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Abstract— The main aim of this study is to provide an 

overview on the state of the art techniques (acoustic and non-

acoustic approaches) involved in breath phase detection and to 

highlight applications where breath phase detection is vital. 

Both acoustic and non-acoustic approaches are summarized in 

detail. The non-acoustic approach involves placement of sensors 

or flow measurement devices to estimate the breath phases, 

whereas the acoustic approach involves the use of sophisticated 

signal processing methods on respiratory sounds to detect 

breath phases. This article also briefly discusses the advantages 

and disadvantages of the acoustic and non-acoustic approaches 

of breath phase detection. The literature reveals that recent 

advancements in computing technology open avenues for 

researchers to apply sophisticated signal processing techniques 

and artificial intelligence algorithms to detect the breath phases 

in a non-invasive way. Future works that can be implemented 

after detecting the breath phases are also highlighted in this 

article. 

 

Index Terms— Breath Phase; Breath Sounds Detection; 

Respiratory Rate; Respiratory Sounds. 

 

I. INTRODUCTION 

 

Auscultation is the process of listening to human body 

sounds. It started with the invention of stethoscope [1]. Chest 

auscultation is an essential practice for physical examination 

of lung patients. Lung sounds have information about 

underlying pathologies. These sounds can be divided into 

normal and abnormal sounds. Abnormal lung sounds are 

further divided into adventitious and non-adventitious sounds 

[2-5]. 

Computerized respiratory sound analysis is also an active 

field of research [6]. In this field most of the researchers are 

dealing with adventurous sounds detection and classification 

[2, 3]. Researchers are also focusing on respiratory sound 

analysis. Furthermore, researchers are also paying attention 

to the behavior of respiratory sounds in expiratory and 

inspiratory phase [4, 7]. 

Determining respiratory flow towards subsequently 

detecting breath phases has been of interest in the field of 

respiratory research for many years [8]. There are several 

applications for which determining respiratory flow and 

detecting breath phases could be considered important [9]. 

They have been found to be used in applications such as, early 

detection of sleep apnea, computing respiratory rate, 

computerized decision support systems (CDSS) for 

respiratory sound analysis, and in many other clinical tests 

where it is either mandatory or vital [10]. There are several 

instruments currently used by practitioners and researchers 

alike for respiratory flow estimation such as 

phonopneumographs, spirometers etc. Once the respiratory 

flow is recorded, the corresponding breath phases can be 

segmented using flow estimation. The estimated flow in the 

various breath phases can be used in many applications to 

detect respiratory related illness [11, 12]. The methods for 

detecting breath phases can be broadly classified into two 

main approaches namely the non-acoustic approach and the 

acoustic approach. The following sections will discuss in 

detail about these two approaches for detecting breath phases 

and the applications which rely on breath phase detection. We 

are going to discuss in more details acoustic approach which 

depends on properties of signal and it is our main focus. 

 

II. NON-ACOUSTIC APPROACH 

 

The non-acoustic approach is otherwise called a sensor-

based method [13]. The commonly used sensor-based 

methods are impedance plethysmography (IPG), the fibre 

optic-based method, respiratory inductive plethysmography 

(RIPG) and flow measurement based methods. 

In IPG, electrodes are placed on the surface of the body, and 

the changes in tissue volume are measured based on 

variations in electrical impedances [14]. The placement of the 

IPG electrodes over the chest wall allows measurement of the 

change in respiratory volume [15]. Because the electrodes are 

placed on the human body, the measured electrical impedance 

is highly sensitive to movements [8]. 

In 1994, Vegfors et al. proposed a respiratory rate 

monitoring system developed using fibre optic technology 

[16]. In this approach, optical fibres are placed near the nose 

and mouth of the subject, and the variation in light reflection 

is measured. The fibre optic tips become condensed as warm 

air is expired during respiration, which changes the 

reflectivity of the light. However, this fibre optic technique 

can cause discomfort to the subjects due to the placement of  

fibre optic tips near the nose and mouth, which affects the 

natural breathing pattern [8]. 

RIPG is another technique for measuring the respiratory 

rate [17] that includes the use of two wire-insulated elastic 

bands positioned around the abdomen and the rib cage under 

each armpit. During the respiration process, the cross-

sectional area of the abdomen and the rib cage increases and 

decreases, resulting in changes in the self-inductance and 

frequency of the coils within the elastic bands [18]. These 

changes are then converted into a waveform to measure the 

respiratory rate. In 2015, one researcher [19] used a wireless 

type respiratory rate detection system. Respiratory rate was 
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measured by bending type sensor which is a long and thin 

sheet with variable resistance. The sensor was placed 

longitudinally on the center of the abdomen to measure the 

change in expansion and contraction. Resistance of sensors 

varies according to the degree of bending [19]. Similar to the 

fibre optic technique, RIPG also causes discomfort to the 

subjects due to the placement of the elastic bands, which 

affects the natural breathing pattern [20]. 

