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A B S T R A C T

Objective: This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their
severity level (mild, moderate and severe) using spectral integrated (SI) features.
Method: Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and
lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled
into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the
physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate sta-
tistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to
the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using
the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods.
Results and conclusion: All statistical comparisons exhibited a significant difference (p < 0.05) among the se-
verity levels with few exceptions. In the classification experiments, the ensemble classifier exhibited better
performance in terms of sensitivity, specificity and positive predictive value (PPV). The trachea inspiratory
group showed the highest classification performance compared with all the other groups. Overall, the best PPV
for the mild, moderate and severe samples were 95% (ENS), 88% (ENS) and 90% (SVM), respectively. With
respect to location, the tracheal related wheeze sounds were most sensitive and specific predictors of asthma
severity levels. In addition, the classification performances of the inspiratory and expiratory related groups were
comparable, suggesting that the samples from these locations are equally informative.

1. Introduction

During breathing, acoustic signals are produced in the lungs due to
oscillations in the turbulent flow at the bronchial walls, and respiratory
acoustic signals provide meaningful information regarding the condi-
tion of the lungs. Specifically, normal lungs generate normal breath
sounds, and pathological disorders or airway obstructions produce ab-
normal sounds. Asthmatic patients present some airway obstruction
that results in the production of wheeze sounds. The current practice of
physicians involves using a stethoscope to auscultate wheeze sounds,
and this subjective process depends on the experience and hearing
capability of the physician. To overcome these issues, researchers have
started to intensely explore computer-based techniques.

Computerized wheeze sound analysis is an active field of research
that is increasingly gaining traction. As the name suggests,

computerized respiratory sound analysis has the advantage of covering
a wider range of frequencies than physicians can auscultate [1]. Re-
searchers have been investigating wheeze detection using logic-base
algorithms, wheeze classification using machine learning techniques,
the relationship between airway obstruction and sound spectra and
wheeze sound characteristics. Several reviews on computerized breath
sound analysis have also revealed that most of the researchers in the
field of computerized analysis are investigating the detection or clas-
sification of adventitious sounds (including wheezes), which can be
continuous or discontinuous [1–5].

2. Literature review

A previous study [6] detected wheezes in a spectrogram by identi-
fying a set of peaks higher than a predefined threshold value. A later
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study [7] modified the threshold and smoothing technique and in-
troduced peak grouping to enhance the wheeze duration criteria, which
increased the wheeze detection accuracy. Furthermore, another study
[8] developed a time-frequency wheeze detection algorithm that in-
troduced the notion of peak coexistence, i.e., the number of peaks de-
tected at the same interval should not be greater than a predefined
constant. This wheeze detection trend then started to shift from logic-
based algorithms to machine learning techniques because logic-based
algorithms are dependent and susceptible to attenuation of the sound
signal amplitude, which led researchers to develop methods invariant
to attenuation.

Machine learning techniques then focused on the extraction of
wheeze features for the classification of lung sounds into wheeze and
non-wheeze sounds. The algorithm developed in a previous study [9]
compared 17 systems developed using combinations of autoregression
(AR), short-time Fourier transform (STFT), Mel-frequency cepstrum
coefficient (MFCC), wavelet packet transform and wavelet transform
feature extraction methods using Gaussian mixture model (GMM),
vector quantification and artificial neural network (ANN) classifiers to
classify lung sounds into wheezes and non-wheezes. The findings of the
study revealed that MFCC combined with GMM performs better than all
the other combinations. Another study [10] extracted MFCC features
from breath sounds and introduced a two-layer coarse-to-fine support
vector machine (SVM) classifier to eliminate false stridors (louder
wheezes with prominent peaks at 1000 Hz) and thus classify wheeze
and non-wheeze breath sounds. An earlier study conducted with chil-
dren [11] had similar objectives: the researchers attempted to extract
features from the power spectral density using an AR method and fed
the features into an SVM classifier. Other researchers [12] introduced a
temporal-spectral domain technique for feature extraction and applied
the k-nearest neighbour (KNN) classifier to classify breath sounds into
normal and abnormal classes. Another recent study [13] developed an
empirical mode decomposition approach to obtain the Hilbert spectrum
of lung sound recordings, and the features (instantaneous envelope and
instantaneous frequency) obtained using this approach were then ex-
tracted and fed to an SVM classifier to classify the recordings into
wheeze and normal sounds. Recently, another study [14] collected data
from 30 adults and selected 200 segments of each wheeze, crackle and
normal sound, and the systems obtained with various combinations of
feature extraction techniques (rotational dilation wavelet transform,
power spectral density (PSD), perceptual linear prediction (PLP), MFCC
and stock-well transform) and classification techniques (naïve Bayes,
decision trees, SVM, extreme learning machine and ensemble learning)
were compared. An overall three class best accuracy was obtained with
the combination of rotational dilation transform features with the en-
semble (ENS) learning classifier. These studies indicate that researchers
are attempting to classify breath sounds into predominantly normal and
abnormal sounds.

The literature also describes a few studies that focused on breath
sound analysis. A previous study [15] conducted a statistical analysis
using an average number of three expiration recordings with various
parameters, such as the number of wheezes, the percent duration of
non-wheeze, polyphonic wheeze and monophonic wheeze sounds and
the mean frequency of wheezes. The researchers concluded that the
mean frequency of the expiration recordings was higher in normal
subjects than in patients. No significant difference was found for the
other investigated parameters between the two groups. In another study
[16], third-order statistics of spectral features in the breath sounds of
asthmatic patients were analysed to observe the nonlinear behaviour of
wheeze sounds. The findings concluded that wheeze sounds exhibit
different behaviours during the inspiratory and expiratory phases. Si-
milarly, another study [17] analysed the nonlinear behaviour of wheeze
sounds in asthmatic and COPD patients using 23 high-order statistical
spectral features calculated by continuous wavelet transform. The fre-
quency behaviour of polyphonic and monophonic wheezes in the total
breathing cycle and in the expiratory and inspiratory phases,

respectively, was explored. The results revealed that most of the se-
lected features showed a significant difference between asthma and
chronic obstructive pulmonary disease (COPD) for all types of wheezes
during the total breathing cycles and individual phases.

