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ABSTRACT

Frogress is reported in the development and application of a
quasi-Newton gradient search procedure for identifying independent
pilot-related parameters of the optimal control model for pilot/vehicle
systems., The computational efficiencyof the schemeoriginally implemented
by Lancraft and Kleinman has been improved. A sensitivity analysis
procedure isdescribed that allows one to determine (1) whether or not a
given model parameter is required tomatch a specific experimental result,
and (2) which experimentally-induced parameter changes are "significant";
i.e., required to account for behavioral and performance differences.

Applicationof the identification scheme to training effects in amanual
control task is described.

INTRODUCTION

Considerable effort has beer expended over nearly four decades to
developmathematical models for predicting and diagnesing human operator
response behavior in closed-loop controel tasks. Predictivemodels are
desired for the general purpose of extrapolating knowledge, gained from
man-in-the-loop studies, to tasks in which experimental data have not yet
been obtained. Diagnosticmodels, ontheother hand, are intended to help
quantify and int_rpret the effectscf stress, and other aspectsof the task
environment, on operator response capabilities.

Although the sam: madel form may be used for both prediction and
diagnosis, the treatment of independent model parameters isdifferent. For
predictive applications ‘nedesires aset of independent model parameters
that are either constar or selectable oa the basis of well-defined
adjustment rules. Forcdiagnostic applications --particularly when the
influence cf environmental or task parameters is not well understood --
independent meodel parameters will often be adiusted to provide the best
match to the experimental data, withlittle constraint on parameter values.
For this type of model usage, a well-defined procedure is required to
uniquelyidentify (i{i.e., quantify) independent model parameters from the
experimental data, and to indicate the reliability of the identified
parameter values,
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Particular impetus for developing reliabilitymetrics for identified
parameters has been provided by a study of the effects of learning on the
human controller's response strategy [1]. As shown later in this paper,
parameter values undergo rather large changes during training, and a
determination as to whichof these changes are statisticallymeaningful can
provide guidance for the development of models for learning tehavior.,

This paper describes a procedure for identifying and testing
parameters of the "optimal contrvol model”™ (GCM) for the human operator in
steady-state controel tasks., Typical independent -- or "pilot-related" --
parameters to be identified from labe~atory tracking data are time delay,
motor time constant, (equivalently, a"cost" penaltyon rate-of-changeof
control), motor noise covariance, and an ocbservation noise covariance for
each perceptual input variable used by the cperator. Readersunfamiliar
with this model are directed to the recent ' eview article by Baron and
Levison [2] and to the references cited therein.

REVIEW OF THE QUASI-NEWTON IDENTIFICATION PROCEDURE

Inthis section we first review the processof adjusting independent
model parameters to provide abest matento theexperimental data. We then
offer atechnique forderiving an analytic approximationto the sensitivity
of thematching error to perturbations in these parameters, Finally,
certain implementation details are discussed. In the interest of
conciseness, onlymajor results are presented here. Derivations have been
reported in more detail in [1],

The Basic Minimizatiecn Procedure

Consider the task of adjusting model parameters tominimi ze a scalar
matching error J=e'We, where each element e; of the celumn vector e is the
difference between the ithmeasured data peint and the corresponding model
prediction, and each element wy ¢of the diageonal matrix Wis a weighting
coefficient. In a particular application, the matching arror J will
correspond to a particular choice of parameter valuesp. The cbjective of
the search procedure is to find a new parameter set p+Ap suxh that Jis
minimized.

To implement the search scheme, we initially assume that model
predictions (ana, therefore, prediction errorz) vary linearly with model
parameters. Thus, Ae = Q'Ap, where

i,3) = Bej/api (1)

Solving for mirimum J as a function of _p, we cbtain

ap = -(QWQ' i-'Que (2)
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Now, since model input/output relationships are seldom totally linear,
twoormore iterations of the procedure are required until some convergence
criteria are satisfied. In some cases, the parameter change computed as
shown in Eq(2) will yield a scalar matching error greater than the starting
value. Therefore, it is oftenuseful to augment theminimization procedure
described above with a line-search scheme to optimize the magnitude of p.

Sensitivity Analysis

An indication of parameter estimation reliability can often be
obtained through sensitivity analysis relating changes in the scalar
matching error to perturbations inmodel parameters. In general, estimates
of parameters that have a high impact on matching error can be considered
more reliable than estimates of parameters having a smaller impact.

If model predictions are linear in the parameters, wemay analytically
derive the sensitivity of the scalar modeling error to perturbationsin
model parameters about the optimal (best~matching) set. Onemay compute
the sensitivity to agiven parameter with the remaining model parameters
held fixed, or with remaining parameters reoptimized. We shall compute
sensitivity according to the latter definitioen because, by allowing
tradeoffs among parameters in terms of minimizing matching error, it
provides a more stringent reliability measure.

