89,434 research outputs found

    Manufacturing systems considered as time domain control systems : receding horizon control and observers

    Get PDF
    This thesis considers manufacturing systems and model-based controller design, as well as their combinations. The objective of a manufacturing system is to create products from a selected group of raw materials and semifinished goods. In the field of manufacturing systems control is an important issue appearing at various operation levels. At the level of fabrication, for example, control is necessary in order to assure properly working production processes such that products are being fabricated in the desired way. At a higher level in the hierarchy of manufacturing system control, the product streams through the system are controlled in order to satisfy, for example, customer demands in an optimal way. Here, the definition of optimal can be interpreted in various ways, such as "with the least possible costs in terms of money" or "in the shortest possible time". In this research, the attention is focussed on this higher hierarchy level of manufacturing system control. In the literature, many heuristic methods have been developed for the control of a manufacturing system. Nowadays, some heuristicmethods are still being used in combination with operator experience for management of resources and planning of production. However, as the complexity of the manufacturing systems increases rapidly, the (simple) heuristic methods and operator experience will at some point become incapable of finding an optimal control strategy. In this dissertation the potential of consideringmanufacturing system control from a control systems point of view is investigated. The ultimate goal of the research is to eventually obtain a more constructive way to address controller design for manufacturing systems. One control strategy from control systems theory, on which is in particularly focused in this research, is a model-based receding horizon control strategy, known in literature as Model Predictive Control (MPC). Since in manufacturing systems a lot of physical system constraints are involved, like for example finite machine process capacities, finite product storage capacities, finite product arrival rates, etc., the capability for a manufacturing control strategy to handle those constraints is a necessity. One of the key features of model predictive control is the capability of handling constraints in the controller design. This is one of the major motivations to investigate the model predictive control principle as a control strategy for manufacturing systems. Other issues that are important and that the model predictive control design methodology can handle is to enforce optimality, to introduce feedback, and the capability of allowing for mixed continuous and discrete model structures. The later are typically encountered when models of manufacturing systems are derived. The main results that are obtained in this dissertation and that are relevant in the context of manufacturing systems control, but are certainly also relevant beyond this field are: • One has developed an robust computationally friendly nonlinear model predictive control algorithm that can handle model structures with mixed continuous and discrete dynamics. The algorithm can be designed for additive disturbance rejection purposes; • Robustness (with respect to measurement noise) results that are in particulary of interest in the field of nonlinear model predictive control are obtained; • An asymptotically stabilizing output based nonlinear model predictive control scheme for a class of nonlinear discrete-time systems is developed. Results that are relevant in the context of manufacturing systems control are: • It is illustrated howthe aforementioned developed robust computationally friendly nonlinear model predictive control algorithm can be employed to solve a large scale manufacturing control problem in an efficient decentralized manner; • The relation between the so-called event domain modeling approaches for a class of discrete-eventmanufacturing systems to time domainmodels is derived. This results enables one to solve seemingly untractable time domain formulated optimal control problems for a class of manufacturing systems in a tractable manner; • An observer theory for a class of discrete-event manufacturing systems is developed

    Machine learning in hybrid hierarchical and partial-order planners for manufacturing domains

    Get PDF
    The application of AI planning techniques to manufacturing Systems is being widely deployed for all the tasks involved in the process, from product design to production planning and control. One of these problems is the automatic generation of control sequences for the entire manufacturing system in such a way that final plans can be directly use das the sequential control programs which drive the operation of manufacturing systems. Hybis is a hierarchical and nonlinear planner whose goal is to obtain partially ordered plans at such a level of detail that they can be use das sequential control programs for manufacturing systems. Currently, those sequential control programs are being generated by hand using modelling tools. This document describes a work whose aim is to improve the efficiency of solving problems with Hybis by using machine learning techniques. It implements a deductive learning method that is able to automatically acquire control knowledge (heuristics) by generating bounded explanations of the problem solving episodes. The learning approach builds on Hamlet, a system that learns control knowledge in the form of control rules.This work was partially supported by a grant from the Ministerio de Ciencia y TecnologĂ­a through projects TAP1999-0535-C02-02, TIC2001-4936-E, and TIC2002-04146-C05-05.Publicad

    Hierarchical control of complex manufacturing processes

    Get PDF
    The need for changing the control objective during the process has been reported in many systems in manufacturing, robotics, etc. However, not many works have been devoted to systematically investigating the proper strategies for these types of problems. In this dissertation, two approaches to such problems have been suggested for fast varying systems. The first approach, addresses problems where some of the objectives are statically related to the states of the systems. Hierarchical Optimal Control was proposed to simplify the nonlinearity caused by adding the statically related objectives into control problem. The proposed method was implemented for contour-position control of motion systems as well as force-position control of end milling processes. It was shown for a motion control system, when contour tracking is important, the controller can reduce the contour error even when the axial control signals are saturating. Also, for end milling processes it was shown that during machining sharp edges where, excessive cutting forces can cause tool breakage, by using the proposed controller, force can be bounded without sacrificing the position tracking performance. The second approach that was proposed (Hierarchical Model Predictive Control), addressed the problems where all the objectives are dynamically related. In this method neural network approximation methods were used to convert a nonlinear optimization problem into an explicit form which is feasible for real time implementation. This method was implemented for force-velocity control of ram based freeform extrusion fabrication of ceramics. Excellent extrusion results were achieved with the proposed method showing excellent performance for different changes in control objective during the process --Abstract, page iv

    Heat transfer evaluation of industrial pneumatic cylinders

    Get PDF
    Automatic positioning devices are worldwide used in tasks like handling or assembly, making them key components of modern manufacturing systems. Pneumatic solutions are usually less expensive than their electrical counterparts, are more reliable and require less maintenance. However, the complex nonlinear nature and high model order of pneumatic systems lead to a very difficult control task. These problems make model order reductions and simplifications a common practice in servo pneumatics. The heat transfer between air inside the cylinder and its environment is usually neglected or only indirectly accounted, since it varies with pressure, temperature and speed of the actuator, which makes its experimental assessment difficult. In this work we present a simple yet accurate procedure, based on a thermal time constant, enabling its evaluation. The procedure is validated by simulation studies and furthermore the heat conductance of three industrial actuators is experimentally determined

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    Space Structures: Issues in Dynamics and Control

    Get PDF
    A selective technical overview is presented on the vibration and control of large space structures, the analysis, design, and construction of which will require major technical contributions from the civil/structural, mechanical, and extended engineering communities. The immediacy of the U.S. space station makes the particular emphasis placed on large space structures and their control appropriate. The space station is but one part of the space program, and includes the lunar base, which the space station is to service. This paper attempts to summarize some of the key technical issues and hence provide a starting point for further involvement. The first half of this paper provides an introduction and overview of large space structures and their dynamics; the latter half discusses structural control, including control‐system design and nonlinearities. A crucial aspect of the large space structures problem is that dynamics and control must be considered simultaneously; the problems cannot be addressed individually and coupled as an afterthought
    • …
    corecore