In addition to computerized analysis, researchers have also ex-
amined correlations between other forms of recordings and classifica-
tion. One study [18] compared the classification performance of a
system between humans and an ANN classifier. Humans were shown
the asthmatic patient's bar-graph spectrogram obtained during one
breath cycle, whereas the ANN was developed using features of the
same spectrogram. The results revealed an interesting insight – ANN
classifiers perform better than humans in the analysis of a bar-graph
spectrogram. Other researchers [19,20] later correlated sound spectra
to 16 different lung function values, including force expiratory volume
in 1 s (FEV1). The results revealed the existence of a deterministic re-
lationship between lung function values and sound spectra in asthmatic
subjects. The researchers further claimed that the acuteness of asth-
matic subjects can be identified through a computerized breath sound
analysis [20] and rigidly concluded that breath sound spectra provide
sufficient information to explain the acuteness of asthmatic patients
[19].

Taken together, the previously mentioned studies indicate several
important insights. First, a relationship exists between lung function
values and respiratory sounds. Second, although some studies have
collected data from patients with different asthma severity levels and
conducted various analyses, only a few have referred their findings
back to the severity levels. Third, all of the existing works focused on
the identification of normal and abnormal lung sounds classes, without
any reference to asthma severity levels. This cumulative gap is crucial
given that according to the World Health Organization (WHO), 235
million individuals are suffering from asthma. These statistics have
encouraged researchers to develop computerized devices for the self-
monitoring and self-management of asthma, which are becoming in-
creasingly more necessary and important. To this effect, several phy-
sician-assisted devices, including spirometers and peak flow metres, are
currently being used. However, these devices are predominantly uti-
lized during supervised forced respiratory manoeuvres, which could
pose a problem when dealing with children, during long-term and
continuous observation of patients, when assessing patients with very
severe asthma conditions and in unsupervised sessions. On another
note, wheezing during forced exhalation is not always correlated to the
degree of airway obstruction in asthmatic patients, which reveals that
the FEV1 values obtained using spirometry might not always correlate
with asthma acuteness [21].

This study attempted to observe the characteristics of wheeze
sounds through a statistical analysis of spectral integrated (SI) features
and to further classify wheezes into three asthma severity levels (mild,
moderate and severe), which is required for deciding the medication
and/or other treatments that should be administered to a patient. The
management and monitoring of asthma are performed based on the
asthma severity, and the administration of medications to a patient is
also managed based on the severity conditions of the patient [22]. A
few previous studies conducted statistical analyses of the correlations
between changes in lung function values and respiratory sound spectra
[23–25]. Other researchers [24] collected data from asthmatic patients
during normal breathing and found a relationship between lung func-
tion values and the ratio of the wheezing duration to the total recording
time (Tw/Ttot). Another researcher group [23] collected data from the
trachea and chest of ten asthmatics patients during forced breathing,
calculated the F50, F75 and average power, and determined that only F50
recorded at the trachea was significantly related to the FEV1. In another
study [25], data were collected from the trachea of asthma patients
during forced breathing, and the acoustic characteristics in normal,
stable and nonstable asthma patients were investigated. The results
revealed that the mean frequency of normal subjects is different from
that of asthmatic patients. However, these studies did not perform
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statistical analyses comparing various auscultation locations, breathing
phases and severity levels. Unlike these studies, our study was inspired
by issues related to the self-management and self-monitoring (un-
supervised sessions) of asthma. To this effect, we were primarily con-
cerned with tidal breathing manoeuvres.

2. Material and methods

2.1. Study protocol

The protocol used for the acquisition of respiratory sound data was
designed according to CORSA standards [26] and after a detailed study
of the literature [1]. The approved protocol in the proposed metho-
dology consists of several steps, as illustrated in Fig. 1.

2.2. Ethics statement

Data were collected from two hospitals – Al-Mustafa Chest Clinic at
Wazirabad, Pakistan, and District Headquarters Teaching Hospital at
Gujranwala, Pakistan. Ethical permission was obtained from the ethical
committee of both hospitals separately. Clinical report forms were filled
by all the subjects, and written informed consent was also obtained
from the subjects that participated in this study. Prior to data collection,
instructions were given to the subjects regarding the data collection
procedures.

2.3. Devices for data acquisition

In this study, a wireless digital stethoscope (WISE) [27] was used for
data collection. The WISE used in this study is a commercially available
device with dimensions of 144× 63×73mm and a weight of 270 g
that is manufactured in Korea. The frequency response of this stetho-
scope is in the range of 20–2000 Hz. The hardware of the device
comprises an air coupled microphone, transmitter and receiver. In the
WISE used in this study, mechanical vibrations are converted into
electric signals through an air-coupled condenser. All the data were
collected and saved using the VPM3000W software, which accompanies
the WISE used in this study. A few previous studies have also used the
same device [28–30].

2.4. Inclusion and exclusion criteria

The subjects were recruited based on suggestions from senior
medical officers of both hospitals. The selected subjects were non-
smokers who were not on any drugs that could affect the outcome of the
study. The selected subjects were only asthmatic patients without any

other lung, heart or bowel disease. In addition, the patients were not
taking any medication for a few hours prior to data collection.