The sensitivity of the matching error J to a change in a single
parameter p; is

J=v'Qw '1(Api)2 (3)

where Jis the increment in J about its minimum value, p; the change in
narameter pjy about its optimum, and vis acolumn vector that hasunity
value for the ith element and values for remaining elements given by the
following expressicon:

Vr ='[9.r‘_".Q'r]-1Qr!&i (4)

where gi = col(qj 1,95 ,2+....), and the subseript "r" indicatesvectors and
matrices withomission of rows and columns corresponding to the ith model
param_i.er. (See [1] for a derivation of this result,) The change in
matching error, therefore, varies as the square of the change in parameter
value, given the underlying assumption of linearity between model
parameters and mocdel predictions.
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Implementation of Manual Control Studies

Applicatien of the QN method for analysis of human operator
performance in continuous controel tasks has beenreported by Lancraft and
Kleinman [3]. Describedbelowis arevised implementation that was used
te perform the model analysis described later in this paper.

Two criteriamust be defined in order to apply the identification
procedure: (1) adefinitionof ascalarmatching error tobeminimized by
the QN scheme, and (2) convergence criteria to determine when theminimum
modeling error has been apprcached sufficiently closely to justify
termination of the minimization procedure.

Matching error is similar to that used by Lancraft and Kleinman:

N ™ 2 N ~ 2
1 _ 1 2 P -
g=2 7 (%) o+ DL
Nli—l % 2.1\ %
" i i €))
a2
N -\ 2 N -
R LT R T
+= ) + = 1
N, %R Ny %
i=1 i i=1 i

where Nis the number of valid measurements in the jthmeasurement group;
G,P, are the gain (dB) and phase shift (degrees) of the ith describing
function point to be matched; R is the corresponding control-stick
"remnant" measurement (dB); and Sis the ithvariance score to be matched
(units different for different tracking variables). indicates standard
deviation of an experimental dava peint, and the symbel """ ("hat")
indicates a model prediction.

Inclusion of the experimental deviations in the scalarmedeling error
allows each errcor compeonent to be weight~d inverselyby thereliabilityof
the data. To prevent thematchingecriterionfromgiving excessive weights
tovariables that have very low experimental variability, the following
minimum standard deviations are imposed: 0.5 dBfor magnitude and remnant,
3 degrees for phase, and 5% for the ensemble mean for variance scores,

Weighting inverselyby standard deviatiocn also converts each error
term inteo adimensieonless number, thereby allowing accumulaticonofmatching
errersinto a singlemetric, Thus, the matching error defined in Eq(5
approximates the average number of standard deviations of mismatch A
numerical score ¢f J=4 reflects an average medeling error of 1 standard
deviatien (i.e., an average error of unity per measurement group).

Theminimization procedure is terminated when the following conditions
jointly obtain for twe successive iterations: (1) reduction of the
matching error by leus than 0.5%, and (2) changes in all identified
parameters by less than2%. The first criterionisbasedonthe fact that
the sensitivity of matching error to small perturbations of medel
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parameters is relatively low in the vicinityof theminimum (a consequence
of the quadratic matching error). The second criterion prevents
terminationresulting from a compensating "overshoot®; i.e., a situationin
which successive estimates of one or more parameters bound the optimal
values in such a way as to yield essentially the same modeling error.,

A number of modifications have been made to the original
implementation in order to improve computational efficiency. First, the
search is performed on the logarithms of the parameters. This
transformation medestly increases the degree of linearity between model
parameters and model outputs, and it prevents the assignment of
out~of-bounds (i.e., negative) values to parametersduring the course of
the search. Second, !n order tominimize numerical difficulties with
inversionof the expression QWQ', we omit from the search yrocedure (i.e.,
keep fixed), at a given iteration, any parameter having a negligible
influence on the matching error. 1In addition, to reduce the chance of
cnnvergence to a local minimum appreciably removed from the gicbasr minimum,
an individual parameter is allowed to underge no more than a ten-fold
increase or decrease from one iteration to the next.

Finally, a binary section scheme is employed to prevent divergence of
the QN scheme due to neonlinear relationships between meodel inputs and
cutputs. If necessary, binary sectionisrepeateduntil (1) matchingerror
is reduced from cne iterationto the next, or (2) until four attempts fail
to reduce matching error, at which point the minimization scheme is
terminated. Further detailsregarding implementation are decumented by
lLevisen [1].

