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This paper presents a highly robust trajectory tracking controller for small unmanned helicopter with model uncertainties and
external disturbances. First, a simplified dynamic model is developed, where the model uncertainties and external disturbances
are treated as compounded disturbances. Then the system is divided into three interconnected subsystems: altitude subsystem,
yaw subsystem, and horizontal subsystem. Second, a disturbance observer based controller (DOBC) is designed based upon
backstepping and multivariable super twisting control algorithm to obtain robust trajectory tracking property. A sliding mode
observer works as an estimator of the compounded disturbances. In order to lessen calculative burden, a first-order exact
differentiator is employed to estimate the time derivative of the virtual control. Moreover, proof of the stability of the closed-loop
system based on Lyapunov method is given. Finally, simulation results are presented to illustrate the effectiveness and robustness
of the proposed flight control scheme.

1. Introduction

The helicopters have many advantages over ordinary fixed-
wing vehicles. With the capability of hovering, vertical
taking-off and landing, high levels of agility, and maneu-
verability, unmanned helicopters have been used in urban
and mountainous environment. They have wide application
prospects in the field of military and civilian. However, the
unmanned helicopter system is a nonlinear, underactuated,
and strong coupled system. Consequently, it is a challenging
research area to design high-performance controllers [1, 2].

Generally, control methods for unmanned helicopters
can be classified into two categories: linear controllers and
nonlinear controllers. Traditional methods are based on
linear model, such as PID [3], LQR [4], 𝐻

∞
[5, 6], and 𝜇-

synthesis [7]. Nevertheless these linear control methods are
only effective when the states of the unmanned helicopter
system are near the equilibrium points. In order to over-
come these shortcomings, many nonlinear control methods
are developed, such as feedback linearization [8], model
predictive control [9], intelligent control [10], backstepping

control [11–14], and sliding mode control [15–19]. Among
these methods, backstepping control algorithm has drawn
much attention of many researchers. Backstepping designs
can avoid cancellation of useful nonlinearities and often
introduce additional nonlinear terms to improve transient
performance. Moreover, backstepping is an effective control
algorithm for underactuated systems as unmanned helicopter
system [13]. The key idea behind the backstepping design
technique is that some virtual control inputs are introduced to
counterbalance the number of inputs and outputs. However,
exact knowledge of the plantmodel is necessary for backstep-
ping control design. It is practically impossible to obtain the
exact model of unmanned helicopter system. Sliding mode
control algorithm is known as a robust control method [15,
16]. It is able to make the system keep robustness and stability
even in the presence of disturbances. Among all of the sliding
mode control algorithms, super twisting control algorithm
is the most popular one [17–19]. This algorithm possesses
the property of finite time convergence. And it can alleviate
chattering phenomena, because the switching control part is
hidden into the derivative of the sliding mode variable [20].
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However, traditional super twisting control algorithm only
keeps robustness with matched disturbances and only can
deal with single-input single-output systems.

The combination of backstepping andmultivariable super
twisting control algorithms makes it possible to control the
unmanned helicopters with the high-order, multiple-input
multiple-output, underactuated, and disturbance rejection
problem effectively. A sliding mode observer is developed to
estimate the compounded disturbances including matched
and unmatched disturbances [21]. By integrating the observer
output into the controller, the compounded disturbances can
be compensated for to improve the robust performance.Thus,
this disturbance observer based control (DOBC) scheme will
be robust with both matched and unmatched disturbances.
Furthermore, a first-order exact differentiator is employed to
estimate the time derivative of the virtual control, which can
avoid large calculation load [22]. It is proved by Lyapunov
technique that the closed-loop tracking error is globally
asymptotically stable.

The organization of this paper is as follows. Section 2
briefly recalls the full dynamic model of small unmanned
helicopters with compounded disturbances. In Section 3,
the complete design procedure of the disturbance observer
based controller (DOBC) is presented. The stability analysis
of the proposed controller is carried out in Section 4. In
Section 5, numerical simulations are conducted to demon-
strate the robust performance of the proposed control
method. Section 6 presents the conclusion.

2. Helicopter Model

The small unmanned helicopter is a highly nonlinear, strong
coupled, and underactuated system with model uncertain-
ties and external disturbances [2]. It is difficult to obtain
a complete model for its high order and large number
of parameters. Moreover, it is unmanageable for us to
design a practical controller. Therefore, this paper treats the
unmanned helicopter as a six-degrees-of-freedom rigid-body
model with simplified force and moment generation process
and considers model uncertainties and external disturbances
as compounded disturbances [9]. Thus, we will proceed on
the flight control design based on the simplified unmanned
helicopter model.

The first step to the development of the rigid-body
equations of motion is the definition of two reference frames.
The first one is the inertial coordinate defined as 𝑁 =

{𝑂
𝑛
, 𝑥

𝑛
, 𝑦

𝑛
, 𝑧
𝑛
}. The second is the body fixed reference frame

defined as 𝐵 = {𝑂
𝑏
, 𝑥

𝑏
, 𝑦

𝑏
, 𝑧
𝑏
}. The small unmanned heli-

copter system can be seen in Figure 1.
The rigid-body dynamics of the unmanned helicopter can

be expressed as follows:

𝑃̇ = 𝑉,

𝑉̇ = 𝑔𝑒
3
+
1

𝑚
𝑅 (Θ) (𝑓 + 𝑓

𝑑𝑉
) ,

Θ̇ = Π (Θ)Ω,

Ω̇ = −𝐽
−1

Ω × 𝐽Ω + 𝐽
−1

(𝜏 + 𝜏
𝑑Ω
) ,

(1)
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Figure 1: Small unmanned helicopter system model schematic
diagram.

where 𝑔 is the acceleration due to gravity,𝑚 is the total mass
of the unmanned helicopter, 𝐽 = diag(𝐽

𝑥𝑥
, 𝐽
𝑦𝑦
, 𝐽
𝑧𝑧
) is the

diagonal inertia matrix, and 𝑒
3
= [0 0 1]

𝑇. 𝑃 = [𝑥 𝑦 𝑧]
𝑇

and 𝑉 = [𝑢 V 𝑤]
𝑇 represent the position and velocity in

the inertial frame, and Θ = [𝜙 𝜃 𝜓]
𝑇 and Ω = [𝑝 𝑞 𝑟]

𝑇

represent the Euler angles and angular rates in the body
frame. The rotation matrix 𝑅(Θ) and the attitude kinematic
matrix Π(Θ) are defined, respectively, as follows:

𝑅 (Θ) =

[
[
[

[

𝐶
𝜃
𝐶
𝜓
𝑆
𝜙
𝑆
𝜃
𝐶
𝜓
− 𝐶

𝜙
𝑆
𝜓
𝐶
𝜙
𝑆
𝜃
𝐶
𝜓
+ 𝑆

𝜙
𝑆
𝜓

𝐶
𝜃
𝑆
𝜓

𝑆
𝜙
𝑆
𝜃
𝑆
𝜓
+ 𝐶

𝜙
𝐶
𝜓
𝐶
𝜙
𝑆
𝜃
𝑆
𝜓
− 𝑆

𝜙
𝐶
𝜓

−𝑆
𝜃

𝑆
𝜙
𝐶
𝜃

𝐶
𝜙
𝐶
𝜃

]
]
]

]

(2)

Π (Θ) =

[
[
[
[
[

[

1 𝑆
𝜙
𝑇
𝜃
𝐶
𝜙
𝑇
𝜃

0 𝐶
𝜙

−𝑆
𝜙

0

𝑆
𝜙

𝐶
𝜃

𝐶
𝜙

𝐶
𝜃

]
]
]
]
]

]

, (3)

where the compact notation𝐶 denotes cos(⋅), 𝑆 denotes sin(⋅),
and 𝑇 denotes tan(⋅).