2.5. Subject details

All the data were collected from subjects suffering from asthma. A
total of 55 subjects, including 34 males and 21 females (age
(mean ± SD)= 55 ± 12.2), participated. After each patient was di-
agnosed according to the available GINA standards [31], his/her
asthma severity level (mild, moderate and severe) was identified ac-
cording to the National Asthma Education and Prevention Programme –
Expert Panel Report 3 [22]. This diagnosis was based on parameters
such as shortness of breath, wheezes, history and condition of the pa-
tient, and each of these parameters had its own scientific and quanti-
tative metric. A similar approach has also been used in other studies
[32,33]. The severity levels of all the patients were verified by at least
two physicians in both hospitals. Subjects for whom the physicians had
conflicting opinions were excluded from the study. The details of the
severity levels of the asthma patients included in this study are as fol-
lows: (1) mild – 17, male:female= 9:6, age (mean ± SD)=50 ±
12.1; (2) moderate – 18, male:female= 12:6, age (mean ±
SD)=51.5 ± 13.7; and (3) severe – 20, male:female= 13:7, age
(mean ± SD)= 50 ± 11.5. Our records indicate that a total of 5
subjects were excluded due to conflicting opinions.

2.6. Auscultation location and procedure

Respiratory sound recordings were obtained using a single-channel
WISE. Data were collected from the trachea and the left and right LLB
[34]. The exact location of the LLB was selected by ordinary ausculta-
tion with sufficient sound intensity [23] and according to a previous
study [34]. In this study, the difference in breath sounds between the
right and left LLB [35,36] was considered negligible, and thus, both
locations were considered the LLB.

All recordings were obtained as the subjects were in a sitting posi-
tion with their hands on their lap. The subjects were asked to breathe
through their mouth to exert effects on the upper airway and to keep
quiet and avoid any movements during the data recording. In addition,
the subjects were asked to hold their breath for 10 s and then breathe
normally without any targeted flow. To ensure the quality and relia-
bility of the data, short-term recordings for 60–90 s were conducted.
The data were collected in a soundproof room, and the environmental
conditions and subjects’ postures were identical for all the patients;
hence, the ambient noise did not show any variation between patients,
as described previously [23].

Fig. 1. Proposed methodology for the classification and investigation of wheeze sounds using SI features for asthma severity levels.
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2.7. Data acquisition and pre-processing

Respiratory sound data were acquired at a sampling frequency of
8000 Hz. The respiratory sounds were filtered with a 1st-order high-pass
Butterworth filter at 7.5 Hz to remove the DC offset. Subsequently, an
8th-order low-pass Butterworth filter with a 2500 Hz frequency was
applied to remove aliasing. The dominant frequency of wheeze sounds
lies between 100 and 1600 Hz. Hence, a 4th-order bandpass Butterworth
filter with a bandpass of 100–1600 Hz was developed to ensure that all
noise (e.g., motion artefacts and heart sounds) was filtered from the
recorded respiratory sounds.

2.8. Segmentation

Wheeze sounds and the phases in the breath cycles (inspiratory and
expiratory) were identified by a dedicated physician manually through
an audio-visual inspection of the recordings and with the aid of spec-
trograms. Wheeze sounds were segmented based on their manifestation
in the spectrogram and using the following criteria – increase in in-
tensity of 20 dB, duration longer or equal to 100ms, and frequency
greater or equal to 100 Hz [37]. Furthermore, all segments and label-
ling were validated by another independent physician. Segments for
which the physicians had conflicting opinions were omitted from the
study. Similar approaches were also used in a previous study [12,10].
The combination of these approaches produced a database of wheezes
labelled according to severity level, phase and location, as shown in
Table 1. The manifestation of wheeze sounds can be noted in Fig. 2,
which shows the respiratory sounds recorded from the trachea of a 53-
year-old woman suffering from moderate asthma.

2.9. Wheeze groups

The collected wheeze samples were split into the following nine
groups – all wheeze samples regardless of location and phase (Group 1);
wheeze samples divided by location, trachea (Group 2) and LLB (Group
3); wheeze samples divided by phase, inspiratory (Group 4) and ex-
piratory (Group 5); and wheeze samples divided by combinations of
location and phase, T_Inspir (Group 6), T_Expir (Group 7), LLB_Inspir
(Group 8), and LLB_Expir (Group 9). Previous studies [8,9,16,17,10]
have analysed all samples without discriminating their location or
phase. Some researchers [7,15,21] focused only on the expiratory
phase, whereas other studies [13,38,39] analysed only the inspiratory
phase. Another study [40] obtained data from multiple locations and
investigated them separately and/or in combination.

2.10. Feature extraction

The wheeze segments were analysed using a Fast Fourier Transform
(FFT) approach. Specifically, FFT with a 512-point (64ms) hamming
window and 50% overlap was applied to obtain the power spectrum
density within the range of 100–1600 Hz [41]. A hamming window is a
smooth window with acceptable leakage [19,42]. Most of the studies in
the literature used a 64ms window length with an overlap of 50%.
Additionally, a previous study [43] investigated the effect of wheeze
sound classification using varying window lengths (10–200ms) and
concluded that the change in accuracy rates obtained with different

window lengths is negligible. The amplitude of the power spectrum was
normalized (the sum of the absolute power spectrum values normalized
to one) based on Eqs. (1) and (2), where P(f) is the power spectral
density at frequency f, x(k) is the amplitude of the signal with respect to
point k, X(f) is the Fourier transform of the signal, P(n)norm is the
normalized power spectrum, and I indicates power intensity related to
the frequency.
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The frequencies of all the recordings obtained using this method
were comparable, regardless of the loudness of the lung sounds [19,44]
and the lung capacity. The frequency range of 100–1600 Hz of each
power spectrum density was divided into five unequal sub-bands,
namely, 100–300, 300–500, 500–800, 800–1000 and 1000–1600 Hz.
Similar spectral bands (100–1000 Hz) were also selected in a previous
study [8] for the analysis of wheeze and normal breath sounds. Sub-
sequently, the integrations of these bands and the full 100–1600-Hz
band were calculated using Eq. (3), where l and h are the upper and
lower limits of the band. Finally, the spectral integration of the sub-
bands was normalized using the integrated value obtained from the full
band. This approach yielded the five features SI100-300, SI300-500, SI500-
800, SI800-1000 and SI1000-1600.
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l

h
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2.11. Statistical analysis