In some cases, flow measurement devices are used to 

determine the respiratory rate. The commonly used flow 

measurement devices include phonopneumographs, 

spirometers and other devices used for testing pulmonary 

functions. Using this approach, flow measurements are used 

to measure the forced expiratory volume (FEV), which is then 

used to determine the respiratory rate [21] and also used for 

phase detection [22-25]. This technique cannot be used for 

patients with very severe respiratory illness [26] or onto 

children [27]. Further, this technique may not be suitable for 

continuous monitoring [28]. 

 

III. ACOUSTIC APPROACH 

 

The acoustic approach is otherwise called a direct 

measurement technique [13]. Direct measurement techniques 

are prone to drawbacks, and hence, researchers have started 

developing indirect techniques to measure the respiratory rate 

using pulmonary acoustic signals. These indirect 

measurements involve the analysis of pulmonary acoustic 

signals in the time or frequency domain or time and frequency 

domain to detect the breath phases [10]. The indirect 

technique involves the auscultation of pulmonary acoustic 

signals, in a manner which does not affect the natural 

breathing pattern of subjects. Such a technique allows the 

recording of pulmonary acoustic signals from patients with 

severe respiratory illness [3]. 

In 2009, Jin et al. proposed a genetic algorithm-based 

technique for detecting the breath phases and subsequently 

segmenting the respiratory cycles from pulmonary acoustic 

signals [29]. The number of respiratory cycles is estimated 

through noise estimation and non-linear mapping followed by 

the application of a genetic algorithm to identify the breath 

phases. In 2004, Hult et al. [8] proposed a novel technique for 

detecting and segmenting breath phases using the Fast 

Fourier Transform (FFT)-based summation method, which is 

applied to the windowed pulmonary acoustic signals to 

calculate an index that can be used to detect the respiratory 

phases. This technique provides sufficient evidence regarding 

the use of spectral changes for detecting breath phases. 

In 2016, Palaniappan et al. [10] recorded pulmonary 

acoustic signals from 69 subjects using an electronic 

stethoscope placed over three different locations, namely the 

trachea and the posterior left and right lung bases. The 

averaged normalized power spectral density and changes in 

the normalized power spectral density were extracted from 

the pulmonary acoustic signals to develop a fuzzy model for 

the detection of breath phases. The system developed by 

Palaniappan et al. exhibited an accuracy of 98% in detecting 

the respiratory phases. 

Subsequently, a year later in 2017, Palaniappan et al. [9] 

again recorded pulmonary acoustic signals from a different 

set of 72 subjects using an electronic stethoscope placed over 

the same three different locations. This time, only the 

averaged normalized power spectral density was extracted 

from the pulmonary acoustic signals and it was fed into an 

adaptive neuro fuzzy model for the detection of breath 

phases. This modified system developed by Palaniappan et al. 

exhibited an accuracy of 99% in detecting the breath phases. 

The previously used indirect methods for detecting breath 

phases and segmenting the breath cycle are listed in Table 1. 

These works are from the year 2000 onwards and taken only 

from reliable sources with accurate reporting (clear 

methodology and results). 

 

 
Table 1 

Previous studies on Indirect methods for Breath Phase detection 

 

Reference Number of Subjects 
Acoustical 

Method 
Auscultation Points Results 

[30] 

11 children (Group 1) 

and 10 adults (Group 

2); all healthy 

Spectral analysis 

Trachea (suprasternal notch), 
Left midclavicular area (2nd intercostal space), 

Left parasternum (2nd interspace), 

Right midclavicular area (2nd intercostal space), 
Right parasternum (2nd interspace), 

Right midclavicular area (3rd interspace) 

Overall accuracies of 76% 

and 67.6% for the 1st and 

2nd groups were reported 
 

[8] 
20 subjects with 

various respiratory 

pathologies 

FFT-based 
Summation 

method 

Trachea 
An overall accuracy of 

98.5% was reported 

[13] 6 healthy subjects 
Area and shape of 

the sound 

envelope 

Trachea 
An overall accuracy of 

93% was reported 

[31] 
7 controls and 14 

subjects with airway 

obstruction 

Phase-shift 
difference 

information 

Trachea 

 

An overall accuracy of 

98.07% was reported 

[32] 
7 controls and 14 

subjects with airway 

obstruction 

Sample entropy 
and Genetic 

algorithm 

Trachea 

 

An overall accuracy of 

about 98% was reported 

[29] 