𝑓 and 𝜏 are the external force and moment vectors,
generated by the main rotor thrust and the tail rotor thrust,
which are the main powers of the unmanned helicopter. 𝑓

𝑑𝑉

and 𝜏
𝑑Ω

are normalized force and moment disturbances that
include internal couplings, unmodelled dynamics, and wind
gusts. They are defined, respectively, as

𝑓 =
[
[

[

0

0

𝑇
𝑚

]
]

]

(4)

𝜏 = 𝐽

[
[
[

[

𝐿
𝑎
𝑎 + 𝐿

𝑏
𝑏

𝑀
𝑎
𝑎 +𝑀

𝑏
𝑏

𝑁
𝑟
𝑟 + 𝑁col𝛿col + 𝑁ped𝛿ped

]
]
]

]

(5)

𝑓
𝑑𝑉

= 𝑚 [𝑓
𝑑𝑢

𝑓
𝑑V 𝑓

𝑑𝑤
]
𝑇 (6)

𝜏
𝑑Ω

= 𝐽 [𝜏
𝑑𝑝

𝜏
𝑑𝑞

𝜏
𝑑𝑟
]
𝑇

, (7)
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where 𝑇
𝑚

is main rotor thrust controlled by collective
pitch 𝛿col: 𝑇𝑚 ≈ 𝑚(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col), and 𝛿ped

is the collective pitch of the tail rotor. The parameters
𝐿
𝑎
, 𝐿

𝑏
,𝑀

𝑎
,𝑀

𝑏
, 𝑁

𝑟
, 𝑁col, 𝑁ped can be obtained by system

identification. The longitudinal flapping angle and lateral
flapping angle 𝑎, 𝑏 cannot be measured directly, but they
are controlled by lateral and longitudinal cyclic 𝛿lat, 𝛿lon as
follows:

𝑎 = −𝜏
𝑚
𝑞 + 𝐴 lat𝛿lat + 𝐴 lon𝛿lon

𝑏 = −𝜏
𝑚
𝑝 + 𝐵lat𝛿lat + 𝐵lon𝛿lon,

(8)

where the parameters 𝜏
𝑚
, 𝐴 lat, 𝐴 lon, 𝐵lat, 𝐵lon also can be

obtained by system identification.
Substituting (8) into (5), a more compact form of the

torque can be obtained as follows:

𝜏 = 𝐽 (𝐴Ω + 𝐵𝑢) , (9)

where

𝐴 =
[
[

[

−𝜏
𝑚
𝐿
𝑏

−𝜏
𝑚
𝐿
𝑎

0

−𝜏
𝑚
𝑀

𝑏
−𝜏

𝑚
𝑀

𝑎
0

0 0 𝑁
𝑟

]
]

]

𝐵 =

[
[
[

[

0 𝐿 lon 𝐿 lat 0

0 𝑀lon 𝑀lat 0

𝑁col 0 0 𝑁ped

]
]
]

]

.

(10)

The parameters in these matrices can be given as follows:

𝐿 lon = 𝐿𝑎𝐴 lon + 𝐿𝑏𝐵lon

𝐿 lat = 𝐿𝑎𝐴 lat + 𝐿𝑏𝐵lat

𝑀lon = 𝑀𝑎
𝐴 lon +𝑀𝑏

𝐵lon

𝑀lat = 𝑀𝑎
𝐴 lat +𝑀𝑏

𝐵lat.

(11)

The modified unmanned helicopter model combining
(1)–(11) can be described in the following form:

𝑃̇ = 𝑉 (12)

𝑉̇ = 𝑔𝑒
3
+ 𝑅 (Θ) 𝑒

3
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + 𝑑𝑉 (13)

Θ̇ = Π (Θ)Ω (14)

Ω̇ = −𝐽
−1

Ω × 𝐽Ω + 𝐴Ω + 𝐵𝑢 + 𝑑
Ω
, (15)

where 𝑥 = [𝑃
𝑇

𝑉
𝑇

Θ
𝑇

Ω
𝑇

]
𝑇

is the helicopter state vector,
𝑢 = [𝛿col 𝛿lon 𝛿lat 𝛿ped]

𝑇 is the control input vector, and
𝑑
𝑉
= [𝑑

𝑢
𝑑V 𝑑

𝑤
]
𝑇

= 𝑅(Θ)𝑓
𝑑𝑉
/𝑚 and 𝑑

Ω
= [𝑑

𝑝
𝑑
𝑞
𝑑
𝑟
]
𝑇

=

𝐽
−1

𝜏
𝑑Ω

are the compounded disturbances vector acting on the
unmanned helicopter.

For convenience of controller design, the following for-
mula will be used:

𝑅̇ (Θ) = 𝑅 (Θ) 𝑆 (Ω) , (16)

where 𝑆(Ω) is a skew symmetric matrix, and it can be defined
as follows:

𝑆 (Ω) =
[
[

[

0 −𝑟 𝑞

𝑟 0 −𝑝

−𝑞 𝑝 0

]
]

]

. (17)

Actually, (16) has the same meaning as (14).
According to the feature of the unmanned helicopter

model, the system can be divided into three interconnected
subsystems: altitude subsystem, yaw subsystem, and hori-
zontal subsystem. The controller for each subsystem can be
designed separately. Consider

𝑆
1
:
{

{

{

𝑧̇ = 𝑤

𝑤̇ = 𝑔 + 𝑟
33
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + 𝑑𝑤

(18)

𝑆
2
:

{{{{

{{{{

{

𝜓̇ =

𝑆
𝜙

𝐶
𝜃

𝑞 +

𝐶
𝜙

𝐶
𝜃

𝑟

̇𝑟 = −

𝐼
𝑦𝑦
− 𝐼

𝑥𝑥

𝐼
𝑧𝑧

𝑝𝑞 + 𝑁
𝑟
𝑟 + 𝑁col𝛿col + 𝑁ped𝛿ped + 𝑑𝑟

(19)

𝑆
3
:

{{{{{{{

{{{{{{{

{

𝑃̇
1
= 𝑉

1

𝑉̇
1
= 𝑅

1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + 𝑑𝑉1

𝑅̇
1
= Π

1
Ω
1

Ω̇
1
= 𝑓

1
(Ω

1
) + 𝐴

1
Ω
1
+ 𝐵

1
𝑢
1
+ 𝑑

Ω1
,

(20)

where 𝑃
1
= [𝑥 𝑦]

𝑇, 𝑉
1
= [𝑢 V]𝑇, 𝑅

1
= [𝑟

13
𝑟
23
]
𝑇, Ω

1
=

[𝑝 𝑞]
𝑇, 𝑢

1
= [𝛿lon 𝛿lat]

𝑇, 𝑑
𝑉1

= [𝑑
𝑢
𝑑V]

𝑇, 𝑑
Ω1

= [𝑑
𝑝
𝑑
𝑞
]
𝑇,

Π
1
= [

−𝑟
12
𝑟
11

−𝑟
22
𝑟
21
], 𝑓

1
(Ω

1
) = [−((𝐼

𝑧𝑧
− 𝐼

𝑦𝑦
)/𝐼

𝑥𝑥
)𝑞𝑟 − ((𝐼

𝑥𝑥
−

𝐼
𝑧𝑧
)/𝐼

𝑦𝑦
)𝑝𝑟]

𝑇, 𝐴
1
= [

−𝜏
𝑚
𝐿
𝑏
−𝜏
𝑚
𝐿
𝑎

−𝜏
𝑚
𝑀
𝑏
−𝜏
𝑚
𝑀
𝑎

], and 𝐵
1
= [

𝐿 lon 𝐿 lat
𝑀lon 𝑀lat

], and
𝑟
𝑖,𝑗
represents the element of 𝑖th row and 𝑗th column of the

rotation matrix 𝑅(Θ).