Prior to the univariate statistical analyses (individual feature), a
normality test was performed, and the results showed that the data
were not normally distributed. A univariate analysis using a non-
parametric test (Kruskal-Wallis) was conducted to investigate the
overall significant difference between the three severity levels.
Subsequently, a post hoc test (Mann-Whitney) was applied to assess the
significance of the differences between pairs of severity levels. A 95%
confidence level was considered significant for all statistical analyses,
i.e., selected groups were considered significantly different if p < 0.05.
The strength of the statistical analysis, which depended on the test, was
observed through Cohen's effect size (ηχ2), as described previously [45].
ηχ2 was calculated using Eq. (4), where χ2 is the Kruskal-Wallis test
statistic and N is the number of samples of the respective group, to
determine the effect size as follows – 0.01 (small), 0.06 (medium) and
0.138 (large).

=
−N

η (χ) χ
1

2
2

(4)

A multivariate analysis (feature vector) was then performed to in-
vestigate the discriminatory power of the combined five features among
the mild, moderate and severe samples in all nine groups. Repeated
MANOVA with Wilks lambda (Ʌ) was performed in this study. η2 and all
subsequent post hoc analyses were investigated based on a 95%

Table 1
Descriptive statistics of the nine groups of data used in this study.

Severity Total Subjects Male Female All Trachea LLB Inspiratory Expiratory T_
Inspir

T_
Expir

LLB_
Inspir

LLB_
Expir

Mild 17 9 8 199 49 150 98 101 20 29 78 72
Moderate 18 12 6 254 85 169 127 127 32 53 95 74
Severe 20 13 7 322 123 199 158 164 54 69 104 95
Total 55 34 21 775 257 518 383 392 106 151 277 241
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confidence level to indicate significance (p < 0.05). In this case, ηΛ2

was calculated using Eq. (5), where Ʌ is the Wilks lambda statistic, to
determine the effect size as follows: 0.02 (small), 0.13 (medium) and
0.26 (large) [46].

= −Λ Λη ( ) 12 (5)

2.12. Classification

Three classifiers were selected in this study – SVM, KNN and ENS. It
is worth noting that the SVM and KNN classifiers have been widely used
in the field of computerized wheeze classification [9,10,39,40]. Prior to
the development of the classifiers, all the data was normalized between
0 and 1 with respect to their minimum and maximum values.

The SVM classifier classifies data into classes by constructing a
hyperplane with the maximum margin possible. The aim of this clas-
sifier is to find the optimal separating hyperplane among the training
samples. The selection of a hyperplane depends on the nature of the
data, i.e., linear or non-linear. This classifier constitutes a maximum
margin and kernelized approach. The optimal separating hyperplane
ensures that the maximal performance is obtained through the selection
of the maximal margin between the closest members of the classes to
the hyperplane. The chosen kernel function (Gaussian or Cubic), which
consists of the kernel scale and box constraint level, was optimized
based on the classification accuracy of all available data. The optimized
values for the SVM classifier were the following: Gaussian, scale of 0.6
and level 1. A one-against-one approach was selected for the multiclass
SVM classification. KNN is a non-parametric approach based on the
strategy of finding nearest neighbours and employs voting to determine
the most likely class. The elected type of distance measurement (city
block and Euclidean distance) and the number of nearest neighbours (k)
were optimized based on the classification accuracy of all available
data. In this study, k= 10 and the Euclidean distance metric were se-
lected. In the ENS method, multiple simple learners are combined to
improve the performance of the classifier. The selected learner types
(bagged tree and boost tree) and the number of learners was optimized
based on the classification accuracy of all available data, and a bagged
decision tree with 30 learners was deemed optimal in this study.

After the optimization and learning phases, a leave-one-out subject
cross-validation technique was applied to analyse the performance of
the classifiers. The performances of the classifiers were monitored using
the sensitivity (SEN), specificity (SPE) and PPV parameters. All com-
putations regarding pre-processing, feature extraction and classification
were performed using MATLAB® (version 2017a, Math Works, USA),
and all the statistical analyses were performed using IBM SPSS Statistics
(version 20, IBM Corporation, USA).

3. Results

Fig. 3 presents the μ(SD) values of SI100-300, SI300-500, SI500-800, SI800-
1000 and SI1000-1600 for mild, moderate and severe asthma patients in the
nine groups. The graphs show that much of the energy in the signal is
concentrated in the SI100-300, SI300-500 and SI500-800 bands. Furthermore,
a decreasing trend in the values was observed from the lower to the
higher bands. A similar observation was also noted in the variance of
the features. For the trachea related groups, the energy in the signal was
better distributed among the SI100-300, SI300-500 and SI500-800 bands, and
better discrimination could be observed among the severity classes. In
contrast, for the LLB related groups, much of the energy was contained
in the SI100-300 and SI300-500 bands.