7 controls and 14 

subjects with airway 

obstruction 

Sample entropy 
and a 

heterogeneity 

measure 

Trachea 

 

An overall accuracy of 

100% was reported 

[33] Normal subjects 
Triplet Markov 

chains 

Trachea 

 

The developed system 

was reported as effective 

[34] 10 controls Entropy 
Trachea 

 
An overall accuracy of 

94% was reported 
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[10] 

69 subjects with 

various respiratory 
pathologies 

Normalised 

power spectral 

density and 

change in 

normalised power 
spectral density 

using fuzzy 

inference system 
(FIS) 

Trachea, 
Posterior right lung base, 

Posterior left lung base 

 

An overall accuracy of 

98% was reported 

[9] 

72 subjects with 

various respiratory 
pathologies 

Normalised 

power spectral 
density using 

adaptive neuro 

fuzzy inference 
system (ANFIS) 

Trachea, 
Posterior right lung base, 

Posterior left lung base 

 

An overall accuracy of 

99% was reported 

 

IV. APPLICATIONS 

 

Knowledge on the characteristics of respiration is important 

in several clinical applications, especially for patients in the 

intensive care unit, patients anaesthetised, patients 

undergoing rehabilitation or physiotherapy, and for those 

patients subjected to cardiac and pulmonary investigations [8, 

35]. In these patients, by monitoring their breathing cycles, 

we can identify the respiratory rate. An adult with a 

respiratory rate of over 20 breaths per minute is most likely 

seriously unwell. Similarly, an adult with a respiratory rate of 

over 24 breaths per minute is likely to be in a critical health 

condition [36]. Abnormal respiratory rates and changes in the 

respiratory rate are the earliest indicators of physiological 

instability. 

For example, respiratory rate monitoring is vital in patients 

with sleep apnea. In these patients, the breathing cycle is 

either slowed or stopped. Very often, pauses in breathing, 

shallow breathing or infrequent breathing appear as 

symptoms. Hence, monitoring the respiratory rate which 

involves detecting the breathing phases is vital in these 

patients. Each respiratory cycle comprises of the inspiration 

phase, pause phase and the expiration phase. Vital 

information pertaining to the assessment of the respiratory 

system lies either in the inspiration or expiration phases or 

even both in some cases. 

Respiratory phase detection is also vital in the pulmonary 

acoustic signal analysis to diagnose pathology. Pulmonary 

acoustic signal analysis has been an effective tool for 

assessing the respiratory system for the past three decades [2, 

37]. The adventitious sounds in the pulmonary acoustic 

signals provide indications of respiratory related illness. 

These breath sounds can be clinically characterized by their 

duration within a respiratory cycle and their relationship to 

the phase of respiration. It was revealed that these 

developments in respiratory sound analysis drive the 

development of Electronic Health (e-health) care tools [26]. 
 

V. DISCUSSION 

 

Our findings reveal that the acoustic approach is more 

advantages than the non-acoustic approach in detecting the 

respiratory phases. The acoustic approach is non-invasive, 

inexpensive, less time consuming, it does not affect the 

natural breathing manoeuvre of the subject and it can also be 

used in patients with the severe respiratory illness. There are 

numerous applications which require breath phase 

segmentations namely in early detection of sleep apnea. With 

all these benefits, an acoustic approach is more beneficial in 

many research areas related to the respiratory system. 

However, we find that the research works on the acoustic 

approach based detection of breath phases is still in its 

infancy stages. The research on breath phase detection should 

progress to an advanced level given the recent advancement 

in signal processing techniques and machine learning 

algorithms. The current and future advancement in 

technology may open up new questions or it may provide 

answers to a few questions about which researchers in the 

field of pulmonary acoustic signal analysis are looking for. 
 

VI. CONCLUSIONS 

 

This article gives an overview of the state of the art 

techniques (acoustic and non-acoustic approaches) involved 

in breath phase detection and provides evidence of 

applications where breath phase detection is vital. The non-

acoustic approaches involve placement of sensors or flow 

measurement devices to estimate the breath phases, whereas 

the acoustic approaches involve the use of sophisticated 

signal processing methods on respiratory sounds to detect and 

identify breath phases. This article has also presented a brief 

discussion on the advantages and disadvantages of the 

acoustic and non-acoustic approaches of breath phase 

detection. The discussion clearly shows that the acoustic 

based approach is non-invasive, less expensive and does not 

affect the natural breathing pattern of the subjects. We believe 

the recent advancement in technology will allow researchers 

to apply sophisticated signal processing techniques and 

artificial intelligence algorithms to detect the breath phases in 

a non-invasive way. Future works that can be implemented 

after detecting the breath phases were also highlighted in this 

article. 
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