As is true with any numerical search procedure, the probability of
convergence to a global minimum is enhanced by the selectionofaninitial
set ocf model parameters thatl are clese to the optimal set. The fellowing
rules for initializing model parameters appears to yield good results with
the QN procedire: (1) cost of control rate such that motor time constant =
0.1 seconds; (2) time delay = 0.2 seconds; (3) observation ncise
covariance to achieve a noise/signal ratio of -20 dB for each perceptual
variable assumed to be utilized by the operator; and (4) motor noise
covariance to achieve a necrise signal ratic of -50 dB, normalized with
respect to contrel-rate variance,

SIGNIFICANCE TESTING

In the ferllowing discussion we assume that the data base being
subjected to model analysis reflects asignificant difference in human
operator response behavior, as determined by some standard quantitative
test for significance. We then wish tc test (' e hypothesis that the
variocus data sets can be madeled by the same set of model parameters,
Failure te support this null hypothesis indicates that parameter
differences are alsc significant.
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A cross-comparison scheme was developed and tested against data
obtained in manual control studies. 1In general, this methed may be
employed to provide a qualitative significance test on parameter
differences obtained from modeling the results of two experimental
conditions, Thismethed employs anempirical sensitivitytest asdescribed
below.

Assume that medel parameters have been identified from two data sets
corresponding to, say, the "baseline" and "test" experimental conditions;
our task is now to test the null hypothesis that a single set of model
parameters provides anear-optimal match te the baseline and test data. To
perform this test, we first identify the following three sets of pilot
parameters: (1) the set that best matches the baselinedata, (2) the set
that best matches the test data, and (3) the set that provides the best
joint mateh te the baseline and test data. For convenience, we shall refer
to the parameters identified in step 3 as the "average parameter set",

We next compute the following four matching errors:

J(B,B) = matching error ocbtained from baseline data, using parameters
identified frombaselinedata (i.e., best match to baseline
data).

J(B,A) = matching error obtained from baseline data, using average
parameter set,

J(T,T) = best match to test data.

J(T,A) = matching errcr obtained from test data, using average parameter
set.

Finally, we compute the following "matching error ratios":
MER(B) = J(B,A)/J(B,B), MER(T) =J(T,A)/J(T,T), and, if we wish to reduce
the results to a single number, the average of these two error raties. In
a qualitative sense, the greater the matching error ratics, the more
significant are the differences between the parameters identified for the
haseline and test coenditiens.

As shown by Levisen [ 1], a good appreoximation to the jeint matceh to
multiple data sets canbe cbtained by simplymatching the average data.
Thus, tc obtain the "average parameter set", one would first obtain a
point-by-peint ensemble average of the {(reducea) baseline and test data,
and then identify parameters to match the average dataset. This precedure
is valid if *he same task description applies to the two experimental
conditions; i.e., if both tasks can be moedeled identically except for
quantitativedifferences inpilct-related parameters. Experimentsdesigned
to explore training effects, environmental stress, or interference from
other concurrent tasks often meet this restriction,

In additien te preoviding acellective test of the entire parameter

set, this scheme may alsco be used to test a single parameter or a subset of
parameters. Suppose, for example, cne wishes to test apparent differences
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inthe time delay parameter. The matching errors J(B,B) and J(T,T) would
be computed as described above. The errors J(B,A) andJ(T,A), however,
would be computed with only the time delay parameter fixed at its "average"
value; remaining parameters would be re-optimized.

APPLICATION TO STUDIES OF HUMAN OPERATOR PERFORMANCE

Twe applications of the cross-compariscn scheme for significance
testing are 1illustrated below. First, data from rate- anaga
acceleratizn-control systems are analyzed to determine the degree of
parameterizationrequired ineachcase. Second, we analyze theeffectsof
training on operator response behavior,

Parameterization Requirements

The QN analysis methodelogy described above was applied to data
obtained from two manual control studies: oneutilizing arate-contrel
system [4], and one using approximate acceleration-control dynamics [51].
In beth studies, a pseudo-random forcing function was applied inparallel
with the cperator's contrel input, and subjects were trained to near
asymptotic levels of performance. The data bases subjected to model
analysis were obtained by averaging performance measures from three
subjects for the first study, and from eight subjects for the secend.,

The following five independent meodel parameters were identified in
each case: (1) ocbservation noiseonerror, (2) cbservationnoisecnerror
rate, (3) pseude motor necise, (4) time delay, and (5) relative cost of
contrel rate (equivalently, moter time constant), Identification was
repeated for eachdata base with time delay, pseudo motor noise, and rate
observation noise ecmitted individually from the analysis.®* When any cone
parameter was cmitted, remaining parameters were re-cptimized to yield
minimum modeling error,

Matching error ratics were computed by normalizing the scalar medeling
error ocbtained with a parameter cmitted, te the modeling error obtained
with all five parameters identified. Thematching errcr ratios presented
in Table ta indicate that all three parameters tested were required te
parameterize the dataobtained from the rate-contrel system. That is, with
any single parameter cmitted, the matching error increased by a factoroef
three ocr mere, Time delay and rate ocbservaticnnoise were alsc requiredto
match the acceleration-centrel data, but pseudomotor ncise preved to be an
extranecus parameter (matching error raticoef 1,02) for this data set.