3. Controller Design for Small
Unmanned Helicopter

3.1. Modified Multivariable Super Twisting Algorithm. Here,
a modified multivariable super twisting algorithm is used
for our controller design. In order to make the multivariable
super twisting algorithm [23] more suitable for the small
unmanned helicopter, some modifications are made as fol-
lows.

Consider the multivariable system

𝑥̇
1
= −𝜆

𝑥
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

1/2

+ 𝑥
2
+ 𝜌

1
(𝑡, 𝑥

1
)

𝑥̇
2
= −𝛼

𝑥
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

+ 𝜌
2
(𝑡) ,

(21)

where 𝑥
1
, 𝑥

2
∈ 𝑅

𝑚, 𝜆, and 𝛼 are positive constants and
𝜌
1
(𝑡, 𝑥

1
), 𝜌

2
(𝑡) are perturbations.
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Assumption 1. The perturbations 𝜌
1
(𝑡, 𝑥

1
) and 𝜌

2
(𝑡) are glob-

ally bounded by

󵄩󵄩󵄩󵄩𝜌1
󵄩󵄩󵄩󵄩 ≤ 𝛿1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

1/2

󵄩󵄩󵄩󵄩𝜌2
󵄩󵄩󵄩󵄩 ≤ 𝛿2

(22)

for some constants 𝛿
1
, 𝛿

2
> 0.

Theorem 2. Under Assumption 1, if the parameters 𝜆 and 𝛼
satisfy

𝜆 > max{2𝛿
1
,
1

2
𝛿
1
+ √

1

4
𝛿
2

1
+ 2𝛿

2
}

𝛼 >

2𝛿
1
𝜆
3

+ (1.125𝛿
2

1
+ 3𝛿

2
) 𝜆

2

+ 3𝛿
1
𝛿
2
𝜆 + 2𝛿

2

2

𝜆 (𝜆 − 2𝛿
1
)

(23)

all the trajectories of system (21) will converge to origin in finite
time.

Analysis and Proof. The multivariable super twisting algo-
rithm in Theorem 2 is developed based on the proposal in
[23]. Some modifications are made to this algorithm. First,
it is assumed that the perturbation 𝜌

1
(𝑡, 𝑥

1
) satisfies ‖𝜌

1
‖ ≤

𝛿
1
‖𝑥

1
‖
1/2 instead of ‖𝜌

1
‖ ≤ 𝛿

1
‖𝑥

1
‖ in [23]. Second, the linear

control terms are removed in multivariable system (21).
The stability analyses of these two algorithms are similar.

And the details of the proof can be found in article [23]. So
we only give the outline of the stability analysis below.

We define a Lyapunov function candidate for system (21)
as follows:

𝑉 (𝑥
1
, 𝑥

2
)

= 2𝛼
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +
1

2
𝑥
𝑇

2
𝑥
2

+
1

2
(𝜆

𝑥
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

1/2

− 𝑥
2
)

𝑇

(𝜆
𝑥
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

1/2

− 𝑥
2
) .

(24)

Define a vector 𝜍 = col(‖𝑥
1
‖
1/2

, ‖𝑥
2
‖). Considering system

(21) and perturbations (22), the time derivative of (24) can be
obtained as follows:

𝑉̇ ≤ −
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩

1/2

𝜍
𝑇

𝑄𝜍, (25)

where

𝑄 =

[
[
[
[

[

𝜆𝛼 +
𝜆
3

2
− (2𝛼 +

𝜆
2

2
) 𝛿

1
− 𝜆𝛿

2
∗

−(
𝜆
2

2
+
3

4
𝜆𝛿

1
+ 𝛿

2
)

𝜆

2

]
]
]
]

]

. (26)

If𝑄 > 0, then 𝑉̇ < 0. It is easy to see that this is the case if the
parameters satisfy

𝜆 > max{2𝛿
1
,
1

2
𝛿
1
+ √

1

4
𝛿
2

1
+ 2𝛿

2
} .

𝛼 >

2𝛿
1
𝜆
3

+ (1.125𝛿
2

1
+ 3𝛿

2
) 𝜆

2

+ 3𝛿
1
𝛿
2
𝜆 + 2𝛿

2

2

𝜆 (𝜆 − 2𝛿
1
)

(27)

Define 𝜉 = col(𝑥
1
/‖𝑥

1
‖
1/2

, 𝑥
2
), and note that ‖𝜍‖ = ‖𝜉‖ for all

values of𝑥
1
and𝑥

2
. Sowe can derive𝑉 = 𝜉

𝑇

𝑃𝜉 ≤ 𝜆max(𝑃)‖𝜉‖
2

and 𝑉̇ ≤ −(1/‖𝑥
1
‖
1/2

)𝜆min(𝑄)‖𝜉‖
2, where 𝑃 is an appropriate

symmetric positive definite matrix. Finally, we can get that

𝑉̇ ≤ −𝛾𝑉
1/2

, (28)

where 𝛾 = 𝜆min(𝑄)√𝜆min(𝑃)/𝜆max(𝑃).
Therefore, (𝑥

1
(𝑡), 𝑥

2
(𝑡)) will converge to (𝑥

1
, 𝑥

2
) = (0, 0).

And 𝑥̇
1
(𝑡) will converge to 𝑥̇

1
= 0 in finite time, because

the right hand of the first equation in (21) equals zero when
(𝑥
1
, 𝑥

2
) = (0, 0) and 𝜌

1
(𝑡, 0) = 0.