Table 2 presents a summary of the univariate statistical analysis of
the three severity levels and the corresponding post hoc results. The
results revealed that all the features exhibited statistical significance for
at least 7 out of the 9 groups – SI100-300 (p < 0.05, ηχ2= 0.03–0.23),
SI300-500 (p < 0.05, ηχ2= 0.033–0.23), SI500-800 (p < 0.05,
ηχ2= 0.02–0.361), SI800-1000 (p < 0.05, ηχ2= 0.02–0.213) and SI1000-
1600 (p < 0.05, ηχ2= 0.01–0.241). All the investigated features
showed higher effect sizes for the trachea related groups (p < 0.05,
ηχ2= 0.05–0.361) than for the LLB related groups (p < 0.05,
ηχ2= 0.016–0.23). In addition, the features showed better dis-
criminatory power in the inspiratory related groups (p < 0.05,
ηχ2= 0.023–0.361) than in the expiratory related groups (p < 0.05,
ηχ2= 0.03–0.2). The post hoc results revealed that the percentage of
observations that were statistically significant between the severity
level pairs were as follows – a (70%), b (81%) and c (54%).

Table 3 presents the results of the statistical analysis of the

Fig. 2. Visual inspection of trachea breath sounds recording (top) of a 53-year-old woman suffering from moderate asthma and the corresponding spectrogram
(bottom), indicating the presence of wheeze sounds.
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combined effects of five features (MANOVA) and the corresponding
post hoc test results. The values revealed that the combined feature
vector exhibited statistical significance for all the sample groups
(p < 0.05, ηΛ2= 0.044–0.523). All the comparisons of the in-
vestigated groups yielded a higher effect size for the trachea related
groups (p < 0.05, ηΛ2= 0.257–0.523) than for the LLB related groups
(p < 0.05, ηΛ2= 0.044–0.09). In addition, the features showed better
discriminatory power in the inspiratory related groups (p < 0.05,
ηΛ2= 0.09–0.523) than in the expiratory related groups (p < 0.05,
ηΛ2= 0.05–0.257). The post hoc results revealed that the percentage of
observations that were statistically significant between pairs of severity

levels were as follows: a (78%), b (100%) and c (44%).
The classification results for the three classifiers using the nine

groups as the input data is given in Table 4. The performance of the
classifiers was evaluated using the SEN, SPE and PPV performance
measures. In general, all the tested classifiers performed well – ENS
(SEN=78 ± 8%, SPE= 79 ± 9%, PPV=79 ± 7%), KNN
(SEN=72 ± 13%, SPE= 72 ± 14%, PPV=73 ± 10%) and SVM
(SEN=73 ± 11%, SPE=74 ± 12%, PPV=75 ± 8%).

In terms of location, the classifiers performed as follows in the
trachea related groups – ENS (SEN=86 ± 6%, SPE= 86 ± 9%,
PPV=87 ± 3%), KNN (SEN=81 ± 14%, SPE= 81 ± 15%,

Fig. 3. μ(SD) values of SI100-300, SI300-500, SI500-800, SI800-1000 and SI1000-1600 features for the mild, moderate and severe asthma patients in the nine groups.
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PPV=85 ± 4%) and SVM (SEN=82 ± 10%, SPE=82 ± 13%,
PPV=85 ± 4%). In contrast, if the LLB related groups were used the
input data, the following performances were obtained – ENS
(SEN=73 ± 6%, SPE=75 ± 7%, PPV=74 ± 5%), KNN
(SEN=66 ± 8%, SPE=68 ± 10%, PPV=67 ± 3%) and SVM
(SEN=68 ± 9%, SPE=70 ± 11%, PPV=70 ± 5%).

The results were then analysed in terms of breathing phases, and the
results showed that the classifiers exhibited the following performances
in the inspiratory related groups – ENS (SEN=77 ± 10%,
SPE=79 ± 11%, PPV=79 ± 9%), KNN (SEN=72 ± 15%,
SPE=73 ± 14%, PPV=73 ± 13%) and SVM (SEN=73 ± 12%,
SPE=75 ± 10%, PPV=74 ± 10%). In contrast, the performances
with the expiratory related groups were as follows ENS
(SEN=80 ± 7%, SPE=80 ± 6%, PPV=81 ± 5%), KNN
(SEN=72 ± 14%, SPE= 72 ± 15%, PPV=75 ± 9%) and SVM
(SEN=75 ± 11%, SPE=76 ± 12%, PPV=78 ± 6%).

The analysis of the results in terms of the 9 individual groups re-
vealed that T_Inspir exhibited better performance than all other groups
– ENS (SEN=88 ± 9%, SPE= 88 ± 12%, PPV=89 ± 5%), KNN
(SEN=87 ± 13%, SPE= 87 ± 12%, PPV=89 ± 6%) and SVM
(SEN=86 ± 9%, SPE=86 ± 7%, PPV=86 ± 4%).

Finally, from the point of view of severity levels, the behaviour of
the classifiers were as follows: mild samples – ENS (SEN=75 ± 9%,
SPE=86 ± 7%, PPV=79 ± 8%), KNN (SEN=63 ± 14%,
SPE=84 ± 10%, PPV=74 ± 13%) and SVM (SEN=66 ± 13%,
SPE=84 ± 8%, PPV=75 ± 10%), moderate samples – ENS
(SEN=76 ± 6%, SPE=79 ± 8%, PPV=78 ± 7%), KNN
(SEN=71 ± 6%, SPE=72 ± 11%, PPV=72 ± 8%) and SVM
(SEN=73 ± 5%, SPE= 75 ± 8%, PPV=74 ± 8%), and severe
samples – ENS (SEN=84 ± 7%, SPE= 71 ± 5%, PPV=81 ± 6%),
KNN (SEN=81 ± 12%, SPE=60 ± 9%, PPV=74 ± 7%) and SVM
(SEN=81 ± 7%, SPE=62 ± 9%, PPV=75 ± 7%).

