13 research outputs found

    Temperature and humidity atmospheric vertical profiles from MTG-IRS data

    Get PDF
    Ponencia presentada en: XIX Congreso de la Asociación Española de Teledetección celebrado en Pamplona del 29 de junio al 1 de julio de 2022.[ES]El objetivo principal de este trabajo es caracterizar las capacidades del MTG-IRS para suministrar información de los perfiles de temperatura y humedad atmosférica utilizando IASI-MetOp como proxy de MTG-IRS. Para lograr este objetivo, hemos desarrollado un método de recuperación no lineal basado en técnicas de Machine Learning/Artificial Intelligence (ML/AI) para estimar los perfiles verticales atmosféricos a partir de medidas de IASI (como proxy de MTGIRS). Se trata de un modelo de Kernel Ridge Regression (KRR), el cual nos permite minimizar el conjunto de datos de entrenamiento, seleccionando una cantidad representativa de Support Vectors (SV) para el entrenamiento y predicción de los perfiles atmosféricos de temperatura y humedad. Los resultados muestran una mejora significativa en el costo computacional de las recuperaciones de estas variables a partir de sondeadores hiperespectrales, así como en la calidad de las mismas. Esto nos permite, además de recuperar estas variables con gran precisión, determinar los perfiles de inestabilidad atmosférica en cielos cubiertos con una fracción de nubes de hasta el 80%. Los resultados de la aplicación del modelo KRR al futuro MTG-IRS proporcionarán una gran mejora en los análisis meteorológicos para las situaciones meteorológicas analizadas.[EN]In this work, a non-linear retrieval algorithm is presented for IASI-MetOp (as a proxy of MTG-IRS) to characterize its capabilities in providing information of the atmospheric temperature and humidity profiles. To achieve this goal, we have developed a method based on Machine Learning/Artificial Intelligence techniques for IASI-MetOp (as a proxy of MTG-IRS) to estimate atmospheric vertical profiles. Obtained results show that the Kernel Ridge Regression (KRR) retrieval model developed in this work, is able to retrieve accurate atmospheric temperature and humidity profiles below skies with cloud fraction until 80%. This result is particularly important for providing the atmospheric structure information needed to improve convection forecasts. It is important to note that the principal goal for the KRR model is to enable the real-time production of the physical variables from the satellite hyperspectral resolution radiance measurements. The results from the application of the KRR model to future MTG-IRS will provide a big improvement in the meteorological analyses for analysed weather situations

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

    Get PDF
    Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs) on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR), kernel ridge regression (KRR) and neural networks (NN). These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance). SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced RTMs, in which both consistent physical assumptions and data-driven machine learning algorithms live together

    Multimodal Representation Learning and Set Attention for LWIR In-Scene Atmospheric Compensation

    Get PDF
    A multimodal generative modeling approach combined with permutation-invariant set attention is investigated in this paper to support long-wave infrared (LWIR) in-scene atmospheric compensation. The generative model can produce realistic atmospheric state vectors (T;H2O;O3) and their corresponding transmittance, upwelling radiance, and downwelling radiance (TUD) vectors by sampling a low-dimensional space. Variational loss, LWIR radiative transfer loss and atmospheric state loss constrain the low-dimensional space, resulting in lower reconstruction error compared to standard mean-squared error approaches. A permutation-invariant network predicts the generative model low-dimensional components from in-scene data, allowing for simultaneous estimates of the atmospheric state and TUD vector. Forward modeling the predicted atmospheric state vector results in a second atmospheric compensation estimate. Results are reported for collected LWIR data and compared to Fast Line-of-Sight Atmospheric Analysis of Hypercubes - Infrared (FLAASH-IR), demonstrating commensurate performance when applied to a target detection scenario. Additionally, an approximate 8 times reduction in detection time is realized using this neural network-based algorithm compared to FLAASH-IR. Accelerating the target detection pipeline while providing multiple atmospheric estimates is necessary for many real-world, time sensitive tasks

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Statistical atmospheric parameter retrieval largely benefits from spatial-spectral image compression

    Get PDF
    The infrared atmospheric sounding interferometer (IASI) is flying on board of the Metop satellite series, which is part of the EUMETSAT Polar System. Products obtained from IASI data represent a significant improvement in the accuracy and quality of the measurements used for meteorological models. Notably, the IASI collects rich spectral information to derive temperature and moisture profiles, among other relevant trace gases, essential for atmospheric forecasts and for the understanding of weather. Here, we investigate the impact of near-lossless and lossy compression on IASI L1C data when statistical retrieval algorithms are later applied. We search for those compression ratios that yield a positive impact on the accuracy of the statistical retrievals. The compression techniques help reduce certain amount of noise on the original data and, at the same time, incorporate spatial-spectral feature relations in an indirect way without increasing the computational complexity. We observed that compressing images, at relatively low bit rates, improves results in predicting temperature and dew point temperature, and we advocate that some amount of compression prior to model inversion is beneficial. This research can benefit the development of current and upcoming retrieval chains in infrared sounding and hyperspectral sensors

    Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits

    Get PDF
    The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation. The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken
    corecore