7 research outputs found

    Recommendations Related To Wheeze Sound Data Acquisition

    Get PDF
    In the field of computerized respiratory sounds,a reliable data set with a sufficient number of subjects is required for the development of wheeze detection algorithm or for further analysis.Validated and accurate data is a critical issue in the field of research.In this study,the protocol related to wheeze sound data acquisition is discussed.Previously,most articles focused on wheeze detection or its parametric analysis,but no consideration was given to data acquisition.Second major purpose of this study is to exhibit particulars of our dataset which was attained for future analysis.We compile a database with a sufficient and reliable number of cases with all essential details,in contrast to commercially available wheeze sound data used for research,freely available online data on websites and data used to train medical students for auscultation

    An Overview of Breath Phase Detection – Techniques & Applications

    Get PDF
    The main aim of this study is to provide an overview on the state of the art techniques (acoustic and nonacoustic approaches) involved in breath phase detection and to highlight applications where breath phase detection is vital. Both acoustic and non-acoustic approaches are summarized in detail. The non-acoustic approach involves placement of sensors or flow measurement devices to estimate the breath phases, whereas the acoustic approach involves the use of sophisticated signal processing methods on respiratory sounds to detect breath phases. This article also briefly discusses the advantages and disadvantages of the acoustic and non-acoustic approaches of breath phase detection. The literature reveals that recent advancements in computing technology open avenues for researchers to apply sophisticated signal processing techniques and artificial intelligence algorithms to detect the breath phases in a non-invasive way. Future works that can be implemented after detecting the breath phases are also highlighted in this article

    An Overview Of Breath Phase Detection – Techniques & Applications

    Get PDF
    The main aim of this study is to provide an overview on the state of the art techniques (acoustic and non-acoustic approaches) involved in breath phase detection and to highlight applications where breath phase detection is vital. Both acoustic and non-acoustic approaches are summarized in detail. The non-acoustic approach involves placement of sensors or flow measurement devices to estimate the breath phases, whereas the acoustic approach involves the use of sophisticated signal processing methods on respiratory sounds to detect breath phases. This article also briefly discusses the advantages and disadvantages of the acoustic and non-acoustic approaches of breath phase detection. The literature reveals that recent advancements in computing technology open avenues for researchers to apply sophisticated signal processing techniques and artificial intelligence algorithms to detect the breath phases in a non-invasive way. Future works that can be implemented after detecting the breath phases are also highlighted in this article

    Characterization And Classification Of Asthmatic Wheeze Sounds According To Severity Level Using Spectral Integrated Features

    Get PDF
    This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their severity level (mild, moderate and severe) using spectral integrated (SI) features. Method: Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate statistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods. Results and conclusion: All statistical comparisons exhibited a significant difference (p < 0.05) among the severity levels with few exceptions. In the classification experiments, the ensemble classifier exhibited better performance in terms of sensitivity, specificity and positive predictive value (PPV). The trachea inspiratory group showed the highest classification performance compared with all the other groups. Overall, the best PPV for the mild, moderate and severe samples were 95% (ENS), 88% (ENS) and 90% (SVM), respectively. With respect to location, the tracheal related wheeze sounds were most sensitive and specific predictors of asthma severity levels. In addition, the classification performances of the inspiratory and expiratory related groups were comparable, suggesting that the samples from these locations are equally informativ

    Identification Of Asthma Severity Levels Through Wheeze Sound Characterization And Classification Using Integrated Power Features

    Get PDF
    This study aimed to investigate and classify wheeze sound characteristics according to asthma severity levels (mild, moderate and severe) using integrated power (IP) features. Method: Validated and segmented wheeze sounds were obtained from the lower lung base (LLB) and trachea recordings of 55 asthmatic patients with different severity levels during tidal breathing manoeuvres. From the segments, nine datasets were obtained based on the auscultation location, breath phases and their combination. In this study, IP features were extracted for assessing asthma severity. Subsequently, univariate and multivariate (MANOVA) statistical analyses were separately implemented to analyse behaviour of wheeze sounds according to severity levels. Furthermore, the ensemble (ENS), knearest- neighbour (KNN) and support vector machine (SVM) classifiers were applied to classify the asthma severity levels. Results and conclusion: The univariate results of this study indicated that the majority of features significantly discriminated (p < 0.05) the severity levels in all the datasets. The MANOVA results yielded significantly (p < 0.05) large effect size in all datasets (including LLB-related) and almost all post hoc results were significant(p < 0.05). A comparison ofthe performance of classifiers revealed that eight ofthe nine datasets showed improved performance with the ENS classifier. The Trachea inspiratory (T-Inspir) dataset produced the highest performance. The overall best positive predictive rate (PPR) for the mild, moderate and severe severity levels were 100% (KNN), 92% (SVM) and 94% (ENS) respectively. Analysis related to auscultation locations revealed that tracheal wheeze sounds are more specific and sensitive predictors of asthma severity. Additionally, phase related investigations indicated that expiratory and inspiratory wheeze sounds are equally informative for the classification of asthma severit