4. Discussion

SI features are dependent on the energy of breath sounds, which
varies with changes in the obstruction severity. The airway thickness
(wall area) changes in response to airway obstruction [47]. Similarly, a
previous study [48] noted that high-pitch sounds are produced when
the air calibre becomes narrow, which leads to the fluttering of airway
walls and fluids and thus the production of wheeze sounds. These stu-
dies indicate that changes in lung airways inevitably cause changes in
the frequency of breath sounds, which varies the velocity and energy of
the breath sounds. This finding is particularly obvious in patients with
severe asthma, who produce wheezes that are louder than the under-
lying breath sounds and can be clearly heard through the patient's open
mouth. The findings obtained in this study agree with those obtained in
previous studies [24,47,48], which revealed that obstructions in lung
airways affects the frequencies of breath sounds from which wheezes
manifest.

Breath sound analysis has potential to be used for the non-invasive
detection of the asthma severity level of adults. Importantly, breath
sounds are affected by the flow rate of breaths. New breath sound
parameters are not affected by the air flow rate, and these will be of
considerable clinical utility [49]. Furthermore, selection of the spectral
band is based on the natural resonance generated by lung organs. A
study conducted in 1991 investigated the spectral characteristics of the
upper and central airway using plastic pipers of varying length [50].
The study predicted that the natural resonance of shorter tubes was
higher than that of longer tubes. A tube length of 8 cm creased the
highest natural resonance of 1031 Hz consecutive harmonics at 5155
and 3093 Hz, whereas a 16 cm tube had resonances of 516, 2580 and
3612 Hz, and a 32 cm tube had a natural resonance of 258 Hz with
successive higher resonances at 774 and 1290 Hz, etc. These findings
led some researchers [8] to select the spectral bands 100–300, 300–500,
500–800 and 800–1000 for the detection of wheeze sounds. Another
study used the bands 0–250, 250–500 and 500–1000 for wheeze de-
tection [51]. However, in this study, the frequency band 100–1600 and
the sub-bands 100–300, 300–500, 500–800, 800–1000 and 1000–1600
were selected for the analysis.

The findings related to μ(SD) values (Fig. 3) do not indicate any
specific and consistent trend with respect to asthma severity levels.
However, significant differences (p < 0.05) between severity levels
were observed for all features in most of the groups. These findings
concur with the findings of a previous study [52], which indicated that
wheeze sound spectra do not follow any specific pattern with respect to
the asthma severity level but can be used for the detection of airway
obstruction. The graphs further provide an indication of the variations
in the distribution of energy in the signal according to the asthma se-
verity level, phase and location.

Some recent literature reviews [1–5] concluded that most studies
have classified breath sounds into two classes, namely, normal and
abnormal, using different features and classification techniques. Our

Table 2
Summary of the univariate statistical analysis for the features in the various groups – p-value(ηχ2) and details of the post hoc tests – a (mild and moderate), b (mild
and severe), and c (moderate and severe).

Group SI100-300 SI300-500 SI500-800 SI800-1000 SI1000-1600

All 2.E−08(0.046)a,b 1.E−07(0.041)a,b,c 4.E−04(0.02)b,c 1.E−04(0.02)b,c 5.E−02(0.01)c

Trachea 2.E−12(0.21)a,b 2.E−07(0.122)a,b,c 5.E−11(0.19)a,b 1.E−07(0.13)a,b 1.E−04(0.07)a,b

LLB 5.E−01(0.002) 4.E−01(0.003) 1.E−02(0.016)a,c 2.E−08(0.041)a,c 7.E−09(0.045)a,b

Inspiratory 6.E−07(0.074)a,b,c 5.E−05(0.052)b,c 6.E−04(0.038)b,c 5.E−03(0.028)b,c 2.E−01(0.008)
Expiratory 3.E−03(0.03)a,b 1.E−03(0.033)a,b 2.E−01(0.008) 3.E−03(0.013) 7.E−02(0.000)
T_Inspir 6.E−06(0.23)a,b 3.E−02(0.066)b 6.E−09(0.361)a,b 1.E−05(0.213)a,b,c 3.E−06(0.241)a,b,c

T_Expir 2.E−07(0.2)a,b 1.E−06(0.18)a,b,c 3.E−04(0.11)a,b 1.E−06(0.18)a,b,c 3.E−02(0.05)b

LLB_Inspir 1.E−02(0.033)b,c 4.E−02(0.23)b,c 4.E−02(0.023)c 2.E−03(0.05)a,c 6.E−03(0.04)a,c

LLB_Expir 4.E−01(0.007) 6.E−01(0.004) 2.E−02(0.032)a 1.E−10(0.1)a,b 8.E−10(0.1)a,b

*bold font indicates statistical significance, p < 0.05.

Table 3
Summary of the MANOVA statistical analysis for the features in the various
groups – p-value, ηΛ2 and details of the post hoc tests – a (mild and moderate), b
(mild and severe), and c (moderate and severe).