Remark 3. The proposed multivariable super twisting algo-
rithm is developed by modifying the algorithm in [23]. Now
we will clarify the motivations for these modifications as
follows. First, the starting points of these two papers are
different. The article [23] is a purely theoretical research
work, whose goal is to propose a new algorithm theoretically
without considering the particular practical application prob-
lem. However, the fundamental purpose of our paper is to
develop an appropriate algorithm to control the unmanned
helicopters effectively. Thus, we need to modify the existing
algorithm to make it applicable for unmanned helicopters.
Second, in our helicopter control system, the actual meaning
of 𝜌

1
(𝑡, 𝑥

1
) is the disturbance estimation error, which is a

very small perturbation rather than a linearly growing one.
Therefore, it will be reasonable to suppose that 𝜌

1
(𝑡, 𝑥

1
)

satisfies ‖𝜌
1
‖ ≤ 𝛿

1
‖𝑥

1
‖
1/2 instead of ‖𝜌

1
‖ ≤ 𝛿

1
‖𝑥

1
‖ in

[23]. Moreover, when 𝑥
1
is small (‖𝑥

1
‖ < 1), we can derive

𝛿
1
‖𝑥

1
‖
1/2

> 𝛿
1
‖𝑥

1
‖. Therefore, the proposed algorithm

in our paper can tolerate stronger perturbations near the
origin than the one in [23]. Third, since the perturbations
𝜌
1
(𝑡, 𝑥

1
) and 𝜌

2
(𝑡) both are not linearly growing ones, it is

not necessary to use the linear control terms in system (21),
which deal with the linearly growing perturbations effectively
[18, 23]. The proposed algorithm is able to deal with the
strong perturbations near the origin, such as 𝜌

1
(𝑡, 𝑥

1
) and

𝜌
2
(𝑡) in this situation. And the modified algorithm needs

fewer parameters than the one in [23]. Therefore, it is more
convenient to be applied for the unmanned helicopter system.
Moreover, the simulation results in Section 5 will support
our analysis that the modified multivariable super twisting
algorithm is very effective in controlling the unmanned
helicopter.

3.2. Disturbance Observer Based Controller (DOBC) Design.
In this section, a disturbance observer based controller
(DOBC) is proposed for the unmanned helicopter system.
The composite controller structure is illustrated in Figure 2.
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Disturbance observer

X

d

Horizontal subsystem controller

Altitude subsystem controller

Yaw subsystem controller

d̂w

d̂r

𝜓d

Helicopter

dynamics
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𝛿ped

𝛿lon 𝛿lat

d̂u d̂� d̂p d̂q

zd

]T[xd yd

Figure 2: Controller structure.

The main control objective of this paper is to design the
control inputs 𝑢 = [𝛿col 𝛿lon 𝛿lat 𝛿ped]

𝑇 in order to track
the reference trajectories of [𝑥

𝑑
(𝑡) 𝑦

𝑑
(𝑡) 𝑧

𝑑
(𝑡)]

𝑇, 𝜓
𝑑
(𝑡) and

to stabilize the pitch and roll angles 𝜃(𝑡), 𝜑(𝑡) in the presence
of compounded disturbances. To deal with the subsequent
control development, some assumptions are made as follows.

Assumption 4. The reference trajectories are available. More-
over, 𝑧

𝑑
(𝑡) and 𝜓

𝑑
(𝑡) are 𝐶2 functions of time, and 𝑥

𝑑
(𝑡) and

𝑦
𝑑
(𝑡) are 𝐶4 functions of time.

Assumption 5. It is assumed that |𝜃(𝑡)| < 𝜋/2 and |𝜙(𝑡)| < 𝜋/2
for 𝑡 ≥ 0.

Obviously, this assumption can ensure the attitude kine-
matic matrix Π(Θ) defined in (3) will not be singularity [12–
14].

The detailed design process is described as follows.

3.2.1. Multivariable Super Twisting Based Observer. In the
controller design procedure, the estimated disturbances 𝑑

𝑉
=

[𝑑
𝑢
𝑑V 𝑑

𝑤
]
𝑇

and 𝑑
Ω
= [𝑑

𝑝
𝑑
𝑞
𝑑
𝑟
]
𝑇

will be used, which are
estimated by multivariable super twisting observers.

Considering the following dynamic models:

𝑉̇ = 𝑔𝑒
3
+ 𝑅 (Θ) 𝑒

3
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + 𝑑𝑉 (29)

Ω̇ = −𝐽
−1

Ω × 𝐽Ω + 𝐴Ω + 𝐵𝑢 + 𝑑
Ω
, (30)

the state-like observers are designed as follows:

̇̂
𝑉 = 𝑔𝑒

3
+ 𝑅 (Θ) 𝑒

3
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + 𝑑𝑉

𝑑
𝑉
= 𝜆

𝑉

𝑒
𝑉

󵄩󵄩󵄩󵄩𝑒𝑉
󵄩󵄩󵄩󵄩

1/2

+ 𝑧
𝑉

𝑧̇
𝑉
= 𝛼

𝑉

𝑒
𝑉

󵄩󵄩󵄩󵄩𝑒𝑉
󵄩󵄩󵄩󵄩

,

(31)

̇̂
Ω = −𝐽

−1

Ω × 𝐽Ω + 𝐴Ω + 𝐵𝑢 + 𝑑
Ω

𝑑
Ω
= 𝜆

Ω

𝑒
Ω

󵄩󵄩󵄩󵄩𝑒Ω
󵄩󵄩󵄩󵄩

1/2

+ 𝑧
Ω

𝑧̇
Ω
= 𝛼

Ω

𝑒
Ω

󵄩󵄩󵄩󵄩𝑒Ω
󵄩󵄩󵄩󵄩

,

(32)

where 𝑉 and Ω are the outputs of sensors, regarding real
values. 𝑉̂ and Ω̂ are the estimated states of the observers.

State estimation errors can be defined as follows:

𝑒
𝑉
= 𝑉 − 𝑉̂

𝑒
Ω
= Ω − Ω̂.

(33)

Combining (29) and (31), we can derive

̇𝑒
𝑉
= 𝑑

𝑉
− 𝑑

𝑉

𝑑
𝑉
= 𝜆

𝑉

𝑒
𝑉

󵄩󵄩󵄩󵄩𝑒𝑉
󵄩󵄩󵄩󵄩

1/2

+ 𝑧
𝑉

𝑧̇
𝑉
= 𝛼

𝑉

𝑒
𝑉

󵄩󵄩󵄩󵄩𝑒𝑉
󵄩󵄩󵄩󵄩

.

(34)

Similarly, combining (30) and (32), we can derive

̇𝑒
Ω
= 𝑑

Ω
− 𝑑

Ω

𝑑
Ω
= 𝜆

Ω

𝑒
Ω

󵄩󵄩󵄩󵄩𝑒Ω
󵄩󵄩󵄩󵄩

1/2

+ 𝑧
Ω

𝑧̇
Ω
= 𝛼

Ω

𝑒
Ω

󵄩󵄩󵄩󵄩𝑒Ω
󵄩󵄩󵄩󵄩

.

(35)

Theorem 6. If the derivatives of disturbances are globally
bounded by ‖ ̇𝑑

𝑖
‖ < 𝐷

𝑖
, 𝑖 = 𝑉,Ω, and the parameters in

observers (31) and (32) satisfy

𝜆
𝑖
≥ √2𝐷

𝑖
,

𝛼
𝑖
≥ 3𝐷

𝑖
+
2𝐷

2

𝑖

𝜆
2

𝑖

,

(36)



6 Mathematical Problems in Engineering

the estimated disturbances 𝑑
𝑖
converge to real disturbances 𝑑

𝑖

in finite time.

Proof. The observer dynamics (34) and (35) can be rewritten
as follows:

̇𝑒
𝑖
= −𝜆

𝑖

𝑒
𝑖

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

1/2

+ (𝑑
𝑖
+ 𝑧

𝑖
)

𝑑 (𝑑
𝑖
+ 𝑧

𝑖
)

𝑑𝑡
= −𝛼

𝑖

𝑒
𝑖

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

+ ̇𝑑
𝑖
.