% The mathematical structure of the mecdel requires finite, non-zero
values for cost of control rate and (for these tasks) for
ocbservation ncise on error. Therefore, model analysis was not
performed with these parameters ocmitted.
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Table 1. Model Parameterization Requirements

Model Parameter Rate Acceleration
Control Control

a) Effect of Omitting Parameter on Matching Error Ratio

|

Rate Observation Noise 8.6 8.3

Motor Noise 3.6 1.0

Time Delay 65.3 10.7
b) Inverse Sensitivity

Displacement Obs. Noise 1.8 33.3

Rate Observation Noise 2.1 5.9

Motor Noise 4.7 62.2

Time Delay 0.4 2.3

Cost of Control Rate 2.8 5.3

Table 1bcentains the analytic inverse sensitivity computations for
eachof the five parameters identified inthe initial analysis for each
data base. Thesemeasures, whichindicate the decilog change required te
increase matching errcor by 4 units, were computed analyticallyduring the
QN search as part of the parameter reduction procedure described earlier.,

The analytic sensitivity predictions correlate well with the empirical
matching error ratics shewn in Table 1a. For a given contrel -ystem,
matching error ratic {(adirect measureof sensitivity) varies {( .ersely
with predicted inverse sensitivity. In particular, especirlly large
inverse sensitivity is shown for the one parameter (meoetor noise,
acceleration control task) that is considered extranecus. Therefore, the
analytic sensitivity prediction preoevides guidance to required model
parameterization.
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Three conclusions can be drawn from this illustration., First, the
gradient search technique in general, and the QN identification scheme in
particular, has the intrinsic capability to identify time delay, moter
noise, and rate observation noise -- a capability that has not been
demonstrated by maximum likelihood schemes [6]. Second, analytic
sen.itivity computations performed as part of the QN seurch procedure
provide an indicatienof the required parameterization. Finally, the
ability to identify a particular model parameter will, in general, depend
on the specifics of the experimentzal data base.

A Study of Training-Related Performance Differences

The mecdel analysis scheme described in this paper wasusedinarecent
study to quantify and interpret the effects of training on human operator
performance [1]. The experimental database was obtained fromanearlier
study which explored the effects of delayed motion cuing on roll-axis
tracking performance. Of interest here are pre-transition performance
measures obtained from subjects initially trained fixed-base.

Subjects were required temaintain simulated wings-~level attitudeina
single-axis laboratory tracking task., Vehicle dynamics were representative
of ahigh-performance fighter aircraft inthercell axis, and a zeroc-mean
gust environment was simulated. Except for abrief familiarization period,
all training and data trials were conducted with the external forcing
function and were digitally receorded for subsequent analysis and modeling.
Details of the experiment have been reported by Levisen, Lancraft, and
Junker, [71].

Frequency responsemeasures are shown in Fijure 1 for a single subject
veryearly intraining ("Early Training") and for the final pre-transition
training session ("Late Training"). Thistraining interval represented
about 70 experimental trials. Training induced the following changes in
response behavicr: an increase in amplitude ratic ("gain") at all
frequencies, (2) a decrease in high-frequency phase lag, and (3) a
reshaping of the control-stick remnant spectrum to yield decreased remnant
power at low frequencies and increased remnant at high frequencies. RMS
tracking error (nct shown) decreased by almesc a factor of two over the
course of this training interval.

These gain and phase-shift changes are consistent with improved
tracking efficiency. While not ebvious, training-related changes in
remnant are alsc indicative of improved tracking efficiency and are
consistent with the hypothesis (borneout bymedel analysis) that training
leads tc decreased response variability and increased man/machine response
bandwidth.

Table 2 shews pilet-related model parameters for two test subjects.