Groups Wilks'
Lambda (Ʌ)

F df Error p-value Effect Size
(ηΛ2)

Post Hoc

All 0.919 6.631 10 1536 2.E−17 0.08 a,b,c
Trachea 0.67 11.1 10 500 3.E−17 0.33 a,b,c
LLB 0.96 2.3 10 1024 1.E−02 0.044 b
Inspiratory 0.877 5.09 10 752 3.E−07 0.123 a,b,c
Expiratory 0.936 2.59 10 770 4.E−03 0.064 a,b
T_Inspir 0.477 8.69 10 198 5.E−12 0.523 a,b,c
T_Expir 0.74 4.6 10 288 4.E−06 0.257 a,b
LLB_Inspir 0.91 2.62 10 540 4.E−03 0.09 a,b
LLB_Expir 0.94 1.38 10 468 4.E−02 0.05 b

*bold font indicates statistical significance, p < 0.05.
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study further classified wheeze sounds into classes according to the
severity level (mild, moderate and severe) of asthma patients using SI
features. This study differs from previous investigations that used a
large number of features to classify lung sounds as either normal or
wheeze sounds [9,10,40] because this study only used five features to
achieve the satisfactory classification of wheeze sounds according to
asthma severity levels. To this effect, although previous studies selected
bands from a lower frequency range to a maximum of 800 or 1000 Hz
[15,40,17], our study selected a higher band (100–1600) for the ana-
lysis and found satisfactory results with the 1000–1600 Hz band. In
fact, six of the nine groups showed significant results for SI1000-1600. The
MANOVA performed in this study indicated that the combined SI fea-
ture vector improved the discriminatory power among the severity le-
vels in most of the groups. Furthermore, we found that the combined
feature vector showed statistical significance for all the groups, yielded
improved values of ηΛ2 and resulted in a higher percentage of sig-
nificant findings from post hoc tests. Taken together, these findings
provide the sufficient and necessary background information for the
interpretation of the results from a physiological point of view.

Previous studies have investigated the correlation of lung function
values with respiratory sounds using data collected only from the tra-
chea [18–20,25]. Another study collected data from the trachea and
LLB but found that only the mean frequency from the trachea was
correlated to lung function values [23]. However, auscultation at the
trachea is not practised by physicians because it does not provide in-
formation regarding the location of the obstruction. Thus, one of the

major obstacles in respiratory sound analysis is the challenge of aus-
cultation at the LLB. In infants, LLB sounds are louder and clearer be-
cause the chest wall of infants is thinner than that of adults [53]. A
study on paediatric patients analysed LLB sounds with respect to the
correlation of lung function values with inspiratory and expiratory peak
frequency features. The results only revealed a significant difference in
the LLB_Inspir samples [54]. However, in our study, even though the
LLB sounds were recorded from adults with thicker chest walls, the SI
features obtained from sounds recorded at the LLB location were able to
discriminate various levels of asthma severity, regardless of the phase.

This work also investigated the correlation of wheeze sounds ob-
tained from two auscultation locations, namely, the trachea and LLB, to
severity levels. Both the univariate and multivariate analysis revealed
that the SI features were statistically significant (p < 0.05) in the
trachea related groups with a large effect size (ηχ2, ηΛ2). This finding
could be attributed to the difference in the mean values observed in the
trachea and LLB related groups, as shown in Fig. 3. These findings in-
dicate that tracheal wheeze sounds are more sensitive and specific
predictors of airway obstruction, which is similar to the findings ob-
tained in a previous study [23,52]. This result could be due to the
physiology of the LLB, which behaves as a stronger filter. Previous
studies [36,55] also found that the trachea is a better location for re-
cording wheeze sounds, even though it does not allow physical iden-
tification of the pathological location. Other researchers [35,36,56]
also concluded that the respiratory sounds from various auscultation
locations of the body show different behaviours. Taken together, these

Table 4
Performance of the three classifiers with the nine groups as input data using a leave one out subject cross validation technique.

Groups Classes ENS KNN SVM

SEN (%) SPE(%) PPV(%) SEN(%) SPE(%) PPV(%) SEN(%) SPE(%) PPV(%)

All Mild 69 82 73 50 83 68 61 79 67
Moderate 74 74 74 70 66 67 68 70 69
Severe 82 69 79 80 51 71 78 58 73

Trachea Mild 83 93 85 74 91 82 80 95 88
Moderate 80 89 88 71 85 83 76 86 84
Severe 92 72 85 93 61 81 86 60 76

LLB Mild 69 78 73 61 75 66 51 81 71
Moderate 73 72 72 69 69 68 66 65 64
Severe 79 70 77 73 59 69 76 47 64

Inspiratory Mild 68 83 75 53 75 60 59 76 64
Moderate 73 71 72 69 62 65 68 65 67
Severe 81 68 78 72 56 70 78 63 75

Expiratory Mild 72 83 74 55 89 71 59 84 73
Moderate 79 82 82 74 66 69 74 74 74
Severe 86 72 82 84 57 69 82 58 74

T_Inspir Mild 93 98 95 95 97 95 95 92 85
Moderate 78 91 85 72 91 84 77 88 82
Severe 93 75 87 94 73 87 87 79 90

T_Expir Mild 81 93 85 54 99 94 64 96 88
Moderate 85 81 84 81 72 82 80 78 85
Severe 89 81 88 95 60 81 95 66 83

LLB_Inspir Mild 73 86 79 58 74 63 58 73 62
Moderate 65 70 67 76 57 62 67 71 68
Severe 70 65 69 57 76 72 71 67 70

LLB_Expir Mild 69 79 74 64 76 69 67 83 76
Moderate 76 81 79 61 76 69 78 80 77
Severe 85 71 80 78 51 67 80 62 74

*Sensitivity (SEN) is defined as the probability at which class 1 is correctly classified as class 1 = TP/(TP + FN). Specificity (SPE) is defined as the probability at
which classes other than class 1 are correctly classified respective to their class = TN/(TN + FP). Positive predictive values (PPV) is defined as the ratio of true
detection of classes to the total number of subjects = (TP + TN)/(TP + TN + FP + FN) where, TP = true positive, TN = true negative, FN = false negative,
FP = false positive.
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results provide evidence that sounds from the trachea and LLB have
different characteristics.