    Wheeze Sound Analysis Using Computer-Based Techniques: A Systematic Review

    Get PDF
    Wheezes are high pitched continuous respiratory acoustic sounds which are produced as a result of airway obstruction. Computer-based analyses of wheeze signals have been extensively used for parametric analysis, spectral analysis, identification of airway obstruction, feature extraction and diseases or pathology classification. While this area is currently an active field of research, the available literature has not yet been reviewed. This systematic review identified articles describing wheeze analyses using computer-based techniques on the SCOPUS, IEEE Xplore, ACM, PubMed and Springer and Elsevier electronic databases. After a set of selection criteria was applied, 41 articles were selected for detailed analysis. The findings reveal that 1) computerized wheeze analysis can be used for the identification of disease severity level or pathology, 2) further research is required to achieve acceptable rates of identification on the degree of airway obstruction with normal breathing, 3) analysis using combinations of features and on subgroups of the respiratory cycle has provided a pathway to classify various diseases or pathology that stem from airway obstructio

    Multichannel analysis of normal and continuous adventitious respiratory sounds for the assessment of pulmonary function in respiratory diseases

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit d’Enginyeria IndustrialRespiratory sounds (RS) are produced by turbulent airflows through the airways and are inhomogeneously transmitted through different media to the chest surface, where they can be recorded in a non-invasive way. Due to their mechanical nature and airflow dependence, RS are affected by respiratory diseases that alter the mechanical properties of the respiratory system. Therefore, RS provide useful clinical information about the respiratory system structure and functioning. Recent advances in sensors and signal processing techniques have made RS analysis a more objective and sensitive tool for measuring pulmonary function. However, RS analysis is still rarely used in clinical practice. Lack of a standard methodology for recording and processing RS has led to several different approaches to RS analysis, with some methodological issues that could limit the potential of RS analysis in clinical practice (i.e., measurements with a low number of sensors, no controlled airflows, constant airflows, or forced expiratory manoeuvres, the lack of a co-analysis of different types of RS, or the use of inaccurate techniques for processing RS signals). In this thesis, we propose a novel integrated approach to RS analysis that includes a multichannel recording of RS using a maximum of five microphones placed over the trachea and the chest surface, which allows RS to be analysed at the most commonly reported lung regions, without requiring a large number of sensors. Our approach also includes a progressive respiratory manoeuvres with variable airflow, which allows RS to be analysed depending on airflow. Dual RS analyses of both normal RS and continuous adventitious sounds (CAS) are also proposed. Normal RS are analysed through the RS intensity–airflow curves, whereas CAS are analysed through a customised Hilbert spectrum (HS), adapted to RS signal characteristics. The proposed HS represents a step forward in the analysis of CAS. Using HS allows CAS to be fully characterised with regard to duration, mean frequency, and intensity. Further, the high temporal and frequency resolutions, and the high concentrations of energy of this improved version of HS, allow CAS to be more accurately characterised with our HS than by using spectrogram, which has been the most widely used technique for CAS analysis. Our approach to RS analysis was put into clinical practice by launching two studies in the Pulmonary Function Testing Laboratory of the Germans Trias i Pujol University Hospital for assessing pulmonary function in patients with unilateral phrenic paralysis (UPP), and bronchodilator response (BDR) in patients with asthma. RS and airflow signals were recorded in 10 patients with UPP, 50 patients with asthma, and 20 healthy participants. The analysis of RS intensity–airflow curves proved to be a successful method to detect UPP, since we found significant differences between these curves at the posterior base of the lungs in all patients whereas no differences were found in the healthy participants. To the best of our knowledge, this is the first study that uses a quantitative analysis of RS for assessing UPP. Regarding asthma, we found appreciable changes in the RS intensity–airflow curves and CAS features after bronchodilation