(37)

Define 𝑧
𝑖+1

= 𝑑
𝑖
+ 𝑧

𝑖
, 𝑖 = 𝑉, Ω, so (37) can be rewritten as

follows:

̇𝑒
𝑖
= −𝜆

𝑖

𝑒
𝑖

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

1/2

+ 𝑧
𝑖+1

𝑧̇
𝑖+1

= −𝛼
𝑖

𝑒
𝑖

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

+ ̇𝑑
𝑖
.

(38)

Considering (38), we can derive thatTheorem 6 is the special
case of Theorem 2 when (22) turns into { ‖𝜌

1
‖=0

‖𝜌
2
‖≤𝛿
2

. Thus, the
parameters in (23) will turn into the following form:

𝜆 > √2𝛿
2

𝛼 > 3𝛿
2
+
2𝛿

2

2

𝜆2
.

(39)

3.2.2. Altitude Subsystem. Considering the altitude subsys-
tem dynamics described in (18), the altitude controller can
be designed as follows.

Step 1. Define the altitude tracking error as follows:

𝑒
𝑧
= 𝑧

𝑑
− 𝑧, (40)

where 𝑧
𝑑
is the reference altitude trajectory, and define the

vertical velocity tracking error as follows:

𝑒
𝑤
= 𝑤

𝑑
− 𝑤. (41)

Taking the time derivative of (40), it yields

̇𝑒
𝑧
= 𝑧̇

𝑑
− 𝑤. (42)

Substituting (41) into (42), the open-loop altitude tracking
error dynamics can be written as follows:

̇𝑒
𝑧
= 𝑧̇

𝑑
− (𝑤

𝑑
− 𝑒

𝑤
) , (43)

where 𝑤
𝑑
is the desired vertical velocity. It can be viewed as

virtual control and is designed as follows:

𝑤
𝑑
= 𝑧̇

𝑑
+ 𝑘

𝑧
𝑒
𝑧
, (44)

where 𝑘
𝑧
is a positive control gain. Then the closed-loop

altitude tracking error dynamics will be obtained as follows:

̇𝑒
𝑧
= −𝑘

𝑧
𝑒
𝑧
+ 𝑒

𝑤
. (45)

Step 2. Taking the time derivative of (41), the open-loop
vertical velocity tracking error dynamics can be written as
follows:

̇𝑒
𝑤
= 𝑤̇

𝑑
− 𝑔 − 𝑟

33
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) − 𝑑𝑤. (46)

Define the collective pitch 𝛿col as follows:

𝛿col = 𝛿col equ + 𝛿col smc, (47)

where𝛿col equ and𝛿col smc are equivalent control and switching
control, respectively.

The equivalent control 𝛿col equ is chosen as follows:

𝛿col equ =
(𝑤̇

𝑑
− 𝑔 − 𝑟

33
(−𝑔 + 𝑍

𝑤
𝑤) − 𝑑

𝑤
)

𝑟
33
𝑍col

, (48)

where 𝑑
𝑤
is the estimated disturbance in altitude subsystem.

Substituting (47) and (48) into (46), we can obtain the
dynamics of 𝑒

𝑤
(𝑡) as follows:

̇𝑒
𝑤
= −𝑟

33
𝑍col𝛿col smc − 𝑑𝑤, (49)

where 𝑑
𝑤
= 𝑑

𝑤
− 𝑑

𝑤
is the disturbance estimation error.

The sliding variable can be chosen as follows:

𝑠
𝑤
= 𝑒

𝑤
. (50)

3.2.3. Yaw Subsystem. Considering the yaw subsystem
dynamics described in (19), the design procedure of the yaw
controller is similar to the altitude controller in Section 3.2.2.
Thus, the simplified procedure is given as follows.

Step 3. The open-loop yaw tracking error dynamics can be
written as follows:

̇𝑒
𝜓
= 𝜓̇

𝑑
− (

𝑆
𝜙

𝐶
𝜃

𝑞 +

𝐶
𝜙

𝐶
𝜃

(𝑟
𝑑
− 𝑒

𝑟
)) , (51)

where 𝑟
𝑑
is the virtual control designed as follows:

𝑟
𝑑
=
𝐶
𝜃

𝐶
𝜙

(𝜓̇
𝑑
−

𝑆
𝜙

𝐶
𝜃

𝑞 + 𝑘
𝜓
𝑒
𝜓
) , (52)

where 𝑘
𝜓
is a positive control gain.Then the closed-loop yaw

tracking error dynamics will be obtained as follows:

̇𝑒
𝜓
= −𝑘

𝜓
𝑒
𝜓
+

𝐶
𝜙

𝐶
𝜃

𝑒
𝑟
. (53)

Step 4. The open-loop yaw angular velocity error dynamics
can be written as follows:

̇𝑒
𝑟
= ̇𝑟

𝑑
+

𝐼
𝑦𝑦
− 𝐼

𝑥𝑥

𝐼
𝑧𝑧

𝑝𝑞 − 𝑁
𝑟
𝑟 − 𝑁col𝛿col − 𝑁ped𝛿ped

− 𝑑
𝑟
.

(54)

Define the collective pitch of the tail rotor 𝛿ped as follows:

𝛿ped = 𝛿ped equ + 𝛿ped smc. (55)
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The equivalent control 𝛿ped equ is chosen as follows:

𝛿ped equ

=

( ̇𝑟
𝑑
+ ((𝐼

𝑦𝑦
− 𝐼

𝑥𝑥
) /𝐼

𝑧𝑧
) 𝑝𝑞 − 𝑁

𝑟
𝑟 − 𝑁col𝛿col − 𝑑𝑟)

𝑁ped
,

(56)

where 𝑑
𝑟
is the estimated disturbance in yaw subsystem.

Substituting (55) and (56) into (54), we can obtain the
dynamics of 𝑒

𝑟
(𝑡) as follows:

̇𝑒
𝑟
= −𝑁ped𝛿ped smc − 𝑑𝑟, (57)

where 𝑑
𝑟
= 𝑑

𝑟
− 𝑑

𝑟
is the disturbance estimation error.

The sliding variable can be chosen as follows:

𝑠
𝑟
= 𝑒

𝑟
. (58)

3.2.4. Horizontal Subsystem. Considering the horizontal sub-
system dynamics described in (20), the horizontal controller
can be designed as follows.

