209 research outputs found

    Aggressive landing maneuvers for UAVs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.Includes bibliographical references (p. 69-70).VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of unmanned aircraft systems at all attitudes, including against walls and ceilings as a way to considerably enhance the operational capability of these vehicles. The features of the research include a novel approach to trajectory tracking, whereby the primary system outputs to be tracked are smoothly scheduled according to the state of the vehicle relative to its landing area. The proposed approach is illustrated with several experiments using a low-cost three-degree-of-freedom helicopter. We also include the design details of a testbed for the demonstration of the application of our research endeavor. The testbed is a model helicopter UAV platform that has indoor and outdoor aggressive flight capability.by Selcuk Bayraktar.S.M

    Nonlinear robust control of tail-sitter aircrafts in flight mode transitions

    Get PDF
    © 2018 Elsevier Masson SAS In this paper, a nonlinear robust controller is proposed to deal with the flight mode transition control problem of tail-sitter aircrafts. During the mode transitions, the control problem is challenging due to the high nonlinearities and strong couplings. The tail-sitter aircraft model can be considered as a nominal part with uncertainties including nonlinear terms, parametric uncertainties, and external disturbances. The proposed controller consists of a nominal H∞controller and a nonlinear disturbance observer. The nominal H∞controller based on the nominal model is designed to achieve the desired trajectory tracking performance. The uncertainties are regarded as equivalent disturbances to restrain their influences by the nonlinear disturbance observer. Theoretical analysis and simulation results are given to show advantages of the proposed control method, compared with the standard H∞control approach

    Advanced control for miniature helicopters : modelling, design and flight test

    Get PDF
    Unmanned aerial vehicles (UAV) have been receiving unprecedented development during the past two decades. Among different types of UAVs, unmanned helicopters exhibit promising features gained from vertical-takeoff-and-landing, which make them as a versatile platform for both military and civil applications. The work reported in this thesis aims to apply advanced control techniques, in particular model predictive control (MPC), to an autonomous helicopter in order to enhance its performance and capability. First, a rapid prototyping testbed is developed to enable indoor flight testing for miniature helicopters. This testbed is able to simultaneously observe the flight state, carry out complicated algorithms and realtime control of helicopters all in a Matlab/Simulink environment, which provides a streamline process from algorithm development, simulation to flight tests. Next, the modelling and system identification for small-scale helicopters are studied. A parametric model is developed and the unknown parameters are estimated through the designed identification process. After a mathematical model of the selected helicopter is available, three MPC based control algorithms are developed focusing on different aspects in the operation of autonomous helicopters. The first algorithm is a nonlinear MPC framework. A piecewise constant scheme is used in the MPC formulation to reduce the intensive computation load. A two-level framework is suggested where the nonlinear MPC is combined with a low-level linear controller to allow its application on the systems with fast dynamics. The second algorithm solves the local path planning and the successive tracking control by using nonlinear and linear MPC, respectively. The kinematics and obstacle information are incorporated in the path planning, and the linear dynamics are used to design a flight controller. A guidance compensator dynamically links the path planner and flight controller. The third algorithm focuses on the further reduction of computational load in a MPC scheme and the trajectory tracking control in the presence of uncertainties and disturbances. An explicit nonlinear MPC is developed for helicopters to avoid online optimisation, which is then integrated with a nonlinear disturbance observer to significantly improve its robustness and disturbance attenuation. All these algorithms have been verified by flight tests for autonomous helicopters in the dedicated rapid prototyping testbed developed in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multivariable Super Twisting Based Robust Trajectory Tracking Control for Small Unmanned Helicopter

    Get PDF
    This paper presents a highly robust trajectory tracking controller for small unmanned helicopter with model uncertainties and external disturbances. First, a simplified dynamic model is developed, where the model uncertainties and external disturbances are treated as compounded disturbances. Then the system is divided into three interconnected subsystems: altitude subsystem, yaw subsystem, and horizontal subsystem. Second, a disturbance observer based controller (DOBC) is designed based upon backstepping and multivariable super twisting control algorithm to obtain robust trajectory tracking property. A sliding mode observer works as an estimator of the compounded disturbances. In order to lessen calculative burden, a first-order exact differentiator is employed to estimate the time derivative of the virtual control. Moreover, proof of the stability of the closed-loop system based on Lyapunov method is given. Finally, simulation results are presented to illustrate the effectiveness and robustness of the proposed flight control scheme

    Trajectory Generation and Control for Quadrotors

    Get PDF
    This thesis presents contributions to the state-of-the-art in quadrotor control, payload transportation with single and multiple quadrotors, and trajectory generation for single and multiple quadrotors. In Ch. 2 we describe a controller capable of handling large roll and pitch angles that enables a quadrotor to follow trajectories requiring large accelerations and also recover from extreme initial conditions. In Ch. 3 we describe a method that allows teams of quadrotors to work together to carry payloads that they could not carry individually. In Ch. 4 we discuss an online parameter estimation method for quadrotors transporting payloads which enables a quadrotor to use its dynamics in order to learn about the payload it is carrying and also adapt its control law in order to improve tracking performance. In Ch. 5 we present a trajectory generation method that enables quadrotors to fly through narrow gaps at various orientations and perch on inclined surfaces. Chapter 6 discusses a method for generating dynamically optimal trajectories through a series of predefined waypoints and safe corridors and Ch. 7 extends that method to enable heterogeneous quadrotor teams to quickly rearrange formations and avoid a small number of obstacles

    Modeling and Robust Control of Flying Robots Using Intelligent Approaches Modélisation et commande robuste des robots volants en utilisant des approches intelligentes

    Get PDF
    This thesis aims to modeling and robust controlling of a flying robot of quadrotor type. Where we focused in this thesis on quadrotor unmanned Aerial Vehicle (QUAV). Intelligent nonlinear controllers and intelligent fractional-order nonlinear controllers are designed to control. The QUAV system is considered as MIMO large-scale system that can be divided on six interconnected single-input–single-output (SISO) subsystems, which define one DOF, i.e., three-angle subsystems with three position subsystems. In addition, nonlinear models is considered and assumed to suffer from the incidence of parameter uncertainty. Every parameters such as mass, inertia of the system are assumed completely unknown and change over time without prior information. Next, basing on nonlinear, Fractional-Order nonlinear and the intelligent adaptive approximate techniques a control law is established for all subsystems. The stability is performed by Lyapunov method and getting the desired output with respect to the desired input. The modeling and control is done using MATLAB/Simulink. At the end, the simulation tests are performed to that, the designed controller is able to maintain best performance of the QUAV even in the presence of unknown dynamics, parametric uncertainties and external disturbance

    3-D path-following control for a model-scaled autonomous helicopter

    Get PDF
    A 3-D path-following controller is proposed in this brief for a 6-degrees-of-freedom model-scaled autonomous helicopter. The reference path and path-following errors are newly defined using implicit expressions. On the basis of geometric analysis, a new speed error is designed for singularity avoidance. The proposed control algorithm is designed using command filtered backstepping, such that complicated solutions for derivatives of virtual controls are circumvented. It is proved that, with the proposed controller, path-following errors are locally ultimately bounded. Theoretical results are demonstrated by the numerical simulation.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87hb201
    corecore