
differences are also significant.
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A cross-comparison scheme was developed and tested against data
obtained in manual control studies. In general, this method may be

employed to provide a qualitative significance test on parameter
differences obtained from modcling the results of two experimental

conditions. This method employs an empirical sensitivity test as described !
below.

\

Assume that model parameters have been identified froh, two data sets

corresponding to, s_y, the "baseline" and "test" experimental conditions;
our task is now to test the null hypothesis that a single set of model

parameters provides a near-optimal match to the baseline and test data. To

perform this test, we first identify the following three sets of pilot
parameters: (I) the set that best matches the baseline data , (2) theset
that best matches the test data, and (3) the set that provides the best

joint match to the baseline and test data. For convenience, we shall refer
to the parameters identified in step 3 as the "average parameter set".

We next compute the following four matching errors:

J(B,B) : matching error obtained from baseline data, using parameters _
identified from baseline data (i.e. , best match to baseline
data) .

J(B,A) = matching error obtained from baseline data, using average

parameter set.

J(T,T) : best match to test data.
J(T,A) : matching error obtained from test data, using average parameter

set.

Finally, we compute the following "matching error ratios":

MER(B) : J(B,A)/J(B,B), MER(T) : J(T,A)/J (T,T), and, ifwe wishto reduce i

the results to a single number, the average of these two error ratios. In

a qualitative sense, the greater the matching error ratios, the more

significant are the differences between the parameters identified for the
baseline and test conditions.

As shown byLevison [I], a good approximation to the joint match to

multiple data sets can be obtained by simply matching the average data.
Thus, to obtain the "average parameter set", one would first obtain a :

point-by-point ensemble average of the (reduceo) baseline and test data,
and then identify parameters to match the average data set. This procedure

is valid if the same task description applies to the two experimental ,,
conditions; i.e., if both tasks can be modeled identically except for

quantitative differences in pilot-related parameters. Experimentsdesigned
to explore training effects, environmental stress, or interference from
other concurrent tasks often meet this restriction.

In addition to providing a collective test of the entire parameter

set, this scheme may also be used to test a single parameter or a subset of

parameters. Suppose, for example, one wishes to test apparent differences
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in the time delay parameter. The matching errors J(B,B) and J(T,T) would

" be computed as described above. The errors J(B,A) and J(T,A), however,

would be computed with only the time delay parameter fixed at its "average"

value; remaining parameters would be re-optimized.

APPLICATION TO STUDIES OF HUMAN OPERATOR PERFORMANCE

Two applications of the cross-comparison scheme for significance

testing are illustrated below. First, data from rate- and

aocelerati.'.n-control systems are analyzed to determine the degree of

parameterization required in each case. Second, we analyze the effects of
training on operator response behavior.

Parameterization Requirements

The QN analysis methodology described above was applied to data

obtained from two manual control studies: one utilizinga rate-control
system [q], and one using approximate acceleration-control dynamics [5].

In both studies, a pseudo-random forcing function was applied in parallel

with the operator's control input, and subjects were trained to near !

asymptotic levels of performance. The data bases subjected to model
analysis were obtained by averaging performance measures from three

subjects for the first study, and from eight subjects for the second.

The following five independent model parameters were identified in
each case: (I) observation noise on error, (2) observation noise on error

rate, (3) pseudo motor noise, (4) time delay, and (5) relative cost of
control rate (equivalently, motor time constant). Identification was

repeated for each data base with time delay, psel_do motor noise, and rate

observation noise omitted individually from the analysis.* When any one
parameter was omitted, remaining parameters were re-optimized to yield

minimum modeling error.

Matching error ratios were computed by normalizing the scalar modeling

error obtained with a parameter omitted, to the modeling error obtained

with all five parameters identified. The matching error ratios presented

in Table la indicate that all three parameters tested were required to
parameterize the data obtained from the rate-control system. That is, with

any single parameter omitted, the matching error increased by a factor of
threeor more. Timedelay and rateobservationnoise were also required to

match the acceleration-control data, but pseudomotor noise proved to be an

extraneous parameter (matching error ratio of 1.02) for this data set.