Step 5. Define the horizontal tracking error as follows:

𝑒
𝑃1
= 𝑃

1𝑑
− 𝑃

1
, (59)

where 𝑃
1𝑑
= [𝑥

𝑑
𝑦
𝑑
]
𝑇 is the reference horizontal trajectory,

and define the horizontal velocity tracking error as follows:

𝑒
𝑉1
= 𝑉

1𝑑
− 𝑉

1
. (60)

Taking the time derivative of (59), it yields

̇𝑒
𝑃1
= 𝑃̇

1𝑑
− 𝑉

1
. (61)

Substituting (60) into (61), the open-loop horizontal tracking
error dynamics can be written as follows:

̇𝑒
𝑃1
= 𝑃̇

1𝑑
− (𝑉

1𝑑
− 𝑒

𝑉1
) . (62)

We design the virtual control 𝑉
1𝑑

as follows:

𝑉
1𝑑
= 𝑃̇

1𝑑
+ 𝑘

𝑃1
𝑒
𝑃1
, (63)

where 𝑘
𝑃1

= diag(𝑘
𝑃11
, 𝑘
𝑃12
) is a diagonal matrix of positive

control gain. Then the closed-loop horizontal trajectory
tracking error dynamics will be obtained as follows:

̇𝑒
𝑃1
= −𝑘

𝑃1
𝑒
𝑃1
+ 𝑒

𝑉1
. (64)

Step 6. Taking the time derivative of (60), the open-loop
horizontal velocity tracking error dynamics can be written as
follows:

̇𝑒
𝑉1
= 𝑉̇

1𝑑
− 𝑅

1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) − 𝑑𝑉1. (65)

The orientation error is defined as follows:

𝑒
𝑅1
= 𝑅

1𝑑
− 𝑅

1
. (66)

Substituting (66) into (65), the open-loop horizontal velocity
tracking error dynamics can be rewritten as follows:

̇𝑒
𝑉1
= 𝑉̇

1𝑑
− (𝑅

1𝑑
− 𝑒

𝑅1
) (−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col)

− 𝑑
𝑉1
.

(67)

The desired orientation 𝑅
1𝑑

is viewed as virtual control and
can be chosen as follows:

𝑅
1𝑑
=
𝑉̇
1𝑑
− 𝑑

𝑉1
+ 𝑘

𝑉1
𝑒
𝑉1
+ 𝑒

𝑃1

−𝑔 + 𝑍
𝑤
𝑤 + 𝑍col𝛿col

, (68)

where 𝑘
𝑉1

= diag(𝑘
𝑉11

, 𝑘
𝑉12

) is a diagonal matrix of
positive control gain, and 𝑑

𝑉1
is the estimated disturbance

in horizontal subsystem. Then the closed-loop horizontal
velocity tracking error dynamics will be obtained as follows:

̇𝑒
𝑉1
= −𝑘

𝑉1
𝑒
𝑉1
− 𝑒

𝑃1
− 𝑑

𝑉1

+ 𝑒
𝑅1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) ,

(69)

where 𝑑
𝑉1
= 𝑑

𝑉1
− 𝑑

𝑉1
is the disturbance estimation error.

Step 7. Taking the time derivative of (66), the open-loop
orientation error dynamics can be written as follows:

̇𝑒
𝑅1
= 𝑅̇

1𝑑
− Π

1
Ω
1
. (70)

We define the horizontal angular velocity error as follows:

𝑒
Ω1

= Ω
1𝑑
− Ω

1
. (71)

Substituting (71) into (70), the open-loop orientation error
dynamics can be rewritten as follows:

̇𝑒
𝑅1
= 𝑅̇

1𝑑
− Π

1
(Ω

1𝑑
− 𝑒

Ω1
) . (72)

The virtual controlΩ
1𝑑

can be designed as follows:

Ω
1𝑑

= Π
−1

1
(𝑅̇

1𝑑
+ 𝑒

𝑉1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + 𝑘𝑅1𝑒𝑅1) ,

(73)

where 𝑘
𝑅1

= diag(𝑘
𝑅11
, 𝑘
𝑅12
) is a diagonal matrix of

positive control gain. Then the closed-loop orientation error
dynamics will be obtained as follows:

̇𝑒
𝑅1
= −𝑘

𝑅1
𝑒
𝑅1
+ Π

1
𝑒
Ω1
− 𝑒

𝑉1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) . (74)

Step 8. Taking the time derivative of (71), the open-loop
horizontal angular velocity error dynamics can be written as
follows:

̇𝑒
Ω1

= Ω̇
1𝑑
− 𝑓

1
(Ω

1
) − 𝐴

1
Ω
1
− 𝐵

1
𝑢
1
− 𝑑

Ω1
. (75)

The control law 𝑢
1
is designed as follows:

𝑢
1
= 𝑢

1 equ + 𝑢1 smc, (76)

where 𝑢
1 equ and 𝑢1 smc are equivalent control and switching

control, respectively.
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The equivalent control 𝑢
1 equ is chosen as follows:

𝑢
1 equ = 𝐵

−1

1
(Ω̇

1𝑑
− 𝑓

1
(Ω

1
) − 𝐴

1
Ω
1
− 𝑑

Ω1
) , (77)

where 𝑑
Ω1

is the estimated disturbance in horizontal subsys-
tem.

Substituting (76) and (77) into (75), we can obtain the
dynamics of 𝑒

Ω1
(𝑡) as follows:

̇𝑒
Ω1

= −𝐵
1
𝑢
1 smc − 𝑑Ω1, (78)

where 𝑑
Ω1

= 𝑑
Ω1
− 𝑑

Ω1
is the disturbance estimation error.

The sliding variable can be chosen as follows:

𝑠
Ω1

= 𝑒
Ω1
. (79)

3.2.5. Multivariable Super Twisting Control Law. We rewrite
(49), (57), and (78) as the following form:

̇𝑠
𝑤
= −𝑟

33
𝑍col𝛿col smc − 𝑑𝑤 = V

𝑤
− 𝑑

𝑤
(80)

̇𝑠
𝑟
= −𝑁ped𝛿ped smc − 𝑑𝑟 = V

𝑟
− 𝑑

𝑟
(81)

̇𝑠
Ω1

= −𝐵
1
𝑢
1 smc − 𝑑Ω1 = V

Ω1
− 𝑑

Ω1
. (82)

These three sliding mode systems can be summarized to
a multivariable canonical form:

̇𝑠
𝑖
= V

𝑖
+ 𝑑

𝑖
, (83)

where 𝑑
𝑖
= 𝑑

𝑖
−𝑑

𝑖
∈ 𝑅

𝑚×1 is the disturbance estimation error,
and 𝑠

𝑖
, V

𝑖
∈ 𝑅

𝑚×1 are the sliding variable and control input
vector, respectively.

From Theorem 6, we can obtain that 𝑑
𝑖
will converge to

zero in finite time. Thus, it will be reasonable to state the
following assumption.

Assumption 7. The disturbance estimation error 𝑑
𝑖
is globally

bounded by
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑖

󵄩󵄩󵄩󵄩󵄩
< 𝑎

𝑖

󵄩󵄩󵄩󵄩𝑠𝑖
󵄩󵄩󵄩󵄩

1/2

, 𝑖 = 𝑉,Ω (84)

for some constants 𝑎
𝑖
> 0.

The multivariable super twisting control law can be
designed as follows:

V
𝑖
= −𝜆

𝑖

𝑠
𝑖

󵄩󵄩󵄩󵄩𝑠𝑖
󵄩󵄩󵄩󵄩

1/2

+ 𝑧
𝑖

𝑧̇
𝑖
= −𝛼

𝑖

𝑠
𝑖

󵄩󵄩󵄩󵄩𝑠𝑖
󵄩󵄩󵄩󵄩

,

(85)

where 𝜆
𝑖
, 𝛼

𝑖
are controller gains.

