21 research outputs found

    Waves in Honeycomb Structures

    Full text link
    We review recent work of the authors on the non-relativistic Schr\"odinger equation with a honeycomb lattice potential, VV. In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of HV=−Δ+VH_V=-\Delta+V and (ii) the two-dimensional Dirac equations, as a large, but finite time, effective description of e−iHVtψ0e^{-iH_Vt}\psi_0, for data ψ0\psi_0, which is spectrally localized at a Dirac point. We conclude with a formal derivation and discussion of the effective large time evolution for the nonlinear Schr\"odinger - Gross Pitaevskii equation for small amplitude initial conditions, ψ0\psi_0. The effective dynamics are governed by a nonlinear Dirac system.Comment: 11 pages, 2 figures, 39 \`emes Journ\'ees EDP - Biarretz. arXiv admin note: text overlap with arXiv:1212.607

    Uniformly accurate numerical schemes for the nonlinear Dirac equation in the nonrelativistic limit regime

    Get PDF
    We apply the two-scale formulation approach to propose uniformly accurate (UA) schemes for solving the nonlinear Dirac equation in the nonrelativistic limit regime. The nonlinear Dirac equation involves two small scales ε\varepsilon and ε2\varepsilon^2 with ε→0\varepsilon\to0 in the nonrelativistic limit regime. The small parameter causes high oscillations in time which brings severe numerical burden for classical numerical methods. We transform our original problem as a two-scale formulation and present a general strategy to tackle a class of highly oscillatory problems involving the two small scales ε\varepsilon and ε2\varepsilon^2. Suitable initial data for the two-scale formulation is derived to bound the time derivatives of the augmented solution. Numerical schemes with uniform (with respect to ε∈(0,1]\varepsilon\in (0,1]) spectral accuracy in space and uniform first order or second order accuracy in time are proposed. Numerical experiments are done to confirm the UA property.Comment: 22 pages, 6 figures. To appear on Communications in Mathematical Science

    Wave packets in Honeycomb Structures and Two-Dimensional Dirac Equations

    Full text link
    In a recent article [10], the authors proved that the non-relativistic Schr\"odinger operator with a generic honeycomb lattice potential has conical (Dirac) points in its dispersion surfaces. These conical points occur for quasi-momenta, which are located at the vertices of the Brillouin zone, a regular hexagon. In this paper, we study the time-evolution of wave-packets, which are spectrally concentrated near such conical points. We prove that the large, but finite, time dynamics is governed by the two-dimensional Dirac equations.Comment: 34 pages, 2 figure

    A uniformly accurate (UA) multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime

    Get PDF
    We propose and rigourously analyze a multiscale time integrator Fourier pseudospectral (MTI-FP) method for the Dirac equation with a dimensionless parameter ε∈(0,1]\varepsilon\in(0,1] which is inversely proportional to the speed of light. In the nonrelativistic limit regime, i.e. 0<ε≪10<\varepsilon\ll 1, the solution exhibits highly oscillatory propagating waves with wavelength O(ε2)O(\varepsilon^2) and O(1)O(1) in time and space, respectively. Due to the rapid temporal oscillation, it is quite challenging in designing and analyzing numerical methods with uniform error bounds in ε∈(0,1]\varepsilon\in(0,1]. We present the MTI-FP method based on properly adopting a multiscale decomposition of the solution of the Dirac equation and applying the exponential wave integrator with appropriate numerical quadratures. By a careful study of the error propagation and using the energy method, we establish two independent error estimates via two different mathematical approaches as hm0+τ2ε2h^{m_0}+\frac{\tau^2}{\varepsilon^2} and hm0+τ2+ε2h^{m_0}+\tau^2+\varepsilon^2, where hh is the mesh size, τ\tau is the time step and m0m_0 depends on the regularity of the solution. These two error bounds immediately imply that the MTI-FP method converges uniformly and optimally in space with exponential convergence rate if the solution is smooth, and uniformly in time with linear convergence rate at O(τ)O(\tau) for all ε∈(0,1]\varepsilon\in(0,1] and optimally with quadratic convergence rate at O(τ2)O(\tau^2) in the regimes when either ε=O(1)\varepsilon=O(1) or 0<ε≲τ0<\varepsilon\lesssim \tau. Numerical results are reported to demonstrate that our error estimates are optimal and sharp. Finally, the MTI-FP method is applied to study numerically the convergence rates of the solution of the Dirac equation to those of its limiting models when ε→0+\varepsilon\to0^+.Comment: 25 pages, 1 figur

    Spatial algebraic solitons at the Dirac point in optically induced nonlinear photonic lattices

    Get PDF
    The discovery of a new type of soliton occurring in periodic systems is reported. This type of nonlinear excitation exists at a Dirac point of a photonic band structure, and features an oscillating tail that damps algebraically. Solitons in periodic systems are localized states traditionally supported by photonic bandgaps. Here, it is found that besides photonic bandgaps, a Dirac point in the band structure of triangular optical lattices can also sustain solitons. Apart from their theoretical impact within the soliton theory, they have many potential uses because such solitons are possible in both Kerr material and photorefractive crystals that possess self-focusing and self-defocusing nonlinearities. The findings enrich the soliton family and provide information for studies of nonlinear waves in many branches of physics

    Double Conical degeneracy on the band structure of periodic Schr\"odinger operators

    Full text link
    Dirac cones are conical singularities that occur near the degenerate points in band structures. Such singularities result in enormous unusual phenomena of the corresponding physical systems. This work investigates double Dirac cones that occur in the vicinity of a fourfold degenerate point in the band structures of certain operators. It is known that such degeneracy originates in the symmetries of the Hamiltonian. We use two dimensional periodic Schr\"odinger operators with novel designed symmetries as our prototype. First, we characterize admissible potentials, termed as super honeycomb lattice potentials. They are honeycomb lattices potentials with a key additional translation symmetry. It is rigorously justified that Schr\"odinger operators with such potentials almost guarantee the existence of double Dirac cones on the bands at the {\Gamma} point, the origin of the Brillouin zone. We further show that the additional translation symmetry is an indispensable ingredient by a perturbation analysis. Indeed, the double cones disappear if the additional translation symmetry is broken. Many numerical simulations are provided, which agree well with our analysis
    corecore