* The mathematical structure of the model requires finite, non-zero
values for cost of control rate and (for these tasks) for

observation noise on error. Therefore, model analysis was not
performed with these parameters omitted.
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Table I. Model Parameterization Requirements

Model Parameter I ControlRate I AcceleratiOncontrol
[

a) Effect of Omitting Parameter on Matching Error Ratio I

Rate Observation Noise 8.6 8.3 I

Motor Noise 3.6 1.0 I
Time Delay 65.3 10.7

b) Inverse Sensitivity I'

Displacement Obs. Noise 1.8 33.3
Rate Observation Noise 2.1 5.9

Motor Noise 4.7 62.2

Time Delay 0.4 2.3
Cost of Control Rate 2.8 5.3

Table Ibcontainsthe analytic inverse sensitivity computations for

each of the five parameters identified in the initial analysis for each
data base. These measures, which indicate the decilog change required to

increase matching error by 4 units, were computed analytically during the

QN search as part of the parameter reduction procedure described earlier.

The analytic sensitivity predictions correlate well with the empirical

matching error ratios shown in Table la. For a given control -ystem,
matching error ratio (a direct measure of sensitivity)varies%_.ersely

with predicted inverse sensitivity. In particular, especimlly large
inverse sensitivity is shown for the one parameter (motor noise,

acceleration control task)that is considered extraneous. Therefore, the

analytic sensitivity prediction provides guidance to required model
parameterization.
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Three conclusions can be drawn from this illustration. First, the

gradient search technique in general, and the QN identification scheme in

particular, has the intrinsic capability to identify time delay, motor

noise, and rate observation noise -- a capability that has not been

demonstrated by maximum likelihood schemes t6]. Second, analytic

ser,_'tivity computations performed as part of the QN search procedure
provide an indication of the required parameterization. Finally, the

ability to identify a particular model parameter will, in general, depend

on the specifics of the experimental data base.

A Study of TraininG-Related Performance Differences r

The model analysis schemedescribed Inthispaper was used in a recent :

study to quantify and interpret the effects of training on human operator

performance [I]. The experimental data base was obtained from an earlier

study which explored the effects of delayed motion cuing on roll-axis

tracking performance. Of interest here are pro-transition performance
measures obtained from subjects initially trained fixed-base.

Subjects were required to maintain simulated wings-level attitude in a

single-axis laboratory tracking task. Vehicle dynamics were representative
of a high-performance fighter aircraft in the roll axis, and a zero-mean

gust environment was simulated. Except for abrief familiarization period,

all training and data trials were conducted with the external forcing

function aridwere digitally recorded for subsequent analysis and modeling.

Details of the experiment have been reported by Levison, Lancraft, and
Junker, [71.

Frequency response measures are shown in Fi,,:ureI for a single subject

very early in training ("Early Training") and for the final pre-transition

trainlng session ("Late Training") . This training interval represented

about 70 experimentaltrials. Training induced the following changes in

response behavior: an increase in amplitude ratio ("gain") at all

frequencies, (2) a decrease in high-frequency phase lag, and (3) a
reshaping of the control--stickremnant spectrum to yield decreased remnant

power at low frequencies and increased remnant at high frequencies. RMS

tracking error (not shown) decreased by almost a factor of two over the
course of this training interval.

These gain and phase-shift changes are consistent with improved

tracking efficiency. While not obvious, training-related changes in

remnant are also indicative of improved tracking efficiency and are

consistent with the hypothesis (borne out by model analysis) that training
leads to decreased response variability and increased man/machine response
bandwidth.

Table 2 shows pilot-related model parameters for two test subjects.

Parameters are shown for an average of 2-4 trials very early in training

and for the average of the final four trials. (The smooth curves shown in
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Table 2. Effects of Training on Pilot-Related Model
Parameters

State of I I Pilot Paramet.er !Training Subject |-P ,_ | py_ ! Pu ! T ! Tn

• • * ,,

LateEarly CP i_21.61_16.41-28.-29.3 "2301"3431

Early TB I-ii.01-15.91-70.i 1.1981.162 1

Late _-17 •4 _U__I21 ]

_ye = error observation noise/signal ratio, dB

= ratlo,
Py& error rate observation no_se/slgnal 'dB

Pu = motor noise/signal ratio, dB

Tn = motor time constant, seconds

T = time delay, seconds

FiEure I aremodel predictions obtained with _he parameter sets shown for

Subject CP.) To be consistent with previous publications, the relative

weightinK coefficient for control rate is shown as an equivalent motor time
const3nt [I], and noise covariances are presented asnoise/siEnal ratios.