The correlation between severity levels and SI features was also
investigated within different breath phases. The results of most of the
univariate analyses and MANOVAs indicated that the inspiratory re-
lated groups exhibited better discrimination (p < 0.05) than the ex-
piratory related groups. For example, although the univariate analysis
obtained similar behaviour for the T_Inspir and T_Expir groups,
LLB_Inspir performed better than LLB_Expir. A similar finding was also
obtained from the multivariate analysis: all that inspiratory related
groups exhibited a better effect size (ηΛ2) than the expiratory related
groups. The findings of our study concur with those obtained in another
study [54], which found that LLB_Inspir exhibits better performance
than LLB_Expir in correlating lung function values with peak frequency
features. However, care should be exercised when interpreting these
results because inspiratory and expiratory wheeze sounds are con-
sidered to be almost equally informative for characterizing asthma se-
verity levels [52]. These results provide evidence that tidal breathing in
normal subjects produces inspiratory and expiratory sounds in the
trachea hat exhibit almost equal intensity, whereas at the LLB, in-
spiratory sounds are louder than expiratory sounds [36,56]. This
finding demonstrates that sounds obtained during the inspiratory and
expiratory phases exhibit different behaviour [16,17,56], which could
be due to variations in the physiology of the airway passage (i.e., short
and long airways) experienced by the airflow during the inspiratory and
expiratory phases at different locations [36].

The overall comparison of the classifier results with respect to lo-
cation indicated that the trachea related groups performed better than
the LLB related groups. A similar behaviour was noted in the results of a
previous study [40] that collected data from four different locations for
wheeze and normal sound classification, analysed the data using com-
binations of different locations, and concluded that the classifier per-
formance was dependent on the location. In terms of phase, the clas-
sification results obtained in our study point to the previous conclusion
that although the inspiratory and expiratory related groups behave
differently because they are equally informative, the performance of the
classifiers was almost similar.

The overall comparison of the three classifiers indicated that every
type of input yielded better-than-average results. However, a detailed
comparison revealed that the ENS classifier obtained improved results
in seven of the nine investigated groups. The reason for this subtle
dominance of the ENS could be its working principle, which combines
multiple learners to obtain a better classification performance. This
finding is no novel. Another study [14] previously implemented the
KNN, SVM, naïve Bayes, decision tree and ENS classifiers for the clas-
sification of normal, wheeze and crackles and found that the highest
performance was obtained with the ENS classifier. In contrast, other
studies [9–11,13] indicated that the SVM classifier showed the best
performance, but these studies did not investigate the ENS classifier. In
addition, in all these aforementioned works, SI features were not im-
plemented for the classification of wheeze sounds according to severity
levels of asthma patients.

The classification results of this study were compared with those
obtained using methods described in the literature, including 7th-order
wavelet transform [57] (2 class – normal and abnormal sounds) and 6th-
order AR [9] (2 class – normal and wheeze sounds). In these studies, the
selected numbers of features for wavelet transform and AR were 19 and
7, respectively, which are definitely higher than the SI features in-
vestigated in our work. Interestingly, even though the present study
included a reduced feature vector size, the comparison results showed
that the SI features performed better than wavelet transform and AR.
The overall comparison of all the groups indicated the following im-
provements in classifier performance measures; SI vs. Wavelet trans-
form – ENS (ΔSEN=17 ± 8%, ΔSPE=16 ± 9%, ΔPPV=16 ±
6%), KNN (ΔSEN=13 ± 12%, ΔSPE=13 ± 13%, ΔPPV=15 ±
8%) and SVM (ΔSEN=16 ± 15%, ΔSPE=16 ± 16%,

ΔPPV=17 ± 6%); and SI vs. AR – ENS (ΔSEN=7 ± 8%,
ΔSPE= 8 ± 8%, ΔPPV=8 ± 4%), KNN (ΔSEN=2 ± 10%,
ΔSPE= 3 ± 10%, ΔPPV=4 ± 7%) and SVM (ΔSEN=5 ± 10%,
ΔSPE= 6 ± 12%, ΔPPV=6 ± 6%). Because these methods also rely
on the selection of frequency bands to obtain the features, the com-
parisons results indicated that the set of bands selected in our work
appear to be more suitable for the classification and identification of
asthma severity levels.

5. Conclusion

This study reveals that classification of asthmatic subjects during
tidal breathing as mild, moderate and severe can be performed using SI
features. The findings also illustrate that the distribution of spectral
energy in the recorded signals varies depending on the auscultation
location (trachea and LLB), phase (inspiratory and expiratory) and se-
verity levels (mild, moderate and severe). The results also show that the
μ(SD) of the SI values in the wheeze sound spectra does not follow any
specific and consistent pattern with respect to severity level, but this
behaviour nevertheless exhibits significant differences among the mild,
moderate and severe asthmatic patients. The statistical and classifica-
tion results obtained with the SI features indicate that tracheal wheeze
sounds are more sensitive and specific predictors of airway obstruction.
In addition, the Phase related observations indicated that the SI features
obtained during the inspiratory and expiratory phases are equally in-
formative for the identification of severity levels. The performance
measures of the SVM, KNN and ENS classifiers produced better-than-
average results in the classification of wheeze sounds according to se-
verity levels. Nevertheless, the ENS classifier showed better classifica-
tion performance in most of the investigated groups, although the best
performance was obtained with the T_Inspir group. Among the tested
classifiers, the best PPV obtained for the mild, moderate and severe
classifications were 95% (ENS), 88% (ENS) and 90% (SVM) respec-
tively. Regardless, our findings reveal that the approach does not ap-
propriately address the LLB related groups, and thus, future work
should focus on achieving a better representation of the frequency and
phase responses using the adopted methods.
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