Theorem 8. Consider system (83) under Assumption 7. If the
parameters in control law (85) satisfy

𝜆
𝑖
> 2𝑎

𝑖
,

𝛼
𝑖
> 𝜆

𝑖

4𝑎
𝑖
𝜆
𝑖
+ 2.25𝑎

2

𝑖

2 (𝜆
𝑖
− 2𝑎

𝑖
)
,

(86)

all the trajectories of system (83) converge to the origin 𝑠
𝑖
= 0

in finite time.

Proof. Considering (83) and (84), we can derive that
Theorem 8 also is the special case of Theorem 2 when (22)
turns into { ‖𝜌1‖≤𝛿1‖𝑥1‖

1/2

‖𝜌
2
‖=0

. Thus, the controller parameters in
(23) will turn into the following form:

𝜆 > 2𝛿
1

𝛼 > 𝜆
4𝜆 + 2.25𝛿

2

1

2 (𝜆 − 2𝛿
1
)
.

(87)

From (80)–(86), we can obtain the control signals V
𝑤
, V

𝑟
,

and V
Ω1
. Thus, the switching control inputs 𝛿col smc, 𝛿ped smc,

𝛿lat smc, and 𝛿lon smc also can be derived. Combining (48), (56),
and (77), the control input vector 𝑢 = [𝛿col 𝛿lon 𝛿lat 𝛿ped]

𝑇

will be derived as follows:

𝑢 = 𝑢equ + 𝑢smc. (88)

Remark 9. Systems (80) and (81) are both the special cases of
multivariable system (83), where the dimension is𝑚 = 1; that
is to say, the control signals V

𝑤
and V

𝑟
are the single-variable

super twisting control laws.

Remark 10. The discontinuities in control law (85) will only
occur when all the components of the vector 𝑠

𝑖
equal zero,

but for decoupled single-variable super twisting algorithm,
the discontinuities will occur when any of the components of
the vector 𝑠

𝑖
equals zero. And the observers (31) and (32) have

the same characteristic too. Therefore, the proposed nonde-
coupledmultivariable super twisting algorithm has improved
chattering reduction properties relative to decoupled single-
variable super twisting algorithm in some degree.

3.2.6. Super Twisting Based Differentiator. In the controller
design procedure, some derivatives of virtual controls are
required. In order to lessen calculative burden, super twisting
algorithm based exact differentiators are deigned as follows:

̇̂𝑥 = −𝑘
1 𝑖
|𝑥 − 𝑥|

1/2 sign (𝑥 − 𝑥) + V̂

̇̂V = −𝑘
2 𝑖

sign (𝑥 − 𝑥) ,
(89)

where 𝑥 is the estimate of 𝑥, and V̂ is the estimate of 𝑥̇. When
the parameters 𝑘

1
and 𝑘

2
are chosen appropriately, V̂ will

converge to 𝑥̇ in finite time. So V̂will be used in the controller
instead of 𝑥̇.

Among these virtual controls, the derivatives of (68) and
(73) are quite complicated, so these two derivatives will be
estimated by exact differentiators.

4. Stability Analysis for Unmanned
Helicopter System

In this section, we will give the stability analysis for
unmanned helicopter system by Lyapunov technique.
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The three closed-loop subsystems are displayed as fol-
lows:

𝑆
1
:
{

{

{

̇𝑒
𝑧
= −𝑘

𝑧
𝑒
𝑧
+ 𝑠

𝑤

̇𝑠
𝑤
= V

𝑤
− 𝑑

𝑤

𝑆
2
:
{{

{{

{

̇𝑒
𝜓
= −𝑘

𝜓
𝑒
𝜓
+

𝐶
𝜙

𝐶
𝜃

𝑠
𝑟

̇𝑠
𝑟
= V

𝑟
− 𝑑

𝑟

𝑆
3
:

{{{{{{{

{{{{{{{

{

̇𝑒
𝑃1
= −𝑘

𝑃1
𝑒
𝑃1
+ 𝑒

𝑉1

̇𝑒
𝑉1
= −𝑘

𝑉1
𝑒
𝑉1
− 𝑒

𝑃1
− 𝑑

𝑉1
+ 𝑒

𝑅1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col)

̇𝑒
𝑅1
= −𝑘

𝑅1
𝑒
𝑅1
− 𝑒

𝑉1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) + Π1

𝑠
Ω1

̇𝑠
Ω1

= V
Ω1
− 𝑑

Ω1
,

(90)

where V
𝑤
, V

𝑟
, and V

Ω1
represent super twisting control laws,

and 𝑑
𝑤
, 𝑑

𝑟
, 𝑑

𝑉1
, and 𝑑

Ω1
represent disturbance estimation

errors.

Theorem 11. Consider the helicopter model (18)–(20), under
Assumptions 1–7. If the disturbance observers are designed as
(31) and (32), and the control inputs are chosen as (88), the
position and yaw tracking errors globally asymptotic converge
to zero.

Proof. From the above analysis, we can conclude that sliding
mode variable 𝑠

𝑖
will converge to manifold 𝑠

𝑖
= 0 in finite

time and remain zero for all subsequent time, anddisturbance
estimation error 𝑑

𝑖
will converge to zero in finite time too.

Therefore, the closed-loop system dynamics are governed by
the following reduced order system:

𝑆
1
: ̇𝑒

𝑧
= −𝑘

𝑧
𝑒
𝑧

𝑆
2
: ̇𝑒

𝜓
= −𝑘

𝜓
𝑒
𝜓

𝑆
3
:

{{{{

{{{{

{

̇𝑒
𝑃1
= −𝑘

𝑃1
𝑒
𝑃1
+ 𝑒

𝑉1

̇𝑒
𝑉1
= −𝑘

𝑉1
𝑒
𝑉1
− 𝑒

𝑃1
+ 𝑒

𝑅1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col)

̇𝑒
𝑅1
= −𝑘

𝑅1
𝑒
𝑅1
− 𝑒

𝑉1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col) .

(91)

Considering the above closed-loop system, we define a
Lyapunov function candidate as follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (92)

where 𝑉
1
(𝑡), 𝑉

2
(𝑡), and 𝑉

3
(𝑡) can be defined, respectively, as

𝑉
1
(𝑡) =

1

2
𝑒
𝑇

𝑧
𝑒
𝑧

𝑉
2
(𝑡) =

1

2
𝑒
𝑇

𝜓
𝑒
𝜓

𝑉
3
(𝑡) =

1

2
𝑒
𝑇

𝑃1
𝑒
𝑃1
+
1

2
𝑒
𝑇

𝑉1
𝑒
𝑉1
+
1

2
𝑒
𝑇

𝑅1
𝑒
𝑅1
.

(93)

Table 1: Parameters of unmanned helicopter.