The followinE effects of traininE are noted: (a) a substantial
reduction in the observation noise associated with perception oftrackin8

error, (b) a substantial reduction in the motor time constant, (c) a

sizeable decrease in time delay for one subject, and (d) an apparently

larEe increase in motor noise for the other subject. SurprisinEly,

traininE had small and inconsistent effects on observation noise related to
utilization of error rate information.

The cross-comparison siEnificance test was applied todeterm_ne which

of the identified parameter chanEes reflected real differences in operator
behavior. Tests were performed for the following sets of p_rameters: (a)
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Figure I. Effects of Training on Frequency Response

Subject CP, average of 4 trials.

the entire set, _b) observation noise parameters as a Rroup, (c) motor time

constant, and (d) time delay. Modeling error ratios were computed
separately for subjects CP and TB.

Table 3 shows that, taken as a wh(_le, ehangesinpilot-relatedmodel

parameters were highly significant. A_'erage model parameters yielded

matching errors that were from about B to 20 times as great as those

obtained with the optimal parameter sets. This result is not surprising,

given the substantial training-related changes in operator response
behavior shown in Figure I.

Training-related differences in both the motor time constant parameter
and the noise parameter group were important. Differences associated with

motor time constant were mere significant in the sense that error ratios

for this grouping were about 505 higher than ratios associated with t',e

noise parameters.

Fixin_ the time delay by itself yielded error ratios only slightly

Kreater than unity. A test performed on the large training-relatedchange
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Table 3. Test of Model Parameter Differences Due to

Training

I Mode lin 9 Err_or Ratio

Parameter Set Tested Subject CP Subject TB
L, _ ....

All Parameters 18.5 7.8

All Noises 3.2 2.0 :
Motor Time Constant 5.0 3.6

, Time Delay i.i 1.0

in meter noise found for subject TB also yielded negligible change in

modeling error ratio. Thus, training-related effects on identified changes

in meter time constant and observation noise appear to reflect true changes

in operator response capabilities, whereas changes in time delay and motor
noise are mere likely to reflect(for these specific data sets) problems in

parameter identification.

DISCOSSIOH

The requirement for a given parameter to be included in the identified

set, and the ease and precision witllwhich the parameter can be identified,

are net intrinsic properties of the model parameter in quest%on. Rather,

these factors depend partlyon the details of the task structure and ef the

analysis procedures. For example, we showed above that meter noise was

required to obtain minimum matching error for one task but not for another.

Parameterizatien and identifiability will also depend strongly on the

experimental measurement set used te define the matching error, and on the

set ef model parameters being identified. For example, sensitivity

analysis performed in ether studies [8] suggests that omission of the
remnant spectrum from the measurement set would lead to considerable

difficulty in distinguishing among the various observation noise sources

(and possibly in distinguishing observation noise from time delay).

Similarly, if one were te attempt te identifyeest weightings for all state

variables, along with the independent pilot parameters considered in this

paper,everparameterizatienmight well impede identification ofone or more
parameters.
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Caution should be exercised when interpreting the training-related

changes in model parameters reported above. As in previous studles,model

analysis was based, in part, on the assumption that the subject has a

near-perfect internal representation of the task environment (plant

dynamics, input spectrum, etc.). While this assumption is appropriate for

well-trained subjects tracking with relatively low-order plants, it is less

likely to apply to subjects early in training. -

More comprehensive analysis of the data base suggests that :-

training-related changes in motor time constant do not reflect differences

in motor response capabilitles, but other kinds of responselim:tattons not
adequately reflected bythemodel as applied to this study(Levis_n_ 1981).

For example, the large motor time constant found early in trai,,ing may

reflect a cautious control strategy (i.e., low pilot gain) arislng from the

subject's uncertainty with regard to the dynamical response characteristics
of the controlled element. Further research is contemplated in this area.
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