in patients with negative BDR in spirometry. Therefore, we suggest that the combined analysis of RS intensity–airflow curves and CAS features—including number, duration, mean frequency, and intensity—seems to be a promising technique for assessing BDR and improving the stratification of BDR levels, particularly among patients with negative BDR in spirometry. The novel approach to RS analysis developed in this thesis provides a sensitive tool to obtain objective and complementary information about pulmonary function in a simple and non-invasive way. Together with spirometry, this approach to RS analysis could have a direct clinical application for improving the assessment of pulmonary function in patients with respiratory diseases.Los sonidos respiratorios (SR) se generan con el paso del flujo de aire a través de las vías respiratorias y se transmiten de forma no homogénea hasta la superficie torácica. Dada su naturaleza mecánica, los SR se ven afectados en gran medida por enfermedades que alteran las propiedades mecánicas del sistema respiratorio. Por lo tanto, los SR proporcionan información clínica relevante sobre la estructura y el funcionamiento del sistema respiratorio. La falta de una metodología estándar para el registro y procesado de los SR ha dado lugar a la aparición de diferentes estrategias de análisis de SR con ciertas limitaciones metodológicas que podrían haber restringido el potencial y el uso de esta técnica en la práctica clínica (medidas con pocos sensores, flujos no controlados o constantes y/o maniobras forzadas, análisis no combinado de distintos tipos de SR o uso de técnicas poco precisas para el procesado de los SR). En esta tesis proponemos un método innovador e integrado de análisis de SR que incluye el registro multicanal de SR mediante un máximo de cinco micrófonos colocados sobre la tráquea yla superficie torácica, los cuales permiten analizar los SR en las principales regiones pulmonares sin utilizar un número elevado de sensores . Nuestro método también incluye una maniobra respiratoria progresiva con flujo variable que permite analizar los SR en función del flujo respiratorio. También proponemos el análisis combinado de los SR normales y los sonidos adventicios continuos (SAC), mediante las curvas intensidad-flujo y un espectro de Hilbert (EH) adaptado a las características de los SR, respectivamente. El EH propuesto representa un avance importante en el análisis de los SAC, pues permite su completa caracterización en términos de duración, frecuencia media e intensidad. Además, la alta resolución temporal y frecuencial y la alta concentración de energía de esta versión mejorada del EH permiten caracterizar los SAC de forma más precisa que utilizando el espectrograma, el cual ha sido la técnica más utilizada para el análisis de SAC en estudios previos. Nuestro método de análisis de SR se trasladó a la práctica clínica a través de dos estudios que se iniciaron en el laboratorio de pruebas funcionales del hospital Germans Trias i Pujol, para la evaluación de la función pulmonar en pacientes con parálisis frénica unilateral (PFU) y la respuesta broncodilatadora (RBD) en pacientes con asma. Las señales de SR y flujo respiratorio se registraron en 10 pacientes con PFU, 50 pacientes con asma y 20 controles sanos. El análisis de las curvas intensidad-flujo resultó ser un método apropiado para detectar la PFU , pues encontramos diferencias significativas entre las curvas intensidad-flujo de las bases posteriores de los pulmones en todos los pacientes , mientras que en los controles sanos no encontramos diferencias significativas. Hasta donde sabemos, este es el primer estudio que utiliza el análisis cuantitativo de los SR para evaluar la PFU. En cuanto al asma, encontramos cambios relevantes en las curvas intensidad-flujo yen las características de los SAC tras la broncodilatación en pacientes con RBD negativa en la espirometría. Por lo tanto, sugerimos que el análisis combinado de las curvas intensidad-flujo y las características de los SAC, incluyendo número, duración, frecuencia media e intensidad, es una técnica prometedora para la evaluación de la RBD y la mejora en la estratificación de los distintos niveles de RBD, especialmente en pacientes con RBD negativa en la espirometría. El método innovador de análisis de SR que se propone en esta tesis proporciona una nueva herramienta con una alta sensibilidad para obtener información objetiva y complementaria sobre la función pulmonar de una forma sencilla y no invasiva. Junto con la espirometría, este método puede tener una aplicación clínica directa en la mejora de la evaluación de la función pulmonar en pacientes con enfermedades respiratoriasAward-winningPostprint (published version
    corecore