Variable Description Value

𝑚

Mass of
unmanned
helicopter

8.2 kg

𝑔
Acceleration of
gravity 9.81m⋅s−2

𝑍
𝑤

Linkage gain
ratio of 𝑇 to 𝑤 −0.7615 s−1

𝑍col
Linkage gain
ratio of 𝑇 to 𝛿col

−131.4125m/(rad⋅s2)

𝐽
Themoment of
inertia diag{0.18, 0.34, 0.28} kg⋅m2

𝐴

Coefficient
matrix ofΩ in
(9)

diag{−48.1757, −25.5048, −0.9808} s−1

𝐵

Coefficient
matrix of 𝑢 in
(9)

[
[
[
[

[

0 0 1689.5 0

0 894.5 0 0

−0.3705 0 0 135.8

]
]
]
]

]

s−2

By taking the time derivation of (92), we can derive the
following equation:

𝑉̇ (𝑡) = 𝑒
𝑇

𝑧
̇𝑒
𝑧
+ 𝑒

𝑇

𝜓
̇𝑒
𝜓
+ 𝑒

𝑇

𝑃1
̇𝑒
𝑃1
+ 𝑒

𝑇

𝑉1
̇𝑒
𝑉1
+ 𝑒

𝑇

𝑅1
̇𝑒
𝑅1

= 𝑒
𝑇

𝑧
(−𝑘

𝑧
𝑒
𝑧
) + 𝑒

𝑇

𝜓
(−𝑘

𝜓
𝑒
𝜓
) + 𝑒

𝑇

𝑃1
(−𝑘

𝑃1
𝑒
𝑃1
+ 𝑒

𝑉1
)

+ 𝑒
𝑇

𝑉1
(−𝑘

𝑉1
𝑒
𝑉1
− 𝑒

𝑃1

+ 𝑒
𝑅1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col)) + 𝑒

𝑇

𝑅1
(−𝑘

𝑅1
𝑒
𝑅1

− 𝑒
𝑉1
(−𝑔 + 𝑍

𝑤
𝑤 + 𝑍col𝛿col)) = −𝑘𝑧𝑒

𝑇

𝑧
𝑒
𝑧

− 𝑘
𝜓
𝑒
𝑇

𝜓
𝑒
𝜓
− 𝑒

𝑇

𝑃1
𝑘
𝑃1
𝑒
𝑃1
− 𝑒

𝑇

𝑉1
𝑘
𝑉1
𝑒
𝑉1
− 𝑒

𝑇

𝑅1
𝑘
𝑅1
𝑒
𝑅1

< 0.

(94)

To sum up, the position and yaw tracking errors will globally
asymptotically converge to zero.

5. Simulation Results and Discussion

In order to verify the effectiveness of the proposed control
scheme to the unmanned helicopter, simulation tests are
presented in this section. The numerical simulations are
conducted in the MATLAB. The parameters of unmanned
helicopter are shown in Table 1, and the parameters of the
proposed controller are shown in Table 2.

The proposed control method will be compared with
the control method proposed in [24] to demonstrate the
merits of it. Moreover, the control method proposed in [24] is
backstepping sliding mode control (BSMC) method without
disturbance observer.

The slalom flight path is a typical trajectory to examine
the maneuver performance. It can test the tracking accuracy,
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Table 2: Parameters of controller.

Variable Value Description
𝐾
𝑍

1 Control gain in (44)
𝐾
Ψ

5 Control gain in (52)
𝐾
𝑃1

diag{1, 1} Control gain in (63)
𝐾
𝑉1

diag{3, 3} Control gain in (68)
𝐾
𝑅1

diag{5, 5} Control gain in (73)
𝜆
𝑤

0.15 Control gain for (80)
𝛼
𝑤

0.05 Control gain for (80)
𝜆
𝑟

0.5 Control gain for (81)
𝛼
𝑟

1.5 Control gain for (81)
𝜆
Ω1

0.5 Control gain for (82)
𝛼
Ω1

1.5 Control gain for (82)
𝜆
𝑉

1 Observer gain in (31)
𝛼
𝑉

3 Observer gain in (31)
𝜆
Ω

2 Observer gain in (32)
𝛼
Ω

10 Observer gain in (32)
𝑘
1 68

20 Differentiator gain for (68)
𝑘
2 68

30 Differentiator gain for (68)
𝑘
1 73

20 Differentiator gain for (73)
𝑘
2 73

30 Differentiator gain for (73)
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Figure 3: Position tracking responses.

robustness, and coupling properties.The desired slalomflight
path 𝑃

𝑑
= [𝑥

𝑑
𝑦
𝑑
𝑧
𝑑
]
𝑇 and 𝜓

𝑑
are designed as follows:

𝑥
𝑑
(𝑡) =

{{{{{{{

{{{{{{{

{

𝑡
2

𝑡 ≤ 6 s

12𝑡 − 36 6 < 𝑡 ≤ 11 s

−𝑡
2

+ 34𝑡 − 157 11 < 𝑡 ≤ 17 s

132 𝑡 > 17 s
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𝜙
(r
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Figure 4: Euler angle tracking responses.

𝑦
𝑑
(𝑡) =

{{{{

{{{{

{

0 𝑡 ≤ 3 s

5 sin(𝜋
5
(𝑡 − 3)) 3 < 𝑡 ≤ 13 s

0 𝑡 > 13 s

𝑧
𝑑
(𝑡) = 0

𝜓
𝑑
(𝑡) = 0.

(95)

In order to demonstrate the excellent tracking performance
comprehensively, nonzero initial position and Euler angle are
set as 𝑃

0
= [8 2 1]

𝑇

𝑚 and Θ
0
= [0 0 0.2]

𝑇 rad.
During the simulation, the model uncertainties and

external disturbances 𝑑 = Δ [𝑃
𝑇

𝑉
𝑇

Θ
𝑇

Ω
𝑇

]
𝑇

+ 𝑑wind are
added to verify the robustness of the proposed controller,
where Δ ∈ 𝑅

6×12 represents the model uncertainty matrix,
and all of its elements are pseudorandom values on the
interval (−0.1, 0.1). The external disturbance is 𝑑wind =

[sin(0.1𝑡) 2 sin(0.1𝑡) 0.5 sin(0.1𝑡) 0
1×3
]
𝑇.

The simulation results are illustrated in Figures 3–
6. Figure 3 shows the position tracking responses, while
Figure 4 depicts the Euler angle tracking responses. Through
these figures, one can see that the proposed controller is
superior to the BSMC in [24] for its tracking performance,
which is specific in its gentler dynamic process, faster tracking
ability, and smaller overshoot.Moreover, the control inputs of
the proposedmethod are smoother than the BSMC proposed
in [24] which suffer from chattering phenomena seriously
(see Figure 5). Finally, Figure 6 illustrates the effectiveness
of the designed disturbance observer. One can see that
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Figure 5: Control inputs.

the observer can estimate the compounded disturbances
accurately.

From the simulation results, we can obtain that the pro-
posed controller is very effective in controlling the unmanned
helicopter in the presence of both matched and unmatched
disturbances. However, some limitations of the controller
should be discussed here. First, the proposed control scheme
is a hierarchical control strategy. The controller structure is
somewhat complex, so we need to design it very carefully.
Second, there are still many parameters to be known in the
helicopter model and controller.

6. Conclusion

A disturbance observer based controller using backstepping
and multivariable super twisting control technique is devel-
oped for small unmanned helicopters. The compounded
disturbances and the time derivatives of the virtual controls

are estimated by super twisting based observer and differ-
entiator. The proposed controller possesses the robustness
with both matched and unmatched disturbances. The finite
time stability of the modified multivariable super twisting
algorithm and global asymptotic stability of the closed-loop
helicopter system are proved by Lyapunov theory. Finally,
numerical simulation results demonstrate the effectiveness
of the proposed flight control scheme, which is superior to
the BSMC in [24] for its accurate tracking performance and
chattering attenuation ability. The proposed control method
will be tested on the experimental helicopter platform in
future work.
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