Parameters are shown for an average of 2-4 trials very early in training
and for the average of the final four trials. (The smecoth curves shown in
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Table 2. Effects of Training on Pilot-Related Model

Patameters

State of Pilot Parameter
Training |Subject Pye T’Pyé Py T T, !
Early Ccp -5.31-18.6}-28.2 | .230|.343
Late -21.6|-16.4]-29.3 ] .162}|.169
Early TB -11.0{-15.9{-70.1 | .198}.162
Late -21.2{-17.41-56.9 | .219}.121

Pye = error ohservation noise/signal ratio, dB

Pyé = error rate observation noise/signal ratio,

dB

Pu = motor ncise/signal ratio, dB

Tn = motor time constant, seconds

T = time delay, seconds

Figure 1 aremcdel predicticns obtained with the parameter sets shown for
Subject CP.) To be consistent with previous publicaticns, therelative
weighting cecefficient for contrel rate is shown as an equivalent motor time
constant [1], and ncise covariances are presented as neise/signal ratios,

The folleowing effects of training are ncted: (a) a substantial
reduction in the cbservation ncise associated with perceptionof tracking
error, (b) a substantial reducticn in the motor time constant, (c) a
sizeable decrease 1n time delay for one subject, and (d) an apparently
large increase in motor noise for the other subject. Surprisingly,
training had small and inconsistent effects oncbservationneiserelated to
utilization of errer rate information.

The cress-comparison significance test was applied to determine which

of the identified parameter changes reflected realdifferences inoperator
behavicr, Tests were perfcrmed for the following sets of perameters: (a)
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Figure 1. Effects of Training on Frequency Response

Subject CP, average of 4 trials.

the entire set, (b) cbservation noise parameters as a group, (c) motor time

constant, and (d) time delay. Modeling error ratics were computed
separately for subjects CP and TB.

Table 3 shows that, taken as a whole, changes in pilot-related medel
parameters were highly significant. Average model parameters yielded
matching errcors that were from about 8 te 20 times as great as these
cbtained with the cptimal parameter sets, This result is neot surprising,

given the substantial training-related changes in operator response
behavier shown in Figure 1.

Training-related differences in both the motor time constant parameter
andthenoiseparametergroupwere1mportant. Differences associated with
moter time constant were mere significant in the sense that error ratics

for this grouping were about 50% higher than ratios associated with t e
ncise parameters,

ﬁxingthetimedelaybyitselfyieldederrorratiosonlyslightly
greater than unity, Atestperrormedonthelargetraining-relatedchange
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Table 3. Test of Model Parameter Differences Due to

Training
Modeling Error Ratio
Parameter Set Tested Subject CP Subject TB
All Parameters 18.5 7.8
All Noises 3.2 2.0
Motor Time Constant 5.0 3.6
Time Delay 1.1 1.0

in metor noise found for subject TB alsoc ylelded negligible change in
mcdeling errorratio. Thus, training-related effects on identified changes
inmoter time constant and ebservatien necise appear toreflect true changes
incperateor response capabilities, whereas changesintimedelay andmector
ncise aremere likely to reflect (for these specific data sets) problems in
parameter identification,.

DISCUSSION

The requirement fer agiven parameter to beincluded inthe identified
set, and the ease and precisicn with which the parameter can be identified,
are not intrinsic propertiesof the medel parameter in question, Rather,
these facters depend partlyon the detailsef the task structure and of the
analysis procedures. For example, we showed above that meter noise was
required to cbtainminimum matching errer forone task but not for ancther,

Parameterization and identifiability will alsc depend strongly on the
experimental measurement set used teo define the matching errer, and on the
set ¢f model parameters being identified. Feor example, sensitivity
analysis performed in cther studies [8] suggests that cmission of the
remnant spectrum frem the measurement set would lead te considerable
difficulty indistinguishing ameng the varicus observation ncise scurces
(and prssibly in distinguishing observaticn ncise frem time delay).
Similarly, if cne were te attempt to identifycest weightings for all state
variables, aleng with the independent pilet parameters considered inthis
paper, cverparameterizaticnmight well impede identification of one or mere
parameters.
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Caution should be exercised when interpreting the training-related
changes in model parameters reported above., As inprevious studies, medel
analysis was based, in part, on the assumption that the subject has a
near-perfect internal representation of the task environment (plant
dynamics, input spectrum, etc.). Whilethis assumption is appropriate for
well-trained subjects tracking withrelatively low-order plants, it is less
likely to apply to subjects early in training.

More ccmprehensive analysis of the data base suggests that
training-related changes inmector time constant donot reflect differences
in motor response capabilities, but other kindsof response lim!tations not
adequatelyreflected by the model as appliad to this study(Levisun. 1981).,
For example, the large motor time constant found early in trai.uing may
reflect a cauticus control strategy (i.e., lowpilot gain) arising from the
subject's uncertainty withregard to the dynamical response characteristics
of the controlled element, Further researchiscontemplated in this area.
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